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TIME-HARMONIC ACOUSTIC SCATTERING FROM LOCALLY
PERTURBED HALF-PLANES∗

GANG BAO† , GUANGHUI HU‡ , AND TAO YIN§

Abstract. This paper is concerned with time-harmonic acoustic scattering of plane waves in one
or two inhomogeneous half-planes with an unbounded interface. The contrast function is supposed
to have a compact support, while the infinite interface is a local perturbation of the x1-axis. For
an acoustically impenetrable interface, the scattering phenomenon occurs in one half-plane only and
the impedance (Robin) boundary value problem is investigated. In the penetrable case, we study
a transmission problem in two half-planes. Our approach for forward scattering is based on the
finite element method in a truncated bounded domain coupled with the boundary element method.
Numerical experiments are tested to verify our scheme. For the inverse problem, we prove that the
near-field data of a finite number of incoming plane waves or a single point source wave uniquely
determine the shape of a rectangular cavity of impedance-type.
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1. Introduction. The scattering problems in a locally perturbed half-space in
Rn (n = 2, 3) have attracted much attention over the last 20 years. They have many
applications in remote sensing, ocean acoustics, geophysics, outdoor sound propa-
gation, and so on. Throughout this paper, the concept local perturbation means a
one-dimensional (1D) curve which coincides with the x1-axis in |x| > R for some
R > 0. This type of interface is not necessarily the graph of a compactly supported
function over the x1-axis. In this paper, we assume that a time-harmonic plane wave
is incident onto a locally perturbed interface separating two isotropic media in two
dimensions and investigate both the direct and inverse scattering problems.

In the time-harmonic regime, it is well known that the total field can be decom-
posed into three parts: the incoming wave uin, the reflected wave ure corresponding
to the unperturbed scattering interface (i.e., the straight line x2 = 0 in 2D), and the
scattered wave usc caused by the presence of local perturbations. Under the Som-
merfeld radiation condition of usc in the half-space, one can show uniqueness and the
existence of weak solutions if the total field fulfills a Dirichlet or Neumann boundary
condition, whereas the reflected waves are usually uniquely determined by Snell’s law
in physics; see, e.g., [1, 2, 3, 33, 24, 26, 27, 32, 36].
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TIME-HARMONIC ACOUSTIC SCATTERING 2673

Due to the local perturbation of the infinite interface, variational and integral
equation methods (see, e.g., [1, 2, 27, 36, 33]) can be adopted to reduce the unbounded
physical domain to a truncated computational domain. This has significantly simpli-
fied the calculation and analysis over an unbounded domain for treating general rough
surface scattering problems [11, 7, 9, 20, 22, 35, 32]. However, these approaches rely
heavily on the reflection principle of the Helmholtz equation under a Dirichlet or
Neumann boundary condition and can hardly be extended to the Robin case. One
reason lies in the fact that the reflection principle with the Robin boundary condition
is not of the point-to-point type; see, e.g., [19, 23]. In fact, a transparent boundary
condition (or nonreflecting boundary operator) always requires a series expansion of
half-plane Sommerfeld radiation solutions with the corresponding boundary condition
on x2 = 0. However, unlike the Dirichlet and Neumann cases [27, 33], it is not trivial
to derive such an expansion for the Robin boundary problem. On the other hand,
to the best of our knowledge, it remains unclear how to apply the integral equation
approach, with the free-space fundamental solution being the kernel (see [36] in the
Dirichlet case), to a bounded computational domain for treating the Robin boundary
value problem in a locally perturbed half-space. The authors in [12] studied an equiv-
alent integral system involving the impedance Green’s function in the half-space but
did not provide a proof of the existence of solutions.

The aim of this paper is twofold. First, we shall review and remark on solvability
results for Dirichlet and Neumann boundary value problems; see section 2.1. Our new
contribution is to mathematically justify the reflected waves in appropriate Sobolev
spaces, leading to new insights into the Dirichlet, Neumann, and Robin boundary
value problems under question. Especially in the Neumann case, we shall explain
why surface waves are excluded for local perturbations. Further, using a coupling
scheme between the boundary integral equation and variational methods, we prove
the well-posedness of the scattering problems with the Robin boundary condition
and transmission interface conditions; see sections 2.2 and 2.3. Our coupling scheme
is closest to the lines of [21]. Compared to [26, 3], we avoid the calculations of
hypersingular integral operators. The proposed approach seems promising since it
can be used to handle various boundary value problems in a locally perturbed half-
space, provided that the Green’s function to the unperturbed problem fulfills the
Sommerfeld radiation condition. The solvability result for transmission problems fills
the gap in [15]; see Remark 2.3. Numerical tests will be reported in section 4.

Second, we shall consider the inverse problem of determining the perturbed scat-
tering interface from near-field measurement data [4, 5, 6]. We prove that the near-
field data of a finite number of incoming plane waves (with distinct incident directions
or wavenumbers) or a single point source wave uniquely determine the shape of a rect-
angular cavity of impedance type.

2. Forward scattering problems.

2.1. Half-plane scattering problems for impenetrable interfaces. As-
sume that a time-harmonic incoming wave uin is incident onto the straight line
Γ0 := {x2 = 0} from the upper half-plane R2

+ := {(x1, x2) : x2 > 0}. The prop-
agation of the incident wave in an isotropic homogeneous medium can be modeled by
the Helmholtz equation

∆uin + k2uin = 0 in R2(2.1)

with the wavenumber k > 0. In this paper, uin is assumed to be a plane wave of the
form
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2674 GANG BAO, GUANGHUI HU, AND TAO YIN

uin = uin(x; d) = exp(ikx · d) = exp(ik(x1 sin θ − x2 cos θ)),(2.2)

where d = (sin θ,− cos θ) ∈ S := {x : |x| = 1} stands for the incident direction and
θ ∈ (−π/2, π/2) the incident angle. Suppose that the total wave field u = uin + ure

does not penetrate into the lower half-space R2
− := {(x1, x2) : x2 < 0}, where ure

denotes the outgoing reflected wave scattered back from Γ0. We consider one of the
following three boundary conditions imposed on Γ0:

Dirichlet boundary condition: u = 0;
Neumann boundary condition: ∂νu = 0;
Robin boundary condition: ∂νu+ ikλu = 0,

(2.3)

where ν ∈ S is the unit normal at Γ0 directed into R2
+ (that is, ν = (0, 1)) and λ ∈ C

satisfies Reλ > 0, Imλ ≥ 0. In x2 > 0, we suppose that the outgoing wave ure

satisfies the upward angular spectrum representation (UASR) proposed in [11, 9]:

(2.4) ure(x) =
1√
2π

∫
R

exp(i[(x2 − h)
√
k2 − ξ2 + x1ξ]) û

re
h (ξ) dξ, x2 > h,

for any h > 0. Here
√
k2 − ξ2 = i

√
ξ2 − k2 when ξ2 > k2, where ûreh (ξ) denotes the

Fourier transform of ure(x1, h) with respect to x1, i.e.,

ûreh (ξ) = Fx1→ξ[u
re(x1, h)] :=

1√
2π

∫
R

exp(−ix1ξ)u
re(x1, h) dx1, ξ ∈ R.

