About
- Department:
- Gender:
- BirthDate:
- Post:
- Research Label:
- Graduate School:
- Degree:
- Academic Credentials:
- Tel: 66229419
- Email: wuqiang@nankai.edu.cn
- Office Location:
- Address School:
- PostCode School:
- Fax School:
Education
The opportunities for undergraduate, master, doctoral students, and postdoctoral fellows:theoretical physics, photoelectric devices, materials, condensed physics, optics and photonics are all appropriate.
WorkExperience
The opportunities for undergraduate, master, doctoral students, and postdoctoral fellows:theoretical physics, photoelectric devices, materials, condensed physics, optics and photonics are all appropriate.
Resume
The opportunities for undergraduate, master, doctoral students, and postdoctoral fellows:theoretical physics, photoelectric devices, materials, condensed physics, optics and photonics are all appropriate.
Research Fields
Interaction of femtosecond laser with crystal materials: physical mechanism and applications The femtosecond laser has greatly promoted the development of physics, chemistry, biology and other disciplines. Because of the characteristics of ultrashort pulse duration and ultrahigh peak power, many formulas in textbooks can no longer describe the interaction of femtosecond laser with matter. Therefore, some new theories are developed and many new applications have been acquired based on that. Our research focuses on the interaction of femtosecond laser with crystals and pay more attention to the dynamic elementary excitations. It is the interdiscipline of ultrafast photonics, ultrafast optics, Terahertz optics, photoelectric materials and devices, micro-nano optics, and condensed physics. We are not only concerned about new physical problems, developing new theories and equations, but also working hard to advance our new discoveries into practical applications. There are two research projects for our research: 1. Femtosecond laser processing crystals: physical mechanisms, material fabrication, and photoelectric devices; 2. Physics and applications of THz phonon polariton in ferroelectric crystals produced by femtosecond laser pulses.
1. Femtosecond laser processing crystals and photoelectric detectors Femtosecond laser has proved to be an efficient tool to process materials, which are widely used in many areas. Because of the characteristics of femtosecond laser, ultrashort pulse duration and ultrahigh peak power, the interaction process of laser pulse with materials is extremely complicated. It is an ultrafast dynamic process with ultrastrong light-matter interaction, which can overcome some physical limits and break through the constraints of some classical equations to result in completely new characteristics of the processed materials. When femtosecond laser processing crystals, due to the long-range order of the crystal lattice and the strong bonding forces of covalent or ionic bonds, phonon and other elemental excitations play a prominent part, along with the electron. The processed crystals can not only produce micro-nano structures on the material surface, but also achieve hyperdoping that the dopant concentration exceeds the solid solubility limit by several orders of magnitude and breaks through the constraint of the thermal diffusion equations. We have proposed a competition model, based on 3D two temperature Drude model and considering the role of phonon and other elementary excitations. This model can explain some basic rules of the interaction of femtosecond laser with materials, especially with crystals. We have produced the high-quality processed silicon, which is used for the actual applications of photoelectric detector, solar cell, SERS substrate, and so on. The key parameters of processed silicon photodetector and free-standing flexible photodetector are better than the commercial detectors or the reported results in the literatures. The detectors exhibit obvious advantages in terms of responsivity, response wavelength range, operating bias, and response time. By precisely controlling the interaction process and utilizing the elementary excitations, we solved the problem that the dielectric crystals and the wide band gap semiconductors explode during femtosecond laser processing. We can process most kinds of crystal materials and are carrying out the device development.
2. Terahertz phonon polariton and its applications: Terahertz integrated chip for sensing, time domain spectroscopy, future communication; and spatiotemporal super-resolution imaging Phonon polariton is a result of the coupling of a photon with a transverse optic phonon (polar lattice vibration). It is a quasi-particle with partly electromagnetic and partly mechanical energy, which travels at light-like speed through the host. The phonon polariton excited by femtosecond laser in the ferroelectric crystals is used to generate a terahertz wave on a lithium niobate chip. On the LiNbO3 chip, multifunctional integration of generation, regulation, detection, and interaction with matter and subwavelength-structures helps find useful applications for terahertz waves. It has been showing the exciting potential applications for super sensor, time domain spectroscopy on chip, and future communication beyond 6G. Image detection, beyond prior limits, is achieved on the terahertz chip, with a time resolution one-tenth of the pulse width, and spatial resolution one out of dozens of the wavelength. It is a useful technology not only for THz chip, but also the research of ultrafast optics and physics. Fundamental physics research is the basis of technology and applications. Based on our achievements of transient subwavelength optics and photonics, and nonlinear Huang’s Equations, the quantum effects of phonon polariton are showing the delightful fascination.
