头像

宋道红

光学

个人资料

  • 部门: 物理学院
  • 性别:
  • 出生年月:
  • 专业技术职务: 副教授,博导
  • 研究标签:
  • 毕业院校:
  • 学位: 博士
  • 学历:
  • 联系电话: 022-66229451
  • 电子邮箱: songdaohong@nankai.edu.cn
  • 办公地址: 南开大学泰达学院七区404室
  • 通讯地址:
  • 邮编:
  • 传真:

教育经历

2004/09–2009/06,南开大学,博士

2000/09–2004/06,南开大学,学士


工作经历

2015/12-至今   南开大学,副教授

2011/07-2015/12  南开大学,讲师

2010/07-2010/10, 德国Helmut Schmidt大学,访问学者

个人简介

宋道红,男,物理科学学院/泰达应用物理研究院副教授,博士生导师,2016年入选南开大学百名青年学术带头人培养计划, 2019年获国家优秀青年科学基金资助。主要从事微结构光子学、非线性光学研究,研究内容集中于拓扑光学微结构中的光传输及新颖物理现象。近年来在该领域的研究成果在Nat. Mater., Nat.Commun., Phys. Rev. Lett., 2D Mater., Optica, Opt. Lett., Opt. Express等著名期刊发表论文四十余篇,SCI他引用600余次。主持承担了国家自然科学基金项目和科技部973项目子课题,并以学术骨干身份参与国家重点研发计划项目等,参与撰写由上海交通大学出版社出版的光物理研究前沿系列《非线性光学研究前沿》专著一个章节。作为第二完成人获得首届中国光学科技二等奖。目前为Phys. Rev. Lett.Phys. Rev. Applied, Phys. Rev. A Opt. Lett.Opt. ExpressPhoto. Res., Adv. Photo.Appl. Opt., Chin. Phys. Lett.,等学术期刊审稿人。



研究领域

招收硕士和博士研究生(含免试推免生),并欢迎本科生以百项、国创、本科毕设等方式加入课题组开展研究



研究方向为拓扑光学微结构中光传输和光场调控的研究,利用光子晶格平台(人工光子能带结构)模拟和探究凝聚态物理、材料科学、量子力学和光子学交叉领域的重要前沿物理问题,探索狄拉克物理及拓扑物理在光学中带来的新的现象及机制。



教学工作

本科课程: 近代物理实验

研究生课程:光子学(光子带隙材料部分),光学和光子学前沿讲座

科研项目

1. 国家自然科学基金优秀青年基金项目,狄拉克微结构中的光传输与新物理,2020/012022/12, 主持

2. 国家重点研发计划重点专项项目,具有拓扑、分形特性的空间光场的调控及非线性效应,2017/07-2021/06, 科研骨干

3. 国家自然科学基金面上项目,光诱导蜂窝型光子晶格中与赝自旋相关涡旋现象的研究,2017/01-2020/12, 主持

4. 国家自然科学基金面上项目,整形脉冲对光纤中色散报产生的优化与调控研究,2016/01-2019/12, 参加

5. 国家自然科学基金青年项目,非线性周期结构中离散光涡旋现象研究, 2014/01-2016/12,主持

6. 科技部“973”计划课题,基于等离激元结构的材料制备与红外光电转换增强效应研究,2013/07-2017/08,科研骨干

7. 科技部“973”计划课题,纳/微结构中光学非线性增强机理及光调控研究,2013/07-2017/08,科研骨干

8. 教育部博士点新教师基金项目,类石墨烯型光学微结构制备及光传播特性的研究, 2013/01-2015/12,主持


论文著作

1.Xiuying Liu, Shiqi Xia, Ema Jajtić, Daohong Song, Denghui Li, Liqin Tang, Daniel Leykam, Jingjun Xu, Hrvoje Buljan & Zhigang Chen. Universal momentum-to-real-space mapping of topological singularities. Nature Communications 11, 1586 (2020).

