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The reflection and transmission of a time-harmonic plane wave in an isotropic elastic
medium by a three-dimensional diffraction grating is investigated. If the diffractive struc-
ture involves an impenetrable surface, we study the first, second, third and fourth kind
boundary value problems for the Navier equation in an unbounded domain by the vari-
ational approach. A radiation condition based on the Rayleigh expansion of the quasi-
periodic solutions is presented. Existence of solutions in Sobolev spaces is established
if the grating profile is a two-dimensional Lipschitz surface, while uniqueness is proved
only for small frequencies or for all frequencies excluding a discrete set. Similar solvabil-
ity results are obtained for multilayered transmission gratings in the case of an incident
pressure wave. Moreover, by a periodic Rellich identity, uniqueness of the solution to the
first kind (Dirichlet) boundary value problem is established for all frequencies under the
assumption that the impenetrable surface is given by the graph of a Lipschitz function.
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1. Introduction

Since Lord Rayleigh’s original work, Ref. 28, grating diffraction problems have
received much attention in both the physical and mathematical communities. In
recent years, the interest in them has grown immensely because of many industrial
applications, e.g. in radar imaging, non-destructive testing, micro-optics or solar
energy absorption. We refer to Ref. 9 for historical remarks and details of these
applications. Consequently, the scattering of acoustic and electromagnetic waves
has been studied extensively concerning theoretical analysis and numerical approx-
imation, using integral equation methods (e.g. Refs. 32, 17, 30 and 34) or variational
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methods (e.g. Refs. 26, 16, 10, 7, 19, 20, 35 and 8). In particular, the variational
approach appeared to be well adapted to the analytical and numerical treatment
of rather general two-dimensional and three-dimensional periodic diffractive struc-
tures involving complex materials and non-smooth interfaces.

In contrast to the significant progress made for acoustic and electromagnetic
waves, there have only been a few papers studying the scattering of elastic waves
by unbounded surfaces. However, the relevant phenomena for elastic waves have a
wide field of application. For instance, in the fields of geophysics and seismology,
the problem of elastic pulse transmission and reflection through the earth is funda-
mental to the investigation of earthquakes and the utility of controlled explosions
in search for oil and ore bodies (see, e.g. Refs. 1, 23, 24, 36 and references therein).
Compared to acoustic and electromagnetic scattering, the elasticity problem is more
complicated because of the coexistence of compressional and shear waves that prop-
agate at different speeds. The first rigorous attempt to close this gap is due to Arens
using the boundary integral equation method; see Refs. 3 and 4 for the scattering by
two-dimensional diffraction gratings and Refs. 5 and 6 by general one-dimensional
rough surfaces. In particular, existence and uniqueness for the Dirichlet boundary
value problem are established in the case that the grating profile Λ is given by the
graph of a smooth (C2) periodic function in Ref. 3. The same Dirichlet problem in
general Lipschitz domains is investigated by Elschner and Hu in Ref. 21 via the vari-
ational method. It is shown in Ref. 21 that, for either an incident pressure or shear
wave, there always exists a quasi-periodic solution to the equivalent variational for-
mulation and hence to the original scattering problem. Moreover, uniqueness can
be guaranteed if the grating profile is given by a Lipschitz graph in R2. Note that
the variational approach can be applied to non-smooth domains, without excluding
the Rayleigh frequencies.

The aim of this paper is to provide solvability results for both impenetrable
and penetrable gratings in three dimensions. Assume a time-harmonic (with time
variation of the form exp(−iωt), ω > 0) incident plane wave is scattered by a three-
dimensional diffraction grating in an isotropic elastic medium, where the grating
profile is represented by a surface Λ which is 2π-periodic in x1 and x2. We will
consider a broad class of incident plane waves (see (2.15) and (2.16)) under general
boundary conditions. If the diffraction grating is impenetrable, the first, second,
third and fourth kind boundary value problems for the Navier system are investi-
gated in the unbounded domain above Λ, while the scattering by a multilayered
transmission grating is modeled by a corresponding transmission problem on the
whole space. We refer to Ref. 27 for an introduction of the boundary value problems
of elasticity, including the boundary conditions of the third and fourth kind. The
paper is organized as follows.

In Sec. 2, we present mathematical formulations of the scattering problems in the
case of an impenetrable grating. Following Refs. 3 and 21, we give an expression of
the radiation condition based on the Rayleigh expansion of quasiperiodic solutions
to the Helmholtz equation; see Sec. 2.2. Note that the radiation condition of this
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paper is very similar to that imposed on acoustic waves for two-dimensional diffrac-
tion gratings; cf. Ref. 26.

In Sec. 3, we reduce the boundary value problem for the Navier system in
the unbounded domain to an equivalent strongly elliptic variational problem in
a bounded periodic cell with a nonlocal boundary condition; see Sec. 3.1 for the
equivalent variational problem, Sec. 3.2 for properties of the Dirichlet-to-Neumann
map, and Sec. 3.3 for the proof of the strong ellipticity of the sesquilinear form gen-
erated by the variational formulation. In three dimensions, establishing the strong
ellipticity is not trivial and requires a more intricate and careful analysis than for
plane elasticity; cf. Ref. 21.

Afterwards, in Sec. 4, we investigate the existence and uniqueness of quasi-
periodic solutions for a broad class of incident elastic waves when one of the first,
second, third and fourth kind boundary conditions is imposed on the impenetrable
surface Λ. For a general Lipschitz profile, existence is established in Sec. 4.2.1 by
using Korn’s inequality and applying the Fredholm alternative, while uniqueness is
proved in Sec. 4.2.2 but only for small frequencies. Using analytic Fredholm theory,
the uniqueness result can be extended to all frequencies excluding a discrete set;
see Theorem 3(ii). In addition, by a periodic Rellich identity, uniqueness of the
solution to the first kind (Dirichlet) boundary value problem is established for all
frequencies under the assumption that Λ is given by a Lipschitz graph; see Sec. 4.3.
Non-uniqueness examples under the boundary conditions of the second, third and
fourth kind are presented in Sec. 4.4.

Finally, in Sec. 5, we extend the solvability results from Sec. 4.2 for impenetrable
gratings to the case of scattering by multilayered transmission gratings with several
elastic materials.

2. Mathematical Formulations for an Impenetrable Grating

In this section and the following Secs. 3 and 4, we assume the diffraction grating has
an impenetrable scattering surface Λ which is 2π-periodic with respect to x1 and x2.
Let Ω := ΩΛ denote the region above Λ filled with an isotropic homogeneous elastic
medium characterized by the Lamé constants λ, µ satisfying µ > 0, λ+ 2µ/3 > 0.
Suppose a time-harmonic plane elastic wave uin (with time variation of the form
exp(−iωt), ω > 0) is incident on the grating from above. We next formulate the
scattering problem for the Navier equation and propose a new radiation condition.

2.1. Boundary conditions for the Navier equation

The propagation of time-harmonic elastic waves in Ω is governed by the Navier
equation (or system)

(∆∗ + ω2)u = 0 in Ω, ∆∗ := µ∆ + (λ+ µ)grad div, (2.1)

u = uin + usc in Ω, (2.2)
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where u denotes the total displacement and usc stands for the scattered field. Let
S2 := {x ∈ R3 : ‖x‖ = 1}. The incident plane wave uin is assumed to be either a
plane pressure wave of the form

uin = uin
p (x) = θ̂ exp(ikpθ̂ · x) with θ̂ = (sin θ1 cos θ2, sin θ1 sin θ2,−cos θ1) ∈ S2,

(2.3)

or a plane shear wave of the form

uin = uin
s (x) = θ̂⊥ exp(iksθ̂ · x) with θ̂⊥ ∈ S2, θ̂⊥ · θ̂ = 0, (2.4)

where

kp :=
ω√

2µ+ λ
, ks :=

ω
√
µ

are the compressional and shear wave numbers respectively, and θ̂ ∈ S2 denotes
the incident direction with the incident angles θ1 ∈ [0, π/2), θ2 ∈ [0, 2π). Here
we have assumed for simplicity that the mass density of the elastic medium is
equal to one. Throughout the paper, we write x′ := (x1, x2) and α = (α1, α2) :=
k(sin θ1 cos θ2, sin θ1 sin θ2), where k = kp for the incident pressure wave and k = ks

for the incident shear wave. Note that the incident field uin is α-quasiperiodic in
the sense that uin(x) exp(−iα · x′) is 2π periodic with respect to x1 and x2. The
periodicity of the structure and the form of the incident waves imply that the
solution u must also be α-quasiperiodic, i.e.

u(x1 + 2n1π, x2 + 2n2π, x3) = exp(2i(α1n1 + α2n2)π)u(x1, x2, x3), x ∈ Ω (2.5)

for all n1, n2 ∈ Z. On the grating surface Λ, the total displacement u is assumed to
fulfill one of the following boundary conditions:

The first kind (Dirichlet) boundary condition: u = 0;

The second kind (Neumann) boundary condition: Tu = 0;

The third kind boundary conditions: ν · u = 0, ν × Tu = 0;

The fourth kind boundary conditions: ν × u = 0, ν · Tu = 0;


(2.6)

where ν := (ν1, ν2, ν3) denotes the unit normal vector on Λ pointing into Ω and Tu
stands for the stress vector or traction having the form:

Tu = T (λ, µ)u := 2µ∂νu+ λ(div u)ν + µν × curlu. (2.7)

Here and in the following, the notation ∂νu = ν · ∇u is used, and the symbol ∂ju

denotes ∂u/∂xj. By the Betti formula, the above stress operator plays the role of
the normal derivative in the scalar Helmholtz equation; see Ref. 27 for a generalized
Betti formula in the three-dimensional case.
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2.2. Radiation condition

