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Abstract
Assume that a bounded scatterer is embedded into an infinite homogeneous 
isotropic background medium in two dimensions. The refractive index 
function is supposed to be piecewise constant. If the scattering interface 
contains a weakly singular point, we prove that the scattered field cannot 
vanish identically. This implies the absence of non-scattering energies for 
piecewise analytic interfaces with one singular point. Local uniqueness is 
obtained for shape identification problems in inverse medium scattering with 
a single far-field pattern.

Keywords: uniqueness, inverse medium scattering, non-scattering energy, 
weakly singular corners, Helmholtz equation

1.  Introduction

Assume a time-harmonic incoming wave uin is incident onto a bounded penetrable scat-
terer D ⊂ R2  embedded in a homogeneous isotropic background medium. We assume that 
the boundary ∂D is Lipschitz continuous and piecewise analytic, and that the complement 
De := R2\D  of D is connected. The wave propagation of the total field u = uin + usc is then 
modeled by the Helmholtz equation

∆u + k2q u = 0 in R2.� (1.1)

In this paper the refractive index (potential) function q is supposed to be a piecewise constant 
function, given by
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q(x) =
{

1, if x ∈ De,
q0 �= 1, if x ∈ D.

Across the interface ∂D, we assume the continuity of the total field and its normal derivative, 
i.e.

u+ = u−, ∂νu+ = ∂νu− on ∂D.� (1.2)

Here the superscripts (·)± stand for the limits taken from outside and inside, respectively, and 
ν ∈ S := {x ∈ R2 : |x| = 1} is the unit normal on ∂D pointing into De. At the infinity, the 
perturbed scattered field usc is supposed to fulfill the Sommerfeld radiation condition

lim
|x|→∞

√
|x|

{
∂usc

∂|x|
− ikusc

}
= 0.� (1.3)

The unique solvability of the scattering problem (1.1), (1.3) and (1.2) in H2
loc(R2) is well 

known (see e.g. [6, chapter 8]). In particular, the Sommerfeld radiation condition (1.3) leads 
to the asymptotic expansion

usc(x) =
eik|x|
√
|x|

u∞(x̂) +O
(

1
|x|3/2

)
, |x| → +∞,� (1.4)

uniformly in all directions x̂ := x/|x|, x ∈ R2. The function u∞(x̂) is an analytic function 
defined on S and is referred to as the far-field pattern or the scattering amplitude. The vec-
tor x̂ ∈ S is called the observation direction of the far field. The classical inverse scattering 
problem consists of the recovery of the boundary ∂D from the far-field patterns corresponding 
to one or several incident plane waves. In this paper we are concerned with the following 
questions:

	 (i)	�Is it possible that usc ≡ 0 in De for any incident wave ? 
	(ii)	�Does the far-field pattern of a single incoming wave uniquely determine ∂D ? 

The obstacle D scatters an incident wave non-trivially, if usc does not vanish identically in 
De. A negative answer to the first question means that acoustic cloaking cannot be achieved 
using isotropic materials, while a positive answer implies that k2 is a non-scattering wavenum-
ber (energy). The study of non-scattering energies dates back to [13] in the case of a convex 
(planar) corner domain, where notion of scattering support for an inhomogeneous medium 
was explored. In one of the authors’ previous work [8], it was shown that variable potential 
functions with the following corners on ∂D:

	 •	�curvilinear polygonal corners in R2; 
	 •	�curvilinear polyhedral corners in R3; 
	 •	�circular conic corners in R3; 

scatters every incident wave non-trivially. Earlier publications were devoted to the absence of 
non-scattering energies under more restrictive assumptions on the smoothness of the potential 
or the angle of the corner. Here we mention the following works in the acoustic case:

	 •	�C∞-potentials with rectangular corners in Rn (n � 2) [1]; 
	 •	�Hölder continuous potentials with convex corners in R2, and with circular conic corners 

in R3 whose opening angle is outside of a countable subset of (0,π) [14]; 
	 •	�analytical potentials with arbitrary polygonal corners or polyhedral wedge corners [7]; 
	 •	�Hölder continuous potentials with rectangular corners in R3 [9].