Lectures
The opportunities for undergraduate, master, doctoral students, and postdoctoral fellows:theoretical physics, photoelectric devices, materials, condensed physics, optics and photonics are all appropriate.
Projects
The opportunities for undergraduate, master, doctoral students, and postdoctoral fellows:theoretical physics, photoelectric devices, materials, condensed physics, optics and photonics are all appropriate.
Publications
2019年 1.X. Jin, Y. Sun, Q. Wu*, Z. Jia, S. Huang, J. Yao, H. Huang, and J. Xu*, High-Performance Free-Standing Flexible Photodetectors Based on Sulfur-Hyperdoped Ultrathin Silicon, ACS applied materials & interfaces 11, 42385-42391 (2019).(Supplementary Cover) 2.R. Wang, Q. Wu*, W. Cai*, Q. Zhang, H. Xiong, B. Zhang, J. Qi, J. Yao, and J. Xu*, Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface, ACS Photonics 6, 1774-1779 (2019).(Front Cover) 3.Y. Li, Q. Wu*, M. Yang*, Q. Li, Z. Chen, C. Zhang, J. Sun, J. Yao, and J. Xu, Uniform deep-subwavelength ripples produced on temperature controlled LiNbO3: Fe crystal surface via femtosecond laser ablation, Applied Surface Science 478, 779-783 (2019). 4.Y. Lu, Q. Wu*, Q. Zhang, R.-D. Wang, B. Zhang*, W.-J. Zhao, D. Zhang, H. Xiong, C.-L. Yang, and J.-W. Qi, Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides, Frontiers of Physics 14, 42502 (2019).(Recommend & Letter) 5.R. Wang, Q. Wu*, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai*, J. Yao, and J. Xu*, Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures, Applied Physics Letters 114, 121102 (2019).(Editor’s Pick) 6.H. Xiong, Q. Wu*, Y. Lu, R. Wang, Q. Zhang, J. Qi, J. Yao, and J. Xu, Polarization-resolved edge states in terahertz topological photonic crystal, Optics express 27, 22819-22826 (2019).(Editor’s Pick) 7.张琦, 吴强*, 张斌, 潘崇佩, 王日德, 卢瑶, 齐继伟, 许京军, 铌酸锂芯片上的太赫兹集成和时空超分辨成像, 中国激光46, 24-37 (2019).(综述) 8.W. Zhao, J. Qi*, Y. Lu, R. Wang, Q. Zhang, H. Xiong, Y. Zhang, Q. Wu*, and J. Xu, On-chip plasmon-induced transparency in THz metamaterial on a LiNbO 3 subwavelength planar waveguide, Optics express 27, 7373-7383 (2019). 9.Q. Zhang, J. Qi*, Y. Lu, H. Xiong, D. Zhang, W. Zhao, R. Wang, B. Zhang, Q. Wu*, and J. Xu, Cavity-cavity coupling based on a terahertz rectangular subwavelength waveguide, Journal of Applied Physics 126, 063103 (2019). 10.L. Cao, J. Qi, Q. Wu, Z. Li, R. Wang, J. Chen, Y. Lu, W. Zhao, J. Yao, and X. Yu, Giant Tunable Circular Dichroism of Large-Area Extrinsic Chiral Metal Nanocrescent Arrays, Nanoscale Research Letters 14, 388 (2019). 11.W. Zhao, Y. Lu, Q. Zhang, J. Qi, Q. Wu*, and J. Xu, On-chip plasmon-induced transparency using a meta-structure in THz regime, in CLEO: Science and Innovations(Optical Society of America2019), p. JTh2A. 15. 12.Q. Zhang, D. Zhang, J. Qi, Q. Wu*, Y. Lu, H. Xiong, W. Zhao, R. Wang, and J. Xu, Visualization of a cavity-cavity coupling in a LiNbO3 subwavelength waveguide at THz frequency, in CLEO: Applications and Technology(Optical Society of America2019), p. JTh2A. 29. 13.R. Wang, Q. Wu*, Z. Jia, Y. Zhang, B. Zhang, W. Cai, and J. Xu, Linking guided waves and surface waves via metasurface on terahertz-integrated platform, in CLEO: Applications and Technology(Optical Society of America2019), p. JTh2A. 12. 14.Y. Lu, H. Xiong, Q. Wu*, D. Zhang, Q. Zhang, R. Wang, W. Zhao, and J. Xu, Repair of pseudo time-reversal broken by topological phase transition in a photonic crystal slab, in CLEO: Applications and Technology(Optical Society of America2019), p. JTh2A. 30. 15.Z. Jia, Q. Wu*, R. Wang, X. Jin, S. Huang, J. Yao, and J. Xu, Single-crystalline Te-hyperdoped silicon via controlling the velocity of ultra-fast cooling during femtosecond-laser irradiation, in CLEO: Applications and Technology(Optical Society of America2019), p. ATu4I. 3. 16.Y. Li, Q. Wu*, Q. Li, Z. Li, M. Cao, C. Zhang, J. Yao, and J. Xu, Analysis on the evolution of subwavelength ripples fabricated by ultrafast laser pulses on lithium niobate crystal surface, in 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology(International Society for Optics and Photonics2019), p. 108420A.
