现已在包括国内外统计学顶级期刊《Journal of the Royal Statistical Society: Series B》《Annals of Statistics》《Journal of the American Statistical Association》《Biometrika》《中国科学》在内的学术期刊上发表及接受发表论文160余篇,其中SCI论文140余篇,合作出版中英文专著各1部、专业译著2部、专业教材2部。论文专著等的更详细情况请参见刘民千在南开大学统计与数据科学学院的个人主页: http://web.stat.nankai.edu.cn/mqliu/publications_cn.html。
2025+
163. Wang, S., Sun, F. and Liu, M. Q. (2025+). Energy distance-based subsampling MCMC. Sci. China Math., accepted on Oct. 11, 2024.
162. Huang, H. and Liu, M. Q. (2025+). Two-dimensional maximin power designs for combination experiments of drugs. Commun. Math. Stat., published on July 4, 2024.
161. Liu, Z., Yi, S. Y., Dong, J., Liu, M. Q. and Zhou, Y. D. (2025+). A sampling scheme for estimating the prevalence of a pandemic. Comm. Statist. Simulation Comput., published on May 20, 2023.
160. Liu, H., Sun, F., Lin, D. K. J. and Liu, M. Q. (2025+). On construction of mappable nearly orthogonal arrays with column orthogonality. Commun. Math. Stat., published on Apr. 26, 2023.
159. Wang, C., Lin, D. K. J. and Liu, M. Q. (2025). A new class of orthogonal designs with good low dimensional space-filling properties. Statist. Sinica 35(4), accepted on Oct. 4, 2023.
158. Liu, M. M., Liu, M. Q. and Yang, J. Y. (2025). Strongly coupled designs for computer experiments with both qualitative and quantitative factors. Mathematics 13(1), 75.
157. Han, X. X, Sheng, C. and Liu, M. Q. (2025). Optimal split-plot designs under individual word length patterns. Statist. Probab. Lett. 219, 110311.
156. Zhang, X., Lin, D. K. J., Liu, M. Q. and Chen, J. (2025). Analysis of order-of-addition experiments. Comput. Statist. Data Anal. 203, 108077.
155. Yuan, R., Yin, Y., Xu, H. and Liu, M. Q. (2025). A construction method for maximin L1-distance Latin hypercube designs. Statist. Sinica 35(1), 249-272.
154. Wei, Q., Yang, J. F. and Liu, M. Q. (2025). Column expanded Latin hypercube designs. J. Statist. Plann. Inference 234, 106208.
2024
153. Li, H., Liu, M. Q. and Yang, J. (2024). Bayesian minimum aberration mixed-level split-plot designs. Metrika 87, 889-906.
152. Li, W., Tian, Y. and Liu, M. Q. (2024). Construction of orthogonal maximin distance designs. J. Qual. Technol. 56(4), 312-326.
151. Yang, L., Zhou, Y., Fu, H., Liu, M. Q. and Zheng, W. (2024). Fast approximation of the Shapley values based on order-of-addition experimental designs. J. Amer. Statist. Assoc., 119(547), 2294-2304.
150. Zhang, X. R., Zhou, Y. D., Liu, M. Q. and Lin, D. K. J. (2024). Sequential good lattice point sets for computer experiments. Sci. China Math. 67(9), 2153-2170.
149. Wang, C., Liu, M. Q. and Yang, J. (2024). A new class of strong orthogonal arrays of strength three. J. Syst. Sci. Complex. 37(3), 1233-1250.
148. Chatterjee, K., Liu, M. Q., Qin, H. and Yang, L. (2024). Construction of optimal mixed-level uniform designs. J. Syst. Sci. Complex. 37(2), 841-862.
147. Xu, M., Xu, Z., Ge, G. and Liu, M. Q. (2024). A rainbow framework for coded caching and its applications. IEEE T. Inform. Theory 70(3), 1738-1752.
146. Li, W., Liu, M. Q. and Yang, J. F. (2024). Several new classes of space-filling designs. Statist. Papers 65, 357-379.
145. Li, H., Yang, L., Chatterjee, K. and Liu, M. Q. (2024). Construction of optimal supersaturated designs by the expansive replacement method. J. Statist. Plann. Inference 230, 106118.