L Li et alInverse Problems 34 (2018) 075002
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The argument of the pioneering work [1] was based on the use of complex geometric optics 
(CGO) solutions, which was later extended to [14] and [9] for treating less regular potentials 
and convex corners. The approach of [7] relies on the expansion of solutions to the Helmholtz 
equation with real-analytic potentials. For general potentials and corners, the absence of non-
scattering energies can be verified via singularity analysis of the inhomogeneous Laplace 
equation in a cone [8]. We remark that the first question is closely related to the second one, 
that is, the approach for proving absence of non-scattering wavenumbers can be used to derive 
uniqueness to shape identification problems in inverse medium scattering. However, the two 
questions are not equivalent to each other. The second question seems more difficult than the 
first one. It was first proved in [7] that the shape of a convex penetrable obstacle of polygonal 
or polyhedral type with an unknown analytical potential can be uniquely determined by a 
single far-field pattern. The CGO-solution methods of [1, 14] also lead to uniqueness in shape 
identification but are confined so far to convex polygons in R2 and rectangular boxes in R3 
with Hölder continuous potentials (see [9]). In [8, corollay 2.1], the uniqueness result of [7] 
was extended to more general potential functions using the data of a single far-field pattern.

2.  Main results

The main purpose of this paper is to exclude (positive) real non-scattering energies when ∂D 
contains a weakly singular corner, around which the boundary is allowed to be C1-smooth but 
piecewise analytic. The corners mentioned in the previous section are all strongly singular in 
the following sense.

Definition 2.1.  A point O ∈ ∂D ⊂ R2 is called strongly singular if the boundary around O 
can be locally parameterized by a continuous and piecewise analytic function whose deriva-
tive is discontinuous at O.

Evidently, every planar corner point of a polygon with flat slides is strongly singular, 
because the boundary can be locally parameterized by a piecewise linear function, whose first 
derivative is piecewise constant. A curvilinear corner of D (see e.g. definition 2.1 of [8] for a 
precise description) is also strongly singular by definition 2.1. Below we state the definition of 
weakly singular corners to be explored within the scope of this paper.

Definition 2.2.  A point O = (0, 0) ∈ ∂D is called weakly singular if the subboundary 
Bε(O) ∩ ∂D for some ε > 0 can be parameterized by the polynomial function x2 = f (x1), 
x1 ∈ (−1, 1), where

f (x1) =

{
c1 xα1

1 , 1 > x1 � 0,
c2 xα2

1 , −1 < x1 � 0,� (2.1)

and the coefficients cj ∈ R and αj ∈ N+ are assumed to fulfill the relations

(c1,α1) �= (c2,α2), c2
1 + c2

2 �= 0, αj � 2.

The order of the singularity at O is defined as

β :=



min{α1,α2} if c1 �= 0, c2 �= 0,
α1 if c2 = 0,
α2 if c1 = 0.

L Li et alInverse Problems 34 (2018) 075002
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The boundary around a weakly singular point of order β is Cβ−1-smooth but piecewise 
Cβ-smooth, that is, the βth derivative is discontinuous at O. A singular point of order one must 
be strongly singular in the sense of definition 2.1.

Definition 2.3.  A point O ∈ ∂D is called singular if it is either strongly singular in the 
sense of definition 2.1 or weakly singular in the sense of definition 2.2.

The singular points defined by definition 2.3 form only a subset of non-analytic points 
of the boundary. In fact, the polynomial functions described in (2.1) can be regarded as the 
leading terms of the Taylor expansion of an analytic function at x1 = 0±. If q is a piecewise 
constant function in R2, we shall prove that

Theorem 2.4.  The obstacle D ⊂ R2  scatters every incoming wave, if ∂D contains a sin-
gular point.

