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Abstract
This paper is concerned with an inverse transmission problem for recovering
the shape of a penetrable rectangular grating sitting on a perfectly conducting
plate. We consider a general transmission problem with the coefficient λ ̸= 1
which covers the transverse magnetic (TM) polarization case. It is proved that a
rectangular grating profile can be uniquely determined by the near-field obser-
vation data incited by a single plane wave and measured on a line segment
above the grating. In comparison with the transverse electric (TE) case (λ= 1),
the wave field cannot lie in H2 around each corner point, bringing essential
difficulties in proving uniqueness with one plane wave. Our approach relies
on singularity analysis for Helmholtz transmission problems in a right-corner
domain and also provides an alternative idea for treating the TE transmission
conditions which were considered in the authors’ previous work (Xiang and
Hu 2023 Inverse Problems 39 055004).
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1. Introduction and main result

Consider the time-harmonic electromagnetic scattering of a plane wave from a penetrable rect-
angular grating which remains invariant along one surface direction x3. The diffractive grating
is supposed to sit on the perfectly conducting substrate x2 < 0. In transverse electric (TE) and
transverse magnetic (TM) polarization cases, the wave scattering can be modeled by a trans-
mission problem for the Helmholtz equation over the ox1x2-plane with a boundary condition
on x2 = 0 and an appropriate radiation condition as x2 →∞. In this paper the medium above
the grating profile is supposed to be isotropic and homogeneous. For rectangular gratings, the
cross-section Λ of the grating surface in the ox1x2-plane consists of line segments that are
perpendicular to either the x1- or x2-axis. More precisely, we define a set A of the so-called
rectangular grating profiles by (see figure 1)

A=
{
Λ | Λ is a non-self-intersecting curve in R2

+ which is 2π-periodic in x1,

Λ is piecewise linear and any linear part is parallel to the x1- or x2-axis} .

Note that Λ ∈ A cannot contain any crack, for instance, a line segment intersecting the other
part ofΛ at one ending point. The rectangular gratings defined above include the class of binary
gratings, whose grooves have the same height. Denote by Ω+

Λ the unbounded periodic domain
above Λ, that is, the component of R2

+ separated by Λ which is connected to x2 =+∞. Let
Ω−

Λ be the periodic domain below Λ but above the substrate x2 = 0. Let ν = (ν1,ν2) ∈ S :=
{x ∈ R2 : |x|= 1} be the normal direction at Λ pointing into Ω+

Λ . Suppose that a plane wave
in the (x1,x2)-plane given by

ui (x1,x2) = eiαx1−iβx2 , α= k1 sinθ, β = k1 cosθ

with some incident angle θ ∈ (−π/2,π/2) and wave number k1 > 0, is incident upon the
grating Λ from the top. Consider a general transmission problem for finding the total field
u= u(x1,x2) such that

∆u+ k21u= 0, in Ω+
Λ ,

∆u+ k22u= 0, in Ω−
Λ ,

u+ = u−, ∂+ν u= λ∂−ν u, on Λ,
u= ui+ us, in Ω+

Λ ,
∂νu= 0, on Γ0,

(1.1)

with the following radiation condition as x2 →+∞:

us (x) := u− ui =
∑
n∈Z

An e
iαnx1+iβnx2 in x2 > Λ+ := max

(x1,x2)∈Λ
x2. (1.2)

In (1.1), we have kj > 0 for j = 1,2, k1 ̸= k2, λ > 0,λ ̸= 1, αn := n+α and

βn :=

{√
k21 −α2

n if |αn|⩽ k1,

i
√
α2
n− k21 if |αn|> k1.

The notations (·)± stand for the limits of u and ∂νu on Λ obtained from above (+) or below
(−) and Γh = {(x1,h) : 0< x1 < 2π} for h ∈ R. Note that the TM polarization case corres-
ponds to the special case that λ= (k1/k2)2. The expansion in (1.2) is the well-known Rayleigh
expansion (see e.g. [10, 17, 19]), An ∈ C are called Rayleigh coefficients. The series (1.2)
together with their derivatives are uniformly convergent in any compact set in x2 > Λ+,
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Figure 1. Rectangular periodic structures.

because u ∈ H1
α(Sh) (see below for the definition) and the scattered fields consist of infinitely

many surface waves which exponentially decay as x2 →+∞. We will look for weak solutions
to (1.1) and (1.2) in the α-quasiperiodic Sobolev space

H1
α (Sh) :=

{
u ∈ H1

loc (Sh) , e
−iαx1u is 2π-periodic in x1

}
,

with Sh := {x ∈ R2 : 0< x2 < h} for any h> Λ+. Note that, since we are interested in quasi-
periodic solutions, the notations Ω±

Λ ,Λ,Sh and Γh always denote the corresponding sets in one
periodicity cell 0< x1 < 2π. Uniqueness, existence and regularity results on solutions to the
forward scattering problem will be summarized as follows.

Proposition 1.1. (i) There exists at least one solution u ∈ H1
α(Sh) to the forward scattering

problem (1.1) and (1.2), where h> Λ+ is arbitrary. Moreover, uniqueness holds true if
k21 ⩾ λk22.

(ii) Let u ∈ H1
α(Sh) be a solution to the forward scattering problem (1.1) and (1.2) corres-

ponding to some rectangular grating Λ ∈ A. Then we have u ∈ H1+s
α (Sh)∩H2

α(S
±
h ) for

any s ∈ [0,1/2), where S±h := Sh ∩Ω±
Λ . Moreover, u is real-analytic on S

+
h and S−h except

at the finite number of corner points of Λ.

Uniqueness and existence of the above transmission problem have been sufficiently invest-
igated in the literature by applying the Dirichlet-to-Neumann map; see e.g. [1, 2, 4, 9] in peri-
odic structures. In particular, the uniqueness proof for rectangular gratings with the condition
k21 ⩾ λk22 follows directly from the authors’ previous paper [24, appendix]. If k21 ⩾ λk22 does
not hold, guided Bloch waves might exist and additional constraint should be imposed on the
total field to ensure uniqueness; see the recent publication [12] for a sharp radiation condition
derived from the limiting absorption principle under the Dirichlet boundary condition. The
second assertion, which states smoothness of the solution around a corner point and up to a
flat interface, follows from standard elliptic regularity result for interface problems in a right-
corner domain; see e.g. in [9, 14, 15, 18, 20]. We refer to the appendix of this paper for the
proof of proposition 1.1.

Now we formulate the inverse problem with a single measurement data above the grating.

(IP): Let h> Λ+ be a fixed constant and suppose u= u(x1,x2) is a solution to the direct prob-
lem (1.1) and (1.2). Given the transmission coefficient λ> 0 (̸= 1) and the wavenumbers
k1 and k2, determine the periodic interface Λ ∈ A from knowledge of the near-field data
u(x1,h) for all 0< x1 < 2π.

3
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The main uniqueness result of this paper is stated as follows.

Theorem 1.2. Let u1 and u2 be solutions to the direct diffraction problem (1.1) and (1.2) cor-
responding to (Λ1,k1,k2,λ) and (Λ2,k1,k2,λ), respectively. If

u1 (x1,h) = u2 (x1,h) for all x1 ∈ (0,2π) , (1.3)

where h>max{Λ+
1 ,Λ

+
2 } is a fixed constant, then Λ1 = Λ2.

It is well known that a general grating profile cannot be uniquely determined by one plane
wave in a lossless media. In the literature there are uniqueness results using many incoming
waves of different kinds, for instance, quasiperiodic waves with the same phase-shift [13],
fixed-direction multifrequency plane waves [10] and fixed-frequency multi-direction plane
waves [25]. Binary gratings have very important applications in industry, because they can
be easily fabricated [22, 23]. The inverse problem of identifying parameters of binary gratings
plays a major role in quality control and optimal design of diffractive elements with prescribed
far field patterns [1, 5, 9]. In the authors’ previous work [24], a global uniqueness result in the
TE polarization case (i.e. λ= 1) was verified. The approach of [24] was based on the singular-
ity analysis of an overdetermined Cauchy problem for an inhomogeneous Laplacian equation
in a corner domain. The singular behavior of the wave field encodes partial information on the
unknown grating, including the position of singular points lying on the interface and also the
physical parameters around them (see e.g. [11, 25]). In the TE case the singularity of the wave
field near corners also yields knowledge of the wave number beneath the grating profile (that
is, k2). If λ ̸= 1, the wave field cannot lie inH2 around each corner point. This weaker smooth-
ness gives rise to difficulties in carrying out approach of [24] to the transmission conditions
with λ ̸= 1. It seems non-trivial to recover the parameters λ and k2 from the corner singularit-
ies in the TM case, and hence we can only get weaker uniqueness results than [24]. The aim
of this paper is to develop a different approach only for identifying the shape of a rectangular
grating profile stated as in theorem 1.2. Numerically, optimization-based iterative schemes are
usually utilized for solving the inverse problem. One may conclude from theorem 1.2 that the
global minimizer of the object functional within the class of rectangular gratings is unique.
The proof of theorem 1.2 also implies that wave fields must be singular (that is, non-analytic)
at the corner point.