Since the domain Ω is unbounded in the x3-direction, a radiation condition must be
imposed at infinity to ensure well-posedness of the boundary value problem (2.1)–
(2.6). Following Refs. 3 and 21 in the two-dimensional case, we put forward a radi-
ation condition based on Rayleigh expansions for solutions to the scalar Helmholtz
equation. Noting that the scattered field usc satisfies the Navier equation (2.1) in Ω,
we begin with the decomposition of usc into a sum of its compressional and shear
parts (see Ref. 27)

usc =
1
i
(grad ϕ+ curlψ) with ϕ := − i

k2
p

div usc, ψ :=
i

k2
s

curlusc, (2.8)

where the scalar function ϕ and the vector function ψ satisfy the homogeneous
Helmholtz equations

(∆ + k2
p)ϕ = 0 and (∆ + k2

s)ψ = 0 in Ω. (2.9)

Now, we apply the usual outgoing wave condition (Rayleigh expansion) to ϕ and
ψ by assuming (see, e.g. Ref. 26)

ϕ(x) =
∑
n∈Z2

Ap,n exp(iαn · x′ + iβnx3), ψ(x) =
∑
n∈Z2

Ãs,n exp(iαn · x′ + iγnx3),

(2.10)

for x3 > Λ+ := maxx∈Λ{x3}, where Ap,n ∈ C are constants and Ãs,n ∈ C3 are
constant vectors. The parameters βn and γn in (2.10) are defined by

βn =

{
(k2

p − |αn|2)
1
2 if |αn| ≤ kp,

i(|αn|2 − k2
p)

1
2 if |αn| > kp,

γn =

{
(k2

s − |αn|2)
1
2 if |αn| ≤ ks,

i(|αn|2 − k2
s)

1
2 if |αn| > ks,

(2.11)

respectively, with αn = (α(1)
n , α

(2)
n ) := (α1 + n1, α2 + n2) for n = (n1, n2) ∈ Z2.

Inserting (2.10) into (2.8), we finally obtain a corresponding expansion of usc into
outgoing plane elastic waves:

usc(x) =
∑
n∈Z2

{
Ap,n(αn, βn)� exp(iαn · x′ + iβnx3)

+ (αn, γn) × Ãs,n exp(iαn · x′ + iγnx3)
}
, (2.12)

or equivalently,

usc(x) =
∑
n∈Z2

{
Ap,n(αn, βn)� exp(iαn · x′ + iβnx3)

+As,n exp(iαn · x′ + iγnx3)
}
, (2.13)
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with As,n = (A(1)
s,n, A

(2)
s,n, A

(3)
s,n) := (αn, γn)× Ãs,n ∈ C3 satisfying the orthogonality

As,n · (αn, γn) = 0, for all n ∈ Z2. (2.14)

Throughout the paper, the symbol (·)� denotes the transpose of a vector in C2

or C3. The series in (2.13), which is referred to as the Rayleigh expansion for elastic
waves, is the radiation condition we are going to use in the following sections. The
constants Ap,n ∈ C,As,n ∈ C3 are also called the Rayleigh coefficients. Since βn

and γn are real for at most finitely many indices, we observe that only a finite
number of plane waves in (2.12) propagate into the far field, while the remaining
part consists of evanescent (or surface) waves decaying exponentially as x3 → +∞.
Thus, the above expansion converges uniformly with all derivatives in the half-space
{x ∈ R3 : x3 ≥ a}, for any a > Λ+. Note that the radiation condition (2.13) is
very similar to that imposed on solutions to the scalar Helmholtz equation for two-
dimensional diffraction gratings, cf. Ref. 26. Now, we can formulate our diffraction
problem as the following boundary value problem.

Boundary value problem (BVP). Given a grating profile Λ ⊂ R3 (which is 2π-
periodic in x1 and x2) and an incident field uin of the form (2.3) or (2.4), find a vector
function u = uin + usc ∈ H1

loc(Ω)3 that satisfies (2.1), (2.2), the quasi-periodicity
condition (2.5), one of the boundary conditions in (2.6) and the radiation condition
(2.13).

We will also consider a general incident pressure wave of the form

uin
(p)(x) =

1
kp

∑
|αn|<kp

(αn,−βn)� exp[i(αn · x′ − βnx3)] (2.15)

with α = kp(sin θ1 cos θ2, sin θ1 sin θ2), or an incident shear wave taking the form

uin
(s)(x) =

1
ks

∑
|αn|<ks

[(αn,−γn) × Qn]� exp[i(αn · x′ − γnx3)] (2.16)

with α = ks(sin θ1 cos θ2, sin θ1 sin θ2), Qn = (q(1)n , q
(2)
n , q

(3)
n ) ∈ S2, Qn ⊥ (αn,−γn).

Note that the incident pressure wave (2.3) [respectively shear wave (2.4)] is only
one term of the finite sums in (2.15) [respectively (2.16)].

3. Variational Formulation of (BVP)

In this section we propose an equivalent variational formulation of (BVP), following
the approach of Refs. 26 and 21 for the scattering of acoustic or elastic waves by
two-dimensional diffraction gratings. Since the unbounded domain Ω is periodic in
x1 and x2, we will restrict ourselves to one periodic cell where the compact imbed-
ding of Sobolev spaces can be applied. Then, with the help of Korn’s inequality, the
strong ellipticity of the sesquilinear form generated by the variational formulation
can be established. This considerably simplifies our mathematical argument, com-
pared to the scattering of elastic waves by general rough surfaces (see Ref. 3 for the

1150019-6



February 20, 2012 10:39 WSPC/103-M3AS 1150019

Scattering of Plane Elastic Waves by Three-Dimensional Diffraction Gratings

integral equation method applied to two dimensions). We also refer to Refs. 11–13
for a rigorous mathematical analysis of rough surface scattering problems for the
Helmholtz equation via the variational method in two and three dimensions.

Introduce an artificial boundary

Γb := {(x1, x2, b) : 0 ≤ x1, x2 ≤ 2π}, b > Λ+,

and the bounded domain

Ωb = ΩΛ,b := {x ∈ Ω : 0 < x1, x2 < 2π, x3 < b}.

For simplicity we still use Λ to denote one period of the grating surface; see Fig. 1.
We assume that Λ is a Lipschitz surface, so that Ωb is a bounded Lipschitz domain
in R3.

3.1. An equivalent variational formulation

In this subsection we establish an equivalent variational formulation posed in the
bounded periodic cell Ωb, which is enforcing the radiation condition on Γb.

Let H1
α(Ωb) denote the Sobolev space of scalar functions on Ωb which are

α-quasiperiodic with respect to x1 and x2. Introduce the energy space

Vα = Vα(Ωb)

:= {u ∈ H1
α(Ωb)3 : u satisfies one of the boundary conditions in (2.6)},

equipped with the norm in the usual Sobolev space H1(Ωb)3 of vector functions.
By the first Betti formula, it follows that for u, ϕ ∈ Vα

−
∫

Ωb

(∆∗ + ω2)u · ϕdx =
∫

Ωb

[a(u, ϕ) − ω2u · ϕ]dx−
∫

Γb

ϕ · Tuds, (3.1)

Fig. 1. An impenetrable diffraction grating in R3.
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where the bar indicates the complex conjugate, T is the stress vector defined by
(2.7) and

a(u, ϕ) = 2µ
3∑

j,k=1

∂kuj∂kϕj + λ(div u)(divϕ) − µ curlu · curlϕ. (3.2)

Moreover, we may rewrite the stress operator Tu in (3.1) as

Tu = T (λ, µ)u := 2µ∂3u+ λ(div u)e3 + µe3 × curlu, on Γb, (3.3)

where e3 = (0, 0, 1)�. Now we introduce the Dirichlet-to-Neumann (DtN) map T on
the artificial boundary Γb. For any u ∈ H1

α(Ωb)3, it is seen from the trace theorem
that

v := u|Γb
∈ H1/2

α (Γb)3, exp(−iα · x′)v ∈ H1/2
per (Γb)3

where Hs
α(Γb) and Hs

per(Γb) denote the Sobolev spaces of order s ∈ R of functions
on Γb that are α-quasiperiodic and periodic respectively. Note that an equivalent
norm on Hs

α(Γb)3 is given by

‖v‖Hs
α(Γb)3 =

(∑
n∈Z2

(1 + |n|)2s|v̂n|2
)1/2

,

where v̂n ∈ C3 are the Fourier coefficients of exp(−iα · x′)v(x′, b).

Definition 1. For any v ∈ H
1/2
α (Γb)3, the Dirichlet-to-Neumann (DtN) operator

T v is defined as the traction Tusc on Γb, where usc is the unique α-quasiperiodic
solution of the homogeneous Navier equation in {x3 > b} which satisfies the
radiation condition at infinity and usc = v on Γb.

Remark 1. The operator T is well-defined, since the solution is unique for the
scattering by flat surfaces parallel to the (x1, x2)-plane under the Dirichlet boundary
condition; see Corollary 5 or Theorem 4.