Only local properties of the Helmholtz equation are involved in the proof of theorem 2.4. 
Consequently, we get a local uniqueness result to the inverse scattering for shape identification:

Theorem 2.5.  Let Dj ( j = 1, 2) be two penetrable obstacles in R2 with the piecewise con-
stant potential functions qj, respectively. If ∂D2 differs from ∂D1 in the presence of a singular 
point lying on the boundary of the unbounded component of R2\(D1 ∪ D2), then the far-field 
patterns corresponding to Dj and qj incited by any incoming wave cannot coincide.

Theorem 2.5 can be used to distinguish two penetrable scatterers with a piecewise constant 
potential. Equivalently, theorem 2.5 can be reformulated as follows:

Corollary 2.6.  Let Dj ⊂ R2 ( j = 1, 2) be two penetrable obstacles in R2 with the piecewise 
constant potential functions qj, respectively. Assume that ∂Dj are piecewise analytic and all 
non-analytical points of the boundary are singular corners defined by definition 2.3. If the far-
field patterns corresponding to (Dj, qj) incited by a single incoming wave are identical, then 
the boundary of the unbounded component of R2\(D1 ∪ D2) must be analytic.

If ∂D possesses a strongly singular corner, the proofs of theorems 2.4 and 2.5 are implicitly 
contained in [8, proposition 12]. In the case that D is a polygon, the proofs simply follow from 
[7] where variable analytical potential functions were treated. The main contribution of this 
paper is to deal with scattering interfaces with weakly singular points in R2 (that is, the order 
of singularity is β � 2). The above results imply that a Lipschitz domain with a singular point 
on the boundary cannot scatter every incoming wave trivially in two dimensions. Theorem 
2.4 follows straightforwardly from lemma 3.1 below for weakly singular points. Theorem 2.5 
and corollary 2.6 can be verified in the same manner as the proof of theorem 2.4. We omit the 
proofs for simplicity. Note that if the far-field data is available for all incident directions but at 
fixed energy, uniqueness was verified based on the idea of Isakov; see [11, 12]. We also refer 
to [2, 10] and [6, chapter 10] for unique determination of potential functions from the data of 
infinitely many plane waves or the Dirichlet-to-Neumann map.

3.  Weakly singular points always scatter

This section is devoted to the proof of theorem 2.4 when ∂D contains a weakly singular point. 
Without loss of generality, we suppose that O = (0, 0) is the singular point lying on ∂D. 
Assuming that usc vanishes in De, we shall derive a contradiction. Suppose that the boundary 
∂D in a neighborhood of O can be expressed as Γ = {(x1, f (x1)) : x1 ∈ (−1, 1)}, where the 
function f is given by (2.1). Since usc = 0 in De, the Cauchy data of u on Γ coincide with those 
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of uin, which are analytic. Observing that q is a constant on D  and Γ is piecewise analytic, 
by Cauchy–Kovalevskaya theorem, one may extend u analytically from D ∩ B1 to a small 
neighborhood of O in the exterior domain De ∩ B1. For notational convenience, we suppose 
the extended domain contains B1. Further, the extended function, which we still denote by u, 
satisfies the Helmholtz equation

∆u + k2q0u = 0 in B1.

Hence, we deduce the transmission problem for the Helmholtz equations
{
∆uj + qjuj = 0, j = 1, 2, in B1,
u1 = u2, ∂u1

∂ν = ∂u2
∂ν on Γ,� (3.1)

where

u1 = uin, u2 = u, q1 = k2, q2 = k2q0.

To prove theorem 2.4 in the weakly singular case, it is essential to prove that

Lemma 3.1.  Suppose that uj ∈ H2(B1) ( j = 1, 2) are solutions to (3.1). If q1 �= q2, then 
u1 = u2 ≡ 0 in B1.

By lemma 3.1 and the unique continuation, uin vanishes identically in R2 which is impossi-
ble. Hence, a piecewise constant potential with a weakly singular point on the boundary of the 
support always scatter. It seems non-trivial to prove the above lemma by extending the analy-
sis for treating curvilinear corners [8, proposition 12] to the case of weakly singular points. 
The analytical approach of using polar coordinates (see [7]) also turns out to be complicated. 
Below we shall present a novel approach by using the expansion of solutions to the Helmholtz 
equation in the Cartesian coordinate system.