2023
144. Han, X. X., Chen, J. B., Liu, M. Q. and Yang, J. F. (2023). Individual word length patterns for fractional factorial (split-plot) designs. J. Syst. Sci. Complex. 36(5), 2082-2099.
143. Yi, S. Y., Liu. Z., Liu, M. Q. and Zhou, Y. D. (2023). Global likelihood sampler for multimodal distributions. J. Comput. Graph. Statist. 32(3), 927-937.
142. Yang, L. Q., Zhou, Y. D. and Liu, M. Q. (2023). Ordering factorial experiments. J. R. Stat. Soc. Ser. B. Stat. Methodol. 85(3), 869-885.
141. Liu, S. N., Liu, M. Q. and Yang, J. Y. (2023). Construction of column-orthogonal designs with two-dimensional stratifications. Mathematics 11(6), 1549.
140. Wang, L., Xu, H. and Liu, M. Q. (2023). Fractional factorial designs for Fourier-cosine models. Metrika 86(3), 373-390.
139. Guo, B., Li, X. R., Liu, M. Q. and Yang, X. (2023). Construction of orthogonal general sliced Latin hypercube designs. Statist. Papers 64(3), 987-1014.
138. Huang, H. Z., Liu, M. Q., Tan, M. T. and Fang, H. B. (2023). Design and modeling for drug combination experiments with order effects. Statistics in Medicine 42(9), 1353-1367.
137. Zheng, C. W., Qi, Z. F., Zhang, Q. Z. and Liu, M. Q. (2023). A method for augmenting supersaturated designs with newly added factors. Mathematics 11(1), 60.
136. Sheng, C., Yang, J. Y. and Liu, M. Q. (2023). A new rotation method for constructing orthogonal Latin hypercube designs. Sci. China Math.66(4), 839-854.
2022
135. Qi, G. Y., Liu, M. Q. and Yang, J. F. (2022). An integral model for high-accuracy and low-accuracy experiments. Stat 11(1), e531.
134. Liu, M. M., Liu, M. Q. and Yang, J. Y. (2022). Construction of group strong orthogonal arrays of strength two plus. Metrika 85(6), 657-674.
133. Wei, Q., Liu, M. Q. and Yang, J. F. (2022). Orthogonal designs with branching and nested factors. Stat 11(1), e447.
132. Li, W. L., Liu, M. Q. and Yang, J. F. (2022). Construction of column-orthogonal strong orthogonal arrays. Statist. Papers 63, 515-530.
131. Li, M., Liu, M. Q., Sun, F. S. and Zhang, D. (2022). Construction of optimal supersaturated designs via generalized Hadamard matrices. Comm. Statist. Theory Methods 51(8), 2565-2579.
130. Li, W. L., Liu, M. Q. and Tang, B. (2022). A systematic construction of compromise designs under baseline parameterization. J. Statist. Plann. Inference 219, 33-42.
129. Li, H., Yang, L. Q. and Liu, M. Q. (2022). Construction of space-filling orthogonal Latin hypercube designs. Statist. Probab. Lett. 180, 109245.
128. Zhao, Y. N., Lin, D. K. J. and Liu, M. Q. (2022). Optimal designs for order-of-addition experiments. Comput. Statist. Data Anal. 165, 107320.
127. Wang, C. Y., Yang, J. Y. and Liu, M. Q. (2022). Construction of strong group-orthogonal arrays. Statist. Sinica 32(3), 1225-1243.
2021
126. Pang, S. Q., Wang, J., Lin, D. K. J. and Liu, M. Q. (2021). Construction of mixed orthogonal arrays with high strength. Annals of Statistics 49(5), 2870-2884.
125. Li, W. L., Liu, M. Q. and Tang, B. (2021). A method of constructing maximin distance designs. Biometrika 108(4), 845-855.
124. Li, W. L., Guo, B., Huang, H. Z. and Liu, M. Q. (2021). Semifoldover plans for three-level orthogonal arrays with quantitative factors. Statist. Papers 62(6), 2691-2709.
123. Huang, H. Z., Yu, H. S., Liu, M. Q. and Wu, D. H. (2021). Construction of uniform designs and complex-structured uniform designs via Partitionable t-Designs. Statist. Sinica 31(4), 1689-1706.