2. Preliminary lemmas

The singularity analysis seems natural for justifying uniqueness to inverse scattering from
penetrable scatterers whose boundary contains corner points; see e.g. [6, 7, 24] where the
TE transmission conditions (i.e. λ= 1) were considered. In this section, we prepare several
lemmas for the proof of theorem 1.2. They are mostly motivated by the papers [6, 7, 24],
but are interesting on their own right. Throughout the whole paper, we let (r,θ) be the polar
coordinates of x= (x1,x2) in R2, and let BR denote the disk centered at origin with radius
R> 0. The corner domainsΩℓ and the line segmentsΠℓ (ℓ= 1,2) are defined as (see figure 2):

Ω1 := {(r,θ) : 0< r< R, 0< θ < 3π/2} , Π1 := {(r,0) : 0⩽ r⩽ R} ,
Ω2 := {(r,θ) : 0< r< R, −π/2< θ < 0} , Π2 := {(r,3π/2) : 0⩽ r⩽ R} .

4
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Figure 2. Illustration of two domains Ωℓ and two line segments Πℓ (ℓ= 1,2).

Lemma 2.1. Let q1 and q2 be two constants in BR and let λ be a positive constant. Suppose
that u1 and u2 satisfy the Helmholtz equations

∆uℓ + qℓuℓ = 0 in BR, ℓ= 1,2

subject to the transmission conditions

u1 = u2,
∂u1
∂ν

= λ
∂u2
∂ν

on Π1 ∪Π2. (2.1)

If q1 ̸= q2 and λ ̸= 1, then u1 = u2 ≡ 0 in BR.

The proof of lemma 2.1 will be postponed to the appendix.When λ= 1, the proof was given
in [7, proposition 2.1] in a general corner domain. The assumption λ ̸= 1 brings additional
complexities even in a right corner domain and the results does hold true for general planer
angles. In our uniqueness proof, we need a weak version of lemma 2.1, which is stated below.

Lemma 2.2. Suppose ρ1(r,θ)≡ 0 in Ω1 and ρ1(r,θ)≡ ρ ∈ C,ρ ̸= 0 in Ω2. Let v1, v2 be
solutions to

∆v1 + k2 (1+ ρ1)v1 = 0, ∆v2 + k2v2 = 0 in BR,

subject to the transmission conditions (2.1). Then v1 = v2 ≡ 0 in BR.

Proof. Set q1 := k2(1+ ρ1) in Ω2. Since the Cauchy data of v2 are analytic on Π1 ∪Π2, the
Cauchy data of v1 are also analytic thereby the transmission boundary conditions. Since v1 is
analytic in Ω2, by the Cauchy–Kowalewski theorem in a piecewise analytic domain (see [16,
lemma 2.1]), the function v1 can be analytically extended from Ω2 to a full neighboring area
of the corner as a solution of the Helmholtz equation ∆w1 + q1w1 = 0, where w1 denotes the
extended solution. Now applying lemma 2.1 to w1 and v2 gives w1 = v2 ≡ 0 near the origin.
This together with the unique continuation leads to v1 = v2 ≡ 0 in BR.
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To investigate the regularity of solutions to the Helmholtz equation in a corner domain, we
consider the transmission problem{

∆uℓ + k2ℓuℓ = 0, in Ωℓ,
u1 = u2, ∂νu1 = λ∂νu2, on Πℓ,

(2.2)

where kℓ (ℓ= 1,2) are constants satisfying k1 ̸= k2 and the unit normal vector ν at Πℓ is sup-
posed to point into Ω1. To rewrite the system (2.2) into a divergence form, we define

â(θ) :=

{
1, in Ω1,
λ, in Ω2,

κ̂(θ) :=

{
k21, in Ω1,
λk22, in Ω2,

û(r,θ) :=

{
u1, in Ω1,
u2, in Ω2.

Then the transmission problem (2.2) can be equivalently written as

∇· (â(θ)∇û)+ κ̂(θ) û= 0 in BR.

By a decomposition theorem (see e.g. [9, 20, 21]), one obtains

û= ŵ+
m∑
j=1

cjr
ηjφj (θ)(lnr)

pj in BR, pj ∈ {0,1, . . .} ,

where ŵ ∈ H2(Ωℓ) (ℓ= 1,2) and ηj ∈ (0,1) are eigenvalues of the following positive definite
Sturm–Liouville eigenvalue problem:

φ ′ ′
j (θ)+ η2j φj (θ) = 0, θ ∈ (0,3π/2)∪ (−π/2,0) ,

φj,+ (0) = φj,− (0) , φ ′
j,+ (0) = λφ ′

j,− (0) ,
φj (3π/2) = φj (−π/2) , φ ′

j (3π/2) = λφ ′
j (−π/2) .

(2.3)

In (2.3), the subscripts ‘+’ and ‘−’ denote the limits fromΩ1 andΩ2, respectively. It is obvious
that η0 = 0 is an eigenvalue with the eigenfunction φj,± ≡ C ∈ C. A general solution to (2.3)
takes the form

φj (θ) =

{
A+
j cos(ηjθ)+B+

j sin(ηjθ) , θ ∈ (0,3π/2) ,
A−
j cos(ηjθ)+B−

j sin(ηjθ) , θ ∈ (−π/2,0) , (2.4)

where the non-vanishing coefficients A±
j , B±

j are uniquely determined by the transmission
conditions through a homogeneous 4-by-4 algebraic system. Lengthy calculations give the
first positive eigenvalue (see appendix)

η1 =
1
π
arccos

(
−λ

2 + 6λ+ 1

2(λ+ 1)2

)
>

2
3
, (2.5)

which yields the leading singularity of û around the origin.

Lemma 2.3. For θ ∈ [0,π], we have φj(θ) = φj(θ+π/2) if and only if ηj = 4N; φj(θ)+
φj(θ+π/2) = 0 if and only if ηj = 4N+ 2. Here N ∈ N.

Proof. Recalling the expression of φj(θ) in (2.4), we have

φj (θ+π/2) = A+
j cos(ηj (θ+π/2))+B+

j sin(ηj (θ+π/2)) , θ ∈ [0,π] .

6
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For ηj = 4N, we obtain

φj (θ+π/2) = A+
j cos(4Nθ)+B+

j sin(4Nθ) = φj (θ) .

If ηj = 4N+ 2, then

φj (θ+π/2) =−A+
j cos((4N+ 2)θ)−B+

j sin((4N+ 2)θ) =−φj (θ) .

Conversely, if φj(θ) = φj(θ+π/2) for θ ∈ [0,π], then ηj ̸= 4N+ 2. In the following, we only
need to show that the eigenvalue ηj cannot be a fractional number which implies ηj = 4N.
Setting θ= 0 and θ = π in the equality φj(θ) = φj(θ+π/2) yields(

1− cos(πηj/2) −sin(πηj/2)
cos(πηj)− cos(3πηj/2) sin(πηj)− sin(3πηj/2)

)(
A+
j

B+
j

)
=

(
0
0

)
.

By simple calculation,∣∣∣∣ 1− cos(πηj/2) −sin(πηj/2)
cos(πηj)− cos(3πηj/2) sin(πηj)− sin(3πηj/2)

∣∣∣∣= 2sin(πηj) [1− cos(πηj/2)] ,

which cannot vanish when ηj is a fractional number. Hence, A+
j = B+

j = 0, which is
impossible.

Similarly, if φj(θ)+φj(θ+π/2) = 0 for θ ∈ [0,π], then ηj ̸= 4N. To show that the eigen-
value ηj cannot be a fractional number, we take θ= 0 and θ = π in the equality φj(θ)+φj(θ+
π/2) = 0. It then follows the linear system(

1+ cos(πηj/2) sin(πηj/2)
cos(πηj)+ cos(3πηj/2) sin(πηj)+ sin(3πηj/2)

)(
A+
j

B+
j

)
=

(
0
0

)
.

In this case the determinant of coefficient matrix is given by 2sin(πηj)
[
1+ cos(πηj/2)

]
, which

does not vanish when ηj is a fractional number. Hence, ηj = 4N+ 2 for some N ∈ N.

In the subsequent sections, we normalize the eigenfunctions in L2(−π/2,3π/2), that is,
φ0(θ) = 1/

√
2π and

ˆ 3π/2

−π/2
|φj (θ) |2dθ = 1,

ˆ 3π/2

−π/2
φj (θ)φl (θ)dθ = δjl :=

{
1, if j = l,
0, if j ̸= l.