Next we introduce the sesquilinear form B(u, ϕ) defined by

B(u, ϕ) :=
∫

Ωb

a(u, ϕ) − ω2u · ϕdx−
∫

Γb

ϕ · T uds, ∀u, φ ∈ Vα, (3.4)

with T u := T (u|Γb
). Applying Betti’s identity (3.1) to a solution u = usc + uin of

(BVP) and using the fact that

Tu = T (usc + uin) = T usc + Tuin = T u+ f0, with f0 := Tuin − T uin,

we obtain the following variational formulation of (BVP): Find u ∈ Vα such that

B(u, ϕ) =
∫

Γb

f0 · ϕds, ∀ϕ ∈ Vα. (3.5)
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Through direct calculations, it can be derived from the definitions of T , T and uin

that

f0 = fp,0 := Tuin
p − T uin

p =
i

kp

2ω2β

α2 + γβ

(
−α�

γ

)
exp(iα · x′ − iβb)

for an incident pressure wave of the form (2.3), and

f0 = fs,0 := Tuin
s − T uin

s =
i

ks

2ω2γ

α2 + γβ
(θ̂⊥ × θ̂)� ×

(
α�

−β

)
exp(iα · x′ − iγb)

for an incident shear wave of the form (2.4). Here and in the following sections,
β and γ denote the values of βn and γn defined by (2.11) with n = (0, 0), respec-
tively. Analogously, for the incident shear wave defined by

ũin
s := (θ̂ × Q)� exp(iksx · θ̂), Q ∈ S2, Q⊥ θ̂, (3.6)

one obtains that

f0 = f̃s,0 := T ũin
s − T ũin

s =
i

ks

2ω2γ

α2 + γβ
Q� ×

(
α�

−β

)
exp(iα · x′ − iγb).

Remark 2. The problems (BVP) and (3.5) are equivalent in the following sense.
If u ∈ H1

loc(Ω)3 is a solution of (BVP), then u|Ωb
satisfies the variational problem

(3.5). Conversely, a solution u ∈ Vα(Ωb) of (3.5) can be extended to a solution
u = uin + usc of the Navier equation (2.1) for x3 ≥ b, where usc is defined as the
unique α-quasiperiodic radiating solution of the homogeneous Navier equation in
{x3 > b} satisfying usc = u− uin on Γb.

3.2. Properties of the Dirichlet-to-Neumann map

In this subsection, we will show an explicit representation of the DtN map T , and
then utilize it to investigate properties of T . In contrast to the case of the scalar
Helmholtz equation, the property

−Re
∫

Γb

T u · uds ≥ 0 for all u ∈ H1/2
α (Γb)3

does not hold for the Navier system; cf. Ref. 22, Ref. 12 and the following
Lemma 2. Nevertheless, thanks to the periodicity of the structure, the sesquilin-
ear form B appears to be strongly elliptic, since −ReT can be decomposed into
the sum of a positive-definite operator and a finite-dimensional operator over
H

1/2
α (Γb)3. However, compared to the two-dimensional case, the arguments are

much more involved; cf. Secs. 3.2 and 3.3. In the following, the Fourier coef-
ficients of exp(−iα · x′)u(x′, b) and exp(−iα · x′)(Tu)(x′, b), denoted by ûn and
(T̂ u)n respectively, will be frequently used.
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Throughout the paper, we use C to denote a generic constant whose value may
change in different inequalities.

Lemma 1. For v =
∑

n∈Z2 v̂n exp(iαn · x′) ∈ H
1/2
α (Γb)3, we have

T v = T (ω, α)v =
∑
n∈Z2

iWnv̂n exp(iαn · x′),

where Wn is the 3 × 3 matrix defined by

Wn = Wn(ω, α) :=
1

|αn|2 + βnγn


an bn cn

bn dn en

−cn −en fn

 , (3.7)

with

an := µ[(γn − βn)(α(2)
n )2 + k2

sβn], bn := −µα(1)
n α

(2)
n (γn − βn),

cn := (2µα2
n − ω2 + 2µγnβn)α(1)

n , en := (2µα2
n − ω2 + 2µγnβn)α(2)

n ,

dn := µ[(γn − βn)(α(1)
n )2 + k2

sβn], fn := γnω
2.

Proof. Assume u is a radiating solution of the form (2.13). Then the Fourier coef-
ficients of exp(−iα · x′)u(x)|Γb

can be written as

ûn :=


α

(1)
n 1 0 0

α
(2)
n 0 1 0

βn 0 0 1


(
Ap,ne

iβnb

A�
s,ne

iγnb

)
=: DnAn, (3.8)

or equivalently, by recalling the orthogonality relation (2.14),

(
ûn

0

)
=


α

(1)
n 1 0 0

α
(2)
n 0 1 0

βn 0 0 1

0 α
(1)
n α

(2)
n γn




Ap,ne

iβnb

A
(1)
s,neiγnb

A
(2)
s,neiγnb

A
(3)
s,neiγnb

 =: D̃nAn. (3.9)

Through direct calculations, it follows from (3.9) that

An = D̃−1
n

(
ûn

0

)
= D−1

n ûn, (3.10)

where D̃−1
n denotes the inverse matrix of D̃n, and D−1

n is the 4 × 3 matrix defined
by

D−1
n :=

1
γnβn + |αn|2


α

(1)
n α

(2)
n γn

γnβn + (α2
n)2 −α(1)

n α
(2)
n −γnα

(1)
n

−α(1)
n α

(2)
n γnβn + (α(1)

n )2 −γnα
(2)
n

−α(1)
n βn −α(2)

n βn |αn|2

.
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On the other hand, applying the stress operator T (see (3.3)) to the radiating
solution u|Γb

yields

Tu = i




2µβnα
(1)
n

2µβnα
(2)
n

2µβ2
n + λk2

p

Ap,ne
iβnb +


µγn 0 µα

(1)
n

0 µγn µα
(2)
n

0 0 2µγn

A�
s,ne

iγnb

 eiαn·x′
.

This together with (3.10) allows us to write the Fourier coefficients of exp(−iα ·
x′)(Tu)(x)|Γb

as

(̂Tu)n = i


2µβnα

(1)
n µγn 0 µα

(1)
n

2µβnα
(2)
n 0 µγn µα

(2)
n

2µβ2
n + λk2

p 0 0 2µγn


(
Ap,ne

iβnb

As,ne
iγnb

)
(3.11)

=: iGnAn

= iGnD
−1
n ûn (3.12)

= iWnûn,

where Wn := GnD
−1
n coincides with the matrix defined in (3.7). The proof is thus

complete.

For a matrix M ∈ C3×3, we define its real part by ReM := (M +M∗)/2, and
write ReM > 0 if ReM is positive-definite. Here M∗ is the adjoint matrix of M
with respect to the scalar product (·, ·)C3 in C3.

Lemma 2. Let Wn be defined as in (3.7).

(i) Given a fixed frequency ω > 0, we have Re(−iWn) > 0 for all sufficiently
large |n|.

(ii) There exists a sufficiently small frequency ω0 > 0 such that

Re(−iWnz, z)C3 ≥ C|n||z|2, ∀ z ∈ C3, ω ∈ (0, ω0], n �= (0, 0)

with some constant C > 0 independent of ω and n.
(iii) The DtN map T is a bounded operator from H

1/2
α (Γb)3 to H−1/2

α (Γb)3.

Proof. (i) For sufficiently large |n|, we first observe that βn = i|βn|, γn = i|γn|,
and thus

iWn =
−1

|αn|2 − |βn||γn|


a′n b′n −iα(1)

n c′n

b′n d′n −iα(2)
n c′n

iα
(1)
n c′n iα

(2)
n c′n f ′

n

 =:
−W ′

n

|αn|2 − |βn‖γn|
,

(3.13)
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where

a′n := µ[(|γn| − |βn|)(α(2)
n )2 + k2

s |βn|] ∈ R, b′n := −µα(1)
n α(2)

n (|γn| − |βn|) ∈ R,

c′n := (2µ|αn|2 − ω2 − 2µ|γn‖βn|) ∈ R, d′n := µ[(|γn| − |βn|)(α(1)
n )2 + k2

s |βn|] ∈ R,

f ′
n := |γn|ω2 ∈ R.

Using Taylor expansions, one may check that, for fixed ω > 0,

|αn|2 − |βn‖γn| →
k2

p + k2
s

2
as |n| → +∞. (3.14)

From the definition of W ′
n in (3.13), we observe that ReW ′

n = W ′
n, that is, W ′

n

coincides with its real part. Hence it remains to prove that W ′
n is positive-definite

for all sufficiently large |n|. To this end, we only need to verify that

(I) a′n > 0, (II)

∣∣∣∣∣ a′n b′n
b′n d′n

∣∣∣∣∣ > 0, (III) det(W ′
n) > 0, for all sufficiently large |n|.

Noting that |γn|2 = |αn|2−k2
s , |βn|2 = |αn|2−k2

p for large |n|, we shall prove (I), (II)
and (III) as follows.

(I) For sufficiently large |n|, it is obvious that

a′n = µ[(|γn| − |βn|)(α(2)
n )2 + k2

s |βn|]

= µ

[
(k2

p − k2
s)(α(2)

n )2

|γn| + |βn|
+
k2

s |γn|2 + k2
s |γn‖βn|

|γn| + |βn|

]

=
µ

|γn| + |βn|
[k2

p(α(2)
n )2 + k2

s(α(1)
n )2 + k2

s |γn‖βn| − k2
sk

2
p]

> 0. (3.15)

(II) By arguing as in (3.15), one arrives at

gn := (|γn| − |βn|)|αn|2 + k2
s |βn| > 0, if |n| is sufficiently large. (3.16)

Thus,∣∣∣∣∣a′n b′n
b′n d′n

∣∣∣∣∣ = a′nd
′
n − (b′n)2

= µ2[(|γn| − |βn|)(α(2)
n )2 + k2

s |βn|] [(|γn| − |βn|)(α(1)
n )2 + k2

s |βn|]

−µ2(α(1)
n α(2)

n )2(|γn| − |βn|)2

= µ2k2
s |βn| [(|γn| − |βn|)|αn|2 + k2

s |βn|]

= µ2k2
s |βn| gn

> 0. (3.17)
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(III) It can be verified that∣∣∣∣∣∣∣∣
an bn −cn
bn dn −en

cn en fn

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣an bn

bn dn

∣∣∣∣∣ fn + (ane
2
n − 2bnencn + dnc

2
n).