122. Zhou, W. P., Yang, J. Y. and Liu, M. Q. (2021). Construction of orthogonal marginally coupled designs. Statist. Papers 62(4), 1795-1820.
121. Zhao, Y. N., Lin, D. K. J. and Liu, M. Q. (2021). Designs for order of addition experiments. Journal of Applied Statistics 48, 1475-1495.
120. Yang, L. Q., Zhou, Y. D. and Liu, M. Q. (2021). Maximin distance designs based on densest packings. Metrika 84, 615-634.
119. Yang, X., Yang, J. F., Liu, M. Q. and Zhou, Q. (2021). Column-orthogonal designs with multi-dimensional stratifications. Sci. China Math. 64(6), 1291-1304.
118. Chen, H., Yang, J. Y. and Liu, M. Q. (2021). Construction of improved branching Latin hypercube designs. Acta Mathematica Scientia 41B(4), 1023-1033.
117. Yuan, R., Guo, B. and Liu, M. Q. (2021). Flexible sliced Latin hypercube designs with slices of different sizes. Statist. Papers 62(3), 1117-1134.
116. Li, W. L., Liu, M. Q. and Yang, J. F. (2021). Column-orthogonal nearly strong orthogonal arrays. J. Statist. Plann. Inference 215, 184-192.
115. Wang, C. Y., Yang, J. Y. and Liu, M. Q. (2021). Construction of space-filling orthogonal designs. J. Statist. Plann. Inference 213, 130-141.
2020
114. Li, M., Liu, M. Q., Wang, X. L. and Zhou, Y. D. (2020). Prediction for computer experiments with both quantitative and qualitative factors. Statist. Probab. Lett. 165, 108858.
113. Han, X. X., Chen, J. B., Liu, M. Q. and Zhao, S. L. (2020). Asymmetrical split-plot designs with clear effects. Metrika 83(7), 779-798.
112. 贺平, 林共进, 刘民千, 许青松, 周永道. (2020). 均匀设计理论与应用. 中国科学: 数学 50(5), 561-570.
111. Liu, M. Q., Lin, D. K. J. and Zhou, Y. D. (2020). The contribution to experimental designs by Kai-Tai Fang, in: J. Fan and J. Pan (eds.), Contemporary Design of Experiments, Multivariate Analysis and Data Mining. Springer, Cham, 21-35.
110. Guo, B., Chen, X. P. and Liu, M. Q. (2020).Construction of Latin hypercube designs with nested and sliced structures. Statist. Papers 61, 727-740.
109. Zhou, W. P., Yang, J. F. and Liu, M. Q. (2020). Optimal maximin L2-distance Latin hypercube designs. J. Statist. Plann. Inference 207, 113-122.
108. Huang, H. Z., Lin, D. K. J., Liu, M. Q. and Zhang, Q. Z. (2020). Variable selection for kriging in computer experiments. J. Qual. Technol. 52(1), 40-53.
107. Zhang, X. R., Liu, M. Q. and Zhou, Y. D. (2020). Orthogonal uniform composite designs. J. Statist. Plann. Inference 206, 100-110.
106. Han, X. X., Liu, M. Q., Yang, J. F. and Zhao, S. L. (2020). Mixed 2- and 2r-level fractional factorial split-plot designs with clear effects. J. Statist. Plann. Inference 204, 206-216.
2019
105. Chen, H., Yang, J. Y., Lin, D. K. J. and Liu, M. Q. (2019). Sliced Latin hypercube designs with both branching and nested factors. Statist. Probab. Lett. 146, 124-131.
104. Zhang, Q. Z., Dai, H. S., Liu, M. Q. and Wang, Y. (2019). A method for augmenting supersaturated designs. J. Statist. Plann. Inference 199, 207-218.
2018
103. Wang, L., Sun, F. S., Lin, D. K. J. and Liu, M. Q. (2018). Construction of orthogonal symmetric Latin hypercube designs. Statist. Sinica 28, 1503-1520.
102. Zhao, Y. N., Zhao, S. L. and Liu, M. Q. (2018). On construction of optimal two-level designs with multi block variables. J. Syst. Sci. Complex. 31, 773-786.
101. Chen, X. P., Guo, B., Liu, M. Q. and Wang, X. L. (2018). Robustness of orthogonal-array based composite designs to missing data. J. Statist. Plann. Inference 194, 15-24.