Since uj satisfies the Helmholtz equation and qj is constant, the solution uj is analytic in B1. 
Hence, uj can be expanded into the convergent Taylor expansion

uj =
∑
n�0

∑
m�0

a( j)
n,m xn

1 xm
2 in B1,

where the coefficients a( j)
n,m ∈ C satisfy the relation

(n + 1)(n + 2)a( j)
n+2,m + (m + 1)(m + 2)a( j)

n,m+2 + qja( j)
n,m = 0.� (3.2)

Set u = u1 − u2. Then u admits the Taylor expansion

u =
∑
n�0

∑
m�0

an,mxn
1xm

2 in B1, an,m := a(1)
n,m − a(2)

n,m,

and satisfies the equation ∆u + q1u = (q2 − q1)u2 in B1. The implies that the coefficients an,m 
fulfills the recursive relation

(n + 1)(n + 2)an+2,m + (m + 1)(m + 2)an,m+2 + q1an,m = (q2 − q1)a(2)
n,m.

�
(3.3)

Combining (3.2) and (3.3), we deduce that

0 = (m + 4)(m + 3)(m + 2)(m + 1)an,m+4 + (n + 4)(n + 3)(n + 2)(n + 1)an+4,m

+ 2(n + 2)(n + 1)(m + 2)(m + 1)an+2,m+2

+ (q1 + q2)(n + 2)(n + 1)an+2,m + (q1 + q2)(m + 2)(m + 1)an,m+2

+ q2q1an,m.
�

(3.4)

L Li et alInverse Problems 34 (2018) 075002
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We shall prove an,m  =  0 for all n, m ∈ N through (3.4) and the transmission conditions

u = ∂νu = 0 on Γ.

This together with (3.3) would give rise to a(2)
n,m = a(1)

n,m = 0.
Denote by Γ1 := {(x1, f (x1) : x1 ∈ [0, 1)} and Γ2 = {(x1, f (x1) : x1 ∈ (−1, 0])}, with the 

normal directions given by

ν(1)(x1) = (α1c1xα1−1
1 ,−1)�, x1 > 0; ν(2)(x1) = (α2c2xα2−1

1 ,−1)�, x1 < 0,

respectively. Observe that

∂u
∂x1

=
∑
n�0

∑
m�0

an+1,m(n + 1)xn
1xm

2 ,
∂u
∂x2

=
∑
n�0

∑
m�0

an,m+1(m + 1)xn
1xm

2 .

It follows from ∂νu = 0 on Γj  ( j = 1, 2) that

α1

∑
n�0

∑
m�0

an+1,m(n + 1)xn+α1m+α1−1
1 cm+1

1 −
∑
n�0

∑
m�0

an,m+1(m + 1)xn+α1m
1 cm

1 = 0,

�

(3.5)

α2

∑
n�0

∑
m�0

an+1,m(n + 1)xn+α2m+α2−1
1 cm+1

2 −
∑
n�0

∑
m�0

an,m+1(m + 1)xn+α2m
1 cm

2 = 0.

�

(3.6)

Without loss of generality, we suppose that α1 � α2. In order to prove lemma 3.1, we will 
consider two cases:

Case 1: α1 = α2 � 2;                               Case 2: 2 � α1 < α2.
The proofs in cases 1 and 2 will be carried out in the subsequent two subsections, separately.

3.1.  Proof of lemma 3.1 when α1 = α2 � 2

For notational convenience we set α := α1 = α2 � 2. Equating coefficients of x1
l 

(l ∈ N, l � α− 1) in (3.5) and (3.6) and changing properly the summation indices, we obtain
∑

n+αm=l−α+2,n�1,m�0

αnan,mcm+1
1 −

∑
n+αm=l+α,n�0,m�1

man,mcm−1
1 = 0,� (3.7)

∑
n+αm=l−α+2,n�1,m�0

αnan,mcm+1
2 −

∑
n+αm=l+α,n�0,m�1

man,mcm−1
2 = 0.� (3.8)