Hence, from (3.17) and the definition of W ′
n it follows that

det(W ′
n)

=

∣∣∣∣∣a′n b′n
b′n d′n

∣∣∣∣∣ f ′
n +
[
a′n(iα(2)

n c′n)2 − 2b′n(iα(2)
n c′n) (iα(1)

n c′n) + d′n(iα(1)
n c′n)2

]
= (µ2k2

s |βn| gn) (|γn|ω2) + (c′n)2
[
2b′nα

(1)
n α(2)

n − a′n(α(2)
n )2 − d′n(α(1)

n )2
]︸ ︷︷ ︸

hn

.

(3.18)

In view of the definitions of a′n, b
′
n, d

′
n at the beginning of the proof and that of gn

in (3.16), there holds

hn := 2b′nα
(1)
n α(2)

n − a′n(α(2)
n )2 − d′n(α(1)

n )2

= 2µ(α(1)
n α(2)

n )2(|βn| − |γn|) − µ(α(2)
n )2[(α(2)

n )2(|γn| − |βn|) + k2
s |βn|)]

−µ(α(1)
n )2[(α(1)

n )2(|γn| − |βn|) + k2
s |βn|)]

= µ(|βn| − |γn|)|αn|4 − µk2
s |βn| |αn|2

= −µ|αn|2[(|γn| − |βn|)|αn|2 + k2
s |βn|]

= −µ|αn|2gn. (3.19)

Inserting (3.19) into (3.18) and recalling the definition of c′n, we obtain

det(W ′
n) = µ3k4

s |βn| |γn| gn − µ3[2|γn| |βn| − |γn|2 − |αn|2]2 |αn|2 gn

= µ3gn

{
|βn| |γn|k4

s − |αn|2[2|γn|(|γn| − |βn|) + k2
s ]2
}

= µ3gn|αn|2
 |βn|

|αn|
|γn|
|αn|

k4
s −
[

2|γn|(k2
p − k2

s)
|γn| + |βn|

+ k2
s

]2
 . (3.20)

Since

|βn|
|αn|

→ 1,
|γn|
|αn|

→ 1,
2|γn|(k2

p − k2
s)

|γn| + |βn|
→ k2

p − k2
s , gn > 0 as |n| → +∞,
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we finally conclude from (3.20) and the fact 0 < kp < ks that

det(W ′
n) > 0 for all sufficiently large |n|.

This finishes the proof of assertion (i).

(ii) To prove the second assertion for small frequencies, we need to analyze the
asymptotic behavior of Re(iWn) as ω → 0+. In the following, for a sequence {aj},
we write aj ∼ a0 as j → +∞ if aj/a0 → 1 as j → +∞. Since

βn = i
√
|αn|2 − k2

p ∼ i|n|, γn = i
√
|αn|2 − k2

s ∼ i|n| as ω → 0+, (3.21)

uniformly in n �= (0, 0), the matrix iWn with n �= (0, 0) takes the same form as in
(3.13) for small frequencies. Furthermore, it follows from the behavior of βn and γn

in (3.21) in combination with the identities in (3.15)–(3.17) and (3.20) that

a′n ∼ ω2|n|C1(λ, µ), gn ∼ ω2|n|C2(λ, µ), (3.22)∣∣∣∣∣a′n b′n
b′n d′n

∣∣∣∣∣ ∼ ω4|n|2C3(λ, µ), det(W ′
n) ∼ ω6|n|3C4(λ, µ), (3.23)

as ω → 0+ uniformly in n �= (0, 0), where Cj(λ, µ) (j = 1, 2, 3, 4) are positive
constants only depending on λ and µ; note that ω2 = µk2

s = (λ+2µ)k2
p. In addition,

we get

δn := |αn|2 − |βn| |γn| = ω2 3µ+ λ

2µ(2µ+ λ)
+ O(ω4) as ω → 0. (3.24)

From (3.22)–(3.24), we then obtain the inequalities

a′n
|n|δn

≥ C,
1

|n|2(δn)2

∣∣∣∣∣a′n b′n
b′n d′n

∣∣∣∣∣ ≥ C,
det(W ′

n)
|n|3(δn)3

≥ C, (3.25)

uniformly in n �= (0, 0), for all sufficiently small ω and some constant C > 0.
Combining (3.24), (3.25) and (3.13) yields the second assertion.

(iii) Since the asymptotic behavior in (3.21) remains valid as |n| → +∞, there holds

|βn − γn| ∼
1

|n|2
k2

s − k2
p

2
as |n| → +∞.

It follows from (3.7) and (3.14) that

|an|, |bn|, |cn|, |dn|, |en|, |fn| ≤ |n|C(λ, µ), for sufficiently large |n|,

with some constant C(λ, µ) > 0, implying the inequality |(Wnv̂n, v̂n)C3 | ≤
C|n||v̂n|2 for some constant C > 0 uniformly in n ∈ Z2. By the definition of
‖ · ‖Hs

α(Γb)3 , the boundedness of T mapping H1/2
α (Γb)3 into H−1/2

α (Γb)3 follows in a
standard way.

1150019-14



February 20, 2012 10:39 WSPC/103-M3AS 1150019

Scattering of Plane Elastic Waves by Three-Dimensional Diffraction Gratings

3.3. Strong ellipticity

Let V ′
α denote the dual of Vα with respect to the L2 scalar product. By Lemma 2(iii),

there exists a continuous linear operator B : Vα → V ′
α associated with the sesquilin-

ear form B such that

B(u, ϕ) = (Bu, ϕ) for all ϕ ∈ Vα. (3.26)

Definition 2. A bounded sesquilinear form B(·, ·) given on some Hilbert space X
is called strongly elliptic if there exists a compact form q(·, ·) such that

|ReB(u, u)| ≥ C ‖u‖2
X − q(u, u) ∀u ∈ X.

The following theorem establishes the strong ellipticity of the sesquilinear form
B defined in (3.4).

Theorem 1. Assume Λ is a Lipschitz surface. Then the sesquilinear form B is
strongly elliptic over Vα under each of the boundary conditions in (2.6). Moreover,
the operator B defined by (3.26) is always a Fredholm operator with index zero.

Proof. The bilinear form a(·, ·) defined by (3.2) can be written as

a(u, v) = λdiv u div v + 2µ
3∑

i,j=1

εij(u)εij(v), εij(u) := (∂jui + ∂iuj)/2.

Under our assumptions on the Lamé constants, µ > 0, λ + 2µ/3 > 0, we have the
estimate (see Ref. 25)∫

Ωb

a(u, u)dx ≥ C(Ωb)
3∑

i,j=1

‖εij(u)‖2
L2(Ωb)

, ∀u ∈ H1(Ωb)3. (3.27)

By the well-known Korn’s inequality (see e.g. Refs. 29 and 18), there holds
3∑

i.j=1

‖εij(u)‖2
L2(Ωb)

+
3∑

i=1

‖ui‖2
L2(Ωb)

≥ C(Ωb)‖u‖2
H1(Ωb)3

, ∀u ∈ H1(Ωb)3. (3.28)

Hence,∫
Ωb

(a(u, u) − ω2|u|2)dx ≥ C(Ωb)‖u‖2
H1(Ωb)3

− (C(Ωb) + ω2)‖u‖2
L2(Ωb)

.

The compactness of the imbedding H1(Ωb) ↪→ L2(Ωb) implies that the operator
K : Vα → V ′

α defined by

(Ku, ϕ)Ωb
=
∫

Ωb

u · ϕ̄dx, ∀u, ϕ ∈ Vα (3.29)

is compact. Thus, to prove the strong ellipticity of the form B defined in (3.4), it is
now sufficient to verify that T is the sum of a finite-dimensional operator and an
operator T1 satisfying

Re
{
−
∫

Γb

u · T1uds

}
≥ 0, ∀u ∈ H1

α(Ωb)3. (3.30)
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To do so, we set

T1u :=
∑

|n|≥n0

iWnûn, T0u := T u− T1u =
∑

|n|<n0

iWnûn,

where the matrices Wn are defined as in (3.7), and n0 ∈ N is sufficiently large so
that by Lemma 2(i)

Re(−iWnz, z)C2 ≥ 0, ∀ z ∈ C2, ∀ |n| ≥ n0. (3.31)

Then we have the decomposition T = T1 + T0, where T1 satisfies (3.30) and T0 is
a finite-dimensional operator. This finishes the proof of the strong ellipticity of B
over Vα, from which the Fredholm property of B follows.

4. Solvability Results for Impenetrable Gratings

Relying on the strong ellipticity of the sesquilinear formB established in Theorem 1,
we next show existence and uniqueness results for impenetrable gratings under
the first, second, third and fourth kind of boundary conditions. According to the
Fredholm alternative, existence of solutions can always be guaranteed as long as
uniqueness holds. However, as we will see in Sec. 4.4, uniqueness for all frequencies
cannot be expected under the second, third and fourth kind of boundary conditions,
because this even does not hold for a flat grating. Using properties of the DtN map
and Korn’s inequality, we can prove the uniqueness for small frequencies, and thus
for all frequencies excluding a discrete set by employing analytic Fredholm theory.
Note that the non-uniqueness examples shown in Sec. 4.4 for flat gratings cannot
occur if ω is sufficiently small. Moreover, existence for special incident waves can be
established even if there is no uniqueness; see Sec. 4.2.1. In the case of the Dirichlet
boundary condition, we shall prove uniqueness for all frequencies if the grating
profile Λ is given by the graph of a Lipschitz function; see Sec. 4.3.

We begin with the following auxiliary lemma which plays an important role in
the subsequent analysis.