2019年以前发表论文节选(完整清单请见scholargoogle, ORCID: 0000-0003-3189-2219, 或researchgate https://www.researchgate.net/profile/Qiang_Wu17) 55.W. Zhao, Q. Wu, R. Wang, J. Gao, Y. Lu, Q. Zhang, J. Qi, C. Zhang, C. Pan, and R. Rupp, Transient establishment of the wavefronts for negative, zero, and positive refraction, Optics express 26, 1954-1961 (2018). 54.X. Xu, B. Shi, X. Zhang, Y. Liu, W. Cai, M. Ren, X. Jiang, R. A. Rupp, Q. Wu, and J. Xu, Laser direct writing of graphene nanostructures beyond the diffraction limit by graphene oxidation, Optics express 26, 20726-20734 (2018). 53.Y. Wang, J. Qi, C. Pan, Q. Wu, J. Yao, Z. Chen, J. Chen, Y. Li, X. Yu, and Q. Sun, Giant circular dichroism of large-area extrinsic chiral metal nanocrecents, Scientific reports 8, 1-7 (2018). 52.R. Wang, Q. Wu, Q. Zhang, Y. Lu, W. Zhao, W. Cai, J. Qi, J. Yao, and J. Xu, Conversion from terahertz-guided waves to surface waves with metasurface, Optics express 26, 31233-31243 (2018). 51.D. Wang, Y. n. Li, C. Zhang, C. Du, Q. Li, Y. Lu, J. Yao, J. Qi, W. Wu, and W. Cai, Cathodoluminescence Enhancement of MoS2 by Femtosecond Laser Induced Periodic Surface Structures, Journal of Nanoscience and Nanotechnology 18, 7557-7560 (2018). 50.Y. Lu, Q. Wu, Q. Zhang, R. Wang, W. Zhao, D. Zhang, C. Pan, J. Qi, and J. Xu, Propagation of THz pulses in rectangular subwavelength dielectric waveguides, Journal of Applied Physics 123, 223103 (2018). 49.Q. Li, Q. Wu, Y. Li, C. Zhang, Z. Jia, J. Yao, J. Sun, and J. Xu, Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating, Photonics Research 6, 789-793 (2018). 48.Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, Surface enhancement of THz wave by coupling a subwavelength LiNbO 3 slab waveguide with a composite antenna structure, Scientific reports 7, 1-7 (2017). 47.H. Yu, C. Li, Q. Wu, F. Bo, Z. Liu, and B. Yan, The bridging role of physics tournament in the transition from high school to college, Physics and Engineering 27, 104 (2017). 46.H. Yang, J. Qi, C. Pan, Y. Lu, Q. Wu, J. Yao, and J. Xu, Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in Lithium Niobate subwavelength waveguide, Optics express 25, 14766-14773 (2017). 45.C. Pan, Q. Wu, Q. Zhang, W. Zhao, J. Qi, J. Yao, C. Zhang, W. Hill, and J. Xu, Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors, Optics express 25, 9768-9777 (2017). 44.Z. Jia, S. Huang, X. Jin, M. Yang, Z. Chen, J. Yao, Q. Wu, and J. Xu, Research and development of femtosecond-laser hyperdoped silicon, Opto-Electronic Engineering 44, 1146-1159 (2017). 43.Z. Ji, X. Zhang, Y. Zhang, Z. Wang, I. Drevensek-Olenik, R. Rupp, W. Li, Q. Wu, and J. Xu, Electrically tunable generation of vectorial vortex beams with micro-patterned liquid crystal structures, Chinese Optics Letters 15, 070501 (2017). 42.H. Yu, K. Ren, Q. Wu, J. Wang, J. Lin, Z. Wang, J. Xu, R. F. Oulton, S. Qu, and P. Jin, Organic–inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability, Nanoscale 8, 19536-19540 (2016). 41.J. Qi, Y. Xiang, W. Yan, M. Li, L. Yang, Z. Chen, W. Cai, J. Chen, Y. Li, and Q. Wu, Excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10 nm-gap array structures and its application, The Journal of Physical Chemistry C 120, 24932-24940 (2016). 40.Y. Pan, M. Yang, Y. Li, Z. Wang, C. Zhang, Y. Zhao, J. Yao, Q. Wu, and J. Xu, Threshold dependence of deep-and near-subwavelength ripples formation on natural MoS 2 induced by femtosecond laser, Scientific reports 6, 19571 (2016). 39.Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings, Optics letters 41, 336-339 (2016). 38.B. Zhang, Q. Wu, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, THz band-stop filter using metamaterials surfaced on LiNbO 3 sub-wavelength slab waveguide, Optics express 23, 16042-16051 (2015). 