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This article is concerned with uniqueness for reconstructing a periodic
inhomogeneous medium sitting on a perfectly conducting plate. We deal
with the problem in the framework of time-harmonic Maxwell systems
without TE or TM polarization. An orthogonal relation is obtained for two
refractive indices and then used to prove that the refractive index can be
uniquely identified from a knowledge of the incident fields and the total
tangential electric field on a plane above the inhomogeneous medium,
utilizing the eigenvalues and eigenfunctions of a quasi-periodic
Sturm–Liouville eigenvalue problem.

Keywords: inverse electromagnetic scattering; uniqueness; periodic
inhomogeneous layer; Maxwell’s equations

AMS Subject Classifications: 35R30; 35P25; 35B27; 35Q60

1. Introduction

Scattering theory in periodic structures has many applications in micro-optics, radar
imaging and non-destructive testing. We refer to [1] for historical remarks and details
of these applications. Consider a time-harmonic electromagnetic plane wave incident
on a bi-periodic layer sitting on a perfectly conducting plate in R

3. We assume that
the medium inside the layer consists of some inhomogeneous isotropic conducting or
dielectric material, whereas the medium above the layer consists of some homoge-
neous dielectric material. Suppose the magnetic permeability is a fixed positive
constant throughout the whole space. The material properties of the media are then
characterized completely by an index of refraction in the layer and a positive
constant above the layer. The direct scattering problem is, given the incident field
and the bi-periodic refractive index, to study the electromagnetic distributions,
whereas the inverse scattering problem is to determine the refractive index from the
knowledge of the incident waves and their corresponding measured scattered fields.
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Adopting the Cartesian axis ox1x2x3 with the x3-axis vertically upwards,
perpendicular to the plate. If the refractive index is invariant in the x2-direction,
the direct and inverse problems (DP and IP) as indicated above can be dealt with
in the TE polarization case where the electric field E(x) is transversal to the
(x1, x3)-plane by assuming E¼ (0, u(x1, x3), 0), or in the TM polarization case where
the magnetic field H(x) is transversal to the (x1, x3)-plane by assuming H¼
(0, u(x1,x3), 0). In the case of TE polarization, Kirsch [2] has studied the direct
scattering problem via the variational method, and for the IP, instead of constructing
the complex geometrical optical solutions as in the Calderóns problem (see [3,4]),
he considered a class of eigenfunctions to a special kind of quasi-periodic Sturm–
Liouville eigenvalue problem. Relying on the asymptotic behaviour of those
eigenvalues, the uniqueness result for the IP can be proved once the orthogonal
relation for two different refractive indices has obtained. See also [5,6] for the direct
and inverse acoustic scattering by periodic, inhomogeneous, penetrable medium in
the whole R

2. Other uniqueness results for reconstructing the profile of a bi-periodic
perfectly conducting grating can be seen in [7–9].

In this article, we are mainly concerned with the uniqueness issue for
reconstructing the refractive index in the framework of time-harmonic Maxwell
equations without TE or TM polarization. The uniqueness result for the IP in this
article is most closely related in terms of result and method of argument to Kirsch on
the determination of the refractive index in the TE polarization. Inspired by [10] and
[11], we obtain an orthogonality relation for two different refractive indices by using
a D-to-N map on an artificial boundary on which the tangential electric fields are
identical for an integral type of incident electric field. It should be remarked that the
method for constructing geometry optical solutions in [3,10,11] for non-periodic
inverse conductivity problems does not work since the solutions are required to be
quasi-periodic in the periodic case. To reconstruct the refractive index, we follow
Kirsch’s idea [2] (see also [6]) by considering a kind of Sturm–Liouville eigenvalue
problems. We shall prove the uniqueness result when the index depends only on one
direction (x1 or x2). However, we expect the result to hold in a more general case by
constructing special solutions with suitable asymptotic behaviours for the Maxwell
equations.

Scattering by bi-periodic structures have been studied by many authors using
both integral equation methods and variational methods (see, e.g. [12–19]). It is
known that, for all but possibly a discrete set of frequencies, the direct scattering
problem has a unique weak solution in the case of bi-periodic inhomogeneous
medium in the whole R

3, of which an absorbing medium always leads to a
uniqueness result for any frequency. When the refractive index is non-absorbing,
uniqueness can be guaranteed in the TE mode if the refractive index satisfies an
increasing criterion in the x3-direction [5,20]. See also [21] and [22] for the uniqueness
results of more general rough surface scattering by an inhomogeneous medium in a
half space in the TE or TM mode. In this article, we assume that the medium inside
the layer is absorbing so that the uniqueness result for the direct problem holds,
implying that the D-to-N map T (at the end of Section 3), which depends on the
refractive index, is well-defined.

The rest of the article is organized as follows. In Section 2, we set up the precise
mathematical framework and introduce some quasi-periodic function spaces needed.
In Section 3, we consider a quasi-periodic boundary value problem (QPBVP) in a
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periodic cell via the variational approach which is used for the study of the IP.
Uniqueness and existence of solutions to the QPBVP are justified by the classic
Hodge decomposition and the Fredholm alternative. This leads to the definition of a
D-to-N map on an artificial boundary which is continuous and depends on the
refractive index. Section 4 is devoted to the well-posedness of the scattering problem.
In Section 5, we establish a uniqueness result for the inverse scattering problem.