2.J. Ma, J.-W. Rhim, L. Tang, S. Xia, H. Wang, X. Zheng, S. Xia, D. Song, Y. Hu, Y. Li, B.-J. Yang, D. Leykam, and Z. Chen, Direct Observation of Flatband Loop States Arising from Nontrivial Real-Space Topology, Phys. Rev. Lett. 124, 183901 (2020)

3.Hua Zhong, Yongdong Li, Daohong Song, Yaroslav V. Kartashov, Yiqi Zhang, Yanpeng Zhang, and Zhigang Chen, “Topological Valley Hall Edge State Lasing”, Laser Photonics Rev. 14, 2000001(2020).

4.Denghui Li, Domenico Bongiovanni, Michael Goutsoulas, Shiqi Xia, Ze Zhang, Yi Hu, Daohong Song, Roberto Morandotti, Nikolaos K. Efremidis, and Zhigang Chen”Direct comparison of anti-diffracting optical pin beams and abruptly autofocusing beams” OSA Continuum, 3, 1525(2020)

5.Wenchao Yan, Hua Zhong, Daohong Song,* Yiqi Zhang, Shiqi Xia, Liqin Tang, Daniel Leykam, and Zhigang Chen*,”Flatband Line States in Photonic Super-Honeycomb Lattices” adom.201902174

6.L. Tang, D. Song, S. Xia, S. Xia, J. Ma, W. Yan, Y. Hu, J. Xu, D. Leykam and Z. Chen, Photonic flat-band lattices and unconventional light localization, Nanophotonics, (2020) DOI: 10.1515/nanoph-2020-0043 (Invited Review)

7.S. Xia, C. Danieli, W. Yan, Z. Li, S. Xia, J. Ma, H. Lu, D. Song*, L. Tang*, S. Flach, and Z. Chen*, Observation of quincunx-shaped flatband states in photonic rhombic lattice without band-touchingAPL Photonics, 5(1), 016107 (2020)

8.Daohong Song, Daniel Leykam, Jing Su, Xiuying Liu, Liqin Tang, Sheng Liu, Jianlin Zhao, Nikolaos K. Efremidis, Jingjun Xu, and Zhigang Chen” Valley vortex states and degeneracy lifting via photonic higher-band excitation”Physical Review Letters122, 123903 (2019)

9.Haiping Wang, Liqin Tang, Jina Ma, Xiuyan Zheng, Daohong Song, Yi Hu, Yigang Li, and Zhigang Chen,Synthetic optical vortex beams from the analogous trajectory change of an artificial satellite, Photonics Research 7,1101(2019)

10.Hua Zhong, Yaroslav V. Kartashov, Yiqi Zhang, Daohong Song, Yanpeng Zhang, Fuli Li, and Zhigang Chen,Rabi-like oscillation of photonic topological valley Hall edge states, Optics Letters,44,3342(2019)

11.Shiqi Xia, Ajith Ramachandran, Shiqiang Xia, Denghui Li, Xiuying Liu, Liqin Tang, Yi Hu, Daohong Song, Jingjun Xu, Daniel Leykam, Sergej Flach, and Zhigang Chen, Unconventional Flatband Line States in Photonic Lieb Lattices, Physical Review Letters 121 (26), 263902 (2018).

12.Y. Sun, D. Leykam, S. Nenni, D. Song, H. Chen, Y. D. Chong, and Z. Chen, Observation of Valley Landau-Zener-Bloch Oscillations and Pseudospin Imbalance in Photonic Graphene. Physical Review Letters 121, 033904 (2018).

13.Yumiao Pei, Yi Hu, Cibo Lou, Daohong Song, Liqin Tang, Jingjun Xu, and Zhigang Chen,“Observation of spatial optical diametric drive acceleration in photonic lattices”,Optics Letters 43, 118-121 (2018)

14.陈志刚,许京军,胡毅,宋道红,张泽,赵娟莹,梁毅,自加速光的调控及其新奇应用,光学学报,361026009 (2016)

15.Yuanyuan Zong, Shiqiang Xia, Liqin Tang, Daohong Song, Yi Hu, Yumiao Pei, Jing Su, Yigang Li, and Zhigang Chen” Observation of localized flat-band states in Kagome photonic lattices”, Optics Express, 24, 8877-8885 (2016)

16.Shiqiang Xia, Yi Hu, Daohong Song, Yuanyuan Zong, Liqin Tang, and Zhigang Chen,” Demonstration of flat-band image transmission in optically induced Lieb photonic lattices” Opt. Lett., 41, 1435-1438 (2016).