In fact, for ure(x1, h) ∈ L2(R), the UASR condition (2.4) can be written in the form

ure(x) = 2

∫
R

∂Φ(x, y)

∂y2
ure(y1, h) dy1, x2 > h,

which is called the upward propagating radiation condition (UPRC) (see [13, 14]).
Here Φ(x, y) is the free-space fundamental solution to the Helmholtz equation in R2

given in (2.12).
The UASR can be derived for bounded outgoing waves in general settings. The

representation (2.4) shows that ure is a linear superposition of the upward propagat-

ing plane waves exp(ix1ξ + ix2

√
k2 − ξ2) for |ξ| ≤ k and evanescent surface waves

exp(ix1ξ + ix2

√
k2 − ξ2) for |ξ| > k. Hence, the radiation condition UASP covers

plane waves, surface waves, and the Sommerfeld outgoing waves which propagate into
the upper half-plane. We refer to [13, Theorem 2.9 (ii)] for the proof that the Som-
merfeld radiation condition is stronger than the UPRC. For h > 0, define the strip
between Γ0 and Γh by Ũh := {x : 0 < x2 < h}. For s, % ∈ R, introduce the weighted
Sobolev spaces

Ṽh,% :=

{
u :

[∫
Ũh

(∣∣(1 + |x1|2)%/2u
∣∣2 +

∣∣∣∇ [(1 + |x1|2)%/2u
]∣∣∣2)dx]1/2

<∞

}
and

Hs
%(R) := (1 + x2

1)−%/2Hs(R) ,

where Hs(R) is identified with the Sobolev space Hs(R) with norm

‖v‖Hs(R) =

(∫
R

(1 + ξ2)s|Fv|2dξ
)1/2

.
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TIME-HARMONIC ACOUSTIC SCATTERING 2675

The weighted space Hs
%(R) will be endowed with the norm

||v||Hs
%(R) := ||(1 + x2

1)%/2v(x1)||Hs(R).

Obviously, the restriction of the incident plane wave uin given in (2.2) to Ũh belongs

to the space Ṽh,% for all % < −1/2 and h > 0. Moreover, given ure ∈ Ṽh,% for % > −1,

it holds that ure|Γh
∈ H1/2

% (R) and ûreh ∈ H
1/2
% (R), and that the integral (2.4) can

be interpreted as a linear functional between H
1/2
% (R) and its dual space H

−1/2
−% (R);

see [9]. Below we present solvability results of the boundary value problems (2.3) and
(2.4), which will be referred to as unperturbed scattering problems.

Theorem 2.1.
(i) In the Dirichlet or impedance case, there exists a unique solution to the half-

plane scattering problem in the weighted Sobolev space Ṽh,% with h > 0 and
% ∈ (−1,−1/2). Moreover, the solution ure is of the form

ure(x) = − exp(ik(x1 sin θ + x2 cos θ))

in the Dirichlet case and

ure(x) =
cos θ − λ
cos θ + λ

exp(ik(x1 sin θ + x2 cos θ))(2.5)

in the impedance case.
(ii) Under the Neumann boundary condition, all solutions ure ∈ Ṽh,% with h > 0

and % ∈ (−1,−1/2) can be expressed as

ure(x) = exp(ik(x1 sin θ + x2 cos θ))

+ C+ exp(ikx1) + C− exp(−ikx1)(2.6)

for some C± ∈ C.

Proof. The case of the Dirichlet or Robin boundary value problem follows from
the solvability results for unbounded rough surface scattering problems in R2, where
the scattering interface is allowed to be a global perturbation of the x1-axis. We refer
to [9, 22, 20] for the details.

In the Neumann case, it is easy to verify that ure = exp(ik(x1 sin θ+ x2 cos θ)) ∈
Ṽh,% is indeed a solution. Let w be another solution and set v := ure − w. Then v
satisfies the UASR

v(x) =
1√
2π

∫
R

exp
(
ix2

√
k2 − ξ2 + ix1ξ

)
v̂(ξ, 0) dξ, x2 > 0,(2.7)

together with the homogeneous boundary condition ∂2v = 0 on x2 = 0. Note that

∂2v(x1, 0) ∈ H
−1/2
% (R), since v ∈ Ṽh,% for any h > 0 and % ∈ (−1,−1/2) by our

assumption. It is easy to observe that

0 = Fx1→ξ[∂2v(x1, 0)] = i
√
k2 − ξ2 v̂(ξ, 0) ∈ H−1/2

% (R).

Since H
−1/2
% (R) is the dual space of H

1/2
−% (R), the above relation is understood as∫

R

√
k2 − ξ2 v̂(ξ, 0)f(ξ) dξ = 0 for all f ∈ Hs

1/2(R)(2.8)
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2676 GANG BAO, GUANGHUI HU, AND TAO YIN

with s ∈ (1/2, 1). In particular, the identity (2.8) holds for all smooth functions with

compact support. This implies that
√
k2 − ξ2 v̂(ξ, 0) = 0 in the distributional sense.

Hence, v̂(ξ, 0) = C+δ(ξ− k) +C−δ(ξ+ k) for some C± ∈ C. Inserting the expression
of v̂(ξ, 0) into (2.7) yields

v(x) = C+ F−1
ξ→k

[
eix2

√
k2−ξ2δ(ξ − k)

]
+ C− F−1

ξ→k

[
eix2

√
k2−ξ2δ(ξ + k)

]
= C+ exp(ikx1) + C− exp(−ikx1),

which belongs to Ṽh,% for all ρ ∈ (−1/2,−1) and h > 0. The proof of the second
assertion is complete.

The expressions for ure in Theorem 2.1 (choose C+ = C− = 0 in the Neumann
case) can be physically interpreted by Snell’s law. From the second assertion, one
can conclude that uniqueness to the Neumann problem does not hold in general in
the weighted Sobolev space Ṽh,% with ρ ∈ (−1/2,−1). Since the UASR covers surface
waves (which exponentially decays as x2 → +∞), the second assertion shows that
surface waves do not exist in the half-plane scattering problem under the Neumann
boundary condition. Note that the right-hand side of (2.6) contains no exponentially
decay terms.