2. Time-harmonic Maxwell equations and quasi-periodic function spaces

2.1. Time-harmonic Maxwell equations

Let R
3
þ ¼ fðx1, x2, x3Þ 2R

3
j x340g and assume that R

3
þ is filled with an inhomoge-

neous, isotropic, conducting or dielectric medium of electric permittivity �40,
magnetic permeability �40 and electric conductivity �� 0. Suppose the medium is
non-magnetic, that is, the magnetic permeability � is a fixed constant in R

3
þ and the

field is source free. Then the electromagnetic wave propagation is governed by the
time-harmonic Maxwell equations (with the time variation of the form e�i!t,!40)

curlE� i!�H ¼ 0, curlHþ i!

�
�þ i

�

!

�
E ¼ 0, ð2:1Þ

where E and H are the electric field and magnetic field, respectively. Suppose the
inhomogeneous medium is 2�-periodic with respect to x1- and x2-directions, that is,
for all n¼ (n1, n2)2Z

2,

�ðx1þ 2�n1,x2þ 2�n2,x3Þ ¼ �ðx1,x2,x3Þ, �ðx1þ 2�n1,x2þ 2�n2,x3Þ ¼ �ðx1,x2,x3Þ:

Further, assume that �(x)¼ �0, �¼ 0 for x34b (which means that the medium above
the layer is lossless) and that the inhomogeneous medium has a perfectly conducting
boundary �0 :¼ {x2R

3
jx3¼ 0}.

Consider a time-harmonic electromagnetic wave (Ei,Hi) incident on the periodic
inhomogeneous layer from the top region � :¼ {x2R

3
j x34b}. The incident wave

(E i,Hi) will be assumed to be a solution of the time-harmonic Maxwell equations
(2.1) in the region � where �¼ 0. We will further assume that Ei and Hi are �-quasi-
periodic with respect to x1 and x2, that is, that for some �¼ (�1,�2, 0)2R

3,
Ei(x1, x2, x3)e

�i��x and Hi(x1, x2,x3)e
�i��x are 2� periodic with respect to x1 and x2,

respectively. The problem of scattering of time-harmonic electromagnetic waves in
this model leads to the following problem (the magnetic field H is eliminated):

curl curlE� k2E ¼ 0 in x3 4 b, ð2:2Þ

curl curlE� k2qE ¼ 0 in �b, ð2:3Þ

�� E ¼ 0 on �0, ð2:4Þ

E ¼ Ei þ Es in R
3
þ, ð2:5Þ

where k ¼
ffiffiffiffiffiffiffiffi
�0�
p

! is the wave number, q(x)¼ (�(x)þ i�(x)/!)/�0 is the refractive
index, � is the unit normal at the boundary and Es is the scattered electric field.
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The periodicity of the medium motivates us to look for �-quasi-periodic
solutions. Since the domain is unbounded in the x3-direction, a radiation condition
must be imposed. It is required physically that the scattered field remains bounded as
x3 tends to þ1, which leads to the so-called outgoing wave condition in the form of

EsðxÞ ¼
X
n2Z2

Ene
ið�n�xþ�nx3Þ, x3 4 b, ð2:6Þ

where �n¼ (�1þ n1,�2þ n2, 0)2R
3, En ¼ ðE

ð1Þ
n ,E ð2Þn ,E ð3Þn Þ 2C

3 are constant
vectors and

�n ¼
ðk2 � j�nj

2Þ
1
2 if j�nj5 k,

iðj�nj
2 � k2Þ

1
2 if j�nj4 k,

(
with i2¼�1. Furthermore, we assume that �n 6¼ 0 for all n2Z

2. The series expansion
in (2.6) is considered as the Rayleigh series of the scattered field and the condition is
called the Rayleigh expansion radiation condition. The coefficients En in (2.6) are
also called the Rayleigh sequence. From the fact that divEs(x)¼ 0 it is clear that

�n � En þ �nE
ð3Þ
n ¼ 0:

The DP is to compute the total field E in R
3
þ, given the incident wave E i, the

refractive index q(x) and the boundary condition on �0. Since only a finite number of
terms in (2.6) are upward propagating plane waves and the rest is evanescent modes
that decay exponentially with distance away from the periodic medium, we use the
near field data rather than the far field data to reconstruct the refractive index q(x).
Thus, our IP is to determine the periodic medium q(x) from a knowledge of the
incident wave Ei and the total tangential electric field ��E on a plane
�a¼ {x2R

3
jx3¼ a} above the layer (a4b).

Remark 2.1 Two frequently used incident waves are the plane waves

Ei ¼ peikx�d, Hi ¼ seikx�d,

where d¼ (�1,�2,��)¼ (cos 	1 cos 	2, cos 	1 sin 	2,�sin 	1) is the incident wave vector
whose direction is specified by 	1 and 	2 with 05	15�, 05	2� 2� and the vectors p
and s are polarization directions satisfying that p ¼

ffiffiffiffiffiffiffiffi
�="
p

ðs� d Þ and s?d, and the
electric dipole of the form

Eiðx, gÞ ¼ curlx curlx

Z
�a

Gðx, yÞ gð yÞdsð yÞ, x3 5 a ða4 bÞ ð2:7Þ

for some function g, where G(x, y) is the free space �-quasi-periodic Green function
for the Helmholtz equation (Dþ k2)u¼ 0 in R

3 given by [18]

Gðx, yÞ ¼
1

8�2

X
n2Z2

1

i�n
expði�n � ðx� yÞ þ i�njx3 � y3jÞ: ð2:8Þ

For our IP we will use the above electric dipole as incident waves.

