头像

吴 强

光学

个人资料

  • 部门: 物理学院
  • 性别:
  • 出生年月:
  • 专业技术职务: 教授
  • 研究标签:
  • 毕业院校:
  • 学位: 博士
  • 学历:
  • 联系电话: 66229419
  • 电子邮箱: wuqiang@nankai.edu.cn
  • 办公地址: 五教311、泰达应用物理研究院202
  • 通讯地址:
  • 邮编:
  • 传真:

教育经历

1.2000/092005/06,南开大学,凝聚态物理,博士

2.1996/092000/06,南开大学,物理学,学士

工作经历

1.2013/12-至今, 南开大学, 物理学院, 教授

2.2008/12-2013/12,南开大学,物理学院, 副教授

3.2003/07-2008/12,南开大学,物理学院, 讲师(2003/07-2005/06为博士提前留校政策)

4.2006/12-2008/04MITTufts,博士后


个人简介

吴强,男,1976年生,南开大学教授,博士生导师,物理学院伯苓班(国家拔尖人才培养计划)班导师,天津市物理学会副秘书长、光电学会主任,中国激光杂志社青年编委,激光与光电子学进展编委,Scientific ReportsNature publication group)编委2000年毕业于南开大学物理科学学院,获得理学学士学位;2005年毕业于南开大学物理科学学院凝聚态物理专业,师从许京军教授,获得理学博士学位。20071月至20084月先后在塔夫茨(Tufts)大学和麻省理工学院(MIT)做博士后研究工作,合作导师Keith A. Nelson教授。目前主要从事超快光子学、光电材料与器件方面的研究工作和教育教学的研究工作。在太赫兹声子极化激元、飞秒激光改性材料及器件方面有一系列的研究成果,发表SCI学术论文七十余篇、获得授权发明专利十余项(其中1项为美国专利,1项为欧洲专利)。教育教学论文五篇。获得教育部成果奖(360-01-20310724)一次,以及其它学术、教育教学奖励多项。在多个国际会议上做了邀请报告(invited talk),并作为分会主席主持会议。主持“973”计划(南开部分)1项,国家自然科学基金3项,天津市自然基金1项。以科研成果为依托,创办天津创珪科技有限公司。



研究领域

As a scientist, my  job is to make the future happen.

我们的科研有一点小另类,追求与众不同。


本科生、研究生、博士后:

研究生和博士后的招收,倾心于理论物理、光电器件、材料、凝聚态物理、光学与光子学等方面的才俊。同时,欢迎本科生的加入。

研究方向介绍:

飞秒激光与晶体材料作用的物理机理与应用

 飞秒激光的发明极大地促进了物理、化学、生物等学科的发展。其超快、超强的特性,使得教科书上的许多公式已经不能描述飞秒激光与物质相互作用的过程。从而发展出了众多的新理论,在此基础上开发了许多的新应用。

 我们的研究主要集中在飞秒激光与晶体材料的作用上,尤其注重对瞬态元激发的理解和应用,涉及超快光子学、超快光学、太赫兹光学、光电材料与器件、微纳光子学、凝聚态物理等方面。我们既关心新的物理问题,发展新的理论与方程,又努力将我们的新发现推进到实际应用领域。在该研究方向上,有两方面的研究内容:一是飞秒激光改性晶体的物理机理、材料制备及其器件应用;二是铁电晶体中飞秒激光激发太赫兹声子极化激元的物理与应用。

一、飞秒激光改性晶体材料与光电探测器

 飞秒激光被广泛地应用于材料加工和材料改性。由于超快、超强的特性,飞秒激光与物质的作用是一个超强的瞬态作用过程,可以突破一些经典方程的束缚,超越一些物理极限,实现材料的特殊改性。

 作用于晶体材料的时候,由于晶体的长程有序性,以及共价键、离子键等强键力的作用,声子、空穴等元激发也同电子一起,表现出非常重要的影响。飞秒激光改性晶体,不仅可以在材料表面制备微纳结构,而且可以实现超过固溶度极限的过饱和掺杂,突破了热扩散方程对掺杂极限的控制。

 我们发展了三维双温德鲁得模型,并考虑声子等元激发的作用,提出了竞争模型,解释了飞秒激光与晶体材料作用的一些基本规律。

 制备了良好的飞秒激光改性硅材料,并用于太阳能电池、光电探测器、SERS基底等实用器件的研究。黑硅单元光电探测器、柔性黑硅光电探测器的多项核心指标居于世界领先地位,展现了超宽光谱的低电压下超高增益的特性。暗电流和响应时间也得到了很大的提升。

 通过对飞秒激光与材料作用过程的精确控制,利用元激发,我们解决了介电晶体和宽禁带半导体在飞秒激光改性过程中炸裂的难题,实现了对大数品种晶体的改性,并开展相关的器件研发

二、太赫兹声子极化激元激元物理与应用:

太赫兹集成芯片(传感探测、时域光谱、未来通讯)与时空超分辨成像

 声子极化激元是光子和横光学声子的量子耦合态,包含了一部分电磁能量和一部分机械能。在铌酸锂晶片上,用飞秒激光脉冲激发的声子极化激元是产生太赫兹波的一个非常有效的手段。

 我们将太赫兹波的产生、传输、调控、探测、与物质或微结构的相互作用都集成在几十微米厚的铌酸锂晶片上。这样形成的太赫兹芯片是太赫兹波应用的一种有效方式。近期,在灵敏传感探测、片上集成太赫兹时域光谱、未来片上通讯等方面都展现了非常令人兴奋的潜在应用。

 我们在铌酸锂芯片上实现了时空超分辨成像,空间分辨率是太赫兹波长的几十分之一,时间分辨率是电磁振荡周期的十分之一。这不仅是太赫兹芯片的有效研究手段,还可以研究更多的瞬态光学问题和物理问题。

 应用和技术发展的根基是基础物理的研究。我们在瞬态亚波长光学与光子学、非线性黄昆方程等研究基础上,努力推进声子极化激元量子效应的研究。


教学工作

As a tearcher, my job is to make students' dreams come true.


教师不是一个职业,不是赚钱吃饭的一个行当,如此才能体会孟子三乐,才体会“欲栽大木柱长天”的意境。





一、For ungraduated students(本科):

1、Training for Experiment Safety实验室安全培训

    实验的开展,对于物理教学和科研都是非常重要的。但是,绝大部分学生在进入实验室之前,都没有接受足够的实验安全培训。针对这个情况,我们于2006年自发地组织了针对新生的安全培训,取得很好的效果。在此基础上,本培训于2019年和2020年逐渐演变为本科和研究生的必修课程。本课程针对物理学院本科生、研究生进入实验室,尤其是进入科研实验室后,面临的实验安全问题,展开系列的讲座、座谈、实践、资料搜集与阅读、经验总结、考核等活动,使同学们在进入实验室前,对安全问题有比较系统的了解,并提起足够的重视;对可能面临的危险,有一定的处理能力。

实验室激光安全手册(第一稿).pdf光电安全2019.pdf

2、Physics Discussion forum-2(物理研讨-2,伯苓班一年级)

 通过第一学期的学习,学生已经基本适应了大学的学习。这时候,急需对学生进行引导,重塑他们对学习的认识,培养质疑精神和批判性思维,培养渗透式学习的能力,把他们引领到科学的前沿,激发他们的学习兴趣,继续培养自学的习惯和主动前行的动力,培养他们发现问题、分析问题和解决问题的能力,并培养他们良好的团队精神。最终将他们引领到科研人才培养的道路上来。

 针对伯苓班的特点,以学生为主体,充分发挥他们的主动性,努力使他们摆脱原有的思想束缚,能够在科学前沿上找到兴趣点,激发他们的科研兴趣。通过多次、层层递进的研讨,锻炼他们发现问题、分析问题和解决问题的能力。通过团队的组织,培养他们的团队合作意识和团队合作能力。在培养自学能力的同时,培养他们相互学习、帮助的意识。希望他们能够针对自己感兴趣的有限的科研目标,主动前行。

学术能力培养体系对物理拔尖学生培养的重要性.pdf

3、Experiment of Modern Physics(近物实验,三年级)

4、Advisor of Boling Class (“物理伯苓班”导师)


二、For graduated students(研究生):

Photonics(光子学,研究生一年级


三、南开大学智慧教学校级教研团队负责人、天津市教学团队“物理伯苓班班导师教学团队”成员。



科研项目

课题组在研项目:国家自然科学基金2项,XX课题1项,横向课题1项。同时作为骨干参与国际科技合作基地及111引智基地(111计划)和创新团队发展计划等项目。可以满足同学们正常的科研和学术会议交流等需求。

作为负责人主持或骨干结题多项科研课题,包括国家重点基础研究发展计划(973计划)项,南开大学光学与光子学创新团队、国家自然科学基金、天津市自然基金等。

论文著作

2019

1.X. Jin, Y. Sun, Q. Wu*, Z. Jia, S. Huang, J. Yao, H. Huang, and J. Xu*, High-Performance Free-Standing Flexible Photodetectors Based on Sulfur-Hyperdoped Ultrathin Silicon, ACS applied materials & interfaces 11, 42385-42391 (2019).Supplementary Cover

2.R. Wang, Q. Wu*, W. Cai*, Q. Zhang, H. Xiong, B. Zhang, J. Qi, J. Yao, and J. Xu*, Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface, ACS Photonics 6, 1774-1779 (2019).Front Cover

3.Y. Li, Q. Wu*, M. Yang*, Q. Li, Z. Chen, C. Zhang, J. Sun, J. Yao, and J. Xu, Uniform deep-subwavelength ripples produced on temperature controlled LiNbO3: Fe crystal surface via femtosecond laser ablation, Applied Surface Science 478, 779-783 (2019).