Next we introduce the half-plane Sommerfeld radiation condition, which ensures
the uniqueness of the Neumann boundary value problem in a locally perturbed half-
plane.

Definition 2.2. The function v is said to satisfy the half-plane Sommerfeld radi-
ation condition if the relation

lim
r→∞

√
r(∂rv − ikv) = 0, r = |x|, x ∈ {|x| > R} ∩ R2

+(2.9)

holds uniformly in all directions x̂ ∈ S+.

Note that the half-plane Sommerfeld radiation condition is stronger than UASR.
That is, if v satisfies (2.9), then v must fulfill the UASR, but not vice versa. The
above radiation condition implies the asymptotic behavior in the upper half-plane

v(x) =
eikr√
r

(
v∞(x̂) +O

(
1

r

))
, r = |x| → ∞,(2.10)

uniformly in all directions x̂ ∈ S+, where v∞ is called the far-field pattern of the
radiation solution v.

In a vast literature (see, e.g., [33, 1, 27]), it has been proved that the perturbed
acoustic scattering problems (see section 2.2 below for the formulation) with the
Dirichlet and Neumann boundary conditions admit a unique solution u ∈ H1

loc(Ω
+)

of the form

u = uin + ure + usc,

ure :=

{
− exp(ik(x1 sin θ + x2 cos θ)) in the Dirichlet case,
exp(ik(x1 sin θ + x2 cos θ)) in the Neumann case,

where usc = u − uin − ure satisfies the half-plane Sommerfeld radiation condition.
Evidently, the assumption on usc gives rise to C± = 0 in the Neumann case (see the
second assertion of Theorem 2.1), since exp(±ikx1) does not fulfill (2.9). This ex-
plains why uniqueness of the Neumann boundary value problem could be proved with
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TIME-HARMONIC ACOUSTIC SCATTERING 2677

Fig. 1. Geometrical settings for the impedance boundary value problem. A plane wave is
incident from above and ΛR = Γ ∩ {|x| < R} is the locally perturbed part.

the Sommerfeld radiation condition for usc. However, one can construct nontrivial
solutions to the homogeneous Neumann boundary value problem (i.e., uin = 0) that
fulfill the UASR other than (2.9); see Remark 2.2 below.

The remaining part of this section is devoted to well-posedness of forward scat-
tering problems with the Robin boundary condition and transmission conditions.

2.2. Scattering from locally perturbed half-planes: Impedance case.
Assume a time-harmonic plane wave uin(x; d), with d ∈ S being the incident direc-
tion, is incident onto a bounded penetrable scatterer D embedded in a homogeneous
isotropic half-plane Ω+. The boundary Γ := ∂Ω+ ⊂ R2 is assumed to be a Lipschitz
continuous curve that coincides with the straight line Γ0 := {x2 = 0} in |x1| > R for
some R > 0; see Figure 1. We emphasize that the perturbed part, which we denote by
ΛR := Γ ∩ {x : |x1| < R}, is not necessarily the graph of some function. We refer to
them as scattering problems from locally perturbed half-planes, due to the presence
of the bounded scatterer D ⊂ R2 and the curved surface ΛR. The acoustic prop-
erty of the background medium in Ω+ can be characterized by the refractive function
q ∈ L∞(Ω+) such that q ≡ 1 in Ω+\D (after some normalization). Equivalently, the
contrast function 1− q is compactly supported in D. In this section, we suppose that
the total field u satisfies the Robin boundary condition on Γ. The wave propagation
of the total field is then governed by the following boundary value problem for the
Helmholtz equation

∆u+ k2qu = 0 in Ω+, ∂νu+ ikλu = 0 on Γ,(2.11)

where ν ∈ S is the unit normal at Γ directed into Ω+. Let a > 0 be such that
D ⊂ {x : x2 < a} and let Vh,% be defined as the same as Ṽh,% with Γ0 replaced by Γ.
Denote by ure the outgoing reflected field corresponding to the unperturbed problem
(i.e., D = ∅ and Γ = Γ0); see Theorem 2.1. Below we state well-posedness of the
forward scattering problem with local perturbations.

Theorem 2.3. Assume that λ ∈ C satisfies Reλ > 0, Imλ ≥ 0. Then, for
any incident plane wave at the wavenumber k > 0, there exists a unique solution
u ∈ H1

loc(Ω
+) of the form u = uin + ure + usc for (2.11), where the scattered field

usc fulfills the half-space Sommerfeld radiation condition (2.9). Moreover, if ΛR is
the graph of some Lipschitz function, then u coincides with the unique solution in
the weighted Sobolev space Vh,% for all h > a and % ∈ (−1,−1/2) such that u − uin
satisfies the UASR (2.4).
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If ΛR (and thus Γ) is the graph of some Lipschitz function, then the existence
and uniqueness of u − uin in Vh,% follow from the well-posedness of rough surface
scattering problems with generalized impedance boundary conditions [22]. The above
theorem implies that the unique solution u− uin ∈ Vh,% satisfying the UASR consists
of an outgoing plane wave ure and a Sommerfeld radiating solution usc in the upper
half-space.

It suffices to prove the first part of Theorem 2.3. For this purpose, we need the
free-space fundamental solution Φ(x, y) to the Helmholtz equation (∆ + k2)u = 0 in
R2, given by

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), x, y ∈ R2, x 6= y.(2.12)

Here H
(1)
0 is the Hankel function of the first kind of order zero. Denote by G(x, y)

(y ∈ R2
+) the Green’s function to the unperturbed impedance boundary value problem,

i.e.,

(∆ + k2)G(x, y) = −δ(x− y) in R2
+,

(∂2 + ikλ)G(·, y) = 0 on x2 = 0.

Evidently, G(x, y) can be regarded as the total field incited by the point source wave
uin = G(·, y) incident on Γ0. Below we present the expression of G and its far-field
behavior (see, e.g., [10]).

Lemma 2.4. Green’s function G(·, y) (y ∈ R2
+) can be expressed as

G(x, y) = Φ(x, y) + Φ(x, y′)− P (x, y),

P (x, y) :=
iλ

2π

∫
R

eik[(y1+y2)(1−s2)1/2−(x1−x2)s]

(1− s2)1/2[(1− s2)1/2 + λ]
ds(2.13)

with Im
√
· ≥ 0. Here y′ = (y1,−y2) for y = (y1, y2) ∈ R2. Moreover, the func-

tion G(·, y) satisfies the half-space radiation condition (2.9), with the far-field pattern
given by

G∞(x̂, y) = exp(−ikx̂ · y) +
cos θ − λ
cos θ + λ

exp(−ikx̂ · y′),

where x̂ ∈ S+ := {(cos θ, sin θ) : θ ∈ (0, π)}.
If λ = 0, then P (x, y) = 0 and G(x, y) coincides with the Green’s function sat-

isfying the Neumann condition on Γ0, which can be easily obtained by the method
of images. The correction term P (x, y) given by (2.13) can be derived via Fourier
transform. We refer to [10, 7, 8] for an asymptotic expansion of P as |x| → ∞
and alternative representations of P in the form of Laplace-type integrals which are
suitable for numerical evaluation. The proof of Lemma 2.4 can be found in [7, Chap-
ter 2.1]. It is easy to observe that the far-field pattern of G fulfills the relation
G∞(x̂, y) = uin(y;−x̂) + ure(y;−x̂), where uin(x; d) and ure(x; d) are given by (2.2)
and (2.5), respectively.