Then, we make an ansatz on the solution û to (2.2) of the form (refer to (2.33) in [3])

û(r,θ) =
∑
j⩾0

αjr
ηjφj (θ)+

∑
j⩾0

ej (r)φj (θ) , αj ∈ C. (2.6)

Note that the second part is required to satisfy the inhomogeneous equation∑
j⩾0

∇· [â(θ)∇(ej (r)φj (θ))] = f(r,θ) ,

7
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with f(r,θ) :=−κ̂(θ)û(r,θ) in BR. The first part on the right hand side of (2.6) satisfies the
homogeneous equation with f≡ 0. Since â(θ) is a piecewise constant function, it holds that

∑
j⩾0

[
1
r

(
re ′j
) ′ − η2j

r2
ej

]
φj (θ) =

f(r,θ)
â(θ)

.

Multiplying φl(θ) to both sides of the above equation and integrating over (−π/2,3π/2) with
respect to θ yields

1
r

(
re ′j
) ′ − η2j

r2
ej = fj (r) ,

where

fj (r) =−
ˆ 0

−π/2
k22u2 (r,θ)φj (θ)dθ −

ˆ 3π/2

0
k21u1 (r,θ)φj (θ)dθ. (2.7)

An explicit expression of ej is given by (see e.g. [3])

ej (r) =
rηj

2ηj

ˆ r

r0/2
fj (s)s

1−ηjds− r−ηj

2ηj

ˆ r

0
fj (s)s

1+ηjds for j> 0, 0< r0 < r.

In the special case j= 0, one has

1
r
(re ′0 (r))

′
= f0 (r) :=− 1√

2π

ˆ 0

−π/2
k22u2 (r,θ)dθ −

1√
2π

ˆ 3π/2

0
k21u1 (r,θ)dθ. (2.8)

Straight forward calculations yield the leading terms of f 0 and e0.

Lemma 2.4. Let u0 = u1(O) = u2(O). we have

f0 (r) =−π
2

(
k22 + 3k21

) u0√
2π

+ o(1) , e0 (r) =−π
8

(
k22 + 3k21

) u0√
2π

r2 + o
(
r2
)
, as r→ 0.

3. Proof of theorem 1.2

From the coincidence of u1 and u2 on Γh, we obtain u1 = u2 in x2 > h. The unique continuation
of solutions to the Helmholtz equation leads to

u1 (x1,x2) = u2 (x1,x2) for all x ∈ Ω+
Λ1

∩Ω+
Λ2
. (3.1)

Assume on the contrary that Λ1 ̸= Λ2. Switching the notations for Λ1 and Λ2 if necessary, we
only need to consider the following cases:

• Case one: there exists a corner point O of Λ1 such that O ∈ Ω+
Λ2

(see figure 3);
• Case two: all corners of Λ1 and Λ2 coincide but Λ1 ̸= Λ2 (see figure 4);
• Case three: there exists a corner point O of Λ2 lying on Λ1, but O is not a corner of Λ1 (see

figure 5).

Obviously, the corners of Λ1 and Λ2 do not coincide completely in the first and last cases.
Using coordinate translation, we suppose that the corner O is located at the origin. Below we
shall prove that neither of previous three cases occurs. This contraction yields Λ1 = Λ2.

8
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Figure 3. Case one: there exists a corner point O of Λ1 such that O ∈ Ω+
Λ2

.

Figure 4. Case two: corners of Λ1 and Λ2 are identical but Λ1 ̸= Λ2.

Figure 5. Case three: O ∈ Λ1 ∩Λ2 is a corner of Λ2 but not a corner of Λ1.

3.1. Case one

Choose R> 0 such that BR ⊆ Ω+
Λ2

. Since the corner point O ∈ Ω+
Λ2

stays away from Λ2, the
function u2 satisfies the Helmholtz equation with the wave number k1 inBR, while u1 fulfills the
Helmholtz equation with the variable potential k21(1+ ρ1). Here, ρ1(x) is a piecewise constant
function defined by

ρ1 (x) :=

{
0, in BR ∩Ω+

Λ1
,(

k2
k1

)2
− 1, in BR ∩Ω−

Λ1
.

9



Inverse Problems 39 (2023) 115005 J Xiang and G Hu

Recalling the transmission conditions in (1.1), we find that the pair (u1,u2) is a solution to
∆u1 + k21 (1+ ρ1 (x))u1 = 0, in BR,

∆u2 + k21u2 = 0, in BR,

u1 = u2, λ
∂u−1
∂ν = ∂u2

∂ν , on BR ∩Λ1.

Here, the symbol (·)− denotes the limit from Ω−
Λ1

. Applying lemma 2.2, we obtain u1 = 0 in
BR and thus u1 = 0 in R2, which is impossible (see [24]).

3.2. Case two

The corners of Λ1 and Λ2 coincide (see figure 4), implying that Λ1 and Λ2 have the same
height and also the same grooves but with different opening directions. This section relies on
ingenious analysis on the regularity of solutions to the Helmholtz equation in a corner domain.
We refer to [20] for an overview of the interface problem of the Laplacian equation.

Choose a corner point O ∈ Λ1 ∩Λ2 and R> 0 sufficiently small such that the disk BR :=
{x ∈ R2 : |x|< R} does not contain other corners. We can conclude from proposition 1.1 that
u1,u2 ∈ H1+s(BR) (0⩽ s< 1/2) fulfill the system{

∇· (a(θ)∇u1)+κ(θ)u1 = 0, in BR,
∇· (a(θ+π/2)∇u2)+κ(θ+π/2)u2 = 0, in BR,

(3.2)

where

a(θ) :=

{
1, if θ ∈ (0,3π/2) ,
λ, if θ ∈ (−π/2,0) , κ(θ) :=

{
k21, if θ ∈ (0,3π/2) ,
λk22, if θ ∈ (−π/2,0) ,

and a(θ± 2π) = a(θ), κ(θ± 2π) = κ(θ). It is obvious that u2 coincides with u1 after a rotation
about the angle π/2, that is, u2(r,θ) = u1(r,θ+π/2). In lemma 3.1 below, we shall derive a
more explicit expression of uℓ (ℓ= 1,2) under the condition (3.1).

Lemma 3.1. Let u1,u2 ∈ H1+s(BR) (0⩽ s< 1/2) be solutions to (3.2). If

u1(r,θ) = u2(r,θ) for all θ ∈ (0,π), r ∈ [0,R),

then

uℓ (r,θ) =
∑

n,m∈N:n+m⩾0

a(ℓ)n,mr
2(n+m)ψ

(ℓ)
2n (θ) , ℓ= 1,2 (3.3)

where ψ(1)
2n (θ) is the normalized eigenfunction of (2.3) corresponding to the eigenvalue η = 2n

and ψ(2)
2n (θ) = ψ

(1)
2n (θ+π/2).

Proof. To prove (3.3), it suffices to verify for all l ∈ N that

uℓ (r,θ) =
∑

0⩽n+m⩽l

a(ℓ)n,mr
2(n+m)ψ

(ℓ)
2n (θ)+ o

(
r2l
)
, as r→ 0. (3.4)

Recalling (2.6) and lemma 2.4, we have

uℓ (r,θ) = u0 +
∑
j⩾1

α
(ℓ)
j rηjφ(ℓ)

j (θ)+ e(ℓ)0,0 (r)φ
(ℓ)
0 (θ)+

∑
j⩾1

e(ℓ)j,0 (r)φ
(ℓ)
j (θ) , ℓ= 1,2,

(3.5)

10
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where φ(1)
j (θ) := φj(θ) are normalized eigenfunctions, φ(2)

j (θ) := φ
(1)
j (θ+π/2) and

e(ℓ)j,0 (r) =
rηj

2ηj

ˆ r

r0/2
f (ℓ)j,0 (s)s

1−ηjds− r−ηj

2ηj

ˆ r

0
f (ℓ)j,0 (s)s

1+ηjds, for j> 0, ℓ= 1,2. (3.6)

Here the functions f(ℓ)j,0 with ℓ= 1,2 are defined analogously to (2.7) and 0< r0 < r. By (2.5),

we know that ηj > 2/3 for j⩾ 1, which together with e(ℓ)j,0 (r) = o(r) (ℓ= 1,2) implies that (3.4)

holds with l= n+m= 0 and a(1)0,0 = a(2)0,0 =
√
2πu0.