2.2. Quasi-periodic function spaces

In this section we introduce some function spaces needed for the scattering problem
(2.2)–(2.5). These spaces will play a crucial role not only in the study of the DP
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but also in the IP. In [13,14,19], the authors always seek the H1-variational solution
for the magnetic field H, based on the facts that the magnetic permeability �40 is a
constant and that any vector field H2L2(D)3 satisfying that 5�H2L2(D)3 and
5 �H2L2(D)3 belongs to H1

locðDÞ
3 for any bounded domain D�R

3. In this article,
based on the classic Hodge decomposition, we are interested in weak solutions in
Hloc(curl,R

3) of the problem (2.2)–(2.5), that is, both E and 5�E belong to
L2
locðR

3
þÞ

3. This allows us to solve the scattering problem in a general case when � is a
periodic variable function other than a constant.

The scattering problem can be reduced to a single periodic cell. To this end, we
reformulate the following notations:

�b ¼ fx3 ¼ b j 05 x1, x2 5 2�g, �b ¼ fx2R
3
þj x3 5 b, 05 x1, x2 5 2�g:

We also need the following scalar quasi-periodic Sobolev space:

H1ð�bÞ ¼

�
uðxÞ ¼

X
n2Z2

unðx3Þexpði�n � xÞ j u2L
2ð�bÞ,ru2 ðL

2ð�bÞÞ
3, un 2C

�
:

Denote by H
1
2ð�bÞ the trace space of H1(�b) on �b with the norm

k f k2
H

1
2ð�bÞ
¼
X
n2Z2

j fnj
2ð1þ j�nj

2Þ
1
2, f2H

1
2ð�bÞ,

where fn¼ ( f, exp(i�n � x))L2(�b) and write H�
1
2ð�bÞ ¼ ðH

1
2ð�bÞÞ

0, the dual space
to H

1
2ð�bÞ.
We now introduce some vector spaces. Let

Hðcurl,�bÞ ¼

�
EðxÞ ¼

X
n2Z2

Enðx3Þexpði�n � xÞ jEn 2C
3,

E2 ðL2ð�bÞÞ
3, curlE2 ðL2ð�bÞÞ

3

�
with the norm

kEk2Hðcurl,�bÞ
¼ kEk2L2ð�bÞ

þ kcurlEk2L2ð�bÞ
:

Note that the �-quasi-periodic space H(curl,�b) is a subset of the classical vector
space H(curl, �b) defined by

Hðcurl,�bÞ ¼ fE2 ðL
2ð�bÞÞ

3
j curlE2 ðL2ð�bÞÞ

3
g

with the norm kEk2
Hðcurl,�bÞ

¼ kEk2L2ð�bÞ
þ kcurlEk2L2ð�bÞ

: Further, it was shown in [23]
that H(curl,�b) can be characterized as

Hðcurl,�bÞ ¼ fE2Hðcurl,�bÞ j e
2�i�1Eð0, x2, x3Þ � e1 ¼ Eð2�, x2, x3Þ � e1,

e2�i�2Eðx1, 0, x3Þ � e2 ¼ Eðx1, 2�, x3Þ � e2g,

where e1¼ (1, 0, 0) and e2¼ (0, 1, 0).
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For x0 ¼ (x1, x2, b)2�b, s2R define

Hs
tð�bÞ ¼

�
Eðx0Þ ¼

X
n2Z2

En expði�n � x
0Þ jEn 2C

3, e3 � E ¼ 0,

kEk2Hsð�bÞ
¼
X
n2Z2

ð1þ j�nj
2Þ

s
jEnj

25þ1
�
,

Hs
tðdiv,�bÞ ¼

�
Eðx0Þ ¼

X
n2Z2

Enexpði�n � x
0Þ jEn 2C

3, e3 � E ¼ 0,

kEk2Hsðdiv,�bÞ
¼
X
n2Z2

ð1þ j�nj
2Þ

s
ðjEnj

2 þ jEn � �nj
2Þ5þ1

�
,

Hs
tðcurl,�bÞ ¼

�
Eðx0Þ ¼

X
n2Z2

En expði�n � x
0Þ jEn 2C

3, e3 � E ¼ 0,

kEk2Hsðcurl,�bÞ
¼
X
n2Z2

ð1þ j�nj
2Þ

s
ðjEnj

2 þ jEn � �nj
2Þ5þ1

�
,

and write L2
t ð�bÞ ¼ H0

t ð�bÞ: Recalling the trace theorem on H(curl,�b), we have

H�1=2t ðdiv,�bÞ ¼ fe3 � Ej�b
jE2Hðcurl,�bÞg

and that the trace mapping from H(curl, �b) to H�1=2t ðdiv,�bÞ is continuous and
surjective (see [24] and the references therein).

We assume throughout this article that q satisfies the following conditions:

(A1) q2C1ð�bÞ and q(x)¼ 1 when x34b;
(A2) Im[q(x)]� 0 for all x2�b and Im[q(x0)]40 for some x0 2�b;
(A3) Re[q(x)]� 
 for all x2�b for some positive constant 
.