4.Y. Lu, Q. Wu*, Q. Zhang, R.-D. Wang, B. Zhang*, W.-J. Zhao, D. Zhang, H. Xiong, C.-L. Yang, and J.-W. Qi, Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides, Frontiers of Physics 14, 42502 (2019).Recommend & Letter

5.R. Wang, Q. Wu*, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai*, J. Yao, and J. Xu*, Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures, Applied Physics Letters 114, 121102 (2019).Editor’s Pick, Top Articles of Photonics and Optoelectrics of APL

6.H. Xiong, Q. Wu*, Y. Lu, R. Wang, Q. Zhang, J. Qi, J. Yao, and J. Xu, Polarization-resolved edge states in terahertz topological photonic crystal, Optics express 27, 22819-22826 (2019).Editor’s Pick

7.张琦, 吴强*, 张斌, 潘崇佩, 王日德, 卢瑶, 齐继伟, 许京军, 铌酸锂芯片上的太赫兹集成和时空超分辨成像, 中国激光46, 24-37 (2019).综述

8.W. Zhao, J. Qi*, Y. Lu, R. Wang, Q. Zhang, H. Xiong, Y. Zhang, Q. Wu*, and J. Xu, On-chip plasmon-induced transparency in THz metamaterial on a LiNbO 3 subwavelength planar waveguide, Optics express 27, 7373-7383 (2019).

9.Q. Zhang, J. Qi*, Y. Lu, H. Xiong, D. Zhang, W. Zhao, R. Wang, B. Zhang, Q. Wu*, and J. Xu, Cavity-cavity coupling based on a terahertz rectangular subwavelength waveguide, Journal of Applied Physics 126, 063103 (2019).

10.L. Cao, J. Qi, Q. Wu, Z. Li, R. Wang, J. Chen, Y. Lu, W. Zhao, J. Yao, and X. Yu, Giant Tunable Circular Dichroism of Large-Area Extrinsic Chiral Metal Nanocrescent Arrays, Nanoscale Research Letters 14, 388 (2019).

11.W. Zhao, Y. Lu, Q. Zhang, J. Qi, Q. Wu*, and J. Xu, On-chip plasmon-induced transparency using a meta-structure in THz regime, in CLEO: Science and Innovations(Optical Society of America2019), p. JTh2A. 15.

12.Q. Zhang, D. Zhang, J. Qi, Q. Wu*, Y. Lu, H. Xiong, W. Zhao, R. Wang, and J. Xu, Visualization of a cavity-cavity coupling in a LiNbO3 subwavelength waveguide at THz frequency, in CLEO: Applications and Technology(Optical Society of America2019), p. JTh2A. 29.

13.R. Wang, Q. Wu*, Z. Jia, Y. Zhang, B. Zhang, W. Cai, and J. Xu, Linking guided waves and surface waves via metasurface on terahertz-integrated platform, in CLEO: Applications and Technology(Optical Society of America2019), p. JTh2A. 12.

14.Y. Lu, H. Xiong, Q. Wu*, D. Zhang, Q. Zhang, R. Wang, W. Zhao, and J. Xu, Repair of pseudo time-reversal broken by topological phase transition in a photonic crystal slab, in CLEO: Applications and Technology(Optical Society of America2019), p. JTh2A. 30.

15.Z. Jia, Q. Wu*, R. Wang, X. Jin, S. Huang, J. Yao, and J. Xu, Single-crystalline Te-hyperdoped silicon via controlling the velocity of ultra-fast cooling during femtosecond-laser irradiation, in CLEO: Applications and Technology(Optical Society of America2019), p. ATu4I. 3.

16.Y. Li, Q. Wu*, Q. Li, Z. Li, M. Cao, C. Zhang, J. Yao, and J. Xu, Analysis on the evolution of subwavelength ripples fabricated by ultrafast laser pulses on lithium niobate crystal surface, in 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology(International Society for Optics and Photonics2019), p. 108420A.


2019年以前发表论文节选(完整清单请见scholargoogle, ORCID: 0000-0003-3189-2219, researchgate https://www.researchgate.net/profile/Qiang_Wu17

55.W. Zhao, Q. Wu, R. Wang, J. Gao, Y. Lu, Q. Zhang, J. Qi, C. Zhang, C. Pan, and R. Rupp, Transient establishment of the wavefronts for negative, zero, and positive refraction, Optics express 26, 1954-1961 (2018).

54.X. Xu, B. Shi, X. Zhang, Y. Liu, W. Cai, M. Ren, X. Jiang, R. A. Rupp, Q. Wu, and J. Xu, Laser direct writing of graphene nanostructures beyond the diffraction limit by graphene oxidation, Optics express 26, 20726-20734 (2018).

53.Y. Wang, J. Qi, C. Pan, Q. Wu, J. Yao, Z. Chen, J. Chen, Y. Li, X. Yu, and Q. Sun, Giant circular dichroism of large-area extrinsic chiral metal nanocrecents, Scientific reports 8, 1-7 (2018).