Step 1: prove that (3.4) holds for l= 1. It is obvious that if l= n+m= 1 for some n,m ∈ N,
then n= 0, m= 1 or n= 1, m= 0. Hence, it suffices to prove

uℓ (r,θ) = a(ℓ)0,0ψ
(ℓ)
0 (θ)+

[
a(ℓ)0,1ψ

(ℓ)
0 (θ)+ a(ℓ)1,0ψ

(ℓ)
2 (θ)

]
r2 + o

(
r2
)
, as r→ 0, ℓ= 1,2,

with some a(ℓ)0,1, a
(ℓ)
1,0 ∈ C for ℓ= 1,2. Recalling from the definition of e(ℓ)j,0 (j⩾ 0, ℓ= 1,2)

in (3.6), we obtain

e(ℓ)j,0 (r) =

{ √
2π

4−η2
j
dj,0 u0 r2 + o

(
r3
)
, if ηj ̸= 2,

√
2π
4 dj,0 u0 r2 lnr+ o

(
r3
)
, if ηj = 2,

as r→ 0, (3.7)

where dj,0 ∈ C are given by

dj,0 :=−

[
k22

ˆ 0

−π/2
ψ
(1)
0 (θ)φ

(1)
j (θ)dθ + k21

ˆ 3π/2

0
ψ
(1)
0 (θ)φ

(1)
j (θ)dθ

]
, ηj ⩾ 0. (3.8)

Hence, it follows from (3.5) that

uℓ (r,θ) = u0 +
∑

0<ηj<2

α
(ℓ)
j rηjφ(ℓ)

j (θ)+ o
(
rl0
)
,

where l0 =max{ηj : 0< ηj < 2}. Recalling u1(r,θ) = u2(r,θ), ∂θu1(r,θ) = ∂θu2(r,θ) (θ ∈
[0,π]), we obtain

α
(1)
j φ

(1)
j (θ) = α

(2)
j φ

(2)
j (θ) , α

(1)
j

[
φ
(1)
j (θ)

] ′
= α

(2)
j

[
φ
(2)
j (θ)

] ′
, ∀ θ ∈ (0,π) , ηj ∈ (0,2) ,

which can be rewritten as the linear system(
A+
j cos(ηjθ)+B+

j sin(ηjθ) −A+
j cos

(
ηj
(
θ+ π

2

))
−B+

j sin
(
ηj
(
θ+ π

2

))
B+
j cos(ηjθ)−A+

j sin(ηjθ) A+
j sin

(
ηj
(
θ+ π

2

))
−B+

j cos
(
ηj
(
θ+ π

2

)) )

×

(
α
(1)
j

α
(2)
j

)
=

(
0
0

)
.

Since the determinant of coefficientmatrix is
[
(A+

j )
2 +(B+

j )
2
]
sin
(
π
2 ηj
)
> 0, we obtainα(1)

j =

α
(2)
j = 0 for 0< ηj < 2. It then follows from (3.5) that

uℓ (r,θ) = u0 +
∑

2⩽ηj<4

α
(ℓ)
j rηjφ(ℓ)

j (θ)+
∑
ηj⩾0

e(ℓ)j,0 (r)φ
(ℓ)
j (θ)+ o

(
rl1
)
, as r→ 0,

11
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where l1 =max{ηj : 2< ηj < 4}. Hence,

uℓ (r,θ) = u0 + a(ℓ)1,0r
2ψ

(ℓ)
2 (θ)+

∑
2<ηj<4

α
(ℓ)
j rηjφ(ℓ)

j (θ)+

√
2π
4

D2,0 u0 r
2 lnr ψ(ℓ)

2 (θ)

+ u0 r
2
∑
ηj ̸=2

√
2πdj,0
4− η2j

φ
(ℓ)
j (θ)+ o

(
rl1
)
, as r→ 0, (3.9)

where a(ℓ)1,0 = α
(ℓ)
j , D2,0 = dj,0 for ηj = 2. Equating the coefficients of the terms r2 and r2 lnr

yields

D2,0u0
[
ψ
(1)
2 (θ)−ψ

(2)
2 (θ)

]
= 0,[

a(1)1,0ψ
(1)
2 (θ)− a(2)1,0ψ

(2)
2 (θ)

]
+
∑
ηj ̸=2

√
2πdj,0u0
4− η2j

[
φ
(1)
j (θ)−φ

(2)
j (θ)

]
= 0,

for all θ ∈ (0,π). Since ψ(2)
2 (θ) =−ψ(1)

2 (θ), by linear independence of trigonometric func-
tions, we conclude that

D2,0 u0 = 0, a(1)1,0 + a(2)1,0 = 0 and dj,0 u0 = 0 if φ(1)
j (θ) ̸= φ

(2)
j (θ) , ηj ̸= 2.

If φ(1)
j (θ) = φ

(2)
j (θ), we have ηj = 4N by lemma 2.3 and

dj,0 =

{
0, if ηj = 4N, N ̸= 0,
− 1

4

(
3k21 + k22

)
, if ηj = 0 (i.e. j = 0) .

This implies that the terms with j ̸= 0 in the following summation all vanish, i.e.

r2 u0
∑
ηj ̸=2

√
2πdj,0
4− η2j

φ
(ℓ)
j (θ) = r2 u0

√
2πd0,0
4

φ
(ℓ)
0 (θ) .

Inserting these results into (3.9) yields as r→ 0 that

uℓ (r,θ) =
∑

0⩽n+m⩽1

a(ℓ)n,mr
2(n+m)ψ

(ℓ)
2n (θ)+

∑
2<ηj<4

α
(ℓ)
j rηjφ(ℓ)

j (θ)+
∑
ηj⩾0

e(ℓ)j,1 (r)φ
(ℓ)
j (θ)+ o

(
rl1
)

where a(ℓ)0,0 =
√
2πu0, a

(ℓ)
0,1 =

√
2πd0,0 u0/4, a

(1)
1,0 =−a(2)1,0 . Further, we have a(ℓ)0,1 = a(ℓ)0,0 d0,0/4

and

a(ℓ)0,0 dj,0 = 0 for ηj ̸= 0; a(1)n,mψ
(1)
2n (θ) = a(2)n,mψ

(2)
2n (θ) for all 0⩽ n+m⩽ 1,

e(ℓ)j,1 (r) = e(ℓ)j,0 (r)−

{ √
2π

4−η2
j
dj,0 u0 r2, if ηj ̸= 2,

√
2π
4 dj,0 u0 r2 lnr, if ηj = 2.

It is seen from (3.7) that e(ℓ)j,1 (r) = o(r3). This finishes the step 1.

12
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Step 2: induction arguments. We make an induction hypothesis that for some N⩾ 1,

uℓ (r,θ) =
∑

0⩽n+m⩽N
a(ℓ)n,mr2(n+m)ψ

(ℓ)
2n (θ)+

∑
2N<ηj<2N+2

α
(ℓ)
j rηjφ(ℓ)

j (θ)

+
∑
ηj⩾0

e(ℓ)j,N (r)φ
(ℓ)
j (θ)+ o

(
rlN
)
;

a(ℓ)n,m =
a(ℓ)n,m−1D2n,2n

(2N)2−(2n)2
, ∀n+m= N, 0⩽ n⩽ N− 1;

a(ℓ)n,m dj,2n = 0, for ηj ̸= 2n, ∀0⩽ n+m⩽ N− 1;

a(1)n,mψ
(1)
2n (θ) = a(2)n,mψ

(2)
2n (θ) , ∀0⩽ n+m⩽ N,

(3.10)

where e(ℓ)j,N(r) (ℓ= 1,2) is defined as (2.8), (3.6) with f(ℓ)j,0 replaced by f(ℓ)j,N :

f(ℓ)j,N (r) =−
ˆ 3π/2

0
k21

uℓ (r,θ)− ∑
0⩽n+m⩽N−1

a(ℓ)n,mr
2(n+m)ψ

(ℓ)
2n (θ)

φ(ℓ)
j (θ)dθ

−
ˆ 0

−π/2
k22

uℓ (r,θ)− ∑
0⩽n+m⩽N−1

a(ℓ)n,mr
2(n+m)ψ

(ℓ)
2n (θ)

φ(ℓ)
j (θ)dθ;

lN :=max{ηj : 2N< ηj < 2N+ 2};

dj,2n =−

[
k22

ˆ 0

−π/2
ψ
(1)
2n (θ)φ

(1)
j (θ)dθ + k21

ˆ 3π/2

0
ψ
(1)
2n (θ)φ

(1)
j (θ)dθ

]

=

−k21 +
(
k21 − k22

)´ 0
−π/2 |ψ

(1)
2n (θ) |2 dθ, if ηj = 2n,(

k21 − k22
)´ 0

−π/2ψ
(1)
2n (θ)φ

(1)
j (θ)dθ, if ηj ̸= 2n,

(3.11)

for 0⩽ n⩽ N− 1; D2n,2n := dj,2n when ηj = 2n.
Note that the above induction hypothesis with N= 1 has been proved in step one. Now we

want to prove that (3.10) holds forN+ 1. By the definition of e(ℓ)j,N , straightforward calculations
show that

e(ℓ)j,N (r) =


r2N+2

(2N+2)2−η2
j

∑
n+m=N

a(ℓ)n,mdj,2n+ o
(
r2N+3

)
, if ηj ̸= 2N+ 2,

a(ℓ)N,0 D2N+2,2N

4N+2 r2N+2 lnr+ o
(
r2N+3

)
, if ηj = 2N+ 2.

(3.12)

Here D2N+2,2N := dj,2N with ηj = 2N+ 2 and dj,2N is defined analogously by (3.11).
Using the relations u1(r,θ) = u2(r,θ), ∂θu1(r,θ) = ∂θu2(r,θ) (θ ∈ [0,π]), we deduce from

the expressions of ul in (3.10) that

α
(1)
j φ

(1)
j (θ) = α

(2)
j φ

(2)
j (θ) , α

(1)
j

[
φ
(1)
j (θ)

] ′
= α

(2)
j

[
φ
(2)
j (θ)

] ′
,

∀θ ∈ (0,π) , ηj ∈ (2N,2N+ 2) .