2017
100. Qi, Z. F., Yang, J. F., Liu, Y. and Liu, M. Q. (2017). Construction of nearly uniform designs on irregular regions. Comm. Statist. Theory Methods 46(17), 8318-8327.
99. Wang, X. L., Zhao, Y. N., Yang, J. F. and Liu, M. Q. (2017). Construction of (nearly) orthogonal sliced Latin hypercube designs. Statist. Probab. Lett. 125, 174-180.
98. Yuan, R., Lin, D. K. J. and Liu, M. Q. (2017). Nearly column-orthogonal designs based on leave-one-out good lattice point sets. J. Statist. Plann. Inference 185, 29-40.
97. Huang, H. Z., Zhou, S. S., Liu, M. Q. and Qi, Z. F. (2017). Acceleration of the stochastic search variable selection via componentwise Gibbs sampling. Metrika 80, 289-308.
2016
96. Huang, H. Z., Lin, D. K. J., Liu, M. Q. and Yang, J. F. (2016). Computer experiments with both qualitative and quantitative variables. Technometrics 58(4), 495-507.
95. Chen, H., Huang, H. Z., Lin, D. K. J. and Liu, M. Q. (2016).Uniform sliced Latin hypercube designs. Applied Stochastic Models in Business and Industry 32(5), 574-584.
94. Yang, X., Yang, J. F., Lin, D. K. J. and Liu, M. Q. (2016). A new class of nested (nearly) orthogonal Latin hypercube designs. Statist. Sinica 26(3), 1249-1267.
93. Liu, Y. and Liu, M. Q. (2016). Construction of uniform designs for mixture experiments with complex constraints. Comm. Statist. Theory Methods 45(8), 2172-2180.
92. Yang, J. Y., Chen, H., Lin, D. K. J. and Liu, M. Q. (2016).Construction of sliced maximin-orthogonal Latin hypercube designs. Statist. Sinica 26(2), 589-603.
91. Zhao, Y. N., Zhao, S. L. and Liu, M. Q. (2016). A theory on constructing blocked two-level designs with general minimum lower order confounding. Front. Math. China 11(1), 207-235.
2015
90. Chen, H. and Liu, M. Q. (2015). Nested Latin hypercube designs with sliced structures. Comm. Statist. Theory Methods 44(22), 4721-4733.
89. Liu, H. Y. and Liu, M. Q. (2015). Column-orthogonal strong orthogonal arrays and sliced strong orthogonal arrays. Statist. Sinica 25(4), 1713-1734.
88. Wang, L., Yang, J. F., Lin, D. K. J. and Liu, M. Q. (2015). Nearly orthogonal Latin hypercube designs for many design columns. Statist. Sinica 25(4),1599-1612.
87. Cao, R. Y. and Liu, M. Q. (2015). Construction of second-order orthogonal sliced Latin hypercube designs. J. Complexity 31(5), 762–772.
86. Efthimiou, I., Georgiou, S.D. and Liu, M. Q. (2015). Construction of nearly orthogonal Latin hypercube designs. Metrika 78(1), 45-57.
2014
85. Georgiou, S.D., Koukouvinos, C. and Liu, M. Q. (2014). U-type and column-orthogonal designs for computer experiments. Metrika 77(8), 1057-1073.
84. Yang, X., Chen, H. and Liu, M. Q. (2014). Resolvable orthogonal array-based uniform sliced Latin hypercube designs. Statist. Probab. Lett. 93, 108-115.
83. Yang, J. Y., Lin, D. K. J. and Liu, M. Q. (2014). Construction of minimal-point mixed-level screening designs using conference matrices. J. Qual. Technol. 46(3), 251-264.
82. Sun, F. S., Liu, M. Q. and Qian, P. Z. G. (2014). On the construction of nested space-filling designs. Annals of Statistics 42(4), 1394-1425.
81. Yin, Y. H., Lin, D. K. J. and Liu, M. Q. (2014). Sliced Latin hypercube designs via orthogonal arrays. J. Statist. Plann. Inference 149, 162-171.
80. Huang, H. Z., Yang, J. F. and Liu, M. Q. (2014). Construction of sliced (nearly) orthogonal Latin hypercube designs. J. Complexity 30(3), 355-365.