4.1. An auxiliary lemma

Lemma 3. Assume u ∈ Vα is a radiating solution of the form (2.13). If Bu = 0,
then

Ap,n = 0 for |αn| < kp and As,n = 0 for |αn| < ks. (4.1)

Proof. Taking imaginary parts in the variational equation (3.5) with ϕ = u and
f0 = 0 yields

0 = Im(Bu, u) = ImB(u, u) = −Im
∫

Γb

u · T uds. (4.2)
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In the sequel, we are going to prove that

Im
∫

Γb

u · T uds = 4π2

 ∑
|αn|<kp

βn|Ap,n|2 ω2 +
∑

|αn|<ks

γn|As,n|2µ

, (4.3)

which together with (4.2) implies the lemma.
Recalling the Fourier coefficients of exp(−iα · x′)u(x)|Γb

, ûn := DnAn, defined
as in (3.8), and those of exp(−iα · x′)Tu(x)|Γb

, ( T̂ u )n := iGnAn, defined as in
(3.11) and (3.12), we have

Im
∫

Γb

u · T uds = Im
∫

Γb

u · Tuds = 4π2Im
∑
n∈Z2

(iGnAn, DnAn)C3 (4.4)

= 4π2
∑
n∈Z2

(Re(D∗
nGn)An, An)C3 , (4.5)

where D∗
n denotes the adjoint matrix of Dn. By direct calculations, we see that

D∗
nGn =


2µβn(|αn|2 + |βn|2) + λβnk

2
p µγnα

(1)
n µγnα

(2)
n µ(|αn|2 + 2βnγn)

2µβnα
(1)
n µγn 0 µα

(1)
n

2µβnα
(2)
n 0 µγn µα

(2)
n

2µβ2
n + λk2

p 0 0 2µγn

.
To obtain the real part of D∗

nGn, we decompose the above 4 × 4 matrix into the
sum J1 + J2 + J3, where

J1 :=


2µβn(|αn|2 + |βn|2) + λβnk

2
p 0 0 0

0 µγn 0 0

0 0 µγn 0

0 0 0 µγn

,

J2 :=


0 µγnα

(1)
n µγnα

(2)
n µ(|αn|2 + 2βnγn)

2µβnα
(1)
n 0 0 0

2µβnα
(2)
n 0 0 0

2µβ2
n + λk2

p 0 0 0

,

J3 :=


0 0 0 0

0 0 0 µα
(1)
n

0 0 0 µα
(2)
n

0 0 0 µγn

.
Then, using the relations

α(1)
n A(1)

s,n + α(2)
n A(2)

s,n + γnA
(3)
s,n = 0, |αn|2 + β2

n = k2
p, |αn|2 + γ2

n = k2
s
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for all n ∈ Z2, we obtain

(J2An, An) = (J̃2An, An), (J3An, An) = 0 for all n ∈ Z2, (4.6)

where J̃2 is the 4×4 matrix whose (1, 4)th entry is 2µ|αn|2+2µβnγn−ω2, its (4, 1)th
entry is −2µ|αn|2 − 2µβnγn +ω2, and the other entries are zeros. Furthermore, we
arrive at

((Re J1)An, An) =


ω2βn|Ap,n|2 + µγn|As,n|2 if |αn| < kp,

µγn|As,n|2 if kp ≤ |αn| < ks,

0 if ks ≤ |αn|.
(4.7)

Noting that Re J̃2 = 0, we conclude from (4.4)–(4.7) that the identity (4.3) holds.
The proof is thus complete.

Remark 3. If u ∈ Vα is a radiating solution of the form (2.12) and satisfies Bu = 0,
then the identity (4.3) takes the form

Im
∫

Γb

u · T uds = 4π2ω2

 ∑
|αn|<kp

βn |Ap,n|2 +
∑

|αn|<ks

γn|Ãs,n|2
 (4.8)

which also implies (4.1). Note that the quantity in (4.8) denotes the energy flux
through Γb, and that an analogous identity to (4.8) has been proved in Refs. 21
and 3 for two-dimensional gratings.

4.2. Solvability for general Lipschitz grating profiles

We assume the impenetrable grating profile Λ is a Lipschitz surface on which one of
the boundary conditions in (2.6) is imposed. By (3.26), we rewrite the variational
formulation (3.5) as

Bu = F0, (4.9)

where F0 ∈ V ′
α is defined by the right-hand side of (3.5). Equation (4.9) is equivalent

to the boundary value problem (BVP) in the sense of Remark 2. Lemma 3 only
tells us that a radiating solution to the homogeneous equation (Bu, u) = 0 has
vanishing propagating modes. Obviously this does not imply the uniqueness. Next,
we establish an existence result for the incident pressure waves (2.15) or the incident
shear waves (2.16) for any ω > 0, and then present a uniqueness result for small
frequencies.

4.2.1. Existence

Theorem 2. Let the grating profile Λ be given by a Lipschitz surface in R3. Then,
for all incident plane waves of the form (2.15) or (2.16), there always exists a
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solution u ∈ Vα to the variational problem (3.5) and hence to (BVP) under each of
the boundary conditions in (2.6).

Proof. By Theorem 1, Eq. (4.9) is solvable if its right-hand side F0 is orthogonal
(with respect to the duality (·, ·)Ωb

extending the scalar product in L2(Ωb)3) to all
solutions v of the homogeneous adjoint equation B∗v = 0. Note that such v can
always be extended to a solution of (2.1) in the unbounded domain Ω by setting

v(x) =
∑
n∈Z2

{
Ap,n(αn,−βn)� exp(iαn · x′ − iβnx3)

+As,n exp(iαn · x′ − iγnxs)
}
, (4.10)

for x3 ≥ b, where the Rayleigh coefficients As,n ∈ C3 fulfill the orthogonality
relation As,n · (α(1)

n , α
(2)
n ,−γn) = 0, and Ap,n,As,n are determined by the nth

Fourier coefficient v̂n of e−iα·x′
v|Γb

via the following relation:

(
v̂n

0

)
=


α

(1)
n 1 0 0

α
(2)
n 0 1 0

−βn 0 0 1

0 α
(1)
n α

(2)
n −γn


(
Ap,ne

−iβnb

A�
s,ne

−iγnb

)
.

Analogously to Lemma 3, it can be derived from

(B∗v, ψ)Ωb
= (v,Bψ)Ωb

= B(ψ, v) = 0, ∀ψ ∈ Vα (4.11)

that

Ap,n = 0 for |αn| < kp and As,n = 0 for |αn| < ks. (4.12)

This means that v has vanishing Rayleigh coefficients of the incoming modes, giving
that

v̂n =

(0, 0, 0)� if |αn| < kp < ks,

(α(1)
n , α

(2)
n ,−βn)�Ap,n exp(−iβnb) if kp ≤ |αn| < ks.

On the other hand, through direct calculations we deduce that f0 := Tuin − T uin

takes the form

f0 =
∑

|αn|<kp

i

kp

2ω2βn

|αn|2 + γnβn

(
−α�

n

γn

)
e−iβnbeiαn·x′

=:
∑

|αn|<kp

hne
iαn·x′

(4.13)

for the incident pressure wave uin
(p) defined in (2.15), which leads to

F0(v) =
∫

Γb

f0 · vds = 4π2
∑

|αn|<kp

hn · v̂n = 0.

1150019-19



February 20, 2012 10:39 WSPC/103-M3AS 1150019

J. Elschner & G. Hu

For the incident shear wave uin
(s) defined in (2.16), we obtain

f0 =
∑

|αn|<ks

i

ks

2ω2γn

|αn|2 + βnγn
Q�

n ×
(
α�

n

−βn

)
e−iγnbeiαn·x′

=:
∑

|αn|<ks

gne
iαn·x′

(4.14)

so that

F0(v) =
∫

Γb

f0 · vds

= 4π2
∑

|αn|<ks

gn · v̂n

= 4π2
∑

|αn|<ks

i

ks

2ω2γn

|αn|2 + βnγn
e−iγnb

{
Q�

n ×
(
α�

n

−βn

)}
·
(
α�

n

−βn

)
Ap,ne

iβnb

= 0.

Therefore, the right-hand side of Eq. (4.9) is always orthogonal to each solution of
(4.11). Applying the Fredholm alternative, we finish the proof.

4.2.2. Uniqueness

Theorem 3. Assume the grating profile Λ is given by a Lipschitz surface and uin

is an incident pressure wave (where α = kp(sin θ1 cos θ2, sin θ1 sin θ2)). Then, under
each of the boundary conditions in (2.6), we have

(i) There exists a small frequency ω0 > 0 such that the variational problem (3.5)
admits a unique solution u ∈ Vα(Ωb) for all incident angles and for all frequen-
cies ω ∈ (0, ω0].

(ii) For all but a sequence of countable frequencies ωj , ωj → ∞, the variational
problem (3.5) (with fixed incidence angles θ1 and θ2) admits a unique solution
u ∈ Vα(Ωb).