17.J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen , Spiraling particles by fine-shaped dynamical singular beams, Opt. & Photonics News, December issue (Optics in 2015).

18.Yi Liang, Yi Hu, Daohong Song, Cibo Lou, Xinzheng Zhang, Zhigang Chen, and Jingjun Xu,“Image signal transmission with Airy beams,” Opt. Lett., 40, 5686-5689 (2015).

19.Yaakov Lumer, Yi Liang, Ran Schley, Ido Kaminer, Elad Greenfield, Daohong Song, Xinzheng Zhang, Jingjun Xu,Zhigang Chen, and Mordechai Segev*, “Incoherent self-accelerating beams,” Optica, 2(10), 886-892 (2015).

20.J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis and Z. Chen, , Curved singular beams for three-dimensional particle manipulation, Scientific Reports, 5,12086 (2015).

21.Juanying Zhao, I. D. Chremmos, Ze Zhang, Yi Hu, Daohong Song, Peng Zhang, N. K. Efremidis, Zhigang Chen, “Specially shaped Bessel-like self-accelerating beams along predesigned trajectories”, Science Bulletin, 601157 (2015)

22.Daohong. Song, Sheng Liu, Vassilis Paltoglou, Daniel Gallardo, Liqin Tang, Jianlin Zhao, Jingjun Xu, Nikolaos K Efremidis and Zhigang Chen, Controlled generation of pseudospin-mediated vortices in photonic graphene. 2D Materials. 2, 034007 (2015).

23.D. Song, V. Paltoglou, S. Liu, Y. Zhu, D. Gallardo, L. Tang, J. Xu, M. Ablowitz, N.K. Efremidis, Z. Chen, Unveiling pseudospin and angular momentum in photonic graphene, Nat. Commun., 6 , 6272(2015).

24.Shiqiang Xia, Daohong Song, YuanyuanZong, Liqin Tang*, and Zhigang Chen,Observation of self-trapping and rotation of higher-band gap solitons intwo-dimensional photonic lattices, Opt. Express 23, 4397-4405 (2015)

25.Yuanmei Gao, Daohong Song , Shanshan Chu and Zhigang Chen,“Artificial graphene and related photonic lattices generated with a simple method”,IEEE Photonics Journal,6, 6923444( 2014)

26.Yonatan Plotnik*, Mikael C. Rechtsman*, Daohong Song*, Matthias Heinrich, Julia M. Zeuner, Stefan Nolte, Natalia Malkova, Jingjun Xu, Alexander Szameit, Zhigang Chen, Mordechai Segev. Observation of unconventional edge states in ‘photonic graphene’. Nature Materials 13, 57–62 (2014).( * equal contribution)

27.Ye Zhuo-Yi, Xia Shi-Qiang, Song Dao-Hong, TangLi Qin, and Lou Ci Bo, ”Beam control in the tri-core photonic lattices,” Chinese Phyiscs B,  23(2): 024211 (2014)

28.Yi Liang, Yi Hu, Zhuoyi Ye, Daohong Song, Cibo Lou, Xinzheng Zhang, Jingjun Xu, Roberto Morandotti, and Zhigang Chen, Dynamical deformed Airy beams with arbitrary angles between two wings, J. Opt. Soc. Am. A 31, 1468-1472 (2014)

29.Mikael C. Rechtsman, Yonatan Plotnik, Julia M. Zeuner, Daohong Song, Zhigang Chen, Alexander Szameit, and Mordechai Segev, ”Topological creation and destruction of edge states in photonic graphene,”Phys. Rev. Lett. 111, 103901 (2013)