79. Huang, H. Z., Yang, J. Y. and Liu, M. Q. (2014). Functionally induced priors for componentwise Gibbs sampler in the analysis of supersaturated designs. Comput. Statist. Data Anal. 72, 1-12.
78. Yang, J. Y., Liu, M. Q. and Lin, D. K. J. (2014). Construction of nested orthogonal Latin hypercube designs. Statist. Sinica 24(1), 211-219.
2013
77. Yang, J. F., Zhang, R. C. and Liu, M. Q. (2013). Construction of optimal blocking schemes for robust parameter designs. Acta Math. Sci. (Series B) 33, 1431-1438.
76. Chen, J., Liu, M. Q., Fang, K. T. and Zhang, D. (2013). A cyclic construction of saturated and supersaturated designs.J. Statist. Plann. Inference 143, 2121-2127.
75. Zhao, S. L., Li, P. F. and Liu, M. Q. (2013). On blocked resolution IV designs containing clear two-factor interactions. J. Complexity 29, 389-395.
74. Yin, Y. H., Zhang, Q. Z. and Liu, M. Q. (2013). A two-stage variable selection strategy for supersaturated designs with multiple responses. Front. Math. China 8(3), 717-730.
73. Liu, Y. and Liu, M. Q. (2013). Construction of supersaturated design with large number of factors by the complementary design method. Acta Math. Appl. Sinica (English Ser.) 29, 253-262.
72. Yin, Y. H. and Liu, M. Q. (2013). Orthogonal Latin hypercube designs for Fourier-polynomial models. J. Statist. Plann. Inference 143, 307-314.
71. Sun, F. S., Yin, Y. H. and Liu, M. Q. (2013). Construction of nested space-filling designs using difference matrices.J. Statist. Plann. Inference 143, 160-166.
2012
70. Zi, X. M., Zhang, R. C. and Liu, M. Q. (2012). On optimal two-level nonregular factorial split-plot designs. J. Complexity 28, 459-467.
69. Huang, C., Lin, D. K. J. and Liu, M. Q. (2012). An optimality criterion for supersaturated designs with quantitative factors. J. Statist. Plann. Inference 142, 1780-1788.
68. Liu, Y. and Liu, M. Q. (2012). Construction of equidistant and weak equidistant supersaturated designs. Metrika 75(1), 33-53.
67. Pang, F. and Liu, M. Q. (2012). A note on connections among criteria for asymmetrical factorials. Metrika 75(1), 23-32.
66. Yang, J. Y. and Liu, M. Q. (2012). Construction of orthogonal and nearly orthogonal Latin hypercube designs from orthogonal designs. Statist. Sinica 22(1), 433-442.
2011
65. Sun, F. S., Pang, F. and Liu, M. Q. (2011). Construction of column-orthogonal designs for computer experiments. Sci. China Math. 54(12), 2683-2692.
64. Chen, J. and Liu, M. Q. (2011). Some theory for constructing general minimum lower order confounding designs. Statist. Sinica 21(4), 1541-1555.
63. Pang, F. and Liu, M. Q. (2011). Geometric isomorphism check for symmetric factorial designs. J. Complexity 27, 441-448.
62. Liu, Y., Yang, J. F. and Liu, M. Q. (2011). Isomorphism check in fractional factorial designs via letter interaction pattern matrix. J. Statist. Plann. Inference 141, 3055-3062.
61. Sun, F. S., Lin, D. K. J. and Liu, M. Q. (2011). On construction of optimal mixed-level supersaturated designs. Annals of Statistics 39(2), 1310-1333.
60. Sun, F. S., Chen, J. and Liu, M. Q. (2011). Connections between uniformity and aberration in general multi-level factorials. Metrika 73(3), 305-315.
59. Liu, Y. and Liu, M. Q. (2011). Construction of optimal supersaturated design with large number of levels. J. Statist. Plann. Inference 141, 2035-2043.
2010
58. Yang, J. F., Sun, F. S., Lin, D. K. J. and Liu, M. Q. (2010). A study on design uniformity under errors in the level values. Statist. Probab. Lett. 80, 1467-1471.