52.R. Wang, Q. Wu, Q. Zhang, Y. Lu, W. Zhao, W. Cai, J. Qi, J. Yao, and J. Xu, Conversion from terahertz-guided waves to surface waves with metasurface, Optics express 26, 31233-31243 (2018).

51.D. Wang, Y. n. Li, C. Zhang, C. Du, Q. Li, Y. Lu, J. Yao, J. Qi, W. Wu, and W. Cai, Cathodoluminescence Enhancement of MoS2 by Femtosecond Laser Induced Periodic Surface Structures, Journal of Nanoscience and Nanotechnology 18, 7557-7560 (2018).

50.Y. Lu, Q. Wu, Q. Zhang, R. Wang, W. Zhao, D. Zhang, C. Pan, J. Qi, and J. Xu, Propagation of THz pulses in rectangular subwavelength dielectric waveguides, Journal of Applied Physics 123, 223103 (2018).

49.Q. Li, Q. Wu, Y. Li, C. Zhang, Z. Jia, J. Yao, J. Sun, and J. Xu, Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating, Photonics Research 6, 789-793 (2018).

48.Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, Surface enhancement of THz wave by coupling a subwavelength LiNbO 3 slab waveguide with a composite antenna structure, Scientific reports 7, 1-7 (2017).

47.H. Yu, C. Li, Q. Wu, F. Bo, Z. Liu, and B. Yan, The bridging role of physics tournament in the transition from high school to college, Physics and Engineering 27, 104 (2017).

46.H. Yang, J. Qi, C. Pan, Y. Lu, Q. Wu, J. Yao, and J. Xu, Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in Lithium Niobate subwavelength waveguide, Optics express 25, 14766-14773 (2017).

45.C. Pan, Q. Wu, Q. Zhang, W. Zhao, J. Qi, J. Yao, C. Zhang, W. Hill, and J. Xu, Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors, Optics express 25, 9768-9777 (2017).

44.Z. Jia, S. Huang, X. Jin, M. Yang, Z. Chen, J. Yao, Q. Wu, and J. Xu, Research and development of femtosecond-laser hyperdoped silicon, Opto-Electronic Engineering 44, 1146-1159 (2017).

43.Z. Ji, X. Zhang, Y. Zhang, Z. Wang, I. Drevensek-Olenik, R. Rupp, W. Li, Q. Wu, and J. Xu, Electrically tunable generation of vectorial vortex beams with micro-patterned liquid crystal structures, Chinese Optics Letters 15, 070501 (2017).

42.H. Yu, K. Ren, Q. Wu, J. Wang, J. Lin, Z. Wang, J. Xu, R. F. Oulton, S. Qu, and P. Jin, Organic–inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability, Nanoscale 8, 19536-19540 (2016).

41.J. Qi, Y. Xiang, W. Yan, M. Li, L. Yang, Z. Chen, W. Cai, J. Chen, Y. Li, and Q. Wu, Excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10 nm-gap array structures and its application, The Journal of Physical Chemistry C 120, 24932-24940 (2016).

40.Y. Pan, M. Yang, Y. Li, Z. Wang, C. Zhang, Y. Zhao, J. Yao, Q. Wu, and J. Xu, Threshold dependence of deep-and near-subwavelength ripples formation on natural MoS 2 induced by femtosecond laser, Scientific reports 6, 19571 (2016).

39.Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings, Optics letters 41, 336-339 (2016).

38.B. Zhang, Q. Wu, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, THz band-stop filter using metamaterials surfaced on LiNbO 3 sub-wavelength slab waveguide, Optics express 23, 16042-16051 (2015).

37.Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, and Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity, The Journal of Physical Chemistry C 118, 12727-12733 (2014).

36.Y. Yu, Y. Tang, J. Yuan, Q. Wu, W. Zheng, and Y. Cao, Fabrication of N-TiO2/InBO3 heterostructures with enhanced visible photocatalytic performance, The Journal of Physical Chemistry C 118, 13545-13551 (2014).

35.M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse, Optics Letters 39, 343-346 (2014).

34.Y.-E. Wu, Z. Wang, X. Zhang, W. Li, L. Huang, F. Gao, W. Li, Q. Wu, and J. Xu, Polarization independent broadband femtosecond optical gating using transient Kerr lens effect, Optics express 22, 6691-6698 (2014).

33.Y.-E. Wu, M. Ren, Z. Wang, W. Li, Q. Wu, S. Yi, X. Zhang, and J. Xu, Optical nonlinear dynamics in ZnS from femtosecond laser pulses, AIP Advances 4, 057107 (2014).

32.J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, Independently tunable double Fano resonances in asymmetric MIM waveguide structure, Optics express 22, 14688-14695 (2014).

31.W. Li, Z. Wang, X. Zhang, Y.-E. Wu, W. Liao, L. Huang, F. Gao, W. Fan, W. Li, and Q. Wu, Convenient ultra-broadband femtosecond optical gating utilizing transient beam deflection effect, Optics express 22, 31417-31425 (2014).