Proof. (i) Assuming u ∈ Vα(Ωb) is a solution to the homogeneous problem (3.5)
so that (Bu, u) = B(u, u) = 0, we shall prove that u = 0 in Ωb if ω is sufficiently
small. We decompose the operator B into the sum of A + K, where K and A are
defined by

(Kv, ϕ)Ωb
= −ω2

∫
Ωb

v · ϕds, (Av, ϕ)Ωb
=
∫

Ωb

a(v, ϕ)dx −
∫

Γb

ϕ · T vds (4.15)

for any v, ϕ ∈ Vα. Since α = kp(sin θ1 cos θ2, sin θ1 sin θ2) for an incident pressure
wave, we have |α| = |kp sin θ1| < kp for all θ1 ∈ [0, π/2). Thus it follows from
Lemma 3 that the (0, 0)th Fourier coefficient of exp(−iα · x′)u(x)|Γb

is û0 = (0, 0, 0).
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By Lemma 2(ii), there exists a sufficiently small frequency ω0 > 0 and a constant
C > 0 such that, for any ω ∈ (0, ω0],

Re
{
−
∫

Γb

u · T uds
}

= 4π2
∑
n�=0

Re(−iWnûn, ûn)C3 + 4π2Re(−iW0v̂0, û0)C3

= 4π2
∑
n�=0

Re(−iWnûn, ûn)C3

≥ C‖u‖2

H
1/2
α (Γb)3

, (4.16)

where ûn are the Fourier coefficients of exp(−iα ·x′)u(x′, b) and C does not depend
on ω and n. Using (3.28) and the arguments in the proof of Ref. 18, one can prove
that

‖v‖2
H1(Ωb)3

≤ C(Ωb)

‖v‖2
L2(Γb)3

+
3∑

i,j=1

‖εij(v)‖2
L2(Ωb)

, ∀ v ∈ H1(Ωb)3.

Together with (3.27), this implies that

|v| :=
(∫

Ωb

a(v, v)dx + ‖v‖
H

1/2
α (Γb)3

)1/2

is an equivalent norm of v in Vα(Ωb). Thus, combining (4.15) and (4.16) gives

0 = Re(Bu, u) ≥ C‖u‖2
Vα(Ωb)

− ω2‖u‖2
L2(Ωb)3

,

where C > 0 does not depend on ω, whence u = 0 follows if ω is sufficiently small.

(ii) Relying on the above uniqueness result for small frequencies and employing
analytic Fredholm theory, one can prove the invertibility of the operator B for all
frequencies ω > 0 with the possible exception of a discrete set in (0,∞). The proof
is omitted since it can be carried out with minor modifications of that in Elschner
and Hu21 for two-dimensional transmission gratings.

Remark 4. (i) For an incident shear wave (where α = ks(sin θ1 cos θ2, sin θ1
sin θ2)), Theorem 3 holds under the additional assumption that ks sin θ1 < kp. This
assumption ensures û0 = (0, 0, 0) in the proof of assertion (i) so that the estimate
(4.16) remains true.

(ii) Under the second, third and fourth kind boundary conditions, Theorem 3 does
not hold for all frequencies. Non-uniqueness examples will be presented in Sec. 4.4
for flat gratings.

4.3. Uniqueness for the first kind (Dirichlet) boundary

value problem

In this subsection, we assume the grating profile Λ is given by a Lipschitz graph,
x3 = f(x1, x2), where f is 2π-periodic with respect to x1 and x2, and suppose the
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Dirichlet boundary condition u = 0 is imposed on Λ. Our main task is to prove the
following uniqueness result for all frequencies.

Theorem 4. If Λ is a Lipschitz graph, then the operator B : Vα → V ′
α is invertible

for the Dirichlet boundary value problem. In particular, the variational problem
(3.5) and hence problem (BVP) have a unique solution for all incident waves under
the Dirichlet boundary condition on Λ.

By Theorem 1, we only need to prove uniqueness. To this end, we first investigate
the uniqueness for smooth graphs when f(x1, x2) is a C2 function over R2. In this
case, the third component of the unit normal ν := (ν1, ν2, ν3) on Λ can be written as

ν3 =
1√

1 + |∇x′f(x′)|2
≥ Cf > 0

for some constant Cf > 0 depending only on the Lipschitz constant of f , and by
the standard elliptic regularity we have u ∈ H2(Ωb)∩ Vα(Ωb). It is always assumed
that the normal on Γb points into the region x3 > b. We next establish a periodic
Rellich identity for the Navier system in R3.

Lemma 4. (Periodic Rellich identity for the Navier equation) If u ∈ H2
α(Ωb),

then

2 Re
∫

Ωb

(∆∗ + ω2)u · ∂3udx

=
(
−
∫

Λ

+
∫

Γb

){
2 Re (Tu · ∂3u) − ν3a(u, u) + ω2|u|2

}
ds.

Proof. Using integration by parts and the first Betti formula, we have

ω2

∫
Ωb

u · ∂3udx = ω2

(
−
∫

Λ

ν3|u|2ds+
∫

Γb

ν3|u|2ds−
∫

Ωb

∂3u · udx
)

and∫
Ωb

∆∗u · ∂3udx

=
(
−
∫

Λ

+
∫

Γb

)
Tu · ∂3uds−

∫
Ωb

a(u, ∂3u)dx

=
(
−
∫

Λ

+
∫

Γb

)
Tu · ∂3uds+

∫
Ωb

a(∂3u, u)dx +
(∫

Λ

−
∫

Γb

)
ν3a(u, u)ds

=
(
−
∫

Λ

+
∫

Γb

)
2 Re(Tu · ∂3u)ds−

∫
Ωb

∆∗u · ∂3udx+
(∫

Λ

−
∫

Γb

)
ν3a(u, u)ds.

Note that the contributions of the integrals over vertical surfaces cancel because of
the α-quasi-periodicity of u over Ωb. The periodic Rellich identity for the Navier
equation in Lemma 4 follows directly from the previous two identities.
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We refer to Refs. 10 and 22 for the periodic Rellich identity for the scalar
Helmholtz equation and to Ref. 21 for the two-dimensional Navier system. Here
we have presented a more direct proof. See also Ref. 15 for a general form of the
Rellich identity in bounded domains.

Lemma 5. If u ∈ H3/2+ε(Ωb) for some ε > 0 and u = 0 on Λ, then

(i) ν · ∂3u div u = ν3 |div u|2, ∂3u = ν3∂νu on Λ,
(ii) ∂νu+ ν × curlu− ν div u = 0 on Λ,
(iii) Tu · ∂3u = µ|∂νu|2ν3 + (λ + µ)|div u|2ν3 on Λ,
(iv) a(u, u)ν3 = µ|∂νu|2ν3 + (λ+ µ)|div u|2ν3 on Λ.

Proof. Since u ∈ H3/2+ε(Ωb) for some ε > 0, ∇u exists almost everywhere on Λ.
By the assumption that u = (u1, u2, u3) = 0 on Λ, there holds ν × ∇uj = 0 for
j = 1, 2, 3, i.e.

ν2∂3uj − ν3∂2uj = 0, ν3∂1uj − ν1∂3uj = 0, ν1∂2uj − ν2∂1uj = 0 on Λ.

(4.17)

The assertions (i), (ii) and (iv) can be proved directly by using (4.17), while the
third one follows from (ii) and the definition of T in (2.7).

Corollary 5. Suppose that the grating profile Λ is given by a C2 graph and that
a radiating solution u ∈ Vα(Ωb) satisfies Bu = 0 under the Dirichlet boundary
condition. Then u = 0 in Vα(Ωb).

The uniqueness result of Corollary 5 was proved in Ref. 26 for the scalar
Helmholtz equation and in Refs. 3 and 21 for the two-dimensional Navier system.
See also Arens5 for the uniqueness of scattering of elastic waves by a rough surface
in R2.

Proof of Corollary 5. Combining the Dirichlet boundary condition on Λ,
Lemmas 4 and 5(iii), (iv), we find∫

Λ

(
µ|∂νu|2ν3 + (λ+ µ)|div u|3ν3

)
ds

=
∫

Γb

(2 Re(Tu · ∂3u) − ν3a(u, u) + ω2|u|2)ds. (4.18)

Next we prove that the right-hand side of (4.18) vanishes. Let u ∈ Vα be a radiating
solution of the form (2.13) satisfying Bu = 0. By Lemma 3, we know that u takes
the form

u = v +
∑

|αn|>kp

Ap,n(αn, βn)� exp(iαn · x′ + iβnx3)

+
∑

|αn|>ks

As,n exp(iαn · x′ + iγnx3),
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where

v(x) =
∑

|αn|=kp

Ap,n

(
α�

n

0

)
exp(iαn · x′) +

∑
|αn|=ks

As,n exp(iαn · x′).

One can see from the periodic Rellich identity that the right-hand side of (4.18)
does not depend on the choice of b. Thus, for any ε > 0, there exist c > 0 sufficiently
large so that ∫

Γb

2 Re(Tu · ∂3u) − ν3a(u, u) + ω2|u|2ds

−
∫

Γb

2 Re(Tv · ∂3v) − ν3a(v, v) + ω2|v|2ds

=
∫

Γc

{(2 Re(Tu · ∂3u) − ν3a(u, u) + ω2|u|2)}ds

−
∫

Γc

{(2 Re(Tv · ∂3v) − ν3a(v, v) + ω2|v|2)}ds

< ε,

since the integrands on Γc only consist of exponentially decaying functions as c →
+∞. This gives rise to the equality∫

Γb

2 Re(Tu · ∂3u) − ν3a(u, u) + ω2|u|2ds

=
∫

Γb

2 Re(Tv · ∂3v) − ν3a(v, v) + ω2|v|2ds.

Noting that ∂3v = 0 in R3, by direct calculations one may readily check that∫
Γb

(−a(v, v) + ω2|v|2)ds = 0.

Together with (4.18), this gives the identity∫
Λ

(µ|∂νu|2ν3 + (λ+ µ)|div u|2ν3)ds = 0,

from which ∂νu = 0 on Λ follows. Finally, as a consequence of Holmgren’s unique-
ness theorem, it holds that u = 0 in Vα(Ωb) for any b > Λ+.