57. Sun, F. S., Liu, M. Q. and Lin, D. K. J. (2010). Construction of orthogonal Latin hypercube designs with flexible run sizes. J. Statist. Plann. Inference 140, 3236-3242.
56. Pang, F. and Liu, M. Q. (2010). Indicator function based on complex contrasts and its application in general factorial designs. J. Statist. Plann. Inference 140, 189-197.
2009
55. Sun, F. S., Liu, M. Q. and Lin, D. K. J. (2009). Construction of orthogonal Latin hypercube designs. Biometrika 96(4), 971-974.
54. Yang, J. F., Liu, M. Q. and Zhang, R. C. (2009). Some results on fractional factorial split-plot designs with multi-level factors. Comm. Statist. Theory Methods 38(20),3623-3633.
53. Pang, F., Liu, M. Q. and Lin, D. K. J. (2009). A construction method for orthogonal Latin hypercube designs with prime power levels. Statist. Sinica 19(4), 1721-1728.
52. Liu, M. Q. and Cai, Z. Y. (2009). Construction of mixed-level supersaturated designs by the substitution method. Statist. Sinica 19(4), 1705-1719.
51. 孙法省, 刘民千 (2009). 具有边界条件线性假设的检验问题. 南开大学学报(自然科学版) 42(3), 86-90.
50. Liu, M. Q. and Zhang, L. (2009). An algorithm for constructing mixed-level k-circulant supersaturated designs. Comput. Statist. Data Anal. 53, 2465-2470.
49. Liu, M. Q. and Lin, D. K. J. (2009). Construction of optimal mixed-level supersaturated designs. Statist. Sinica 19(1), 197-211.
48. Sun, F. S., Liu, M. Q. and Hao, W. R. (2009). An algorithmic approach to finding factorial designs with generalized minimum aberration. J. Complexity 25, 75-84.
2008
47. Chen, J. and Liu, M. Q. (2008). Optimal mixed-level supersaturated design with general number of runs. Statist. Probab. Lett. 78, 2496-2502.
46. Chen, J. and Liu, M. Q. (2008). Optimal mixed-level k-circulant supersaturated designs. J. Statist. Plann. Inference 138, 4151-4157.
45. Nguyen, N. K. and Liu, M. Q. (2008). An algorithmic approach to constructing mixed-level orthogonal and near-orthogonal arrays. Comput. Statist. Data Anal. 52, 5269-5276.
44. Zhao, S. L., Zhang, R. C. and Liu, M. Q. (2008). Some results on 4m2n designs with clear two-factor interaction components. Sci. China Ser. A 51(7): 1297-1314.
(赵胜利, 张润楚, 刘民千 (2007). 含有纯净两因子交互作用成分的4m2n设计的某些结果. 中国科学A辑 37(3), 323-340.)
2007
43. 孙法省, 刘民千 (2007). 因子平方和的正交对照分解及其应用. 应用数学学报 30(4), 757-765.
42. Yang, J. F., Zhang, R. C. and Liu, M. Q. (2007). Construction of fractional factorial split-plot designs with weak minimum aberration. Statist. Probab. Lett. 77(15), 1567-1573.
41. Liu, Y. K., Liu, M. Q. and Zhang, R. C. (2007).Construction of multi-level supersaturated design via Kronecker product. J. Statist. Plann. Inference 137(9), 2984-2992.
40. Li, P. F., Liu, M. Q. and Zhang, R. C. (2007). 2m41 designs with minimum aberration or weak minimum aberration. Statist. Papers 48(2), 235-248.
39. Zhang, Q. Z., Zhang, R. C. and Liu, M. Q. (2007). A method for screening active effects in supersaturated designs. J. Statist. Plann. Inference 137(6), 2068-2079.
38. Zi, X. M., Liu, M. Q. and Zhang, R. C. (2007). Asymmetrical factorial designs containing clear effects. Metrika 65(1), 123-131.
2006
37. Yang, G. J., Liu, M. Q. and Zhang, R. C. (2006). A note on 2IVm-p designs with the maximum number of clear two-factor interactions. Acta Math. Sci. 26A(7), 1153-1158.
36. Zi, X. M., Zhang, R. C. and Liu, M. Q. (2006). Bounds on the maximum numbers of clear two-factor interactions for 2(n1+n2)-(k1+k2) fractional factorial split-plot designs. Sci. China Ser. A 49(12), 1816-1829.