On the other hand, the Dirichlet condition u  =  0 on Γ gives the relations
∑
n�0

∑
m�0

an,mxn+αm
1 c1

m = 0,
∑
n�0

∑
m�0

an,mxn+αm
1 cm

2 = 0.� (3.9)

Equating coefficients of x1
l (l ∈ N, l � 0) in (3.9), we get

∑
n+αm=l,n�0,m�0

an,mc1
m = 0,

∑
n+αm=l,n�0,m�0

an,mc2
m = 0.� (3.10)

By (3.7), (3.8) and (3.10) we shall prove an,m  =  0 for all n + αm = j ( j ∈ N) by an induction 
argument on the index j ∈ N. We divide the proof into four steps.

	Step 1:	� Prove aj,0  =  0 for all j = 0, 1, . . . α− 1. This follows from (3.10) with n + αm = l 
for l = 0, 1, . . . α− 1.

L Li et alInverse Problems 34 (2018) 075002
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	Step 2:	� Prove aj,0 = aj−α,1 = 0 for all j = α,α+ 1, · · · , 2α− 1. Setting 
l = α,α+ 1, . . . , 2α− 1 in (3.10), we obtain

al,0 + c1al−α,1 = 0, al,0 + c2al−α,1 = 0.

Since c1 �= c2, we see al,0 = al−α,1 = 0.
	Step 3:	� Prove aj,0 = aj−α,1 = aj−2α,2 = 0 for all j = 2α, 2α+ 1, · · · , 3α− 1. As done in 

previous two steps, setting n + αm = 2α, 2α+ 1, . . . , 3α− 1 in (3.10), we find

aj,0 + c1aj−α,1 + c1
2 aj−2α,2 = 0, aj,0 + c2aj−α,1 + c2

2 aj−2α,2 = 0.� (3.11)

		 On the other hand, one may conclude from Steps 1 and 2 that

an,m = 0 if n + αm < j.

		 This together with α � 2 implies that

0 =
∑

n+αm=j−2α+2,n�1,m�0

αnan,mcm+1
1 =

∑
n+αm=j,n�1,m�0

αnan,mcm+1
2 .

		 Hence, setting l = j − α in (3.7) and (3.8) gives the relations

aj−α,1 + 2c1aj−2α,2 = 0, aj−α,1 + 2c2aj−2α,2 = 0.� (3.12)

Therefore, combining (3.11) and (3.12) yields aj,0 = aj−α,1 = aj−2α,2 = 0. Further, 
we conclude from Steps 1–3 that

an,m = 0 if n + αm < 3α.� (3.13)

	Step 4:	� Prove aj,0 = aj−α,1 = aj−2α,2 = aj−3α,3 = 0 for all j = 3α, 3α+ 1, · · · , 4α− 1. 
Setting n + αm = 3α, 3α+ 1, . . . , 4α− 1 in (3.10), we get for such j that

aj,0 + c1aj−α,1 + c1
2aj−2α,2 + c1

3aj−3α,3 = 0,

aj,0 + c2aj−α,1 + c2
2aj−2α,2 + c2

3aj−3α,3 = 0.

		 Setting l = j − α in (3.7) and (3.8) and making use of (3.13), we obtain

aj−α,1 + 2c1aj−2α,2 + 3c1
2aj−3α,3 = 0,

aj−α,1 + 2c2aj−2α,2 + 3c2
2aj−3α,3 = 0.

		� For fixed j ∈ {3α, 3α+ 1, · · · , 4α− 1}, the previous relations can be written as the 
system




1 c1 c1
2 c1

3

1 c2 c2
2 c2

3

0 1 2c1 3c1
2

0 1 2c2 3c2
2







aj,0

aj−α,1

aj−2α,2

aj−3α,3


 = 0.� (3.14)

		� It is not difficult to check that the determinant of the matrix on the left hand side 
of (3.14) is −(c1 − c2)

4 �= 0, implying that aj,0 = aj−α,1 = aj−2α,2 = aj−3α,3 = 0. 
Hence, it holds that

an,m = 0 if n + αm < 4α.