30.Q. Chen, Y. Zuo, W. Cai, B. Zhang, L. Pan, J. Yao, Q. Wu, and J. Xu, Giant field enhancement and resonant wavelength shift through a composite nanostructure, Optics Communications 321, 47-50 (2014).

29.M. Yang, Q. Wu, J. Qi, I. Drevensek‐Olenik, Z. Chen, Y. Pan, and J. Xu, Microstructured polymer‐based substrates with broadband absorption for surface‐enhanced Raman scattering, Journal of Raman Spectroscopy 44, 1678-1681 (2013).

28.Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, Terahertz phonon polariton imaging, Frontiers of Physics 8, 217-227 (2013).

27.M. Ren, C. Pan, Q. Li, W. Cai, X. Zhang, Q. Wu, S. Fan, and J. Xu, Isotropic spiral plasmonic metamaterial for sensing large refractive index change, Optics letters 38, 3133-3136 (2013).

26.Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing, Nanoscale research letters 8, 437 (2013).

25.Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, P. Jingyang, L. Yue, W. Wudeng, Y. Xuanyi, and S. Qian, Fabrication of nanowire network AAO and its application in SERS, Nanoscale research letters 8, 1-6 (2013).

24.Z. Chen, Q. Wu, M. Yang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air, Optics Express 21, 21329-21336 (2013).

23.Z. Chen, Q. Wu, M. Yang, and J. Xu, Time-resolved study of femtosecond laser-induced plasma on silicon, in Laser Science(Optical Society of America2013), p. LTh1I. 5.

22.Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases, Laser and Particle Beams 31, 539-545 (2013).

21.J. Yuan, Q. Wu, P. Zhang, J. Yao, T. He, and Y. Cao, Synthesis of indium borate and its application in photodegradation of 4-chlorophenol, Environmental science & technology 46, 2330-2336 (2012).

20.Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy, Optics express 20, 960-965 (2012).

19.S. Fan, L. Wei, W. Pi-Dong, L. Jun, W. Qiang, W. Zhen-Hua, and Z. Xin-Zheng, Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals, Chinese Physics Letters 29, 014206 (2012).

18.杨程亮, 吴强, 禹宣伊, 张心正, 孔勇发, and 许京军, 太赫兹声子极化激元在 LiNbO3 微结构中的衍射和干涉动态过程的时间分辨成像, 人工晶体学报40, 309-313 (2011).

17.W. Zhang, F. Gao, F. Bo, Q. Wu, G. Zhang, and J. Xu, All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer, Optics letters 36, 271-273 (2011).

16.C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide, Optics express 18, 26351-26364 (2010).

15.C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO 3, JOSA B 27, 2350-2359 (2010).

14.Z. Wang, Q. Wu, C. Yang, X. Zhang, Z. Chen, R. A. Rupp, and J. Xu, Nonlinear spectrum broadening of femtosecond laser pulses in photorefractive waveguide arrays, Optics express 18, 10112-10119 (2010).

13.W. Li, X. Zhang, Z. Wang, Q. Wu, L. Liu, J. Xu, and B. Tang, Observation of modulated spontaneous emission of Rhodamine 6G in low refractive index contrast 1D-periodic gelatin film, Science China Physics, Mechanics and Astronomy 53, 54-58 (2010).

12.W. Li, B. Tang, X. Zhang, F. Gao, L. Liu, Q. Wu, L. Pan, C. Lou, S. Guo, and R. A. Rupp, Investigation on the phase shifts of extinction and phase gratings in polymethyl methacrylate, Chinese Optics Letters 8, 18-21 (2010).

11.Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide, Optics express 17, 9219-9225 (2009).

10.Z. Xin-Zheng, W. Zhen-Hua, L. Hui, W. Qiang, T. Bai-Quan, G. Feng, and X. Jing-Jun, Characterization of photon statistical properties with normalized Mandel parameter, Chinese Physics Letters 25, 3976 (2008).

9.L. Wei, Z. Xin-Zheng, S. Yan-Li, X. Jing-Jun, Q. Hai-Jun, W. Qiang, R. A. Rupp, L. Ci-Bo, W. Zhen-Hua, and G. Feng, Photopolymerization-induced two-beam coupling and light-induced scattering in polymethyl methacrylate, Chinese Physics Letters 25, 2857 (2008).

8.B. Fei, Z. Xin-Zheng, W. Zhen-Hua, W. Qiang, H. Hao, and X. Jing-Jun, Preparation and size characterization of silver nanoparticles produced by femtosecond laser ablation in water, Chinese Physics Letters 25, 4463 (2008).

7.W. Qiang, X. Jing-Jun, R. Rupp, Z. Xin-Zheng, L. Ci-Bo, and S. Bugaychuk, Transition from backscattering speckles to phase conjugation in LiNbO3: Fe, Chinese Physics Letters 23, 2101 (2006).