Our proof of Theorem 2.3 is based on the variational argument in a truncated
bounded domain Ω+

R := {x ∈ Ω+ : |x| < R} coupled with a Dirichlet-to-Neumann
map derived from the integral representation of usc in {x ∈ R+ : |x| > R}. Similar
coupling schemes were used in [26, 3] for treating the transmission problem with a
locally perturbed medium and a flat interface (i.e., D 6= ∅ and Γ = {x2 = 0}) as well
as the Dirichlet and Neumann boundary value problems.D
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A variational formulation coupled with an integral equation is derived as follows.
Let ∂Ω+

R = S+
R ∪ΛR be the boundary of Ω+

R, where S+
R := {x : x ∈ Ω+, |x| = R}. Let

γ ⊂ ∂Ω be a subboundary of some boundary domain Ω ⊂ R2. Introduce the spaces
(see, e.g., [28])

H1/2(γ) := {u|γ : u ∈ H1/2(∂Ω)}, H̃1/2(γ) := {u ∈ H1/2(∂Ω) : supp(u) ⊂ γ}.

Then we denote by H−1/2(γ) the dual space of H̃1/2(γ) and by H̃−1/2(γ) the dual
space of H1/2(γ). It is easy to derive the following variational formulation for u ∈
H1(Ω+

R): ∫
Ω+

R

∇u · ∇ϕ− k2quϕdx−
∫
S+
R

∂νuϕds− ikλ
∫

ΛR

uϕds = 0(2.14)

for all ϕ ∈ H1(Ω+
R), where ν ∈ S is the normal on S+

R pointing into the exterior of

Ω+
R. Choosing R1 > R and applying Green’s formula for usc to the region Ω+

R1
\Ω+

R

yields

usc(x) =

(
−
∫
S+
R1

+

∫
S+
R

)
[usc(y)∂νG(x; y)− ∂νusc(y)G(x; y)] ds(y), x ∈ Ω+

R1
\Ω+

R.

Note that both usc and G(·, y) satisfy the impedance boundary condition on ΛR1
\ΛR.

Letting R1 →∞ and making use of the asymptotic behavior of usc and G as |x| → ∞
yields

usc(x) =

∫
S+
R

[usc(y)∂νG(x; y)− ∂νusc(y)G(x; y)] ds(y), x ∈ Ω+\Ω+
R.(2.15)

Taking the limit x→ S+
R in (2.15) and setting p := ∂νu

sc|S+
R
∈ H̃−1/2(S+

R ), we get

(I −D)
(
usc|S+

R

)
+ Sp = 0 on S+

R .(2.16)

Here I is the identify operator, D and S are the double and single layer operators
over S+

R , respectively, defined by

(Dg)(x) := 2

∫
S+
R

∂ν(y)G(x; y)g(y) ds(y), x ∈ S+
R ,

(Sp)(x) := 2

∫
S+
R

G(x; y)p(y) ds(y), x ∈ S+
R .

We remark that the jump relations for D and S remain valid, since G(·; y)−Φ(·; y) is of
C∞-smoothness in Ω+. Combining (2.14) and (2.16) gives the variational formulation
for the unknown solution pair (u, p) ∈ H1(Ω+

R)× H̃−1/2(S+
R ) =: X as follows:

A ((u, p), (ϕ, χ)) :=

(
a1 ((u, p), (ϕ, χ))
a2 ((u, p), (ϕ, χ))

)
=

( ∫
S+
R
∂νv ϕds∫

S+
R

(I −D)(v|S+
R

)χds

)
(2.17)

for all (ϕ, χ) ∈ X, where v := u− usc = uin + ure and

a1 ((u, p), (ϕ, χ)) :=

∫
Ω+

R

∇u · ∇ϕ− k2quϕdx−
∫
S+
R

pϕ ds− ikλ
∫

ΛR

uϕds,

a2 ((u, p), (ϕ, χ)) :=

∫
S+
R

[
(I −D)(u|S+

R
) + Sp

]
χds.D
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Remark 2.1. The variational formulation (2.17) and our scattering problem are
equivalent in the following sense. If u = u0 +usc is a solution to our original problem,
then the restriction of u to Ω+

R satisfies the variational equation (2.17). On the other
hand, if u ∈ X is a solution to (2.17), then solution u can be extended from Ω+

R to
Ω+ via u = uin + ure + usc, where usc is expressed by (2.15) in terms of the trace
of usc on S+

R . It follows from (2.16) that the jump of usc is continuous at S+
R . The

jump of ∂νu
sc is also continuous at S+

R , since the operator S is always invertible under
the Robin boundary condition on ΛR. Hence, u ∈ H1

loc(Ω
+) and u − u0 satisfies the

radiation solution (2.9).

Below we shall verify uniqueness and existence of solutions to (2.17).

Proof of Theorem 2.3. Assuming uin = 0, we have u = usc. Taking the imaginary
part of (2.14) with ϕ = u = usc, we see

−kRe (λ)

∫
ΛR

|usc|2ds = Im

(∫
S+
R

∂νu
sc uscds

)
.(2.18)

Making use of the radiation condition of usc and the Cauchy–Schwarz inequality, we
find

Im

(∫
S+
R

∂νu
sc uscds

)
= Im

(∫
S+
R

(∂νu
sc − ikusc)uscds

)
+ k

∫
S+
R

|usc|2 ds

→ k

∫
S+

|u∞(x̂)|2 ds

as R → ∞. Hence, the right-hand side of (2.18) is nonnegative for sufficiently large
R > 0. Since Re (λ) > 0, this implies that usc = 0 and thus ∂νu

sc = 0 on ΛR for
large R > 0. Applying Holmgren’s uniqueness theorem (see, e.g., [16, Theorem 2.3])
gives usc ≡ 0 in Ω+. This finishes the proof of uniqueness. To prove existence, we
only need to show that the variational formulation (2.17) is of Fredholm type.