	Step 5:	� Induction arguments. We make the induction hypothesis an,m  =  0 for all n + αm < M 
for some M � 4α, M ∈ N. We need to prove that

an,m = 0 if n + αm = M.� (3.15)

L Li et alInverse Problems 34 (2018) 075002
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We first claim that

an,m = 0, if n + αm = M, m � 4.� (3.16)

Let n′ = n, m′ = m − 4 � 0. Then we see i

n′ + α(m′ + 4) = M, n′, m′ � 0.

One can readily prove that

n′ + 4 + αm′ < M, n′ + 2 + α(m′ + 2) < M, n′ + 2 + αm′ < M, n′ + α(m′ + 2) < M.

Therefore, by induction hypothesis,

an′+4,m′ = an′+2,m′+2 = an′+2,m′ = an′,m′+2 = 0.

Using (3.4), we get the relation

an′,m′+4 = 0, if n′ + α(m′ + 4) = M, n′, m′ � 0,

which proves (3.16).
To proceed with the proof we set l  =  M in (3.10) to obtain

aM,0 + c1aM−α,1 + c1
2aM−2α,2 + c1

3aM−3α,3 = 0,

aM,0 + c2aM−α,1 + c2
2aM−2α,2 + c2

3aM−3α,3 = 0,

where the relation (3.16) was again used. On the other hand, setting l = M − α in (3.7) and 
(3.8) and recalling the induction hypothesis, we see

aM−α,1 + 2c1aM−2α,2 + 3c1
2aM−3α,3 = 0,

aM−α,1 + 2c2aM−2α,2 + 3c2
2aM−3α,3 = 0.

Note that the coefficient matrix for the unknowns aM,0, aM−α,1, aM−2α,2 and aM−3α,3 is the 
same as the 4-by-4 matrix on the left hand side of (3.14). Since the determinant of this matrix 
does not vanish, we obtain aM,0 = aM−α,1 = aM−2α,2 = aM−3α,3 = 0. This together with 
(3.16) proves (3.15).

By induction, it holds that an,m  =  0 for all n, m ∈ N. In view of (3.3) and the condition 
q1 �= q2, we obtain a(1)

n,m = a(2)
n,m = 0 for all n, m ∈ N. Finally, we get u1 = u2 ≡ 0 in B1 by the 

analyticity of uj ( j = 1, 2).

3.2.  Proof of lemma 3.1 when 2 � α1 < α2

We first observe that the powers of x1 in the first summation on the left hand side of (3.5) and 
(3.6) are all greater than or equal to αj − 1, whereas those in the second summation start from 
zero. Hence, equating coefficients of the term xl

1 (l < αj − 1) in (3.5) and (3.6) yields
∑

n�0,m�1,n+α1m=l+α1

an,mmcm−1
1 = 0, l � α1 − 2,� (3.17)

∑
n�0,m�1,n+α2m=l+α2

an,mmcm−1
2 = 0, l � α2 − 2.� (3.18)

Analogously, equating coefficients of the term xl
1 for l � αj − 1, we obtain
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∑
n+α1m=l−α1+2,n�1,m�0

α1nan,mcm+1
1 −

∑
n+α1m=l+α1,n�0,m�1

man,mcm−1
1 = 0, l � α1 − 1,

� (3.19)
∑

n+α2m=l−α2+2,n�1,m�0

α2nan,mcm+1
2 −

∑
n+α2m=l+α2,n�0,m�1

man,mcm−1
2 = 0, l � α2 − 1.

� (3.20)
From the Dirichlet boundary condition u  =  0 on Γ, we obtain

∑
n�0

∑
m�0

an,mxn+α1m
1 c1

m = 0,
∑
n�0

∑
m�0

an,mxn+α2m
1 cm

2 = 0,

which implies that
∑

n+α1m=l,n�0,m�0

an,mc1
m = 0, l � 0,� (3.21)

∑
n+α2m=l,n�0,m�0

an,mc2
m = 0, l � 0.� (3.22)

Since α1 < α2, the proof in this section is more complicated than previous subsection. We 
shall still apply the induction argument to prove that an,m  =  0 for all n + αm = j, j ∈ N. 
Below we carry out the proof under the assumption that c1 �= 0. If c1  =  0, we have c2 �= 0 
by assumption. Then the interface can be locally parameterized by the function given in (2.1) 
with α1 = α2. Hence, the vanishing of uj in B1 follows from the same arguments used in sec-
tion 3.1, where the case c1  =  0 is covered.