6.F. Gao, J. Xu, H. Qiao, Q. Wu, Y. Xu, and G. Zhang, Observation of superluminal and slowdown light propagation in doped lithium niobate crystals, Optics communications 257, 185-190 (2006).

5.W. Zhen-Hua, Z. Xin-Zheng, X. Jing-Jun, W. Qiang, Q. Hai-Jun, T. Bai-Quan, R. Romano, K. Yong-Fa, C. Shao-Lin, and H. Zi-Heng, Time-resolved femtosecond degenerate four-wave mixing in LiNbO3: Fe, Mg crystal, Chinese Physics Letters 22, 2831 (2005).

4.H. Qiao, Y. Tomita, J. Xu, Q. Wu, G. Zhang, and G. Zhang, Observation of strong stimulated photorefractive scattering and self-pumped phase conjugation in LiNbO 3: Mg in the ultraviolet, Optics express 13, 7666-7671 (2005).

3.Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. R. Volk, Fanning scattering in LiNbO3 at 750–850 nm induced by femtosecond laser pulses, Optical Materials 23, 277-280 (2003).

2.H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. R. Volk, An increase of photorefractive sensitivity in In: LiNbO3 crystal, Optical Materials 23, 269-272 (2003).

1.Q. Wu, J. Xu, Q. Sun, X. Zhang, H. Qiao, B. Tang, G. Zhang, and M. Gu, Light-induced backward scattering in LiNbO 3: Fe, Zn, Applied physics letters 81, 4691-4693 (2002).


学术交流

本科生、研究生、博士后:

研究生和博士后的招收,倾心于理论物理、光电器件、材料、凝聚态物理、光学与光子学等方面的才俊。同时,欢迎本科生的加入。


2005年 博士毕业


在MIT的Keith A. Nelson 教授组


2008年 楠姐毕业


2010年 娜姐毕业


喆哥(2010年毕业)、亮哥(2011年毕业)的年代


2011年 亮子、阿郭毕业


2013年 小马毕业


2014年 东哥、明哥、庆全毕业


2015年 小仙、小丽、瑜梅、斌哥、世彪毕业





荣誉奖励

Group photo 2008


Group photo 2010


Group photo 2011


Group photo 2013


Group photo 2015


Group photo 2016


Group photo 2017毕业


Group photo 2017入学


Group photo 2018


Group photo 2019




学术成果

 我们课题组的研究工作力图做到两点(显然还没有完全达到^V^):一、有特色的开创性;所以有些小众,关注点和切入点与流行风尚保持一定的距离。二、科学知识的探索性研究和实际应用的技术研发相结合,形成了基础物理、实验探索、应用开发相结合的研究链条;所以是多学科的交叉,研究既需要一定的深度也需要一定的广度。

 我们的研究方向主要集中在飞秒激光与晶体材料的作用上,尤其注重对瞬态元激发的理解和应用,涉及超快光子学、超快光学、太赫兹光学、光电材料与器件、微纳光子学、凝聚态物理等方面。在该研究方向上,有两方面的研究内容:一是飞秒激光改性晶体的物理机理、材料制备及其器件应用;二是铁电晶体中飞秒激光激发太赫兹声子极化激元的物理与应用。

 目前,比较有代表性的结果有:

一、飞秒激光改性晶体材料的物理机理

 在前人的基础上,我们发展了三维双温德鲁得模型,并考虑声子等元激发的作用,提出了竞争模型,解释了飞秒激光与晶体材料作用的一些基本规律。在竞争模型和材料改性过程中等离子体性质的研究基础上,建立飞秒激光改性硅材料的微观机制框架。

 基于对声子等元激发的理解,实现了飞秒激光改性晶体材料过程中的元激发的调控与应用。实验结果证明了物理模型的正确性,并大幅提高了改性材料的质量和制备的光电探测器、微纳结构器件的性能。

参考文献:

1. M. Yang, Q. Wu*, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse, Optics Letters 39, 343-346 (2014).

2. Z. Chen, Q. Wu*, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases, Laser and Particle Beams 31, 539-545 (2013).

3. Z. Jia, Q. Wu*, X. Jin, S. Huang, J. Li, M. Yang, H. Huang, J. Yao, and J. Xu, Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure, Optics Express 28, 5239-5247 (2020).

5. Y. Li, Q. Wu*, M. Yang*, Q. Li, Z. Chen, C. Zhang, J. Sun, J. Yao, and J. Xu, Uniform deep-subwavelength ripples produced on temperature controlled LiNbO3: Fe crystal surface via femtosecond laser ablation, Applied Surface Science 478, 779-783 (2019).

6. Q. Li, Q. Wu*, Y. Li, C. Zhang, Z. Jia, J. Yao, J. Sun, and J. Xu, Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating, Photonics Research 6, 789-793 (2018).