3. A QPBVP

Before studying the original problem (2.2)–(2.6), we consider the following
QPBVP in �b:

curl curlE� k2qðxÞE ¼ 0 in �b, ð3:1Þ

�� E ¼ 0 on �0, ð3:2Þ

�� E ¼ f on �b, ð3:3Þ

where f2H�1=2div ð�bÞ with the norm

k f kH�1=2
div
ð�bÞ
¼ inffkWkHðcurl,�bÞ

j ��W ¼ 0 on �0 and ��W ¼ f on �bg:

LEMMA 3.1 If the conditions (A1)–(A3) are satisfied, then the problem (3.1)–(3.3) has
a unique solution E2H(curl, �b) such that

kEkHðcurl,�bÞ
� Ck f kH�1=2

div
ð�bÞ

, ð3:4Þ

where C is a positive constant independent of f.
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Proof We first prove the uniqueness part. Let f¼ 0. Multiplying both sides of (3.1)
by E it follows from Green’s vector formula, the quasi-periodic property of E and the
boundary conditions (3.2) and (3.3) thatZ

�b

½jcurlEj2 � k2qjEj2�dx ¼ 0:

Take the imaginary part of the above equation and use the assumption on q(x) to
find that Z

B�ðx0Þ

jEðxÞj2 dx ¼ 0,

where B�(x0)��b is a small ball centred at x0 with radius �. Thus E(x)	 0 in B�(x0).
By [25, Theorem 6] we have E2 (H1(�b))

3. Thus, by the unique continuation
principle [26, Theorem 2.3] we have E	 0 in �b.

We now use the variational method to prove the existence of solutions. To this
end, for any V2H(curl, �b) such that ��V¼ 0 on �0[�b, multiplying both sides
of (3.1) by V yields Z

�b

½curlE � curlV� k2qE � V �dx ¼ 0: ð3:5Þ

There exists at least one element W2H(curl, �b) satisfying that ��W¼ 0 on �0 and
��W¼ f on �b. Let X :¼ {U2H(curl,�b) j ��U¼ 0 on �0[�b}. Then U :¼
E�W2X. Thus the problem (3.1)–(3.3) is equivalent to the following variational
problem: find U2X such that

aðU,V Þ ¼ FWðV Þ 8V2X, ð3:6Þ

where aðU,V Þ ¼
R

�b
½curlU � curlV� k2qU � V �dx and FWðV Þ ¼ �

R
�b
½curlW �

curlV� k2qW � V �dx. The proof is broken down into the following steps.

Step 1 Let S¼ {p2H1(�b) j p¼ 0 on �0[�b} and let X0¼ {�2X j a(�,rp)¼ 0
8p2S}. Then it is easy to prove the Hodge decomposition:

X ¼ X0 
 rS: ð3:7Þ

Step 2 To prove the existence of a unique solution U2X to the problem (3.6).
By (3.7) we may assume that U¼ �þrp, V¼ �þrq with �, �2X0 and p, q2S.

Then the problem (3.6) becomes the following one: find �2X0 and p2S such that

aðrp,rqÞ þ að�, �Þ ¼ FWðrqÞ þ FWð�Þ:

Since a(�, �) is coercive on rS, there exists a unique p2S such that

aðrp,rqÞ ¼ FWðrqÞ 8 q2S

with the estimate krpkH(curl,�b)
�CkWkH(curl,�b)

. It remains to find �2X0 such that
a(�, �)¼FW(�) for all �2X0. The bilinear form a(�, �) can be decomposed into the
sum of the following two forms:

a1ð�, �Þ ¼

Z
�b

curl � � curl �þ � � � dx,

a2ð�, �Þ ¼ �k
2

Z
�b

ð1þ qÞ� � � dx:
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Obviously, a1(�, �) is coercive on X0, and it follows from [27, Lemma 3.2] that X0 is

compactly embedded into (L2(�b))
3. Thus, by the standard Fredholm alternative

theory there exists a unique �2X0 satisfying that a(�, �)¼FW (�) for all �2X0.

Furthermore, k�kH(curl,�b)
�CkWkH(curl,�b)

.

Step 3 By Steps 1 and 2 we know that E¼ �þrpþW2H(curl, �b) is a solution to

the problem (3.1)–(3.3) with the estimate

kEkHðcurl,�bÞ
� k�kHðcurl,�bÞ

þ krpkHðcurl,�bÞ
þ kWkHðcurl,�bÞ

� CkWkHðcurl,�bÞ
: ð3:8Þ

From (3.8) and the definition of k f kH�1=2
div
ð�bÞ

it follows that kEkHðcurl,�bÞ
�

Ck f kH�1=2
div
ð�bÞ

. g

For f2H�1=2div ð�bÞ define the operator T by

Tð f Þ ¼ �� ðcurlE� �Þ on �b,

where E solves the QPBVP (3.1)–(3.3). By Lemma 3.1, the operator T is well-defined.

Note that T( f ) belongs to the dual space ðH�1=2div ð�bÞÞ
0
¼ H�1=2curl ð�bÞ ofH

�1=2
div ð�bÞ with

the duality defined by

hTð f Þ, gi ¼

Z
�b

½curlE � curlV� k2qE � V �dx

for g2H�1=2div ð�bÞ, where V2H(curl, �b) with ��V¼ g on �b and ��V¼ 0 on �0.

