头像

Yongdao Zhou

Nankai University

About

  • Department: School of Statistics and Data Science
  • Gender:
  • BirthDate:
  • Post:
  • Research Label:
  • Graduate School: Sichuan University
  • Degree: PhD
  • Academic Credentials:
  • Tel:
  • Email:
  • Office Location: Fansun Building
  • Address School: No 94, Weijin Road, Tianjin
  • PostCode School: 300071
  • Fax School:

Education

WorkExperience

Resume

Yongdao Zhou earned a BS in pure mathematics in 2002 and MS and PhD degrees in statistics in 2005 and 2008, respectively, from Sichuan University, China. He was a postdoctoral fellow at HKBU-UIC Joint Institute of Research Studies. Then, he joined Sichuan University and became a full professor in 2015. In 2017, he joined Nankai University, where he is presently a full professor in statistics. He visited UCLA, the University of Manchester, the National University of Singapore, and Simon Fraser University as a visiting scholar. His research agenda focuses on experimental design and big data analysis. He published over 80 papers, such as in JRSSB, JASA, Biometrika, and IEEE TKDE, as well as 9 monographs and textbooks. His research publications have won two best paper awards.


Research Fields

Experimental design, Algorithm for big data


Lectures

Projects

Publications

Selected published papers:


1. Cao X., Wang S. and Zhou Y.(2025). Using early rejection Markov chain Monte Carlo and Gaussian processes to accelerate ABC methods, Journal of Computational and Graphical Statistics34 (2), 395-408

2. Feng Y. and Zhou Y.(2024). GGD: Grafting Gradient Descent, Journal of Machine Learning Research, 25(316),1-87

3.  Zhang, M. Zhou, Y.D., Zhou Z. and Zhang, A. (2024). Model-free Subsampling Method Based on Uniform Designs, IEEE Transactions on Knowledge and Data Engineering, 36(3):1210-1220.

4. Zhou Z., Yang Z., Zhang A. and Zhou Y.D.(2024). Efficient Model-free Subsampling Method for Massive Data, Technometrics66(2): 240-252.

5. Yang L.QZhou Y. D., Fu H.Liu M.Q. and Zheng W. (2024). Fast Approximation of the Shapley Values Based on Order-of-Addition Experimental Designs, Journal of the American Statistical Association119 (547), 2294-2304.

6. Zhang X.R.Zhou Y.D., Liu M.Q. and Lin D.K.J (2024). Sequential Good Lattice Point Sets for Computer Experiments, Science China Mathematics67(9): 2153-2170.

7. Yi, S.Y., Ju, W., Qin, Y., Luo, X., Liu, L., Zhou Y.D. and Zhang, M. (2024). Redundancy-Free Self-Supervised Relational Learning for Graph Clustering, IEEE Transactions on Neural Networks and Learning Systems35(12), 18313-18327.

8. Yi S.Y. and Zhou Y.D. (2023). Model-free global likelihood subsampling for massive data, Statistics and Computing, 33:9, 1-16

9. Yi S.Y., Liu Z., Liu M.Q. and Zhou Y.D. (2023). Global Likelihood Sampler for Multimodal Distributions, Journal of Computational and Graphical Statistics32: 927-937.

10. Yang L.QZhou Y.D. and Liu M.Q. (2023). Ordering factorial experiments, Journal of the Royal Statistical Society: Series B., 85(3): 869–885.

11. Zhou Z. and Zhou Y.D. (2023). Optimal row-column designs, Biometrika110 (2), 537-549.

12. Yang F., Lin C.D., Zhou Y.D. and He Y. (2023). Doubly Coupled Designs for Computer Experiments with both Qualitative and Quantitative Factors, Statistica Sinica, 33: 1923-1942

13. Chen J.B., Han X., Lin D.K.J, Yang L.Q. and Zhou Y.D.(2023). On Ordering Problems: A Statistical Approach, Statistica Sinica, 33: 1903-1922.

14. Liu, M.M., Mee, R. and Zhou Y.D.(2023). Augmenting Definitive Screening Designs: Going Outside the Box, Journal of Quality Technology, 55(3): 289-301

15. Yi S., Mao Z., Ju W.,Zhou Y., Liu L., Luo X. and Zhang M. (2023). Towards Long-Tailed Recognition for Graph Classification via Collaborative Experts, IEEE Transactions on Big Data, 9(6): 1683-1696.

16. Zhou Y.D. and Tang B.(2019). Column-Orthogonal Strong Orthogonal Arrays of Strength Two Plus and Three Minus, Biometrika, 106, 997-1004.

17. Zhou Y.D. and Xu H. (2017). Composite Designs Based on Orthogonal Arrays and Definitive Screening Designs. Journal of the American Statistical Association, 1121675-1683. 

18. Zhou Y.D. and Xu. H. (2015). Space-filling properties of good lattice point sets. Biometrika, 102(4): 959966. 

19. Zhou Y.D. and Xu H. (2014). Space-filling fractional factorial designs. Journal of the American Statistical Association, 109(507):1134-1144.

20. Zhou Y.D., Fang K.T. and Ning J.H. (2013). Mixture discrepancy for quasi-random point sets, Journal of Complexity, 29: 283301. 


Academic Exchange

Awards

Research Achievements

Degree: PhD

Graduate School: Sichuan University

Email:

Office Location: Fansun Building

Tel:

BirthDate:

10 Access

Related to the teacher