Denote by (·, ·) the L2 duality between H1(Ω+
R) and H−1(Ω+

R) and by < ·, · > the

L2 duality between H1/2(S+
R ) and H̃−1/2(S+

R ), respectively. By the Riesz representa-
tion theorem, there exist linear operators

T1, J1 : H1(Ω+)→ H−1(Ω+),

T2 :H̃−1/2(S+
R )→ H−1(Ω+),

T3 :H̃−1/2(S+
R )→ H1/2(S+

R ),

J2 : H1(Ω+
R)→ H1/2(S+

R )

such that for (u, p), (ϕ, χ) ∈ X,

(T1u, ϕ) :=

∫
Ω+

R

∇u · ∇ϕ+ uϕdx,

(J1u, ϕ) := −
∫

Ω+
R

(k2q − 1)uϕdx− ikλ
∫

ΛR

uϕds,

〈T2p, ϕ〉 :=

∫
S+
R

pϕ ds,

〈T3p, χ〉 :=

∫
S+
R

Spχ ds,

〈J2u, χ〉 := −
∫
S+
R

D(u|S+
R

)χds.
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By Sobolev embedding theorems, J1 is compact. The operator J2 is also compact,
since the double layer operator D : H1/2(S+

R ) → H1/2(S+
R ) is compact (see [28]).

Then we may rewrite A : X ×X → C2 as

A ((u, p), (ϕ, χ)) = 〈A1(u, p), (ϕ, χ)〉+ 〈A2(u, p), (ϕ, χ)〉,

where 〈·, ·〉 denotes the duality between X and X ′, and the operators Aj : X → X ′

(j = 1, 2) are defined as

A1 :=

(
T1 −T2

T ∗2 T3

)
, A2 :=

(
J1 0
J2 0

)
.

Since T1 and T3 are coercive operators over H1(Ω+
R) and H̃−1/2(S+

R ) (see [28]), re-
spectively, the real part of A1, given by

ReA1 :=
A1 +A∗1

2
=

(
T1

T3

)
,

is coercive over X. Since A2 is compact, the operator A is Fredholm type with index
zero. Applying the Fredholm alternative yields the existence of solutions.

Having obtained the trace usc, ∂νu
sc on S+

R from (2.17), we may calculate the
far-field data through (cf. (2.15))

u∞(x̂) =

∫
S+
R

[usc(y)∂νG
∞(x̂; y)− ∂νusc(y)G∞(x̂; y)] ds(y), x̂ ∈ S+,

where G∞(x̂, y) is given in Lemma 2.4.

Remark 2.2. If λ = 0, one can construct a nontrivial solution v to the homoge-
neous Neumann problem (i.e., uin = ure ≡ 0) with local perturbations, which fulfills
the UASR. In fact, set g±(x) = C± exp(±ikx1) for some C± ∈ C. We claim that
we can find a Sommerfeld radiation solution vsc ∈ H1

loc(Ω
+) such that v = g± + vsc

solves the homogeneous boundary value problem

(∆ + k2)v = 0 in Ω+, ∂νv = 0 on Γ.

If Γ coincides with x2 = 0, it holds that vsc = 0 and thus v = g±. In the case of local
perturbations, the existence and uniqueness of vsc follow from existing arguments
for cavity scattering problems; see [1, 33, 27]. Note that the constructed solution v
satisfies the UASR but not the Sommerfeld radiation condition.

2.3. Transmission problems in a two-layered medium. In this subsection,
we shall carry over the proposed coupling scheme under the impedance boundary value
problem to transmission conditions. Our aim is to derive an equivalent variational
formulation in a bounded domain and then apply the Fredholm alternative. The
uniqueness of solutions was verified in [29, 25] for more general locally perturbed
interfaces. We also refer to [30, 34, 31] for solvability results obtained via the limiting
absorption principle which requires an a priori estimate of the solutions.

We preserve the notation used before and introduce new ones as follows. Let
Ω− denote the unbounded region below Γ, Ω−R = {x ∈ Ω− : |x| < R}, S−R :=
{x ∈ Ω− : |x| = R}. Denote by q− the refractive index function characterizing the
inhomogeneous medium in Ω− such that q− ≡ 1 in Ω−\D−, where D− ⊂ Ω− is a

D
ow

nl
oa

de
d 

10
/2

5/
18

 to
 1

31
.1

70
.2

1.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2682 GANG BAO, GUANGHUI HU, AND TAO YIN

Fig. 2. Geometrical settings for the transmission problem. D = D+ ∪D− are inhomogeneous
media embedded above and below Γ, respectively.

bounded domain; see Figure 2. If an incident wave from Ω+ could penetrate into the
Ω−, the total field u can be modeled by the transmission problem

∆u± + k2
±q±u± = 0 in Ω±,

u+ = u−, ∂+
ν u+ = η ∂−ν u− on Γ, η ∈ C,

(2.19)

where u± = u|Ω± , q+ = q, and k+ = k, k− ∈ R are the wavenumbers in Ω±, respec-
tively.

Denote by ure± the upward (+) and downward (−) propagating fields correspond-
ing to the unperturbed scattering problem (that is, Γ = Γ0, D = ∅, D− = ∅), which
satisfy

∆ure± + k2
±u

re
± = 0 in R2

± := {x : x2 ≷ 0},
uin + ure+ = ure− , ∂+

ν [uin + ure+ ] = η ∂−ν [ure− ] on Γ0 := {x : x2 = 0}.
(2.20)

At infinity, we suppose that ure± satisfy the upward and downward angular spectrum
representations. By [22], the solutions ure± ∈ V±h,% are uniquely solvable for all h > a
and % ∈ (−1,−1/2). Here the number a > 0 is chosen such that D+∪D− ⊂ {x : |x2| <
a} and the Sobolev space V−h,% is defined in the same way as Ṽh,% (see subsection

2.1) with Γ0 and Γh replaced by Γ and Γ−h, respectively. If uin = ei(αx1−β+x2)

with α = k+ cos θ, β+ = k+ sin θ, then by the Fresnel formula, ure± ∈ V±h,% can be
expressed as

ure+ (x) =
β+ − η β−

β+ + η β−
ei(αx1+β+x2), x2 > 0,

ure− (x) =
2β+

β+ + η β−
ei(αx1−β−x2), x2 < 0,

β− :=
√
k2
− − k2

+ cos2 θ.

In the transmission case, we look for functions

usc+ := u+ − uin − ure+ in Ω+, usc− := u− − ure− in Ω−,(2.21)

which fulfill the half-plane radiation condition (2.10) in the upper and lower half-
planes, respectively.