30.Ze Zhang, Zhuoyi Ye, Daohong Song, Peng Zhang, and Zhigang Chen, Repositioning and steering laser beam power via coherent combination of multiple Airy beams, Appl. Opt. 52, 8512-8517 (2013)

31.Juanying Zhao,Peng Zhang,Dongmei Deng,Cibo Lou,Daohong Song,Jingjiao Liu,Zhigang Chen. Self-accelerating and self-breathing Bessel-like beams along arbitrary trajectoriesChinese Optics Letters111107012013

32.Shiqiang Xia, Daohong Song, Liqin Tang*, Cibo Lou, Yigang Li,” Self-trapping and oscillation of quadruple beams in high band gap of 2D photonic lattices,” Chinese Optics Letter, 11, 090801 (2013)

33.Yi Liang, Zhuoyi Ye, Daohong Song, Cibo Lou, Xinzheng Zhang, Jingjun Xu, and Zhigang Chen, Generation of linear and nonlinear propagation of three-Airy beams, Opt. Express 21, 1615-1622 (2013)

34.Yi Hu, Zhe Sun, Domenico Bongiovanni, Daohong Song, Cibo Lou, Jingjun Xu, Zhigang Chen, and Roberto Morandotti, Reshaping the trajectory and spectrum of nonlinear Airy beams, Opt. Lett. 37, 3201-3203 (2012)

35.Sheng Liu, Yi Hu, Peng Zhang, Xuetao Gan, Cibo Lou, Daohong Song, Jianlin Zhao, Jingjun Xu, and Zhigang Chen, Tunable self-shifting Bloch modes in anisotropic hexagonal photonic lattices, Opt. Lett. 37, 2184-2186 (2012)

36.S. Liu, Y. Hu, P. Zhang, X. Gan, C. Lou, D. Song, J. Zhao, J. Xu and Z. Chen, “Symmetry-breaking diffraction and dynamic self-trapping in optically induced hexagonal photonic lattices”, Appl. Phys. Lett. 100 (6), 061907-061904 (2012).

37.Daohong Song, Cibo Lou, Liqin Tang, Zhuoyi Ye, Jingjun Xu, and Zhigang Chen,“Experiments on Linear and Nonlinear Localization of Optical Vortices in Optically Induced Photonic Lattices International Journal of Optics20122738572012)(Review article

38.S. Liu, Y. Hu, P. Zhang, X. Gan, F. Xiao, C. Lou, D. Song, J. Zhao, J. Xu, and Z. Chen, Anomalous interactions of spatial gap solitons in optically induced photonic lattices, Opt. Lett. 36, 1167-1169 (2011)

39.Zhuoyi Ye, Sheng Liu, Cibo Lou, Peng Zhang, Yi Hu, Daohong Song, Jianlin Zhao, and Zhigang Chen” Acceleration control of Airy beams with optically induced refractive-index gradient”, Opt. Lett. 36, 3230-3232 (2011)

40.R. Dong, C. E. Rüter, D. Kip, J. Cuevas, P. G. Kevrekidis, D. H. Song and J. J. Xu Dark-bright gap solitons in coupled-mode one-dimensional saturable waveguide arrays,”Phys. Rev. A 83, 063816 (2011)

41.Daohong Song, Xiaosheng Wang, Daniel Shuldman, Jiandong Wang, Liqin Tang, Cibo Lou,Jingjun Xu, Jianke Yang, and Zhigang Chen“Observation of bandgap guidance of optical vortices in a tunable negative defect,” Opt. Lett. 35, 2106-2108 (2010).

42.Daohong Song, Cibo Lou, Kody J.H. Law, Liqin Tang, Zhuoyi Ye, P.G. Kevrekidis, Jingjun Xu, and Zhigang Chen “Self-trapping of optical vortices at the surface of an induced semi-infinite photonic lattice”, Opt. Express, 18, 5873-5878(2010).