Relying on the above uniqueness result for C2 graphs, we adapt Nečas’ approach
in Ref. 31 of approximating a Lipschitz graph by smooth surfaces to prove
Theorem 4. In the following, we sketch the proof of Theorem 4, referring to Elschner
and Hu21 for the details in the case of plane elasticity, which can be carried over to
the 3D case.
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Proof of Theorem 4. Step 1. Choose C∞ graphs Λj = Λfj := {x3 = fj(x′) :
x′ ∈ (0, 2π)×(0, 2π)} such that the Lipschitz constants of fj are uniformly bounded
in j, and

Ωj
b = ΩΛj ,b ⊂ Ωb, max{|fj(x′) − f(x′)| : x′ ∈ [0, 2π] × [0, 2π]} → 0, as j → ∞.

Consider the inhomogeneous boundary value problem

(∆∗ + ω2 + i)uj = iu in Ωj
b,

uj|Λj = 0, Tuj − T (ω, α)uj = 0 on Γb,
(4.19)

and its equivalent variational formulation∫
Ωj

b

[a(uj , ϕ) − (ω2 + i)uj · ϕ]dx−
∫

Γb

ϕ · T (ω, α)ujds = −
∫

Ωb

iu · ϕdx (4.20)

for ϕ ∈ Vα(Ωj
b). Analogously to Corollary 4, one can prove that there exists a

unique solution uj ∈ Vα(Ωj
b) to the above variational formulation and hence to

(4.19). Extending uj by zero to Ωb\Ωj
b, we have uj → u in Vα(Ωb) as j → ∞.

Step 2. Rewrite the boundary value problem (4.19) as

(∆∗ + ω2)uj = hj := i(u− uj) in Ωj
b,

u|Λj = 0, Tuj − T (ω, α)uj = 0 on Γb.
(4.21)

The unique solution uj to the above problem satisfies the identity∫
Ωj

b

[
a(uj , uj) − ω2|uj |2

]
dx−

∫
Γb

uj · T (ω, α)ujds = −
∫

Ωb

hj · ujdx. (4.22)

Then, taking imaginary part of (4.22) and using the identity (4.3), we get

Ij := 4π2

 ∑
|αn|<kp

ω2βn |Aj
p,n|2 +

∑
|αn|<ks

µγn |Aj
s,n|2
 = Im

∫
Ωb

hj · ujdx,

where Aj
p,n and Aj

s,n are the Rayleigh coefficients of uj of the form (2.13). Noting
that uj → u in Vα(Ωb) from Step 1, we have Ij → 0 and thus |Aj

p,n|, |Aj
s,n| → 0

as j → ∞.

Step 3. Applying the periodic Rellich identity (Lemma 4) to problem (4.21), we
obtain

2 Re
∫

Ωb

hj · ∂3ujdx =
∫

Λj

(µ |∂νu
j |2 + (λ+ µ) |div uj|2)ν3ds

+ 4π2

 ∑
|αn|<kp

ω2β2
n |Aj

p,n|2 +
∑

|αn|<ks

µ2γ2
n |Aj

s,n|2
,
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leading to ∫
Λj

|∂νu
j |2ds→ 0, j → ∞.

This together with the Dirichlet boundary condition uj |Λj = 0, j ∈ N, yields that
Tuj|Λj → 0 in L2(0, 2π)3. Finally, by passing to the limit in Betti’s identity∫

Λj

ϕ · Tujds = B(uj , ϕ) +
∫

Ωb

hj · ujdx, ∀ϕ ∈ H1
α(Ωb)3,

we obtain B(u, ϕ) = 0 for all ϕ ∈ H1
α(Ωb)3 and thus Tu|Λ = 0. Applying the unique

continuation principle completes the proof.

Remark 5. Assume Λ has a Lipschitz dissection Λ = ΛD ∪ Σ ∪ ΛI , where ΛD and
ΛI are two disjoint and relative open subsets of Λ having Σ as their common bound-
ary (see Ref. 29). Consider the mixed Dirichlet and Robin boundary conditions

u = 0 on ΛD, Tu− iηu = 0 on ΛI , (4.23)

with a constant η ∈ C satisfying Re η > 0. If ΛI �= ∅ and Λ is given by a Lipschitz
surface, then, there always exists a unique solution u ∈ Eα := {u ∈ H1

α(Ωb)3 : u =
0 on ΛD} to (BVP) under the above mixed boundary conditions (4.23). Note that
in this case, uniqueness follows easily from the Robin boundary conditions on ΛI .
See Refs. 21 and 3 for the proof in the 2D case.

All the existence and uniqueness results in Sec. 4 remain true, if Λ is given by a
polyhedral surface (in Lemma 3, Theorems 2 and 3) or by the graph of a piecewise
linear function (in Theorem 4). Note that the Betti formula can always be applied
to a polyhedral domain which is not necessarily a Lipschitz domain in R3. To prove
Theorem 4 for polyhedral gratings, one may directly obtain the uniqueness from
Corollary 5, since in this case each solution belongs to H3/2+ε(Ωb) for any ε > 0
so that Lemmas 4 and 5 are still valid. Moreover, Theorem 4 can be extended to a
polyhedral profile on which the third component of the normal vanishes on a subset
and has a positive lower bound on the other parts. Such a polyhedral surface may
not be a graph, e.g. the cubic grating where the profile consists of a finite number
of horizontal and vertical planes only.

4.4. Non-uniqueness examples under the second, third and fourth

kind boundary conditions

Assume that Λ is a flat grating given by Γ0 := {(x1, x2, 0) : 0 < x1, x2 < 2π}.
We shall present non-uniqueness examples for this flat grating Λ under the second,
third and fourth kind boundary conditions. To do this, we construct nontrivial
solutions to the homogeneous problem (BVP) (for uin = 0), provided that Rayleigh
frequencies occur in the expansion (2.13).

1150019-26



February 20, 2012 10:39 WSPC/103-M3AS 1150019

Scattering of Plane Elastic Waves by Three-Dimensional Diffraction Gratings

Suppose that u is a radiating solution of the form (2.13) in x3 > 0, and that
the Neumann boundary condition is imposed on {x3 = 0}. Since the unit normal ν
on Λ coincides with e3, the boundary condition Tu = 0 on Λ can be written as

e3 · Tu = 2µ∂3u3 + λdiv u = λ(∂1u1 + ∂2u2) + (λ+ 2µ)∂3u3 = 0,

e3 × Tu = 2µe3 × ∂3u+ µe3 × (e3 × curlu)= µ(−∂3u2 − ∂2u3, ∂3u1 + ∂1u3, 0) = 0.

Applying the above two identities to the radiating solution u of the form (2.13) and
using the orthogonality relation (2.14), we obtain

0 = i


λk2

p + 2µβ2
n 0 0 2µγn

2α(2)
n βn 0 γn α

(2)
n

2α(1)
n βn γn 0 α

(1)
n

0 α
(1)
n α

(2)
n γn


(
Ap,n

A�
s,n

)
:= iEnAn. (4.24)

It is not difficulty to check that

det(En) = γn[(λk2
p + 2µβ2

n)(|αn|2 − γ2
n) − 4µβnγn|αn|2]. (4.25)

Thus det(En) = 0 if γn = 0, or βn = 0 and γ2
n = k2

p. If γn = 0, it follows from
(4.24) that

Ap,n = 0, A(3)
s,n = 0, α(1)

n A(1)
s,n + α(2)

n A(2)
s,n = 0,

leading to

u =
∑

γn=0

Cn(−α(2)
n , α(1)

n , 0)� exp (iαn · x′), (4.26)

where Cn ∈ C are arbitrary constants. If βn = 0 and γ2
n = k2

p for some n ∈ Z2, we
deduce from (4.24) that

A(3)
s,n =

λk2
p

2µγn
Ap,n, A(1)

s,n = − λ

2µ
α(1)

n Ap,n, A(2)
s,n = − λ

2µ
α(2)

n Ap,n.

In this case, we have

u =
∑

βn=0,γ2
n=k2

p

Ap,n

{(
α�

n

0

)
+

λ

2µ

(
−α�

n

−k2
p/γn

)
exp(iγnx3)

}
exp(iαn · x′), (4.27)

with Ap,n ∈ C. Thus the non-uniqueness examples for the second boundary value
problem can be constructed from (4.26) and (4.27).

We next consider the third (respectively fourth) kind boundary conditions,
which take the form

u3 = ∂3u1 = ∂3u2 = 0 respectively ∂3u3 = u1 = u2 = 0 on {x3 = 0}.
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Inserting the Rayleigh expansion (2.13) into the above boundary conditions and
using the fact that {exp(iαn · x′) : n ∈ Z2} is an orthogonal basis of L2((0, 2π) ×
(0, 2π))3, one can prove that

Proposition 6. (1) Under the third kind boundary conditions, ν × Tu = ν ·u = 0,
on {x3 = 0}, the nontrivial solution to the homogeneous problem (BVP) takes the
form

u =
∑

βn=0

Ap,n(α(1)
n , α(2)

n , 0)� exp(iαn · x′) with Ap,n ∈ C, in x3 > 0,

provided that a Rayleigh frequency of the compressional part occurs, i.e. the set
{n ∈ Z2 : βn = 0} �= ∅.

(2) Under the fourth kind of boundary conditions, ν ·Tu = ν × u = 0, on {x3 = 0},
the nontrivial solution to the homogeneous problem (BVP) takes the form

u = e3
∑

γn=0

A(3)
s,n exp(iαn · x′) with A(3)

s,n ∈ C, in x3 > 0,

provided that a Rayleigh frequency of the shear part occurs, i.e. the set {n ∈ Z2 :
γn = 0} �= ∅.

We omit the proofs of these results for the sake of brevity. Note that the solu-
tions to the problem (BVP) for a flat grating under the boundary conditions of
the third (respectively fourth) kind must be unique if Rayleigh frequencies of the
compressional (respectively shear) part are excluded.