D
ow

nl
oa

de
d 

10
/2

5/
18

 to
 1

31
.1

70
.2

1.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TIME-HARMONIC ACOUSTIC SCATTERING 2683

To derive the variational formulation, we denote again by G(x, y) the Green’s
function to the unperturbed transmission problem, i.e.,

(∆ + k2
±)G(x, y) = −δ(x− y) in R2\{y}, y /∈ Γ,

G+(·, y) = G−(·, y), ∂+
ν G

+(·, y) = η ∂−ν G
−(·, y) on x2 = 0

with the Sommerfeld radiation condition (2.10) in each half-space. We refer to [30,
34, 31, 18] for the existence, uniqueness, and representations of G.

Let R > 0 be sufficiently large such that the truncated domain ΩR := {x :
|x| < R, x ∈ R2} contains the penetrable inhomogeneities D = D+ ∪D−. Obviously,
∂ΩR = S+

R∪ΛR∪S−R . Analogously to the impedance boundary value problem, we may
derive the following variational formulation: Find u ∈ H1(ΩR) and p = (p+, p−) ∈
H̃−1/2(S+

R )× H̃−1/2(S−R ) such that

A ((u, p), (ϕ, χ)) =

( ∫
S+
R
∂νv ϕds+ η

∫
S−R

∂νv ϕds∫
S+
R

(I −D+)(v|S+
R

)χ+ ds+ η
∫
S−R

(I −D−)(v|S−R )χ− ds

)
,

A ((u, p), (ϕ, χ)) :=

(
a1 ((u, p), (ϕ, χ))
a2 ((u, p), (ϕ, χ))

)(2.22)

for all ϕ ∈ H1(ΩR) and χ = (χ+, χ−) ∈ H̃−1/2(S+
R )× H̃−1/2(S−R ). Here

v|Ω± = u− usc± = uin + ure± ,

a1 ((u, p), (ϕ, χ)) :=

∫
Ω+

R

∇u+ · ∇ϕ− k2
+q+u+ ϕdx−

∫
S+
R

p+ ϕds

+η

{∫
Ω−R

∇u− · ∇ϕ− k2
−q−u− ϕdx−

∫
S−R

p− ϕds

}
,

a2 ((u, p), (ϕ, χ)) :=

∫
S+
R

[
(I −D+)(u|S+

R
) + S+p+

]
χ+ ds

+η

{∫
S−R

[
(I −D−)(u|S−R ) + S−p−

]
χ− ds

}
.

The single and double layer operators are defined via

(D±g)(x) := 2

∫
S±R

∂ν(y)G(x; y)g(y) ds(y), x ∈ S±R ,

(S±f)(x) := 2

∫
S±R

G(x; y)f(y) ds(y), x ∈ S±R .

By arguing analogously to the proof of Theorem 2.17, one can prove that the operator
A satisfies Gardinger’s inequality over X := H1(ΩR)× H̃−1/2(S+

R )× H̃−1/2(S−R ). We
omit the details, since the proofs are quite similar. Hence, by the Fredholm alternative
we obtain the following.

Theorem 2.5. For any incident plane wave at the wavenumber k > 0, there
exists a unique solution (u, p) ∈ X to the variational formulation (2.22). Hence, the
transmission problem (2.19) and (2.21) admit a unique solution u = uin + ure + usc.

Remark 2.3. Theorem 2.5 corrects the solvability results presented in [15]. When
η = 1 and D = ∅, the authors there claimed that the unique solution takes the explicit
representation (see [15, Theorem 2.2])
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usc(x) =

∫
ΛR

[G(x, y)∂νu
sc(y)− ∂νG(x, y)usc(y)] ds(y) for all x ∈ R2\ΛR.

In fact, the above representation holds for |x| > R only, and it does not satisfy the
governing equation in the region between ΛR and x2 = 0.

3. Inverse scattering from rectangular cavities of impedance type. In
this section, we consider the inverse problem of recovering the shape of a rectangular
cavity of impedance type. Assume that the scattering interface Γ coincides with
x2 = 0 in |x| > R for some R > 0 and the perturbed section ΛR ⊂ Γ consists of line
segments parallel to x1- or x2-axis only. Such a geometry models a rectangular cavity
above or below the ground plane x2 = 0. Further, we suppose that the region Ω+

above Γ consists of homogeneous media and satisfies the geometrical assumption

(x1, x2) ∈ Ω+ → (x1, x2 + s) ∈ Ω+ for all s > 0.(3.1)

Let uin be either an incoming plane wave of the form (2.2) or a point source wave with
the source position located at y ∈ Ω+

R (see (2.12)). We assume that the impedance
coefficient λ is given as a priori data and the near-field data are measured on the line
segment

I = {(x1, h) : |x1| < C} for some C > 0, h > R.

The following theorem asserts that the data of a finite number of incoming plane
waves or one point source wave can be used to uniquely determine ΛR. Moreover,
we show that the number of incoming waves required depends on the height of the
cavity. The deeper the cavity, the more the incoming plane waves. This kind of
uniqueness result is similar to that given by Colton and Sleeman [17] for inverse
scattering from a bounded sound-soft obstacle. It was proved in [17] that the shape
of a sound-soft obstacle can be uniquely determined by the far-field pattern of a
finite number of incident plane waves provided a priori information on the size of the
obstacle is available. We remark that the idea of Colton and Sleeman cannot apply
to a bounded obstacle with a Neumann or Robin boundary condition, due to the
lack of monotonicity of the eigenvalues of the negative Laplacian for these boundary
conditions; see [16, Chapter 5]. Our arguments show that, at least for rectangular
cavities, one can get uniqueness with a finite number of incoming plane waves.

Theorem 3.1.
(i) Suppose that there is a priori information that max{|x2| : (x1, x2) ∈ Γ} < H

and let M be the largest integer less than 2Hk/π. Then ΛR can be uniquely
determined by the near-field data set I of 2M + 1 plane waves with distinct
incident directions dj = (sin θj ,− cos θj) with cos θj 6= λ , j = 1, 2, . . . , 2M+1,
and one fixed wavenumber.

(ii) Let H be given as in case (i) and assume kj ≤ K for some upper bound
K ∈ R+, j = 1, 2, . . . ;N+1, where N as the largest integer less than 2HK/π.
Then ΛR can be uniquely determined by the near-field data set I of incoming
plane waves with one fixed direction and N + 1 wavenumbers.

(iii) Let ui be a point source wave. Then the near-field data measured on I uniquely
determine ΛR.

Proof. Let Γ(1) and Γ(2) be two rectangular perturbations of x2 = 0 . Denote by
uscj and uj the scattered and total fields corresponding to Γ(j) (j = 1, 2) (see Theorem

2.3), and by Ω+
j the unbounded domain above Γ(j). Assuming u1 = u2 on I, we need

to prove that Λ
(1)
R = Λ

(2)
R , where Λ

(j)
R := Λ(j) ∩{|x| < R} denotes the perturbed part.