Similarly, we can obtain an equation system about the unknowns α(1)
j and α

(2)
j , where

the determinant of coefficient matrix is still not equal to zero for 2N< ηj < 2N+ 2.

13
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Consequently, we achieve that α(1)
j = α

(2)
j = 0 for 2N< ηj < 2N+ 2. Inserting this into (3.10)

gives

uℓ (r,θ) =
∑

0⩽n+m⩽N

a(ℓ)n,mr
2(n+m)ψ

(ℓ)
2n (θ)+

∑
2N+2⩽ηj<2N+4

α
(ℓ)
j rηjφ(ℓ)

j (θ)

+
∑
ηj⩾0

e(ℓ)j,N (r)φ
(ℓ)
j (θ)+ o

(
rlN
)
, ℓ= 1,2.

Using the relations in (3.12), we can obtain

uℓ (r,θ) =
∑

0⩽n+m⩽N

a(ℓ)n,mr
2(n+m)ψ

(ℓ)
2n (θ)+ r2N+2

n+m=N+1∑
0⩽n⩽N−1

a(ℓ)n,mψ
(ℓ)
2n (θ)+ a(ℓ)N+1,0r

2N+2ψ
(ℓ)
2N+2 (θ)

+
a(ℓ)N,0D2N+2,2N

4N+ 2
r2N+2 lnrψ(ℓ)

2N+2 (θ)+
∑

ηj ̸=2N+2

a(ℓ)N,0 dj,2N

(2N+ 2)2 − η2j
r2N+2φ

(ℓ)
j (θ)

+
∑

2N+2<ηj<2N+4

α
(ℓ)
j rηjφ(ℓ)

j (θ)+ o
(
rlN+1

)
, ℓ= 1,2.

Here, a(ℓ)N+1,0 := α
(ℓ)
j for ηj = 2N+ 2, lN+1 :=max{ηj : 2N+ 2< ηj < 2N+ 4} and

a(ℓ)n,m =
a(ℓ)n,m−1D2n,2n

(2N+ 2)2 − (2n)2
, ∀0⩽ n⩽ N− 1, n+m= N+ 1. (3.13)

Applying the induction hypothesis a(1)n,mψ
(1)
2n (θ) = a(2)n,mψ

(2)
2n (θ) for all 0⩽ n+m⩽ N

into (3.13), we have

a(1)n,mψ
(1)
2n (θ) = a(2)n,mψ

(2)
2n (θ) , ∀0⩽ n⩽ N− 1, n+m= N+ 1. (3.14)

Comparing the expressions of u1 and u2 and using the fact that u1 = u2 for all θ ∈ (0,π)
yields

a(1)N,0D2N+2,2Nψ
(1)
2N+2 (θ) = a(2)N,0D2N+2,2Nψ

(2)
2N+2 (θ) ,

and

a(1)N+1,0ψ
(1)
2N+2 (θ)+

∑
ηj ̸=2N+2

a(1)N,0 dj,2N

(2N+ 2)2 − η2j
φ
(1)
j (θ)

= a(2)N+1,0ψ
(2)
2N+2 (θ)+

∑
ηj ̸=2N+2

a(2)N,0 dj,2N

(2N+ 2)2 − η2j
φ
(2)
j (θ) .

Since a(1)N,0 = (−1)Na(2)N,0, ψ
(2)
2N+2(θ) = (−1)N+1ψ

(1)
2N+2(θ), we conclude that

14
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a(ℓ)N,0D2N+2,2Nψ
(ℓ)
2N+2 (θ) = 0,

and

[
a(1)N+1,0 − (−1)N+1 a(2)N+1,0

]
ψ
(1)
2N+2 (θ)+

∑
ηj ̸=2N+2

a(1)N,0dj,2N

(2N+ 2)2 − η2j

×
[
φ
(1)
j (θ)− (−1)Nφ(2)

j (θ)
]
= 0.

Using lemma 2.3 and the linear independence of trigonometric functions, we conclude that

a(1)N+1,0ψ
(1)
2N+2 (θ) = a(2)N+1,0ψ

(2)
2N+2 (θ) , (3.15)

and

a(1)N,0 dj,2N =

{
0, if φ

(1)
j (θ) ̸= φ

(2)
j (θ) , N is an even number,

0, if φ
(1)
j (θ)+φ

(2)
j (θ) ̸= 0, N is an odd number.

Recalling lemma 2.3 and the definition of dj,2N, we find that

dj,2N =

{
0, if ηj = 4l and N is an even number, l ̸= N/2,
0, if ηj = 4l+ 2 and N is an odd number, l ̸= (N− 1)/2.

Based on the above results, we conclude that

a(ℓ)N,0 dj,2N = 0, for ηj ̸= 2N, ℓ= 1,2.

Combining the previous equalities with the following two induction hypothesisa(ℓ)n,m =
a(ℓ)n,m−1D2n,2n

(2N)2−(2n)2
, ∀n+m= N, 0⩽ n⩽ N− 1,

a(ℓ)n,m dj,2n = 0, for ηj ̸= 2n, ∀0⩽ n+m⩽ N− 1,

we find that

a(ℓ)n,m dj,2n = 0, for ηj ̸= 2n, ∀0⩽ n⩽ N, n+m= N. (3.16)

Hence,

uℓ (r,θ) =
∑

0⩽n+m⩽N+1

a(ℓ)n,mr
2(n+m)ψ

(ℓ)
2n (θ)+

∑
2N+2<ηj<2N+4

α
(ℓ)
j rηjφ(ℓ)

j (θ)

+
∑
ηj⩾0

e(ℓ)j,N+1 (r)φ
(ℓ)
j (θ)+ o

(
rlN+1

)
, ℓ= 1,2, (3.17)

where e(ℓ)j,N+1 is defined in the same way as e(ℓ)j,N , D2N,2N equals to dj,2N when ηj = 2N and

a(ℓ)N,1 =
a(ℓ)N,0D2N,2N

(2N+ 2)2 − (2N)2
, ℓ= 1,2. (3.18)
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Then, the relation a(1)N,0ψ
(1)
2N (θ) = a(2)N,0ψ

(2)
2N (θ) gives that

a(1)N,1ψ
(1)
2N (θ) = a(2)N,1ψ

(2)
2N (θ) . (3.19)

Therefore, relations (3.13)–(3.19) imply that (3.10) still holds for N+ 1.
Step 3: by the induction argument, we know that (3.10) holds for any N ∈ N which

implies (3.4) for all l ∈ N. Hence, the proof of (3.3) is complete.

By lemma 3.1, we have

u1 (r,θ) =


∑

n+m⩾0
a(1)n,mr2(n+m) [A−

n cos(2nθ)+B−
n sin(2nθ)] , θ ∈ (−π/2,0) ,∑

n+m⩾0
a(1)n,mr2(n+m) [A+

n cos(2nθ)+B+
n sin(2nθ)] , θ ∈ (0,3π/2) .

Now, using the transmission condition of u1 on Πℓ one can repeat the proof in the proof of
lemma 2.1 to obtain u1 ≡ 0 around O, which is impossible. This excludes the case two.

3.3. Case three

Assume there exists a corner O of Λ2 such that O ∈ Λ1, but O is not a corner point of Λ1.
Without loss of generality, we suppose that O is located on a vertical line segment of Λ1 (see
figure 5). Choose R> 0 sufficiently small such that the disk BR does not contain any other
corners. We can see that u1,u2 ∈ H1+s(BR) (0⩽ s< 1/2) are solutions to the systems

∆u1 + k21u1 = 0, in θ ∈ [0,π/2)∪ (3π/2,2π] ,

∆u1 + k22u1 = 0, in θ ∈ (π/2,3π/2) ,

u+1 = u−1 , ∂+ν u1 = λ∂−ν u1, on θ = π/2, 3π/2,

(3.20)


∆u2 + k21u2 = 0, in θ ∈ (0,π/2) ,

∆u2 + k22u2 = 0, in θ ∈ (π/2,2π) ,

u+2 = u−2 , ∂+ν u2 = λ∂−ν u2, on θ = 0, π/2.

(3.21)

By proposition 1.1 (ii), the Cauchy data (u+1 ,∂νu
+
1 ) are analytic on BR ∩Λ2. Then, the

coincidence u1(r,θ) = u2(r,θ) for all θ ∈ [0,π/2] implies that u+2 and ∂νu
+
2 are both analytic

on BR ∩Λ2. By the Cauchy–Kowalewski theorem in a piecewise analytic domain (refer to
lemma 2.1 in [16]), we conclude that there exists R1 ∈ (0,R) such that u2 can be extended
analytically from BR1 ∩Ω+

Λ2
to BR1 and the extended function w2 satisfies that{

∆w2 + k21w2 = 0, in BR1 ,

w2 = u+2 , ∂νw2 = ∂νu
+
2 , on BR1 ∩Λ2.