The operator T can be considered as a Dirichlet-to-Neumann map associated with

the problem (3.1)–(3.3) and depending on the index q(x). Under the assumptions

(A1)–(A3), the above definition of T( f ) is independent of the choice of V and

therefore T : H�1=2div ð�bÞ ! ðH
�1=2
div ð�bÞÞ

0
¼ H�1=2curl ð�bÞ is well-defined. Moreover, it

follows from the above equality and Lemma 3.1 that

kTð f ÞkH�1=2
curl
ð�bÞ
� CkEkHðcurl,�bÞ

� Ck f kH�1=2
div
ð�bÞ

which implies the following result.

COROLLARY 3.2 T is continuous from H�1=2div ð�bÞ to H�1=2curl ð�bÞ.

The continuity of the operator T plays an important role in the study of the IP.

4. Solvability of the scattering problem

In this section, we will establish the solvability of the scattering problem (2.2)–(2.6),

employing the variational method. To this end, we propose a variational formulation

of the scattering problem in a truncated domain by introducing a transparent

boundary condition on �b.
Let x0 ¼ (x1, x2, b)2�b for b40. For eE2H�1

2
t ðdiv,�bÞ with eEðx0Þ ¼Pn2Z2 eEn�

expði�n � x
0Þ, define R : H

�1
2

t ðdiv,�bÞ ! H
�1

2
t ðcurl,�bÞ by

ðReE Þðx0Þ ¼ ðe3 � curlE Þ � e3 on �b, ð4:1Þ
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where E satisfying the Rayleigh expansion condition (2.6) is the unique quasi-

periodic solution to the problem

curl curlE� k2E ¼ 0 for x3 4 b, �� E ¼ eEðx0Þ on �b:

The mapR is well-defined and can be used to replace the radiation condition (2.6) on

�b. Then the scattering problem (2.2)–(2.6) can be transformed into the following

boundary value problem in the truncated domain �b:

curl curlE� k2qE ¼ 0 in �b, ð4:2Þ

�� E ¼ 0 on �0, ð4:3Þ

ðcurlE ÞT �Rðe3 � E Þ ¼ ðcurlEiÞT �Rðe3 � EiÞ on �b, ð4:4Þ

where, for any vector function U, UT¼ (��U)� � denotes its tangential component

on a surface. The variational formulation for the problem (4.2)–(4.4) is given as

follows: find E2X :¼ {E2H(curl, �b) j ��E¼ 0 on �0} such that

BðE, ’Þ :¼

Z
�b

curlE � curl ’� k2qE � ’
� �

dx�

Z
�b

Rðe3 � E Þ � ðe3 � ’Þds

¼

Z
�b

ðcurlEiÞT �Rðe3 � EiÞ
� �

� ðe3 � ’Þds

ð4:5Þ

for all ’2X.

THEOREM 4.1 Assume that the conditions (A1)–(A3) are satisfied. Then the problem

(2.2)–(2.6) has a unique solution E2Hlocðcurl,R
3
þÞ such that

kEkHðcurl,�aÞ
� CkEikHðcurl,�bÞ

for any a4b, where C is a positive constant depending on the domain and q.

Proof By using the properties of the map R [28] and arguing similarly as in the

proof of Theorem 3.1 in [28] (cf. the proof of Lemma 3.1) it can be shown that the

problem (4.5) has a unique solution E2X satisfying that kEkH(curl,�b)
�

CkEi
kH(curl,�b)

. It remains to extend E(x) to be a function in Hlocðcurl,R
3
þÞ.

Suppose e3� (E�Ei)j�b
¼
P

n2N�NAne
i�n�x2H�1/2(div,�b). Let

EsðxÞ ¼
X

n2N�N

ðAn � e3 þ Bne3Þe
i�n�xþi�nðx3�bÞ, x3 4 b

and let Es satisfy that divEs(x)¼ 0 for x34b. Then we have Bn ¼
1
�n
ðe3 � AnÞ � �n.

Thus

EsðxÞ ¼
X

n2N�N

An � e3 þ
1

�n
ðe3 � AnÞ � �ne3

	 

ei�n�xþi�nðx3�bÞ, x3 4 b:

Define E(x)¼Ei(x)þEs(x) for x34b. Then it is easy to prove that E2H(curl,

�a\�b) with kEkH(curl,�a\�b)�CkEi
kH(curl,�b)

for any a4b, so E2H(curl, �a) for any

a4b, that is, E2Hlocðcurl,R
3
þÞ with the required estimate (4.6). The proof is thus

completed. g
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5. The IP

Let a4b and assume that there are two refractive index functions qi (i¼ 1, 2)
satisfying the assumptions (A1)–(A3). For g2L2

t ð�aÞ let the incident waves be
Ei(x, g) given in (2.7). Write the scattered electric field and the total electric field as
Es
i ðx, gÞ and Ei(x, g), respectively, indicating their dependence on g and the refractive

index function qi(i¼ 1, 2).
For the refractive index qi denote by Ti the corresponding Dirichlet-to-Neumann

map associated with the problem (3.1)–(3.3) with q replaced by qi (i¼ 1, 2), as defined
at the end of Section 3.

LEMMA 5.1 If T1( f )¼T2( f ) for all f2H
�1=2
t ðdiv,�bÞ, thenZ

�b

E1ðxÞ � E2ðxÞ q1ðxÞ � q2ðxÞ½ �dx ¼ 0,

where E1,E22H(curl, �b) solve the problem (3.1)–(3.3) with q replaced by q1 and q2,
respectively.