二、飞秒激光改性硅光电探测器(欢迎产业界合作)

 经过十年的不懈努力,课题组已经形成了飞秒激光改性硅材料加工、材料后处理、光电探测器制备的全工艺线,并形成了飞秒激光与硅材料瞬态相互作用、材料性质与物理模型、光电探测器制备物理问题与器件模型的研究链。在此基础上,建立了新的工艺线,制备的硅光电探测器、柔性硅光电探测器的绝大部分核心指标是目前产业界和文献报道的最优值,具有良好的产业价值。

参考文献:

1. L. Zhao, Q. Wu*, Q. Zeng, J. Yao, X. Zhang, and J. Xu, Sulfur-hyperdoped silicon photodetector with broadband spectral response and high gain at low bias, in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.37.

2. S. Huang, Q. Wu*, Z. Jia, X. Jin, X. Fu, H. Huang, X. Zhang, J. Yao, and J. Xu, Black Silicon Photodetector with Excellent Comprehensive Properties by Rapid Thermal Annealing and Hydrogenated Surface Passivation, Advanced Optical Materials, 1901808 (2020).

3. Z. Jia, Q. Wu*, X. Jin, S. Huang, J. Li, M. Yang, H. Huang, J. Yao, and J. Xu, Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure, Optics Express 28, 5239-5247 (2020).

4. X. Jin, Y. Sun, Q. Wu*, Z. Jia, S. Huang, J. Yao, H. Huang, and J. Xu*, High-Performance Free-Standing Flexible Photodetectors Based on Sulfur-Hyperdoped Ultrathin Silicon, ACS applied materials & interfaces 11, 42385-42391 (2019).Supplementary Cover

5.吴强、赵丽、马寅星、杨明、陈战东、潘玉松、栗瑜梅、姚江宏、张心正、许京军,一种高增益可见和近红外硅基光电探测器及其制备方法,发明专利,专利号:ZL201410012447.0

6.吴强、曾强、张春玲、姚江宏、刘丹、齐继伟、许京军,一种表面过饱和掺杂光电探测器的钝化方法,发明专利,专利号: ZL201710127413. X

7.吴强、孙玉琪、进晓荣、贾子熙、黄松、李志轩、张春玲、姚江宏、许京军,一种自支撑高增益柔性硅基光电探测器的制备方法,发明专利,申请号:201910939440.6。

8. 吴强、贾子熙、进晓荣、黄松、杨明、张春玲、姚江宏、许京军,一种对半导体表面过饱和掺杂且保持其晶格结构的制备方法,发明专利,申请号:CN2018111703583


三、太赫波的时空超分辨成像、荧光四维成像(时间分辨三维空间荧光成像)

 发展了太赫兹波的时空超分辨成像系统,实现了定量分析,并进一步提高了成像质量。目前空间分辨率是太赫兹波长的几十分之一,时间分辨率是一个太赫兹电磁振荡周期的十分之一,实现了时空的超分辨成像和定量分析。

 结合宽场荧光寿命成像技术和远程重聚焦系统,搭建了一套时间分辨三维荧光光谱系统。这套系统可以在不扰动样品的情况下,实现空间三维、时间分辨的光谱成像。这套系统的时间分辨率可以达到30皮秒,空间分辨率1微米,光谱范围从300 nm900 nm。该系统有望在物理、化学、生物等方面的瞬态研究中得到应用。

参考文献:

1. Q. Wu, Q. Chen, B. Zhang, and J. Xu, Terahertz phonon polariton imaging, Frontiers of Physics 8, 217-227 (2013).

2. Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide, Optics express 17, 9219-9225 (2009).

3. C. Yang, Q. Wu*, J. Xu, K. A. Nelson, and C. A. Werley, Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide, Optics express 18, 26351-26364 (2010).

4. C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3, JOSA B 27, 2350-2359 (2010).

5. Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy, Optics express 20, 960-965 (2012).


四、基于铌酸锂亚波长晶片的太赫兹集成与应用(欢迎产业界合作)

 电子学和光子学的发展日益完善,使得科研工作者们把目光集中在频段介于两者之间曾经被称为“太赫兹空白”的太赫兹技术和科学。很多太赫兹波独有的优势被挖掘出来,例如无损探测、生物成像、天文研究和远距离通讯等。鉴于这些优势,人们开始寻求一个太赫兹的集成化平台,像电子学的集成电路和光子学中的光子集成回路那样,使太赫兹波的产生、传输、调控、探测等过程以及太赫兹波和物质或结构的作用过程在同一个平台上实现,以利于太赫兹技术的实际应用。

 利用亚波长铌酸锂晶片作为基质材料,我们实现了太赫兹波的产生、传输、调控、探测、与物质或微结构的相互作用等功能的片上集成。这样形成的太赫兹芯片是太赫兹波应用的一种有效方式。近期,在灵敏传感探测、片上集成太赫兹时域光谱、未来片上通讯(beyond 6G)等方面都展现了非常令人兴奋的潜在应用。

参考文献:

1. R. Wang, Q. Wu*, W. Cai*, Q. Zhang, H. Xiong, B. Zhang, J. Qi, J. Yao, and J. Xu*, Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface, ACS Photonics 6, 1774-1779 (2019).Front Cover