(訾雪旻, 张润楚, 刘民千 (2006). 2(n1+n2)-(k1+k2)部分因析裂区设计中纯净两因子交互效应的最大数目的界. 中国科学A辑 36(12), 1389-1403.)
35. Liu, M. Q. and Fang, K. T. (2006). A case study in the application of supersaturated designs to computer experiments. Acta Math. Sci. 26B(4), 595-602.
34. Liu, M. Q., Fang, K. T. and Hickernell, F. J. (2006). Connections among different criteria for asymmetrical fractional factorial designs. Statist. Sinica 16(4), 1285-1297.
33. Yang, J. F., Li, P. F., Liu, M. Q. and Zhang, R. C. (2006). 2(n1+n2)-(k1+k2) fractional factorial split-plot designs containing clear effects. J. Statist. Plann. Inference 136(12), 4450-4458.
32. Chen, B. J., Li, P. F., Liu, M. Q. and Zhang, R. C. (2006). Some results on blocked regular 2-level factorial designs with clear effects. J. Statist. Plann. Inference 136(12), 4436-4449.
31. Yang, G. J. and Liu, M. Q. (2006). A note on the lower bounds on maximum number of clear two-factor interactions for 2IIIm-p and 2IVm-p designs. Comm. Statist. Theory Methods 35(5), 849-860.
30. Liu, M. Q. and Hickernell, F. J. (2006). The relationship between discrepancies defined on a domain and on its subset. Metrika 63(3), 317-327.
29. Li, P. F., Chen, B. J., Liu, M. Q. and Zhang, R. C. (2006). A note on minimum aberration and clear criteria. Statist. Probab. Lett. 76, 1007-1011.
2005
28. Yang, G. J., Liu, M. Q. and Zhang, R. C. (2005). Weak minimum aberration and maximum number of clear two-factor interactions in 2IVm-p designs. Sci. China Ser. A 48(11), 1479-1487.
(杨贵军, 刘民千, 张润楚 (2005). 2IVm-p设计的弱最小低阶混杂与最多纯净两因子交互效应. 中国科学A辑 35(9), 1071-1080.)
27. Li, P. F., Liu, M. Q. and Zhang, R. C. (2005). Choice of optimal initial designs in sequential experiments. Metrika 61(2), 127-135.
26. Liu, M. Q. and Fang, K. T. (2005). Some results on resolvable incomplete block designs. Sci. China Ser. A 48(4), 503-512.
(刘民千, 方开泰 (2005). 可分解不完全区组设计的若干结果. 中国科学A辑 35 (2), 162-171.)
25. Liu, M. Q., Qin, H. and Xie, M. Y. (2005). Discrete discrepancy and its application in experimental design, in: J. Q. Fan and G. Li (eds.), Contemporary Multivariate Analysis and Experimental Designs, World Scientific Publishing, 227-241.
24. 杨贵军, 刘民千 (2005). 一类包含最大数量纯净两因子交互效应的2IVm-p最小低阶混杂设计. 应用数学学报 28(1), 143-150.
2004
23. Fang, K. T., Ge, G. N., Liu, M. Q. and Qin, H. (2004). Construction of uniform designs via super-simple resolvable t-designs. Util. Math. 66, 15-32.
22. Li, P. F., Liu, M. Q. and Zhang, R. C. (2004). Some theory and the construction of mixed-level supersaturated designs. Statist. Probab. Lett. 69(1), 105-116.
21. Liu, M. Q. and Chan, L. Y. (2004). Uniformity of incomplete block designs. Int. J. Materials and Product Technology 20(1-3), 143-149.
20. Fang, K. T., Ge, G. N. and Liu, M. Q. (2004). Construction of optimal supersaturated designs by the packing method. Sci. China Ser. A 47(1), 128-143.
(方开泰, 葛根年, 刘民千 (2003). 用填充方法构造最优超饱和设计. 中国科学A辑 33(5), 446-458.)
19. Fang, K. T., Ge, G. N., Liu, M. Q. and Qin, H. (2004). Combinatorial constructions for optimal supersaturated designs. Discrete Math. 279, 191-202.