Proof Let E1 and F22H(curl, �b) be the solution of the problems

curl curlE1 � k2q1E1 ¼ 0 in �b, �� E1 ¼ 0 on �0

and

curl curlF2 � k2q2F2 ¼ 0 in �b, �� F2 ¼ 0 on �0, �� F2 ¼ �� E1 on �b,

respectively. Let E¼F2�E1. Then it is easy to see that

curl curlE� k2q2E ¼ k2ðq2 � q1ÞE1 in �b,

�� E ¼ 0 on �0 [ �b,

�� curlE ¼ 0 on �b,

where the last equality is obtained from the assumption T1¼T2. Thus, it follows
from the Green vector formula thatZ

�b

ðq2 � q1ÞE1 � E2 dx ¼
1

k2

Z
�b

ðcurl curlE� k2q2E Þ � E2 dx

¼
1

k2

Z
�b

ðcurlE � curlE2 � k2q2E � E2Þdx

¼
1

k2

Z
�b

ðE � curl curlE2 � k2q2E � E2Þdx

¼
1

k2

Z
�b

ðE � k2q2E2 � k2q2E � E2Þdx ¼ 0:

The proof is thus completed. g

For g2L2
t ð�aÞ appearing in the incident waves (2.7), we define an operator

F : L2
t ð�aÞ ! H�1=2t ðdiv,�bÞ by

Fð gÞ ¼ e3 � Eðx, gÞ on �b,

where E(x, g) solves the problem (2.2)–(2.5) with the incident wave Ei(x, g). The
operator F can be considered as an input–output operator mapping the sum of the
electric dipoles to the tangential component of the corresponding total electric field
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on �b. Moreover, for all g2L2
t ð�aÞ the operator F has a dense range in

H�1=2t ðdiv,�bÞ, as stated in the following lemma.

LEMMA 5.2 The operator F has a dense range in H�1=2t ðdiv,�bÞ:

Proof We only need to prove that F � : H�1=2t ðcurl,�bÞ ! L2
t ð�aÞ is injective. First,

we show that for any f2H�1=2t ðcurl,�bÞ, F
�( f ) is given by

F �ð f Þ ¼ curlycurly

Z
�b

Gðx, yÞcurl ðVþðxÞ �WðxÞÞ � e3dsðxÞ

	 

T

, ð5:1Þ

where the superscripts þ and � indicate the limit obtained from R3\�b and �b,
respectively, and for any a4b the function V2H(curl, �b)\H(curl, �a\�b) solves
the problem

curl curlV� k2V ¼ 0 for x3 4 b, ð5:2Þ

curl curlV� k2qV ¼ 0 in �b, ð5:3Þ

�� V ¼ 0 on �0, ð5:4Þ

�� Vþ � �� V� ¼ 0 on �b, ð5:5Þ

curlVþ � curlV�
� �

T
¼ f on �b ð5:6Þ

and satisfies the Rayleigh expansion condition (2.6) with � replaced by �� for x34b,
that is,

VðxÞ ¼
X
n2Z2

Vne
ið�0n�xþ�

0
nx3Þ, x3 � b

ð5:7Þ

with �0n ¼ ð��1 þ n1,��2 þ n2, 0Þ 2R
3, Vn2C

3 and

�0n ¼
ðk2 � j�0nj

2Þ
1
2 if j�0nj5 k,

iðj�0nj
2 � k2Þ

1
2 if j�0nj4 k:

(
In addition, the function W is given by

WðxÞ ¼
X
n2Z2

Vne
iðð�0n�xþ�

0
nð2b�x3ÞÞ, x3 � b:

ð5:8Þ

In fact, for any f2H�1=2t ðcurl,�bÞ and g2H�1=2t ðdiv,�bÞ we have

hFg, f iH�1=2t ðdiv,�bÞ�H
�1=2
t ðcurl,�bÞ

¼

Z
�b

�� Eð�, gÞ � f ds

¼

Z
�b

�� Eð�, gÞ � ½curlVþ � curlV��ds

¼

Z
�b

½ð�� E � curlVþ � �� Vþ � curlE Þ

� ð�� E � curlV� � �� V� � curlE Þ�ds,
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where the transmission conditions (5.5) and (5.6) have been used. It follows from the

Maxwell equations (5.3) and (2.3) and the boundary conditions (5.4) and (2.4) thatZ
�b

½�� E � curlV� � �� V� � curlE �ds ¼ 0: ð5:9Þ

On the other hand, from the Rayleigh expansion conditions (2.6) and (5.7) it is

derived that Z
�b

½�� E � curlVþ � �� Vþ � curlE �ds

¼

Z
�b

½ð�� Ei � curlVþ � �� Vþ � curlEiÞ

þ ð�� Es � curlVþ � �� Vþ � curlEsÞ�ds

¼

Z
�b

½�� Ei � curlVþ � �� Vþ � curlEi�ds: ð5:10Þ

Similarly, from the definition of Ei and the Rayleigh expansion condition (5.8) it

follows that Z
�b

½�� Ei � curlW� ��W � curlEi�ds ¼ 0: ð5:11Þ

Equations (5.9)–(5.11) together with the fact that V¼W on �b yield

hFg, f i ¼

Z
�b

½�� Ei � curlVþ � �� Vþ � curlEi�ds

¼

Z
�b

½�� Ei � curlVþ � ��W � curlEi�ds

¼

Z
�b

½�� Ei � curlVþ � �� Ei � curlW�ds

¼

Z
�b

�� Ei � ðcurlVþ � curlW Þds:

Substituting the expression (2.7) of Ei into the above equation and exchanging the

order of integration we get

hFg, f i ¼

Z
�a

gð yÞ � curlycurly

Z
�b

Gðx, yÞcurl ½VþðxÞ �WðxÞ� � e3 dsðxÞ

	 

dsð yÞ,

which implies (5.1).
We now prove that F � is injective. Suppose F �( f )¼ 0 for some f2

H�1=2t ðcurl,�bÞ. Define U by

Uð yÞ :¼ curlycurly

Z
�b

Gðx, yÞhðxÞdsðxÞ

	 

, y2R

3
n�b,

where h ¼ curl ðVþ �WÞ � e3. Then e3�U( y)¼ 0 on �a. It is clear that U( y) is a

��-quasi-periodic function satisfying the Rayleigh expansion condition (2.6) when

y34a. By the uniqueness of solutions to the exterior Dirichlet problem [7] we have
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U( y)¼ 0 when y34a, which together with the unique continuation principle [29]

implies that U( y)¼ 0 when y34b. Now from the jump relation e3�Uþ( y)�

e3�U�( y)¼ 0 on �b and again the uniqueness of solutions for the exterior Dirichlet

problem for y35b we get that U( y)¼ 0 when y35b. Thus, h( y)¼ e3�

curl[Uþ( y)�U�( y)]¼ 0 on �b, which, together with (5.7) and (5.8), implies that

e3 � Vþ ¼ e3 �W, e3 � curlVþ ¼ e3 � curlW on �b: ð5:12Þ

Since V and W satisfy the Maxwell equation curl curl E� k2E¼ 0 in the regions

x34b and x35b, respectively, then it easily follows from the transmission condition

(5.12) and the Rayleigh expansion conditions (5.7) and (5.8) that V¼ 0 for x34b and

W¼ 0 for x35b. Thus, by (5.5) we have ��V�¼ 0 on �b, so V2H(curl, �b) satisfies

the problem (3.1)–(3.3) with f¼ 0. By Lemma 3.1 we have V¼ 0 in �b. Thus,

f ¼ ½curlV
þ
� curlV

�
�T ¼ 0, which completes the proof of Lemma 5.2. g

Combining Lemmas 5.1 and 5.2, we have the following orthogonality relation for

two different functions qi (i¼ 1, 2).

LEMMA 5.3 Let the incident waves E i(x, g) be defined by (2.7). If

e3 � E1ðx, gÞ ¼ e3 � E2ðx, gÞ on �a ð5:13Þ

for all g2L2
t ð�aÞ and some a4b, then the following orthogonality relation holds:Z

�b

E1ðxÞ � E2ðxÞðq1ðxÞ � q2ðxÞÞdx ¼ 0,

where E1,E22H(curl, �b) solve the problem (3.1)–(3.3) with q replaced by q1 and q2,

respectively.

Proof From Equation (5.13), the uniqueness of solutions for the exterior Dirichlet

problem and the unique continuation principle it follows that E1(x, g)¼E2(x, g) for

all x34b. This implies that

e3 � curlEþ1 ðx, gÞ ¼ e3 � curlEþ2 ðx, gÞ on �b:

Since ½e3 � curlEþj ðx; gÞ�j�b
¼ 0 for j¼ 1, 2, then we have

e3 � curlE�1 ðx, gÞ ¼ e3 � curlE�2 ðx, gÞ on �b:

By the above two equalities and the definition of Ti we have

T1ðe3 � E1ðx, gÞÞ ¼ T2ðe3 � E2ðx, gÞÞ

for all g2L2
t ð�aÞ: The continuity of Tj ( j¼ 1, 2) and Lemma 5.2 lead to

T1ð f Þ ¼ T2ð f Þ 8f2H
�1=2
t ðdiv,�bÞ:

This together with Lemma 5.1 gives the desired result. g

We are now ready to prove our main result for the inverse scattering problem.

THEOREM 5.4 Let qj ( j¼ 1, 2) satisfy the Assumptions (A1)–(A3) and let qj depend on

only one direction x1 or x2 with j¼ 1, 2. If

e3 � E1ðx, gÞ ¼ e3 � E2ðx, gÞ on �a
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for all g2L2
t ð�aÞ with some a4b, where Ej(x, g) solves the problem (2.2)–(2.5)

with q¼ qj ( j¼ 1, 2) corresponding to the incident wave E i(x, g) given by (2.7),

then q1¼ q2.