Recalling the transmission boundary in (3.21) and the fact that λ is a constant, we also find
that u−2 and ∂νu

−
2 are both analytic on BR ∩Λ2. Similarly, the solution u2 can be extended

analytically from BR2 ∩Ω−
Λ2

to BR2 (R2 ∈ (0,R1)) by the Cauchy–Kowalewski theorem. Denote
by v2 the extended function in BR2 , which satisfies{

∆v2 + k22v2 = 0, in BR2 ,
v2 = u−2 , ∂νv2 = ∂νu

−
2 , on BR2 ∩Λ2.
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Again using the transmission conditions in (3.21) yields∆w2 + k21w2 = 0, in BR2 ,
∆v2 + k22v2 = 0, in BR2 ,
w2 = v2, ∂νw2 = λ∂νv2, on BR2 ∩Λ2.

Since k1 ̸= k2, we obtain w2 = v2 ≡ 0 in BR2 by lemma 2.1, that is, u2 ≡ 0 in BR2 . This together
with the unique continuation leads to u2 ≡ 0 in BR, which is impossible.

Remark 3.2. We remark that the uniqueness proof for treating case three is also valid in the
TE polarization case, providing a different method to the approach present in [24, section 4.3].
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Appendix

This section is devoted to the regularity problem around a corner point and up to the flat inter-
face. For the readers’ convenience, we also justify the well-posedness of solutions to the for-
ward scattering (1.1) and (1.2). The proof of lemma 2.1 will be given in section A.4.

A.1. Regularity around a corner

Firstly, we investigate the regularity of a solution to the transmission problem of the Helmholtz
equation in a right angle domain (see the figure 6).

Theorem A.1. The solution û to (2.2) has the regularity û ∈ H1+s(BR)∩H1+2/3(Ωℓ) for any
0⩽ s< 1/2 (ℓ= 1,2).

Proof. For the sake of notational simplicity, we write φ(θ) := φj(θ), η := ηj for some fixed j.
A general solution to (2.3) takes the form

φ(θ) =

{
A+ cos(ηθ)+B+ sin(ηθ) , θ ∈ (0,3π/2) ,
A− cos(ηθ)+B− sin(ηθ) , θ ∈ (−π/2,0) . (A.1)

Using the transmission boundary conditions in (2.3) yields

A+ = A−, A+ cos(3πη/2)+B+ sin(3πη/2) = A− cos(πη/2)−B− sin(πη/2) .
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Figure 6. Sketch map of Ωℓ and Πℓ (ℓ= 1,2).

Since

φ ′ (θ) =

{
−ηA+ sin(ηθ)+ ηB+ cos(ηθ) , θ ∈ (0,3π/2) ,
−ηA− sin(ηθ)+ ηB− cos(ηθ) , θ ∈ (−π/2,0) ,

we have

B+ = λB−, −A+ sin(3πη/2)+B+ cos(3πη/2) = λ
[
A− sin(πη/2)+B− cos(πη/2)

]
.

That is, (A+,A−,B+,B−) satisfies the following 4-by-4 algebraic system:
1 −1 0 0

cos(3πη/2) −cos(πη/2) sin(3πη/2) sin(πη/2)
0 0 1 −λ

sin(3πη/2) λsin(πη/2) −cos(3πη/2) λcos(πη/2)




A+

A−

B+

B−

=


0
0
0
0

 .
We denote the fourth order matrix on the left by M. Then simple calculation shows that

|M|=

∣∣∣∣∣∣∣∣
1 −1 0 0

cos(3πη/2) −cos(πη/2) sin(3πη/2) sin(πη/2)
0 0 1 −λ

sin(3πη/2) λsin(πη/2) −cos(3πη/2) λcos(πη/2)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos(3πη/2)− cos(πη/2) sin(3πη/2) sin(πη/2)

0 1 −λ
λsin(πη/2)+ sin(3πη/2) −cos(3πη/2) λcos(πη/2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos(3πη/2)− cos(πη/2) 0 sin(πη/2)+λsin(3πη/2)

0 1 −λ
λsin(πη/2)+ sin(3πη/2) 0 λcos(πη/2)−λcos(3πη/2)

∣∣∣∣∣∣
=

∣∣∣∣ cos(3πη/2)− cos(πη/2) sin(πη/2)+λsin(3πη/2)
λsin(πη/2)+ sin(3πη/2) λcos(πη/2)−λcos(3πη/2)

∣∣∣∣ .
18
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That is,

|M|=−λ [cos(3πη/2)− cos(πη/2)]2

− [λsin(πη/2)+ sin(3πη/2)] [sin(πη/2)+λsin(3πη/2)]

= 2λcos(3πη/2)cos(πη/2)−
(
λ2 + 1

)
sin(3πη/2)sin(πη/2)− 2λ

= (λ+ 1)2 cos2 (πη)− (λ− 1)2

2
cos(πη)− λ2 + 6λ+ 1

2
= 0,

which implies that

cos(πη) =−λ
2 + 6λ+ 1

2(λ+ 1)2
or cos(πη) = 1.

Hence,

η =
1
π
arccos

(
−λ

2 + 6λ+ 1

2(λ+ 1)2

)
or η = 2l, l ∈ N.

Note that, η ∈ (0,1) and

λ2 + 6λ+ 1

2(λ+ 1)2
=

(λ+ 1)2 + 4λ

2(λ+ 1)2
=

1
2
+

2λ

(λ+ 1)2
∈ (1/2,1) , i.e. − 1< cos(πη)<−1

2
.

Therefore,

η =
1
π
arccos

(
−λ

2 + 6λ+ 1

2(λ+ 1)2

)
>

2
3
.

The proof is complete.

A.2. Regularity up to flat interface

In this subsection we suppose that the angle is π and consider the transmission problem{
∆vℓ + k2ℓvℓ = 0, in Ω̃ℓ,

v1 = v2, ∂νv1 = λ∂νv2, on Π̃ℓ,
(A.2)

where kℓ are constants and k1 ̸= k2, the unit normal vector ν at Π̃ℓ is pointing into Ω̃1. The two
semi-circles Ω̃ℓ and their boundaries Π̃ℓ (ℓ= 1,2) are defined as (see the figure 7):

Ω̃1 := {(r,θ) : 0< r< R, 0⩽ θ < π/2 or 3π/2< θ ⩽ 2π} , Π̃1 := {(r,π/2) : 0⩽ r⩽ R} ,
Ω̃2 := {(r,θ) : 0< r< R, π/2< θ < 3π/2} , Π̃2 := {(r,3π/2) : 0⩽ r⩽ R} .

In order to rewrite the equation (A.2) into the divergence form, we define

ã(θ) :=

{
1, in Ω̃1,

λ, in Ω̃2,
κ̃(θ) :=

{
k21, in Ω̃1,

λk22, in Ω̃2,
ṽ(r,θ) :=

{
v1, in Ω̃1,

v2, in Ω̃2.
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Figure 7. Sketch map of Ω̃ℓ and Π̃ℓ (ℓ= 1,2).

Then (A.2) is equivalent to

∇· (ã(θ)∇ṽ)+ κ̃(θ) ṽ= 0 in BR.

By the decomposition theorem, ṽ= w̃+
∑m

j=1 c̃jr
δjϕj(θ)(lnr)p̃j in BR with p̃j ∈ {0,1, . . .}.

Here, w̃ ∈ H2(Ω̃ℓ) (ℓ= 1,2), and δj ∈ (0,1) are eigenvalues of the following positive defin-
ite Sturm–Liouville:

ϕ ′ ′
j (θ)+ δ2j ϕj (θ) = 0, in θ ∈ [0,π/2)∪ (π/2,3π/2)∪ (3π/2,2π] ,

ϕj,+ (π/2) = ϕj,− (π/2) , ϕ ′
j,+ (π/2) = λϕ ′

j,− (π/2) ,

ϕj,+ (3π/2) = ϕj,− (3π/2) , ϕ ′
j,+ (3π/2) = λϕ ′

j,− (3π/2) .

(A.3)

Here, ϕj,+, ϕ ′
j,+ denote the limits from Ω̃1 and ϕj,−, ϕ ′

j,− the limits from Ω̃2.

Theorem A.2. The solution ṽ to (A.2) has the regularity ṽ ∈ H1+s(BR)∩H2(Ω̃ℓ) for any 0⩽
s< 1/2, and ṽ is analytic on the closure of Ω̃ℓ (ℓ= 1,2).

Proof. Write ϕ(θ) := ϕj(θ), δj := δ for some fixed j. A general solution to (A.3) takes the form

ϕ(θ) =

{
Ã+ cos(δθ)+ B̃+ sin(δθ) , θ ∈ [0,π/2)∪ (3π/2,2π] ,
Ã− cos(δθ)+ B̃− sin(δθ) , θ ∈ (π/2,3π/2) .