43.Eugenia Eugenieva, Daohong Song, Anna Bezryadina, Peng Zhang, and Zhigang Chen, ”Self-trapping and stabilization of doubly-charged optical vortices in two-dimensional photonic lattices,” Journal of Modern Optics,57,1377 (2010)

44.Rong Dong, Christian E. Rüter, Daohong Song, Jingjun Xu, and Detlef Kip,“Formation of higher-band dark gap solitons in one dimensional waveguide arrays” Opt. Express, 18, 27493-27498(2010).

45.K. J. H. Law, D. Song, P. G. Kevrekidis, J. Xu, and Z. Chen, Geometric stabilization of extended S=2 vortices in two-dimensional photonic lattices: Theoretical analysis, numerical computation, and experimental results, Phys. Rev. A 80, 063817 (2009).

46.Daohong Song, Cibo Lou, Liqin Tang, Xiaosheng Wang, Wei Li. Xingyu Chen, Kody J.Law, Hadi Susanto, P.G. Kevrekidis,Jingjun Xu,and Zhigang Chen, “Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity”, Opt. Express, 16, 10110-10116(2008).

47.楼慈波,宋道红,唐莉勤,陈星宇,许京军,陈志刚,“光子晶格中新颖的带隙孤子”,物理,37239(2008).

48.Cibo Lou, Liqin Tang, Daohong Song, Xiaosheng Wang, Jingjun Xu and Zhigang Chen “Novel spatial solitons in light-induced photonic bandgap structures” Frontiers of Physics in China 3,1 (2008).

49.Liqin Tang, Cibo Lou, Xiaosheng Wang, Daohong Song, Xingyu Chen, Jingjun Xu, Zhigang Chen, H. Susanto, K. Law and P.G. Kevrekidis Observation of dipole-like gap solitons in self-defocusing waveguide lattices , Opt. Lett. 32, 3011-3013 (2007).


学术交流

荣誉奖励

[1] 2019年获得首届南开大学科学研究奖青年创新奖

[2]2019年获得国家优秀青年基金项目资助

[3] 2018年中国光学学会首届光学科技奖二等奖(第二完成人)

[4] 2016年入选南开大学“百名青年学科带头人培养计划”


学术成果


  • 1. 揭示动量空间与实空间拓扑转换的普遍规律[Nat. Commun., 11,1586(2020)]

近年来,在凝聚态物理和材料物理中,材料的拓扑性质成为了大家研究的热点。量子霍尔效应和拓扑绝缘体等现象中所蕴含的拓扑物理吸引了众多领域研究者的兴趣,受拓扑保护的边缘态也已经在凝聚态、光学和声学等众多量子和经典波动系统中实现。材料的拓扑性质是来自于动量空间的能带结构,并且通常由拓扑不变量‘陈数’来描述。狄拉克材料作为一种特殊拓扑材料,其拓扑特性来自于动量空间的拓扑奇点称为狄拉克点。光学中,涡旋光是实空间具有相位奇点的新颖空间结构光场,具有拓扑特性和轨道角动量,也是目前光学研究中的前沿热点。探究这两种不同空间拓扑结构之间的内禀关联性对于深入理解不同领域的拓扑物理现象具有重要的意义。

在该工作中,我们以赝自旋为S=1/2和赝自旋S=1的狄拉克光子晶格为平台,实验上利用赝自旋涡旋光激发狄拉克点附近的模式,实验观测和理论证明了赝自旋涡旋拓扑荷转换的数目正好等于动量空间狄拉克点贝里相位的绕数,该拓扑荷转换过程由狄拉克点的拓扑特性决定。这些结果表明可以通过实空间赝自旋涡旋光拓扑荷的转换来测量狄拉克点的拓扑特性。此外,理论结果证明赝自旋涡旋拓扑荷的转化规律不仅可以可推广到任意整数或半整数的赝自旋体系,而且,对于具有三维动量空间的拓扑奇点,比如具有三维外尔点的体系也同样适用。这证实了拓扑转换从动量空间到实空间的映射规律的普适性。该工作不仅为深入理解拓扑物理现象提供了一个新的视角,而且对凝聚态物理、冷原子物理等其它领域中相关拓扑现象的研究具有重要借鉴意义。