Proof By Lemma 5.3 we have the orthogonality relation:Z
�b

E1ðxÞ � E2ðxÞ q1ðxÞ � q2ðxÞ½ �dx ¼ 0, ð5:14Þ

where E1,E22H(curl, �b) solve the problem (3.1)–(3.3) with q replaced by q1 and q2,

respectively.
We now look for solutions to the problem (3.1)–(3.3) in the following form:

EðxÞ ¼ ð0, 0,E3ðx1,x2ÞÞ ¼ ð0, 0, vðx1Þuðx2ÞÞ

with the scalar functions v and u satisfying the following quasi-periodic conditions:

vðx1Þe
2i�1� ¼ vðx1 þ 2�Þ, uðx2Þe

2i�2� ¼ vðx2 þ 2�Þ:

It is clear that such a function E is �-quasi-periodic and satisfies the boundary

condition (3.2). Without loss of generality, we may assume that qj(x)¼ qj(x1), that is,

qj depends only on the x1-direction with j¼ 1, 2. Substituting such E into the

Maxwell equation (3.1) and noting that curl, curl ¼ �4þr(r�), we find that

v00ðx1Þuðx2Þ þ vðx1Þu
00ðx2Þ þ k2qðx1Þvðx1Þuðx2Þ ¼ 0, x1, x2 2 ð0, 2�Þ:

This implies that

v00ðx1Þ

vðx1Þ
þ k2qðx1Þvðx1Þ ¼

u00ðx2Þ

uðx2Þ
¼ 


for some constant 
, where x1, x22 (0, 2�). Following the idea of Kirsch [2], we

construct a special kind of solutions v by considering the following quasi-periodic

Sturm–Liouville eigenvalue problem:

ðIÞ :

v00ðx1Þ þ k2qðx1Þvðx1Þ ¼ 
vðx1Þ, x1 2 ð0, 2�Þ

vðx1Þe
2i�1� ¼ vðx1 þ 2�Þ,

v0ðx1Þe
2i�1� ¼ v0ðx1 þ 2�Þ:

8><>:
The eigenvalues 
n and the corresponding eigenfunctions vn, normalized to vn(0)¼ 1,

have the following asymptotic behaviours as n!1 [30]:


�n ¼ n�
�1
2�

� �2
�

k2

2�

Z 2�

0

qðsÞdsþO
1

n

� �
,

v�n ðx1Þ ¼ exp i

�
� nþ

�1
2�

�
x1

	 

þO

1

n

� �
which are uniform in x12 [0, 2�]. We also consider the following quasi-periodic

boundary problem for u:

ðIIÞ :
u00ðx2Þ � 
nuðx2Þ ¼ 0, x2 2 ð0, 2�Þ

uðx2Þe
2i�2� ¼ vðx2 þ 2�Þ:

�

330 G. Hu et al.



The non-trivial solutions to the problem (II) can be written explicitly as

unðx2Þ ¼ cn,1e
ffiffi


p

nx2 þ cn,1e
�
ffiffi


p

nx2 , 
n 6¼ 0,

where cn,1 and cn,2 are constants satisfying

cn,1 ¼ cn,2 e�2�
ffiffi


p

n � ei2��2
� �.

ei2��2 � e2�
ffiffi


p

n

� �
: ð5:15Þ

Now, let E�3,n ¼ v�n ðx1Þu
�
n ðx2Þ be the third component of E�n ¼ ð0, 0,E

�
3,nÞ

corresponding to q1(x1) and let E�3,m ¼ v�m ðx1Þu
�
m ðx2Þ be the third component of E�n

corresponding to q2ðx1Þ. It follows from (5.14) that

0 ¼

Z
�b

E3,nðx1, x2Þ � E3,mðx1, x2Þ q1ðx1Þ � q2ðx1Þ½ �dx ¼ bAn,m
1 An,m

2 , ð5:16Þ

where

An,m
1 : ¼

Z 2�

0

½q1ðx1Þ � q2ðx1Þ�e
iðn�mÞx1dx1 þO

1

n

� �
þO

1

m

� �
,

An,m
2 : ¼

Z 2�

0

cn,1e
ffiffi


p

nx2 þ cn,2e
�
ffiffi


p

nx2
� �

cm,1e
ffiffi


p

mx2 þ cm,2e�
ffiffi


p

mx2

� �
dx2

and cn, j, cm,j satisfy (5.15) with j¼ 1, 2. For arbitrarily fixed l2N, letting m¼ n� l
gives

Amþl,m
1 ¼

Z 2�

0

½q1ðx1Þ � q2ðx1Þ�e
ilx1d ðx1Þ þ O

1

m

� �
,

Amþl,m
2 ¼

Z 2�

0

cmþl,1e
ffiffiffiffiffiffiffi

mþl
p

x2 þ cmþl,2e
�
ffiffiffiffiffiffiffi

mþl
p

x2
� �

cm,1e
ffiffi


p

mx2 þ cm,2e�
ffiffi


p

mx2

� �
dx2:

We can always choose appropriate constants cm,2 and cm,1 satisfying (5.15) such that
Amþl,m

2 6¼ 0 for sufficiently large m. In fact, we may assume that l is a positive number
since otherwise we can take n¼m� l0 for some positive l0 instead of l. Now choose
cm,2 ¼ e2�

ffiffiffiffi

m
p

. Then, by (5.15), jcm,1j �C1 for large m with some positive constant C1

independent of m and


 R 2�

0 cm,2e
�2�

ffiffiffiffi

m
p

x2dx2


 tends to þ1 as m!1. This implies

that jAmþl,m
2 j ! þ1 as m!þ1. Letting m!þ1 we conclude from (5.16) and the

above discussion that Z 2�

0

ðq1ðx1Þ � q2ðx1ÞÞe
ilx1 dx1 ¼ 0

for every l2N, which implies that q1¼ q2. The proof is thus completed. g
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