5. Solvability Results for Multilayered Diffraction Gratings

The aim of this section is to provide a solvability theory of multilayered diffraction
problems for several elastic materials, extending the results for impenetrable grat-
ings to transmission gratings. Suppose the whole space R3 is divided by several dis-
joint interfaces Λj (j = 1, 2, . . . , N) into N + 1 sections Ωj (j = 0, 1, . . . , N) which
are filled with different homogeneous elastic materials. For simplicity we assume
throughout this section that N = 2 and Λj are Lipschitz surfaces which are peri-
odic with respect to x1 and x2; see Fig. 2. We assume further that a time-harmonic
plane elastic wave U in with the incident angles θ1 ∈ [0, π/2), θ2 ∈ [0, 2π) is incident
on the grating from the upper half-space Ω0, and that both the displacement and
stress are continuous across each interface Λj .

We introduce the following notations for several elastic materials. Let µj , λj

denote the Lamé coefficients in Ωj satisfying µj > 0, λj + 2µj/3 > 0; ρj > 0
denotes the mass densities in Ωj , which are positive constants; let kp,j :=
ω
√
ρj/(2µj + λj), ks,j := ω

√
ρj/µj denote the corresponding compressional and

shear wave numbers in Ωj ; Tj stands for the stress operators defined as in (2.7),
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Fig. 2. A multilayered diffraction grating.

with µ, λ replaced by µj , λj ; and βn,j , γn,j (j = 0, 2) are the parameters defined as
in (2.11) with kp, ks replaced by kp,j , ks,j . Throughout this section, we assume U in

is either an incident pressure wave of the form (2.15) with kp replaced by kp,0, or
an incident shear wave of the form (2.16) with ks replaced by ks,0.

Then we are looking for the total displacement field u,

u = U in + U0 in Ω0, u = Uj in Ωj , j = 1, 2 (5.1)

satisfying the Navier equations

(∆∗ + ω2ρj)Uj = 0 in Ωj , j = 0, 1, 2, (5.2)

with the α-quasi-periodicity condition

u(x′ + 2nπ, x3) = exp(i2πα · n)u(x1, x2, x3), ∀n ∈ Z2. (5.3)

Here α := k(sin θ1 cos θ2, sin θ1 sin θ2) with k = kp,0 for the incident pressure wave,
or k = ks for the incident shear wave. On the interfaces the continuity of the
displacement and the stress lead to the transmission conditions

U in + U0 = U1, T0(U in + U0) = T1(U1) on Λ1, (5.4)

U1 = U2, T1(U1) = T2(U2) on Λ2. (5.5)

Finally, we impose the following radiation conditions on the scattered fields Uj

(j = 0, 2) (cf. (2.13)):

U0(x) =
∑
n∈Z2

{
A+

p,n(αn, βn,0)� exp(iαn · x′ + iβn,0x3)

+A+
s,n exp(iαn · x′ + iγn,0x3)

}
(5.6)
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for x3 > Λ+
1 := maxx∈Λ1 x3, and

U2(x) =
∑
n∈Z2

{
A−

p,n(αn,−βn,2)� exp(iαn · x′ − iβn,2x3)

+A−
s,n exp(iαn · x′ − iγn,2x3)

}
(5.7)

for x3 < Λ−
2 := minx∈Λ2 x3, where A±

s,n ∈ C3 fulfill the orthogonality relations

A+
s,n · (αn, γn,0) = 0, A−

s,n · (αn,−γn,2) = 0 for all n = (n1, n2) ∈ Z2.

The diffraction problem for transmission gratings can now be formulated as the
following boundary value problem.

Transmission problem (TP). Given two surfaces Λ1,Λ2 ⊂ R3 (which are
2π-periodic in x1 and x2) and an incident plane pressure or shear wave U in, find a
vector function u ∈ H1

loc(R
3)3 that satisfies (5.1)–(5.7).

Following the approach of Sec. 3, we reduce the problem (TP) to a variational
problem in a bounded periodic cell in R3, enforcing the transmission and radiation
conditions. In this case, we introduce the artificial boundaries

Γ± := {(x′, b±) : 0 ≤ x1, x2 ≤ 2π}, for some b+ > Λ+
1 , b

− < Λ−
2 ,

so that we have the bounded domain

Ωb := (0, 2π) × (0, 2π) × (b−, b+).

The DtN maps T ± on the artificial boundaries Γ± have the Fourier series
representations (cf. Lemma 1)

T ±u± :=
∑
n∈Z2

iW±
n û

±
n exp(iα · x′),

u± =
∑
n∈Z2

û±n exp(iα · x′) ∈ H1/2
α (Γ±)3,

(5.8)

where the matrices W±
n = W±

n (ω, α) are defined as in (3.7) with ω, µ, λ replaced
by ωρj , µj , λj (j = 0 for W+

n and j = 2 for W−
n ) respectively. Applying the first

Betti formula on each sub-domain Ωj ∩ Ωb (j = 0, 1, 2) to a solution of (TP), and
using the transmission conditions (5.4) and (5.5) at the interfaces and the DtN
operators (5.8), we obtain the following variational formulation of (TP) on the
bounded domain Ω: Find u ∈ H1

α(Ω)3 such that

B(u, ϕ) :=
∫

Ω

(a(u, ϕ) − ω2ρu · ϕ)dx −
∫

Γ+
ϕ · T +uds−

∫
Γ−

ϕ · T −uds

=
∫

Γ+
f0 · ϕds, ∀ϕ ∈ H1

α(Ω)3. (5.9)
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Here the domain integral is understood as the sum of the integrals

2∑
j=0

∫
Ωj∩Ωb

(aj(u, ϕ) − ω2ρju · ϕ)dx,

where the bilinear forms aj are defined as in (3.2), with µ, λ replaced by µj , λj . The
right-hand side f0 := T (U in) − T (U in) takes the same form as in (4.13) or (4.14),
with kp, ks, βn, γn replaced by kp,j , ks,j , βn,j, γn,j . As in (3.26), the sesquilinear form
B defined in (5.9) generates a continuous linear operator B from H1

α(Ω)3 into its
dual (H1

α(Ω)3)′, with respect to the pairing (u, ϕ)Ω =
∫
Ω
u · ϕ̄dx, via

B(u, ϕ) = (Bu, ϕ)Ω, ∀u, ϕ ∈ H1
α(Ω)3. (5.10)

The following lemma extends Lemma 3 to the transmission case.

Lemma 6. Let B be the operator defined in (5.10). If a radiating solution u ∈
H1

α(Ω)2 satisfies Bu = 0, then

A+
p,n = 0 for |αn| < kp,0 and A+

s,n = 0 for |αn| < ks,0,

A−
p,n = 0 for |αn| < kp,2 and A−

s,n = 0 for |αn| < ks,2.

The following results extend Theorems 1 and 2 to the transmission problem. For
the proofs of Theorems 7 and 8, we refer to Ref. 21 in the case of plane elasticity
which can be carried over to three dimensions.

Theorem 7. (i) The sesquilinear form B defined by (5.9) is strongly elliptic over
H1

α(Ω)3, and the operator B defined in (5.10) is Fredholm with index zero.

(ii) For an incident plane wave U in of the form (2.15) or (2.16), there always exists
a solution to the variational problem (5.9) and hence to problem (TP).

Theorem 8. Let U in be an incident pressure wave of the form (2.15), where α :=
kp,0(sin θ1 cos θ2, sin θ1 sin θ2).

(i) There exists ω0 > 0 such that the variational problem (5.9) admits a unique
solution u ∈ H1

α(Ω)3 for all incident angles and for all frequencies ω ∈ (0, ω0].
(ii) For all but a sequence of countable frequencies ωj, ωj → ∞, the variational

problem (5.9) (with fixed incident angles θ1 and θ2) admits a unique solution
u ∈ H1

α(Ω)3.

Remark 6. In the case of an incident shear wave U in of the form (2.16) with
α := ks,0(sin θ1 cos θ2, sin θ1 sin θ2), Theorem 8 holds under one of the following
additional assumptions

(a) ks,0 sin θ1 < kp,0, or equivalently, sin2 θ1
µ0

< 1
λ0+2µ0

;

(b) ks,0 sin θ1 < kp,2, or equivalently, sin2 θ1ρ0
µ0

< ρ2
λ2+2µ2

.
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Note that by Lemma 6, the (0, 0)th Fourier coefficient of exp(−iα · x′)U0(x)|Γ+

vanishes if (a) holds, while that of exp(−iα · x′)U2(x)|Γ− vanishes if (b) holds.
Thus an analogous estimate to (4.16) on Γ+ or Γ− can be derived; see the proof of
Theorem 3(i) and Remark 4.

The uniqueness of (TP) does not hold for all frequencies, even in the special case
of one interface Λ1 := {x3 = 0} dividing R3 into two half-spaces Ω0 := {x3 > 0}
and Ω1 := {x3 < 0} with certain elastic parameters λj , µj , ρj (j = 0, 1). If all
elastic waves are assumed to be propagating perpendicular to the x3-axis, this
problem can be reduced to a problem of plane elasticity over the (x1, x2)-plane
with the continuity of the displacement and stress on the line {x2 = 0} in R2. It
was shown in Ref. 2 that there may exist nontrivial solutions (Rayleigh surface
waves) of the two-dimensional homogeneous problem that decay exponentially as
x2 → ±∞. Hence additional conditions must be imposed on the elastic parameters
or grating profiles to guarantee uniqueness for (TP). In this direction, we refer to
Refs. 10 and 13 for non-trapping conditions on the refractive index in the case of
the Helmholtz equation.

Remark 7. We think that our H1
α-solvability result of Theorem 8 can be extended

to periodic interpenetrating (intersecting) interfaces, at least in the case of poly-
hedral grating profiles. We refer e.g. to Ref. 33 for general elliptic transmission
problems on bounded domains.
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