D
ow

nl
oa

de
d 

10
/2

5/
18

 to
 1

31
.1

70
.2

1.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TIME-HARMONIC ACOUSTIC SCATTERING 2685

Fig. 3. Illustration of the shape of two different rectangular cavities Γ(1) and Γ(2), which
generate identical outgoing waves for an incident plane or point source wave.

Since uj is analytic in x2 > R and the measurement surface I can be extended
to an entire straight line Γh := {x : x2 = h} in x2 > R, we have u1 = u2 on Γh.
By uniqueness to the Dirichlet boundary value problem in a half-plane (see, e.g., [9]),
we see u1 = u2 for all x2 > h. Applying the unique continuation yields u1 = u2 in
Ω+

1 ∩ Ω+
2 and in particular

∂νu1 + ikλu1 = ∂νu2 + ikλu2 on ∂(Ω+
1 ∩ Ω+

2 ).

Assume on the contrary that Λ
(1)
R 6= Λ

(2)
R . Since Λ

(j)
R (j = 1, 2) are of rectangular type

and fulfill the assumption (3.1), one can always find an infinite strip Σ = (a, b)×[l1,∞)
which contains at least two line segments, Lj ⊂ Γ(j) (j = 1, 2), parallel to the x1-axis
such that u1 (or u2) satisfies the impedance boundary condition on both L1 and L2

and that Σ ⊂ Ω+
1 (or Σ ⊂ Ω+

2 ). Without loss of generality, we may suppose that (see
Figure 3)

Σ ⊂ Ω+
1 , Lj = {(x1, lj) : x1 ∈ (a, b)} ⊂ Λ

(j)
R , l2 > l1, |lj | < H.

This implies that v := u1 is a solution to the Helmholtz equation in Σ satisfying
∂2v + ikλv = 0 on L1 ∪ L2. Define w := ∂2v + ikλv. We see that w still satisfies the
Helmholtz equation in Σ with the Dirichlet boundary condition on L1∪L2. Applying
reflection principle for the Helmholtz equation (see, e.g., [19]) to w yields the vanishing
of w on an infinite number of line segments in Σ, i.e., w = 0 on Ln with

Ln := {(x1, ln) : x1 ∈ (a, b), ln = l1 + (n− 1)(l2 − l1)} for all n ∈ N.

Choose m ∈ N sufficiently large such that lm > R. This implies

w := ∂2u1 + ikλu1 = 0 on x2 = ln for all n ≥ m.(3.2)

Below we shall consider incident plane and point source waves separately.
Case (i): uin(x) = exp(ik(x1 sin θ − x2 cos θ)) for θ = θj ∈ (−π/2, π/2) (j =

1, 2, . . . , 2M + 1) are plane waves at the fixed wavenumber k ∈ R+.
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In this case, the total field u1 is of the form (see Theorem 2.3)

u1 = eik(x1 sin θ−x2 cos θ) +
cos θ − λ
cos θ + λ

eik(x1 sin θ+x2 cos θ) + usc1 in |x| > R,(3.3)

where usc1 satisfies the Sommerfeld radiation condition (2.9). Inserting (3.3) into (3.2)
and making straightforward calculations show that

An e
ikx1 sin θ + ∂2u

sc
1 (x1, ln) + ikλusc1 (x1, ln) = 0 for all x1 ∈ R, n ≥ m,(3.4)

where the constant An = An(θ, k, λ) ∈ C is given by

An = ik(λ− cos θ)e−ikln cos θ + ik(cos θ − λ)eikln cos θ.

Due to the decay of usc1 when x1 → ∞, we conclude from (3.4) that An = 0 for all
n ≥ m, implying that

exp(2isk cos θ) = 1, s := l2 − l1 > 0.

Hence, sk cos θ = ηπ for some η ∈ Z. Recalling that 2H > s > 0 and θ ∈ (−π/2, π/2),
we obtain

0 < η = (sk cos θ)/π < (2Hk)/π.(3.5)

This implies that for every fixed incident angle θj ∈ (−π/2, π/2), there exists an
integer lj such that the previous relation holds with η = ηj ≤M . Moreover, we have
ηj = ηj′ if and only if θj = θj′ or θj = −θj′ . Hence, it is impossible that the relation
(3.5) holds for 2M + 1 distinct directions θj(j = 1, 2, . . . , 2M + 1). This contradiction

yields Λ
(1)
R = Λ

(2)
R .

Case (ii): uin(x) = exp(ik(x1 sin θ−x2 cos θ)) for k = kj < K (j = 1, 2, . . . , N+1)
are plane waves with fixed θ ∈ (−π/2, π/2).

As done in Case (i), we conclude that for every kj the relations

(l2 − l1)kj cos θ = ηjπ, 0 < ηj < 2HK/π,

hold for some integer ηj ≤ N . Further, we have ηj = ηj′ if and only if kj = kj′ .
Hence, if u1 coincides with u2 on I for N + 1 distinct wavenumbers, then the relation
0 < ηj ≤ N must hold for all j = 1, 2, . . . , N + 1. However, it is impossible since

ηj 6= ηj′ . This proves Λ
(1)
R = Λ

(2)
R .

Case (iii): uin(x) = i/4H
(1)
0 (k|x − y|) is a point source wave with fixed k ∈ R+

and y ∈ Ω+
R.

Analogously to the plane wave case, the unique solution can be written as u1(x) =
G(x, y) + usc1 (x) in |x| > R, where G(x, y) is the half-space Green’s function with the
impedance boundary condition on x2 = 0. Denote by y∗ the reflection of the point
source with respect to the line Γηm , i.e., y∗ = (y1, y2 + 2(ηm − y2)) for y2 < ηm. On
the one hand, we have |u1(y∗)| < ∞ since y∗ ∈ Ω1. On the other hand, using the
extension formula for the Helmholtz equation across an impedance surface Γηm , we
may express u1(y∗) in terms of the values of u1(x) for x ∈ {(y1, x2) : x2 ∈ (y2, ηm)}
as follows (see, e.g., [23, 19]):

u1(y∗) = u1(y)− 2ikλ

∫ lm

y2

e−(y2+t)ikλu1(y1, t) dt.

This implies that u1(y∗) = ∞, since u1(x) = 1/(2π)O(ln(1/|x − y|)) as x → y. This

contradiction implies that Λ
(1)
R = Λ

(2)
R .
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Remark 3.1.
(i) It follows from Theorem 3.1 that more plane waves are needed for detect-

ing rectangular cavities which are large and deep. In the first assertion of
Theorem 3.1, the number of incident directions can be reduced to M + 1 if
the incident angles are all required to be nonpositive or nonnegative.