  • 2.光子石墨烯中的赝自旋角动量的观测[Nat. Commun., 6 , 6272(2015)]


    我们在石墨烯型光子晶格(也称为 “光子石墨烯”)中首次实验证实了石墨烯结构的“赝自旋”(pseudospin)具有真正的角动量.赝自旋,作为石墨烯中电子的一个新的自由度对理解石墨烯中很多物理现象起着非常重要的作用。与电子的自旋不同,赝自旋通常被认为是一个不可观测的物理量。该研究首次在光子石墨烯中实验实现了基于赝自旋的涡旋产生以及涡旋拓扑电荷的反转,并在理论上证实了赝自旋可以完全的转化成涡旋的轨道角动量。该成果将对深入理解石墨烯及其它人工石墨烯中基于赝自旋的物理现象提供了一个新的视角,并由此可能带来基于赝自旋电子学的应用。


  • 光子石墨烯中与赝自旋相关的涡旋产生的实验结果



    3.光子石墨烯中新颖边缘态的发现[Nature Materials 13, 57 (2014)]

    石墨烯结构具有三种最基本的边缘:锯齿型(zigzag), 扶手椅型(armchair),类胡须型(bearded),其中类胡须型这种边缘结构在石墨烯中是化学不稳定的,因此该边缘态从未观察到。石墨烯型光子晶格能够提供稳定的、完美的边缘来研究多种边缘态及其特性。我们在光子石墨烯中直接实验观察到了存在于锯齿型和类胡须型边缘的边缘态,并且测量了它们的色散特性。更为重要的是,我们发现了一种在石墨烯中从未被预言存在的类胡须型新型边缘态,与之前研究的边缘态不同,这种新发现的边缘态存在于带边的范•霍夫奇异点附近,属于类塔姆态(Tamm state),这种新型的边缘态是首次在光子石墨烯平台观察到。该工作不仅发现了一种全新的边缘态,而且对于理解石墨烯边缘态及相关的输运性质和导电性能都具有至关重要的作用,为石墨烯及人工石墨系统中边缘态的研究提供了有益的借鉴.




     光子石墨中锯齿型边缘态的实验结果


    4.光子石墨烯中能谷涡旋态的实现[Phys. Rev. Lett.122, 123903 (2019)]


    近年来,石墨烯和二硫化钼等具有蜂巢结构的二维材料引起了人们极大的兴趣,其能谷自由度表现出很多新奇的特性及其在信息领域的应用潜力,成为“能谷电子学”这一新兴交叉领域的前沿研究热点之一。通常为了能有效操控能谷自由度,人们需要打破石墨烯结构的空间反演对称性,打开狄拉克点的带隙,利用贝里曲率的不同来区分实现。我们通过研究发现,在光子石墨烯晶格中,即使不破缺晶格结构的空间反演对称性也能观察到与能谷自由度相关的物理现象。课题组首次利用光诱导制备的光子石墨烯晶格,实现了能谷涡旋的产生和拓扑荷的反转,并且发现了由于激发高带模式导致的能谷涡旋简并破除现象,这是通常的二能带狄拉克模型所不能解释的。该研究结果不仅加深了对石墨烯结构中能谷物理的理解,而且对其它物理系统中能谷和拓扑物理现象的研究提供了有益的借鉴。




    能谷涡旋态的实验结果图



    4. Lieb光子晶格中新型平带模式的发现[Phys. Rev. Lett. 121, 263902 (2018).]

    具有平带的周期结构中存在局域的平带模式,这些模式仅仅局域在有限的格点上。利用Lieb型光子晶格,实验上观察到了这种新型的线性平带模式并且演示了基于线性平带模式的图像传输。我们的结果对其它具有平带结构的周期系统比如凝聚态物理和冷原子体系中平带模式的研究具有借鉴意义。


    Lieb型光子晶格中线性平带模式的实验结果



学位: 博士

毕业院校:

邮件: songdaohong@nankai.edu.cn

办公地点: 南开大学泰达学院七区404室

电话: 022-66229451

出生年月:

10 访问

相关教师