	Step 1:	� Prove aj,0  =  0 for all j = α1,α1 + 1, . . . ,α2 − 1. This follows from (3.22).
	Step 2:	� Prove aj,0 = aj−α1,1 = 0 when j = α1,α2, . . . , min(α2 − 1, 2α1 − 1).

		 Setting j = α1, . . . 2α1 − 1 in (3.21), we obtain

aj,0 + aj−α1,1c1 = 0.� (3.23)

		� This together with the condition c1 �= 0 and the fact that al,0  =  0 for 
l = α1,α1 + 1, . . . ,α2 − 1 (see Step 1) gives the desired result.

	Step 3:	� Induction arguments. Assuming that

an,m = 0 for all n + mα1 < M, M > min(α2 − 1, 2α1 − 1),

		 we will prove that

an,m = 0 for all n + mα1 = M.� (3.24)

Setting l  =  M in (3.22) gives
∑

n+mα2=M,n�0,m�0

an,mcm
2 = 0.� (3.25)

Since α1 < α2, the indices n, m appearing in the above summation fulfill n + mα1 < M if 
m �= 0. By induction hypothesis, this implies that

an,m = 0, if n + mα2 = M, m �= 0.

When m  =  0, it follows from (3.25) that aM,0  =  0. Now, it remains to prove

an,m = 0 for all n + α1m = M, m �= 0� (3.26)

in the following cases.
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3.2.1.  Case 1: M � 2α1 − 1.  Setting l  =  M in (3.21), we obtain

aM,0 + aM−α1,1c1 = 0,

which together with aM,0  =  0 and c1 �= 0 leads to aM−α1,1 = 0. This proves (3.26) when 
M � 2α1 − 1.

3.2.2.  Case 2: 2α1 � M � 3α1 − 1.  Letting l  =  M in (3.21) and using again the fact that 
aM,0  =  0, we obtain

aM−α1,1c1 + aM−2α1,2c1
2 = 0.� (3.27)

Setting l = M − α1 in (3.19) and making use of the induction hypothesis

an,m = 0, for all n + α1m = l − α1 + 2 < M,

we obtain

aM−α1,1 + 2aM−2α1,2c1 = 0.� (3.28)

Combining (3.27) and (3.28) leads to aM−α1,1 = aM−2α1,2 = 0, which proves (3.26).

3.2.3.  Case 3: 3α1 � M � 4α1 − 1.  As done in previous cases, setting l  =  M in (3.21) and 
using aM,0  =  0 gives

aM−α1,1c1 + aM−2α1,2c1
2 + aM−3α1,3c1

3 = 0.� (3.29)

Setting l = M − α1 in (3.19). Recalling from the induction hypothesis that

an,m = 0, if n + α1m = l − α1 + 2 < M,

we obtain

aM−α1,1 + 2aM−2α1,2c1 + 3aM−3α1,3c1
2 = 0.� (3.30)

Next we will show aM−α1,1 = 0. Write N = M − α1 + α2 for notational simplicity.
If N � 2α2 − 2, setting l = N − α2 in (3.18) gives aM−α1,1 = 0.
If N � 2α2 − 1, we have the relation

M − α1 + α2 − 2α2 + 2 = M − α1 − α2 + 2 < M.