2002-2003
18. Fang, K. T., Lin, D. K. J. and Liu, M. Q. (2003). Optimal mixed-level supersaturated design. Metrika 58(3), 279-291.
17. Fang, K. T., Ge, G. N., Liu, M. Q. and Qin, H. (2003). Construction of minimum generalized aberration designs. Metrika 57(1), 37-50.
16. Fang, K. T., Ge, G. N. and Liu, M. Q. (2002b). Uniform supersaturated design and its construction. Sci. China Ser. A 45(8), 1080-1088.
15. Fang, K. T., Ge, G. N. and Liu, M. Q. (2002a). Construction of E(fNOD)-optimal supersaturated designs via Room squares. Calcutta Statist. Assoc. Bull. 52, 71-84.
14. Hickernell, F. J. and Liu, M. Q. (2002). Uniform designs limit aliasing. Biometrika 89(4), 893-904.
13. Liu, M. Q. and Hickernell, F. J. (2002). E(s2)-optimality and minimum discrepancy in 2-level supersaturated designs. Statist. Sinica 12(3), 931-939.
12. Liu, M. Q. (2002). Using discrepancy to evaluate fractional factorial designs, in: K. T. Fang, F. J. Hickernell, and H. Niederreiter (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer-Verlag, Berlin, 357-368.
11. 刘民千, 戴瑛 (2002). 一类新的16次试验的超饱和设计. 数学物理学报 22A(1), 71-76.
2000-2001
10. 刘民千, 张润楚 (2001). 混合水平因子超饱和设计的构造方法. 应用概率统计 17, 367-375.
9. 叶扶德, 刘民千, 任朝宇 (2000). 均匀性的偏差度量. 中国统计学报 38(4), 353-373.
8. 刘民千, 张润楚 (2000e). 超饱和设计的变量选择. 南开大学学报(自然科学版)33(3), 13-16.
7. Liu, M. Q. and Zhang, R. C. (2000d). Computation of the E(s2) values of some E(s2) optimal supersaturated designs. Acta Math. Sci. 20B(4), 558-562.
6. Liu, M. Q. and Zhang, R. C. (2000c). Construction of E(s2) optimal supersaturated designs using cyclic BIBDs. J. Statist. Plann. Inference 91, 139-150.
5. 刘民千, 张润楚 (2000b). 一种构造三水平因子超饱和设计的准则和算法. 应用数学学报 23(2), 161-171.
4. 刘民千, 张润楚 (2000a). 一种构造E(s2)最优超饱和设计的方法. 应用数学学报 23(1), 1-14.
1997-1998
3. 刘民千, 张润楚 (1998). E(s2)最优超饱和设计与BIB设计的对等关系. 科学通报 43(19), 2053-2056.
2. 刘民千, 王兆军 (1998). 避免某些组合的MA设计的产生. 南开大学学报(自然科学版)31(3), 31-34.
1. 刘民千 (1997). 有错检查估计的一种抽样方案. 南开大学学报(自然科学版)30(4), 36-45.
7. 方开泰, 刘民千, 周永道 (2024). 试验设计与建模(第二版). 高等教育出版社.
6. 方开泰, 刘民千, 覃红, 周永道 (2019). 均匀试验设计的理论和应用. 科学出版社.
5. Fang, K. T., Liu, M. Q., Qin, H. and Zhou, Y. D. (2018). Theory and Application of Uniform Experimental Designs, Springer and Science Press, Singapore and Beijing.
4. 方开泰, 刘民千, 周永道 (2011). 试验设计与建模. 高等教育出版社.
3. 方开泰, 刘民千 (2010). 试验设计和建模—计算机试验及模型未知的试验, 现代统计研究基础 第13章 (王启华, 史宁中, 耿直主编). 科学出版社.
2. 张润楚, 刘民千, 杨建峰, 李鹏, 刘玉坤译 (2009). 试验应用统计—设计、创新和发现. 机械工业出版社 (Box, G. E. P., Hunter, J. S. and Hunter, W. G. (2005). Statistics for Experimenters: Design, Innovation, and Discovery (2nd ed.). John Wiley & Sons).
1. 王兆军, 刘民千, 邹长亮, 杨建峰译 (2009). 计算统计. 人民邮电出版社 (Givens, G. H. and Hoeting, J. A. (2005). Computational Statistics. John Wiley & Sons).