2. R. Wang, Q. Wu*, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai*, J. Yao, and J. Xu*, Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures, Applied Physics Letters 114, 121102 (2019).Editor’s Pick,Top Articles of Photonics and Optoelectrics of APL

3.吴强、王日德、张亚卿、徐西坦、张斌、姚江宏、许京军,一种基于超表面和铌酸锂混合结构的片上太赫兹传感增强器件发明专利,申请号:2019100216390。

4.吴强、王日德、张琦、张斌、赵文娟、齐继伟、姚江宏、许京军,一种结合渐变超表面和亚波长波导的片上宽带太赫兹单向传输器,发明专利,申请号:2018111769025

5.吴强、杨慧梅、卢瑶、潘崇佩、齐继伟、张春玲、姚江宏、许京军一种基于亚波长波导的窄带太赫兹波产生及检测的方法,发明专利,专利号: ZL201710345527.



延伸参考文献:

1. W. Zhao, J. Qi*, Y. Lu, R. Wang, Q. Zhang, H. Xiong, Y. Zhang, Q. Wu*, and J. Xu, On-chip plasmon-induced transparency in THz metamaterial on a LiNbO 3 subwavelength planar waveguide, Optics express 27, 7373-7383 (2019).

2. Q. Zhang, J. Qi*, Y. Lu, H. Xiong, D. Zhang, W. Zhao, R. Wang, B. Zhang, Q. Wu*, and J. Xu, Cavity-cavity coupling based on a terahertz rectangular subwavelength waveguide, Journal of Applied Physics 126, 063103 (2019).

3. R. Wang, Q. Wu*, Q. Zhang, Y. Lu, W. Zhao, W. Cai*, J. Qi, J. Yao, and J. Xu, Conversion from terahertz-guided waves to surface waves with metasurface, Optics express 26, 31233-31243 (2018).

4. Q. Zhang, J. Qi*, Q. Wu*, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, Surface enhancement of THz wave by coupling a subwavelength LiNbO3 slab waveguide with a composite antenna structure, Scientific reports 7, 1-7 (2017).

5. H. Yang, J. Qi, C. Pan, Y. Lu, Q. Wu*, J. Yao*, and J. Xu, Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in Lithium Niobate subwavelength waveguide, Optics express 25, 14766-14773 (2017).

6. C. Pan, Q. Wu*, Q. Zhang, W. Zhao, J. Qi*, J. Yao, C. Zhang, W. Hill, and J. Xu, Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors, Optics express 25, 9768-9777 (2017).

7. B. Zhang, Q. Wu*, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, THz band-stop filter using metamaterials surfaced on LiNbO 3 sub-wavelength slab waveguide, Optics express 23, 16042-16051 (2015).


五、亚波长瞬态光学、光子学与元激发的非线性物理和量子物理

 基于铌酸锂太赫兹芯片的时空超分辨成像系统,我们展开了亚波长瞬态光学、光子学的研究和元激发(主要指声子极化激元)的非线性物理和量子物理的研究。这个工作不仅可以开发新的方程和理论,纠正教科书中公式的适用范围,同时也是众多实际应用研究的理论基础。

 例如,随着纳米光子学的发展,对于稳态亚波长光学的研究,尤其是在各向同性的材料中,利用数值软件可以进行非常优秀的模拟、设计和分析。但是,有些瞬态过程的实验结果不仅与数值模拟不符,而且与人们的直觉认识也不一样。我们发现,亚波长波导的耦合过程中,达到稳态模式后,还需要在时间上经历一定的阻尼振荡过程;对于亚波长矩形波导,教科书中最普遍使用的Marcatili方法不再适用等。如果再考虑晶体的各向异性,再考虑光和物质相互作用中的物质方程的瞬态作用,物理问题变得更加复杂。这个领域充满了未知!

亚波长瞬态光学的推荐文献:

1. Y. Lu, Q. Wu*, Q. Zhang, R.-D. Wang, B. Zhang*, W.-J. Zhao, D. Zhang, H. Xiong, C.-L. Yang, and J.-W. Qi, Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides, Frontiers of Physics 14, 42502 (2019).Recommended & Letter

2. Y. Lu, Q. Wu*, Q. Zhang, R. Wang, W. Zhao, D. Zhang, C. Pan, J. Qi, and J. Xu, Propagation of THz pulses in rectangular subwavelength dielectric waveguides, Journal of Applied Physics 123, 223103 (2018).

3.C. Yang, Q. Wu*, J. Xu, K. A. Nelson, and C. A. Werley, Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide, Optics express 18, 26351-26364 (2010).

其它请参考三、四中的文献


元激发非线性等工作尚在投稿中。



学位: 博士

毕业院校:

邮件: wuqiang@nankai.edu.cn

办公地点: 五教311、泰达应用物理研究院202

电话: 66229419

出生年月:

10 访问

相关教师