Letting l = M − α1 in (3.20), we can obtain
∑

n+α2m=N,n�0,m�1

an,mmc2
m−1 = 0.� (3.31)

Since α2 > α1, it holds that

n + α1m < M for all n + α2m = N, m � 2,

implying that

an,m = 0 for all n + α2m = N, m � 2

due to the induction hypothesis. Hence, it follows from (3.31) that aM−α1,1 = 0. Combining 
this with (3.29) and (3.30) and the fact that c1 �= 0, we obtain aM−2α1,2 = aM−3α1,3 = 0, which 
proves (3.26).
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3.2.4.  Case 4: M � 4α1.  We first prove that

an,m+4 = 0, if n + α1(m + 4) = M, n � 0, m � 0.� (3.32)

Supposing that indices n, m � 0 in (3.4) satisfy the relation n + α1(m + 4) = M . Then we 
have

n + 4 + α1m < M, n + 2 + α1(m + 2) < M,
n + 2 + α1m < M, n + α1(m + 2) < M.

By induction hypothesis, we see

an+4,m = an+2,m+2 = an+2,m = an,m+2 = 0.

Hence, the relation (3.32) follows from (3.4). To prove (3.26) we only need to verify

aM−α1,1 = aM−2α1,2 = aM−3α1,3 = 0.� (3.33)

Analogously to case 3, we will show that aM−α1,1 = 0 by setting N = M − α1 + α2.
If N � 2α2 − 2, letting l  =  N in (3.18) leads to aM−α1,1 = 0.
If N � 2α2 − 1, letting l = M − α1 in (3.20) and noting that

M − α1 + α2 − 2α2 + 2 = M − α1 − α2 + 2 < M,

we obtain
∑

n+α2m=N,n�0,m�1

an,mmc2
m−1 = 0.� (3.34)

Similar to the arguments in section 3.2.3, we can obtain using the induction hypothesis that

an,m = 0 for all n + α2m = N, m � 2,

because n + α1m < M for such indices n and m. Therefore, we get aM−α1,1 = 0 from (3.34). 
Now, setting l  =  M in (3.21), using (3.32) and the fact that aM,0 = aM−α1,1 = 0, we see

aM−2α1,2c1
2 + aM−3α1,3c1

3 = 0.� (3.35)

On the other hand, setting l = M − α1 in (3.19), using aM−α1,1 = 0 and the relations

an,m = 0 for all n + α1m = l − α1 + 2 = M − 2α1 − 2 < M,

we deduce that

2aM−2α1,2c1 + 3aM−3α1,3c1
2 = 0.� (3.36)

Since c1 �= 0, we obtain aM−2α1,2 = aM−3α1,3 = 0 by combining (3.35) and (3.36). This fin-
ishes the proof of (3.26) when M � 4α1.

Finally, the relation (3.24) follows from (3.26) and the fact that aM,0  =  0. The proof of 
lemma 3.1 is thus complete under the assumption that 2 � α1 < α2.

4.  Concluding remarks

In this paper, existing results for strongly singular corners are generalized to the case of weakly 
singular point in 2D. We remark that lemma 3.1 does not hold true if the curve Γ is analytic. 
Counterexamples can be easily constructed when Γ is a line segment (see [8, remark 3.3]) 
or a circle. If Γ ⊂ B1 is a circle of radius R  <  1 centered at the origin, one may find interior 
transmission eigenvalues (ITEs) (or equivalently, q1 and q2) such that the coupling problem
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∆uj + qjuj = 0 in |x| < R, u1 = u2, ∂νu1 = ∂νu2 on |x| = R,
� (4.1)

admits non-trivial solutions u1 and u2 in BR (see e.g. [5]), which can be analytically extended 
to B1. Our lemma 3.1 implies that, if Γ possesses a singular point, the non-trivial solutions uj 
to (4.1) cannot be analytically extended onto B1. We refer to [3–5, 15, 16] for the existence 
of ITEs in inverse scattering theory. Note that all results of this paper carry over to variable 
potential functions which are constant in a small neighborhood of the singular point under 
question. The singular points considered here form only a subset of non-analytical points of 
Γ. We conjecture that lemma 3.1 remain valid under the weak assumption that Γ contains a 
single non-analytical point. However, the proof requires novel mathematical arguments and 
the progress along this direction will be reported in our forthcoming publications.
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