37.Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, and Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity, The Journal of Physical Chemistry C 118, 12727-12733 (2014). 36.Y. Yu, Y. Tang, J. Yuan, Q. Wu, W. Zheng, and Y. Cao, Fabrication of N-TiO2/InBO3 heterostructures with enhanced visible photocatalytic performance, The Journal of Physical Chemistry C 118, 13545-13551 (2014). 35.M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse, Optics Letters 39, 343-346 (2014). 34.Y.-E. Wu, Z. Wang, X. Zhang, W. Li, L. Huang, F. Gao, W. Li, Q. Wu, and J. Xu, Polarization independent broadband femtosecond optical gating using transient Kerr lens effect, Optics express 22, 6691-6698 (2014). 33.Y.-E. Wu, M. Ren, Z. Wang, W. Li, Q. Wu, S. Yi, X. Zhang, and J. Xu, Optical nonlinear dynamics in ZnS from femtosecond laser pulses, AIP Advances 4, 057107 (2014). 32.J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, Independently tunable double Fano resonances in asymmetric MIM waveguide structure, Optics express 22, 14688-14695 (2014). 31.W. Li, Z. Wang, X. Zhang, Y.-E. Wu, W. Liao, L. Huang, F. Gao, W. Fan, W. Li, and Q. Wu, Convenient ultra-broadband femtosecond optical gating utilizing transient beam deflection effect, Optics express 22, 31417-31425 (2014). 30.Q. Chen, Y. Zuo, W. Cai, B. Zhang, L. Pan, J. Yao, Q. Wu, and J. Xu, Giant field enhancement and resonant wavelength shift through a composite nanostructure, Optics Communications 321, 47-50 (2014). 29.M. Yang, Q. Wu, J. Qi, I. Drevensek‐Olenik, Z. Chen, Y. Pan, and J. Xu, Microstructured polymer‐based substrates with broadband absorption for surface‐enhanced Raman scattering, Journal of Raman Spectroscopy 44, 1678-1681 (2013). 28.Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, Terahertz phonon polariton imaging, Frontiers of Physics 8, 217-227 (2013). 27.M. Ren, C. Pan, Q. Li, W. Cai, X. Zhang, Q. Wu, S. Fan, and J. Xu, Isotropic spiral plasmonic metamaterial for sensing large refractive index change, Optics letters 38, 3133-3136 (2013). 26.Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing, Nanoscale research letters 8, 437 (2013). 25.Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, P. Jingyang, L. Yue, W. Wudeng, Y. Xuanyi, and S. Qian, Fabrication of nanowire network AAO and its application in SERS, Nanoscale research letters 8, 1-6 (2013). 24.Z. Chen, Q. Wu, M. Yang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air, Optics Express 21, 21329-21336 (2013). 23.Z. Chen, Q. Wu, M. Yang, and J. Xu, Time-resolved study of femtosecond laser-induced plasma on silicon, in Laser Science(Optical Society of America2013), p. LTh1I. 5. 22.Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases, Laser and Particle Beams 31, 539-545 (2013). 21.J. Yuan, Q. Wu, P. Zhang, J. Yao, T. He, and Y. Cao, Synthesis of indium borate and its application in photodegradation of 4-chlorophenol, Environmental science & technology 46, 2330-2336 (2012). 20.Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy, Optics express 20, 960-965 (2012). 19.S. Fan, L. Wei, W. Pi-Dong, L. Jun, W. Qiang, W. Zhen-Hua, and Z. Xin-Zheng, Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals, Chinese Physics Letters 29, 014206 (2012). 18.杨程亮, 吴强, 禹宣伊, 张心正, 孔勇发, and 许京军, 太赫兹声子极化激元在 LiNbO3 微结构中的衍射和干涉动态过程的时间分辨成像, 人工晶体学报40, 309-313 (2011). 17.W. Zhang, F. Gao, F. Bo, Q. Wu, G. Zhang, and J. Xu, All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer, Optics letters 36, 271-273 (2011). 16.C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide, Optics express 18, 26351-26364 (2010). 