Using the transmission boundary conditions in (A.3) yields{
Ã+ cos(πδ/2)+ B̃+ sin(πδ/2) = Ã− cos(πδ/2)+ B̃− sin(πδ/2) ,
Ã+ cos(3πδ/2)+ B̃+ sin(3πδ/2) = Ã− cos(3πδ/2)+ B̃− sin(3πδ/2) .

Since

ϕ ′ (θ) =

{
−δÃ+ sin(δθ)+ δB̃+ cos(δθ) , θ ∈ [0,π/2)∪ (3π/2,2π] ,
−δÃ− sin(δθ)+ δB̃− cos(δθ) , θ ∈ (π/2,3π/2) ,
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then we obtain that{
−Ã+ sin(πδ/2)+ B̃+ cos(πδ/2) = λ

[
−Ã− sin(πδ/2)+ B̃− cos(πδ/2)

]
,

−Ã+ sin(3πδ/2)+ B̃+ cos(3πδ/2) = λ
[
−Ã− sin(3πδ/2)+ B̃− cos(3πδ/2)

]
.

That is, (Ã−, B̃−, Ã+, B̃+) satisfies the following equation system:
cos(πδ/2) sin(πδ/2) −cos(πδ/2) −sin(πδ/2)
cos(3πδ/2) sin(3πδ/2) −cos(3πδ/2) −sin(3πδ/2)
−λsin(πδ/2) λcos(πδ/2) sin(πδ/2) −cos(πδ/2)
−λsin(3πδ/2) λcos(3πδ/2) sin(3πδ/2) −cos(3πδ/2)




Ã−

B̃−

Ã+

B̃+

=


0
0
0
0

 .

We denote the fourth order matrix on the left by M̃. Then simple calculation shows that

|M̃|=

∣∣∣∣∣∣∣∣
cos(πδ/2) sin(πδ/2) 0 0
cos(3πδ/2) sin(3πδ/2) 0 0
−λsin(πδ/2) λcos(πδ/2) (1−λ)sin(πδ/2) (λ− 1)cos(πδ/2)
−λsin(3πδ/2) λcos(3πδ/2) (1−λ)sin(3πδ/2) (λ− 1)cos(3πδ/2)

∣∣∣∣∣∣∣∣
=−(λ− 1)2

∣∣∣∣∣∣∣∣
cos(πδ/2) sin(πδ/2) 0 0
cos(3πδ/2) sin(3πδ/2) 0 0

0 0 sin(πδ/2) cos(πδ/2)
0 0 sin(3πδ/2) cos(3πδ/2)

∣∣∣∣∣∣∣∣
= (λ− 1)2 sin2(πδ) = 0.

That is, sin(πδ) = 0 and then δ ∈ N, which implies that ṽ ∈ H1(BR)∩H2(Ω̃ℓ) and ṽ is analytic
up to the boundary of Π̃1 ∪ Π̃2. The proof is complete.

A.3. Uniqueness and existence of forward scattering problem

Define the DtN mapping T : H1/2
α (Γh)→ H−1/2

α (Γh) by

(Tf)(x1) :=
∑
n∈Z

iβn fn e
iαnx1 , where f(x1) =

∑
n∈Z

fn e
iαnx1 ∈ H1/2

α (Γh) .

Introduce the piecewise analytic functions

a(x) :=

{
1 in S+h ,
λ in S−h ,

κ(x) :=

{
k21 in S+h ,
λk22 in S−h .

The scattering problem (1.1) and (1.2) can be equivalently formulated as the following diver-
gence form in the truncated domain Sh:∇· (a(x)∇u)+κ(x)u= 0, in Sh,

∂2u= Tu+
(
∂2ui−Tui

)
, on Γh,

u= 0, on Γ0.
(A.4)

Theorem A.3. The boundary value problem (A.4) has at least one solution u ∈ H1
α(Sh) for

any fixed h> Λ+. Moreover, uniqueness remains true for any k1,k2 > 0 under the following
monotonicity conditions on the medium:

k21 > λk22. (A.5)
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Proof. From the definition of T, it follows that for f ∈ H1/2
α (Γh),

Re⟨Tf, f⟩=−
∑

|αn|>k1

|βn| | fn|2 ⩽ 0, Im⟨Tf, f⟩=
∑

|αn|⩽k1

|βn | fn|2 ⩾ 0, (A.6)

where the pair ⟨·, ·⟩ denotes the duality between H−1/2
α and H1/2

α on Γh. The variational for-
mulation for (A.4) can be written as: find u ∈ H1

α(Sh) such that for all v ∈ H1
α(Sh),

L(u,v) :=
ˆ
Sh

[a(x)∇u ·∇v− a(x)κ(x)uv] dx−
ˆ
Γh

Tuvds=
ˆ
Γh

(
Tui− ∂ui

∂x2

)
vds.

(A.7)

Using (A.6), one can conclude that the above sesquilinear form gives rise to a strongly elliptic
operator L such that L(u,v) = ⟨Lu,v⟩ for all u,v ∈ H1/2

α (Sh) (see also e.g. [5, 9]), where ⟨·, ·⟩
denotes the inner product over the Hilbert space H1

α(Sh). On the other hand, the adjoint of L:
H1

α(Sh)→ H1
α(Sh) takes the explicit form

⟨L∗u,v⟩= L(v,u) =
ˆ
Sh

[a(x)∇u ·∇v− a(x)κ(x)uv] dx+ 2π
∑
n∈Z

iβnunvn, u,v ∈ H1
α (Sh) .

Here, un and vn denote the Fourier coefficients of e−iαx1u|Γh and e−iαx1v|Γh , respectively.
Taking the imaginary part on both sides of the previous identity with v= u and using (A.6),
we get

∑
|αn|⩽k1

|βn| |un|2 = 0 for u ∈ Ker(L∗). This implies that

ˆ
Γh

(
Tui− ∂ui

∂x2

)
vds= 0 for all v ∈ Ker(L∗) .

By Fredholm alternative, there always exists a solution u ∈ H1
α(Sh) to (A.4).

To prove uniqueness, we suppose that ui ≡ 0. Then u satisfies the upward Rayleigh expan-
sion radiation condition. Taking the real part on both sides of (A.7) with v= u and ui = 0 and
using (A.6), we obtain

I1 :=
ˆ
Sh

[
a(x) |∇u|2 − a(x)κ(x) |u|2

]
dx=−

∑
|αn|>k1

|βn| |un|2 e−2|βn|h ⩽ 0.

Multiplying the Helmholtz equation by x2 ∂2u and integrating by part over S±h yield the
Rellich’s identities:

I+ =

(ˆ
Γh

−
ˆ
Λ

)
x2
[
−ν2|∇u|2 + ν2k

2
1|u|2 + 2Re

(
∂2u+ ∂νu

+
)]

ds

+

ˆ
S+h

|∇u|2 − k21 |u|2 − 2|∂2u|2 dx= 0,

I− =

ˆ
Λ

x2
[
−ν2|∇u|2 + ν2k

2
2|u|2 + 2Re

(
∂2u− ∂νu

−
)]

ds

+

ˆ
S−h

|∇u|2 − k21 |u|2 − 2|∂2u|2 dx= 0.

The integrand over Λ is well-defined because, for rectangular gratings it holds that u ∈
H3/2+ϵ

α (S±h ) for some ϵ> 0 depending on λ (see e.g. [20, chapter 2.4.3] and [9, section 3.3]).
Straightforward calculations show that
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ˆ
Γh

x2
[
−ν2|∇u|2 + ν2k

2
1|u|2 + 2Re(∂2u∂νu)

]
ds= h

∑
|αn|⩽k1

|βn| |un|2 = 0,

and

0= I+ +λ I−

=−
ˆ
Λ

[
λ(λ− 1) |∂νu−|2 +(λ− 1) |∂τu−|2 +

(
k21 −λk22

)
|u|2
]
ν2x2 ds

2
ˆ
Sh

a(x) |∂2u|2 dx+ I1,

where ∂τ denotes the tangential derivative onΛwith τ := (−ν2,ν1). By the assumptions (A.5)
on k1,k2 and recalling the fact that ν2 ⩾ 0 on Λ, we conclude that the integral over Λ is non-
positive, so that each term in the above expression vanishes. Consequently, we get ∂2u≡ 0 in
Sh and I1 = 0, implying that un = 0 for all |αn|> k1. Therefore,

u= Ane
ik1x1 +Am e−ik1x1 in Ω+

Λ , An,Am ∈ C,

if αn = k1 or αm =−k1 for some n,m ∈ Z (that is, Rayleigh frequencies occurs). Note that the
above expression of u is well-defined in R2. Since ν2 = 1 on the line segment of Λ parallel to
the x1-axis and k21 > λk22, one can also deduce from (A.8) that u≡ 0 on this segment, which
gives An = Am = 0 and thus u≡ 0.