(ii) The proof of Theorem 3.1 relies on the reflection principle for the Helmholtz
equation under the Dirichlet boundary condition. This property is applied to
the function ∂2u + iλu if the Robin coefficient λ is known in advance. It is
unclear to us how to carry out the proof if λ is not given.

(iii) By arguing the same way as the proof of Theorem 3.1, one can prove that a
bounded rectangular obstacle of impedance type can be uniquely determined
by the far-field pattern of a single plane or point source wave.

4. Numerical tests. In this section, we present several numerical examples to
verify the efficiency of the proposed finite element method coupled with the boundary
element method in a locally perturbed half-plane. Below we shall consider acoustic
wave scattering problems with Dirichlet, Neumann, or impedance boundary conditions
enforced on Γ := {x : x2 = f(x1)}. For simplicity we assume that the inhomogeneous
medium is absent, i.e., D = ∅ and q ≡ 1 in Ω+. The truncated domain Ω+

R is
discretized by uniform triangle elements using the MATLAB toolbox pdetool and
the standard piecewise linear basis functions {ϕi}Ni=1 are employed to construct the
finite element space on Ω+

R. Here N is the total number of nodes in Ω+
R and we

denote by {xj}NR
j=1 the nodes on S+

R . Then we use piecewise constant basis functions

{ψj}NR−1
j=1 to construct the boundary element space, where ψj is defined on the line

segment S+
R,j with vertices xj and xj+1. In particular, the combination of NR − 1

segments S+
R,1, S

+
R,2, . . . , S

+
R,NR−1 gives an approximation of S+

R . Denote

e1 := ‖usc − usch ‖L2(Ω+
R), e2 := ‖usc − usch ‖H1(Ω+

R), e3 := ‖p− ph‖L2(S+
R).

It should be pointed out that there is no limit that the boundary integral equations
for the scattered field can only be derived on S+

R . In fact, the boundary integral
equations (2.16) hold true for any smooth open arc whose ending points are located
on Γ\ΛR.

Example 1. In this example, the local perturbation of the infinite plane is supposed
to be given by the graph of the piecewise smooth function

f(x1) =

{√
R2

0 − x2
1, −R0 ≤ x1 ≤ R0,

0, otherwise,

which lines above the x1-axis. The incident field is set to be a point source uin(x) =

− i
4H

(1)
0 (k|x − z|), x 6= z, emitting from the source position located at z = (0, 0.5)

lying below Γ. Then the scattered and reflected fields are given, respectively, by

ure =
i

4
H

(1)
0 (k|x− z|)− i

4
H

(1)
0 (k|x− z′|),

usc =
i

4
H

(1)
0 (k|x− z|)− i

4
H

(1)
0 (k|x− z′|)

in the Dirichlet case, and by

ure = − i
4
H

(1)
0 (k|x− z|)− i

4
H

(1)
0 (k|x− z′|),

usc =
i

4
H

(1)
0 (k|x− z|) +

i

4
H

(1)
0 (k|x− z′|)
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Table 1
Numerical errors for Example 1 with k = 1 in the Dirichlet case.

h e1 Order e2 Order e3 Order
0.4040 3.73E-3 – 5.19E-2 – 1.74E-2 –
0.2098 9.14E-4 2.15 2.59E-2 1.06 8.70E-3 1.06
0.1068 2.21E-4 2.10 1.29E-2 1.03 4.34E-3 1.03
0.0539 5.21E-5 2.11 6.47E-3 1.01 2.17E-3 1.01
0.0271 1.18E-5 2.16 3.23E-3 1.01 1.08E-3 1.01

Table 2
Numerical errors for Example 1 with k = 5 in the Neumann case.

h e1 Order e2 Order e3 Order
0.4040 5.65E-2 – 4.78E-1 – 4.15E-1 –
0.2098 1.55E-2 1.97 2.22E-1 1.17 1.25E-1 1.83
0.1068 3.99E-3 2.02 1.08E-1 1.07 4.11E-2 1.65
0.0539 1.01E-3 2.01 5.36E-2 1.02 1.65E-2 1.33
0.0271 2.53E-4 2.01 2.67E-2 1.01 7.66E-3 1.12

(a) k = 1 (b) k = 5

Fig. 4. The exact and numerical solutions of p for Example 1 with h = 0.0539 in the Dirichlet
case.

in the Neumann case, where z′ = (0,−0.5). These analytical formulas can be used
to examine the validity of our approach. Tables 1 and 2 list the L2 and H1 errors of
usc in Ω+

R and the L2 error of p = ∂νu
sc on S+

R , respectively. The convergence rate
as a function of the finite element mesh size h (see also Tables 1 and 2) shows the
convergence order of O(h2) in the L2(Ω+

R) norm and the order of O(h) in the both
H1(Ω+

R) norm and L2(S+
R ) norm. In Figure 4, we plot the real and imaginary parts of

the numerical solution ph. They are in a perfect agreement with the exact ones from
both quantitative and qualitative points of view.

Example 2. In this example, we first consider the scattering of plane incident wave
if Ω− is of impendence type in the absence of local perturbation and check whether
our code provides the correct solution. Then the total field is given by (cf. (2.5))

u = uin + ure = exp(ik(x1 sin θ − x2 cos θ))

+
cos θ − λ
cos θ + λ

exp(ik(x1 sin θ + x2 cos θ)), θ ∈ (−π/2, π/2).

Choose k = 3, λ = 1, and θ = −π/3. Table 3 presents the L2(Ω+
R) and H1(Ω+

R) errors
of u and their convergence rates as functions of the finite element mesh size h. In
Figure 5, we show the real part of the exact and numerical solutions of the total field,
which are in a perfect agreement with each other from a qualitative point of view.
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Table 3
Numerical errors for Example 2.

h e1 Order e2 Order
0.4630 4.68E-1 – 2.47E0 –
0.2315 1.38E-1 1.76 1.16E0 1.09
0.1173 3.64E-2 1.96 5.64E-1 1.06
0.0592 9.23E-3 2.01 2.79E-1 1.03

(a) Reu (b) Reuh

Fig. 5. The exact and numerical solutions of the total field for Example 2.

(a) Reuh (b) Imuh

Fig. 6. The numerical solution of the total field for Example 2 where the local perturbation is
sin-type.

Finally, we consider the case of a general scattering interface with an impendence
boundary condition. The local perturbation of the infinite plane is given by

f(x1) =

{
− sin(πx1/R0), −R0 ≤ x1 ≤ R0,

0 otherwise.

Figure 6 presents the numerical results using the finite element method coupled with
the boundary element method.
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