15.C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO 3, JOSA B 27, 2350-2359 (2010). 14.Z. Wang, Q. Wu, C. Yang, X. Zhang, Z. Chen, R. A. Rupp, and J. Xu, Nonlinear spectrum broadening of femtosecond laser pulses in photorefractive waveguide arrays, Optics express 18, 10112-10119 (2010). 13.W. Li, X. Zhang, Z. Wang, Q. Wu, L. Liu, J. Xu, and B. Tang, Observation of modulated spontaneous emission of Rhodamine 6G in low refractive index contrast 1D-periodic gelatin film, Science China Physics, Mechanics and Astronomy 53, 54-58 (2010). 12.W. Li, B. Tang, X. Zhang, F. Gao, L. Liu, Q. Wu, L. Pan, C. Lou, S. Guo, and R. A. Rupp, Investigation on the phase shifts of extinction and phase gratings in polymethyl methacrylate, Chinese Optics Letters 8, 18-21 (2010). 11.Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide, Optics express 17, 9219-9225 (2009). 10.Z. Xin-Zheng, W. Zhen-Hua, L. Hui, W. Qiang, T. Bai-Quan, G. Feng, and X. Jing-Jun, Characterization of photon statistical properties with normalized Mandel parameter, Chinese Physics Letters 25, 3976 (2008). 9.L. Wei, Z. Xin-Zheng, S. Yan-Li, X. Jing-Jun, Q. Hai-Jun, W. Qiang, R. A. Rupp, L. Ci-Bo, W. Zhen-Hua, and G. Feng, Photopolymerization-induced two-beam coupling and light-induced scattering in polymethyl methacrylate, Chinese Physics Letters 25, 2857 (2008). 8.B. Fei, Z. Xin-Zheng, W. Zhen-Hua, W. Qiang, H. Hao, and X. Jing-Jun, Preparation and size characterization of silver nanoparticles produced by femtosecond laser ablation in water, Chinese Physics Letters 25, 4463 (2008). 7.W. Qiang, X. Jing-Jun, R. Rupp, Z. Xin-Zheng, L. Ci-Bo, and S. Bugaychuk, Transition from backscattering speckles to phase conjugation in LiNbO3: Fe, Chinese Physics Letters 23, 2101 (2006). 6.F. Gao, J. Xu, H. Qiao, Q. Wu, Y. Xu, and G. Zhang, Observation of superluminal and slowdown light propagation in doped lithium niobate crystals, Optics communications 257, 185-190 (2006). 5.W. Zhen-Hua, Z. Xin-Zheng, X. Jing-Jun, W. Qiang, Q. Hai-Jun, T. Bai-Quan, R. Romano, K. Yong-Fa, C. Shao-Lin, and H. Zi-Heng, Time-resolved femtosecond degenerate four-wave mixing in LiNbO3: Fe, Mg crystal, Chinese Physics Letters 22, 2831 (2005). 4.H. Qiao, Y. Tomita, J. Xu, Q. Wu, G. Zhang, and G. Zhang, Observation of strong stimulated photorefractive scattering and self-pumped phase conjugation in LiNbO 3: Mg in the ultraviolet, Optics express 13, 7666-7671 (2005). 3.Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. R. Volk, Fanning scattering in LiNbO3 at 750–850 nm induced by femtosecond laser pulses, Optical Materials 23, 277-280 (2003). 2.H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. R. Volk, An increase of photorefractive sensitivity in In: LiNbO3 crystal, Optical Materials 23, 269-272 (2003). 1.Q. Wu, J. Xu, Q. Sun, X. Zhang, H. Qiao, B. Tang, G. Zhang, and M. Gu, Light-induced backward scattering in LiNbO 3: Fe, Zn, Applied physics letters 81, 4691-4693 (2002).
Academic Exchange
The opportunities for undergraduate, master, doctoral students, and postdoctoral fellows:theoretical physics, photoelectric devices, materials, condensed physics, optics and photonics are all appropriate.
Awards
The opportunities for undergraduate, master, doctoral students, and postdoctoral fellows:theoretical physics, photoelectric devices, materials, condensed physics, optics and photonics are all appropriate.
Research Achievements
The opportunities for undergraduate, master, doctoral students, and postdoctoral fellows:theoretical physics, photoelectric devices, materials, condensed physics, optics and photonics are all appropriate.
|