A.4. Proof of lemma 2.1

Proof. Recalling the Taylor expansion of analytic solutions of the Helmholtz equation (see [7,
8]), we have

uℓ (r,θ) =
∑

n,m∈N:n+2m⩾0

rn+2m
(
a(ℓ)n,m cos(nθ)+ b(ℓ)n,m sin(nθ)

)
, for 0⩽ r< R,

where the coefficients a(ℓ)n,m and b(ℓ)n,m fulfill the recurrence relations

a(ℓ)n,m+1 =
−qℓ

4(m+ 1)(n+m+ 1)
a(ℓ)n,m, b

(ℓ)
n,m+1 =

−qℓ
4(m+ 1)(n+m+ 1)

b(ℓ)n,m, ∀ n,m ∈ N.

(A.8)

The transmission conditions in (2.1) are equivalent to the four relations:

n+2m=l∑
n,m∈N

a(1)n,m =
n+2m=l∑
n,m∈N

a(2)n,m,
n+2m=l∑
n,m∈N

nb(1)n,m = λ
n+2m=l∑
n,m∈N

nb(2)n,m,

n+2m=l∑
n,m∈N

[
a(1)n,m cos(nπ/2)− b(1)n,m sin(nπ/2)

]
=

n+2m=l∑
n,m∈N

[
a(2)n,m cos(nπ/2)− b(2)n,m sin(nπ/2)

]
,

n+2m=l∑
n,m∈N

n
[
a(1)n,m sin(nπ/2)+ b(1)n,m cos(nπ/2)

]
= λ

n+2m=l∑
n,m∈N

n
[
a(2)n,m sin(nπ/2)+ b(2)n,m cos(nπ/2)

]
.
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Case one: n= 2k+ 1 for some k ∈ N. In this case the transmission conditions can be sim-
plified to be

∑
2k+1+2m=l

a(1)2k+1,m =
∑

2k+1+2m=l
a(2)2k+1,m,∑

2k+1+2m=l
(2k+ 1)(−1)k a(1)2k+1,m = λ

∑
2k+1+2m=l

(2k+ 1)(−1)k a(2)2k+1,m,
(A.9)


∑

2k+1+2m=l
(2k+ 1)b(1)2k+1,m = λ

∑
2k+1+2m=l

(2k+ 1)b(2)2k+1,m,∑
2k+1+2m=l

(−1)k b(1)2k+1,m =
∑

2k+1+2m=l
(−1)k b(2)2k+1,m.

(A.10)

It suffices to show a(ℓ)2k+1,m = b(ℓ)2k+1,m = 0 for all k,m ∈ N, ℓ= 1,2.
We first consider the case: l= 2k+ 1+ 2m= 1, that is k= 0,m= 0. From (A.9) and (A.10)

we deduce that

a(1)1,0 = a(2)1,0 , a(1)1,0 = λa(2)1,0 ; b(1)1,0 = λb(2)1,0 , b(1)1,0 = b(2)1,0 .

Since λ ̸= 1, we obtain a(1)1,0 = a(2)1,0 = b(1)1,0 = b(2)1,0 = 0. By the recurrence relation (A.8), we have

a(ℓ)1,m = b(ℓ)1,m = 0 for all m ∈ N, ℓ= 1,2.
We carry out the proof by induction. Supposing for some M ∈ N that

a(1)2k+1,m = a(2)2k+1,m = 0, b(1)2k+1,m = b(2)2k+1,m = 0, for k⩽M, k,m ∈ N. (A.11)

We need to prove the above relations in (A.11) withM replaced byM+ 1. For this purpose, it
is sufficient to verify

a(1)2M+3,0 = a(2)2M+3,0 = 0, b(1)2M+3,0 = b(2)2M+3,0 = 0.

Setting l= 2k+ 1+ 2m= 2M+ 3 in (A.9) and (A.10) and using the relations in (A.11), we
obtain

a(1)2M+3,0 = a(2)2M+3,0, a(1)2M+3,0 = λa(2)2M+3,0; b(1)2M+3,0 = λb(2)2M+3,0, b(1)2M+3,0 = b(2)2M+3,0.

Again using λ ̸= 1 yields a(1)2M+3,0 = a(2)2M+3,0 = b(1)2M+3,0 = b(2)2M+3,0 = 0. Consequently, we

achieve that a(ℓ)2k+1,m = b(ℓ)2k+1,m = 0 for all k,m ∈ N, ℓ= 1,2.
Case two: n= 2k for k ∈ N. It then follows from the transmission conditions that∑

2k+2m=l

a(1)2k,m =
∑

2k+2m=l

a(2)2k,m,
∑

2k+2m=l

(−1)k a(1)2k,m =
∑

2k+2m=l

(−1)k a(2)2k,m, (A.12)

∑
2k+2m=l

kb(1)2k,m = λ
∑

2k+2m=l

kb(2)2k,m,
∑

2k+2m=l

(−1)k kb(1)2k,m = λ
∑

2k+2m=l

(−1)k kb(2)2k,m.

(A.13)
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Suppose l̃ := k+m= 0, that is k= 0, m= 0. From the relation (A.12), we obtain a(1)0,0 =

a(2)0,0 . Then we set l̃= k+m= 1 in (A.12) and (A.13), that is k= 1, m= 0 or k= 0, m= 1. This

gives the relations b(1)2,0 = λb(2)2,0 and

a(1)2,0 + a(1)0,1 = a(2)2,0 + a(2)0,1 , −a(1)2,0 + a(1)0,1 =−a(2)2,0 + a(2)0,1 ,

which imply that a(1)0,1 = a(2)0,1 and a(1)2,0 = a(2)2,0 . Since a
(1)
0,0 = a(2)0,0 , a

(1)
0,1 = a(2)0,1 , a

(ℓ)
0,1 =− qℓ

4 a
(ℓ)
0,0 and

q1 ̸= q2, we obtain that

a(1)0,m = a(2)0,m = 0, ∀ m ∈ N.

Set l̃= k+m= 2 in (A.12) and (A.13), that is k= 2, m= 0 or k= 1, m= 1 or k= 0, m= 2,
we have {

a(1)4,0 + a(1)2,1 = a(2)4,0 + a(2)2,1 ,

a(1)4,0 − a(1)2,1 = a(2)4,0 − a(2)2,1 ,

2b(1)4,0 + b(1)2,1 = λ
(
2b(2)4,0 + b(2)2,1

)
,

2b(1)4,0 − b(1)2,1 = λ
(
2b(2)4,0 − b(2)2,1

)
,

which lead to that

a(1)4,0 = a(2)4,0 , a(1)2,1 = a(2)2,1 ; b(1)4,0 = λb(2)4,0 , b(1)2,1 = λb(2)2,1 .

Since a(1)2,0 = a(2)2,0 , a
(1)
2,1 = a(2)2,1 , a

(ℓ)
2,1 =− qℓ

12a
(ℓ)
2,0 and q2 ̸= q1, we conclude that

a(1)2,m = a(2)2,m = 0, ∀ m ∈ N.

Since b(1)2,0 = λb(2)2,0 , b
(1)
2,1 = λb(2)2,1 and b(ℓ)2,1 =− qℓ

12b
(ℓ)
2,0, we arrive at

0= b(1)2,1 −λb(2)2,1 =− q1
12
b(1)2,0 +λ

q2
12
b(2)2,0 = λ

q2 − q1
12

b(2)2,0 .

That is b(2)2,0 = 0 for q2 ̸= q1, λ ̸= 0. By the recurrence relation (A.8), we conclude

b(1)2,m = b(2)2,m = 0, ∀ m ∈ N.

We shall finish the proof by induction. Supposing for some M ∈ N that

a(1)2k−2,m = a(2)2k−2,m = 0, a(1)2M,0 = a(2)2M,0, for 1⩽ k⩽M, m ∈ N; (A.14)

b(1)2k−2,m = b(2)2k−2,m = 0, b(1)2M,0 = λb(2)2M,0, for 1⩽ k⩽M, m ∈ N. (A.15)

We need to prove all relations in (A.14) and (A.15) withM replaced byM+ 1. For this purpose,
it is sufficient to verify

a(1)2M,0 = a(2)2M,0 = 0, a(1)2(M+1),0 = a(2)2(M+1),0; b(1)2M,0 = b(2)2M,0 = 0, b(1)2M+2,0 = λb(2)2M+2,0.

Setting l̃= k+m=M+ 1 in (A.12) and using (A.14), we obtain

a(1)2(M+1),0 + a(1)2M,1 = a(2)2(M+1),0 + a(2)2M,1, a(1)2(M+1),0 − a(1)2M,1 = a(2)2(M+1),0 − a(2)2M,1.
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That is, a(1)2(M+1),0 = a(2)2(M+1),0 and a(1)2M,1 = a(2)2M,1. Since a(1)2M,1 = a(2)2M,1, a(1)2M,0 = a(2)2M,0,

a(ℓ)2M,1 =
−qℓ

4(2M+1)a
(ℓ)
2M,0 and q1 ̸= q2, it follows that a(1)2M,0 = a(2)2M,0 = 0. Similarly, setting

l̃= k+m=M+ 1 in (A.13) and using (A.15) will lead to b(1)2(M+1),0 = λb(2)2(M+1),0 and

b(1)2M,0 = b(2)2M,0 = 0.
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