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In this paper,we prove uniqueness in determining a perfectly conducting ball in the inverse
electromagnetic scattering problem by a finite number of electric far field patterns with a
single incident direction and polarization. It is emphasized that we use only one electric far
field pattern datum to uniquely determine the radius of a ball if it is centered at the origin
with radius R <

√
2/k. Furthermore, if its center was not given as a prior information,

three more measurement data must be added to uniquely determine its center. The main
tool used here is some new results on zeros of spherical Bessel and spherical Neumann
functions.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The propagation of a time-harmonic electromagnetic wave (with the time variation of the form e−iωt, ω > 0) in a
homogeneous, lossless, isotropic medium in R

3 is modeled by the time-harmonic Maxwell equations:

curl E − ikH = 0, curl H + ikE = 0, (1.1)

where k = ω
√

εμ is the wavenumber given in terms of the wave frequency ω and the electric permittivity ε and the
magnetic permeability μ of the medium. The scattering of a time-harmonic electromagnetic wave by a perfect conductor D
in R

3 leads to the following boundary condition:

ν × E = 0 on ∂ D. (1.2)

The total fields E , H must satisfy (1.1) in R
3\D and is decomposed as E = Ei + Es , H = Hi + Hs, where Ei , Hi are the

given incident fields and Es , Hs are the unknown scattered fields which are required to satisfy the Silver–Müller radiation
condition

lim|x|→∞
(

Hs(x) × x − |x|Es(x)
) = 0 (1.3)

uniformly with respect to all directions. Such a radiation condition ensures uniqueness of solutions to the exterior boundary
value problem and leads to an asymptotic behavior of the form

Es = eik|x|

|x|
{

E∞
(

x

|x|
)

+ O

(
1

|x|
)}

, Hs = eik|x|

|x|
{

H∞
(

x

|x|
)

+ O

(
1

|x|
)}

(1.4)
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as |x| → ∞. Here, the vector fields E∞ and H∞ , which are defined on the unit sphere Ω in R
3, are known as the electric

far field pattern and the magnetic far field pattern of the scattered fields, respectively. Throughout this paper, we write
Es(·;d, p,k), Hs(·;d, p,k) and E∞(·;d, p,k), H∞(·;d, p,k) to indicate the dependence on the direction d, the polarization
p of the incident field and the wavenumber k. The inverse problem we are considering is to determine the shape of the
scatterer D from the electric far field pattern E∞(·,d, p) for only one incident plane wave with the incident direction d and
the polarization p. The question of uniqueness in the inverse scattering problem is of theoretical interest, and a positive
answer is required in order to proceed to efficient numerical methods of solutions.

The first uniqueness result in inverse acoustic scattering was given by Schiffer [3,9]. In proving this uniqueness result he
used properties of eigenvalues of the negative Laplacian with a Dirichlet boundary condition under the assumption that the
far field patterns are completely known for an infinite number of incident plane vaves. A different method using singular
sources was proposed in [6] to prove Schiffer’s uniqueness result and a similar uniqueness result for the case of transmission
conditions, which also requires an infinite number of incident waves. Given a priori information that the unknown scatterers
lie inside a given ball, Colton and Sleeman [4] proved uniqueness for a finite number of incident plane waves. This result
was later improved by using the Faber–Krahn inequality in [5]. In the case of a ball, Liu [10] established a uniqueness result
for the Dirichlet boundary condition, whilst Yun [14] established a similar result for the Neumann boundary condition. In
both [10] and [14], the far field pattern is assumed to be completely known for one incident plane wave. See also [2,11,13]
for the case of polyhedral obstacles with one incident plane wave.

For the case of inverse electromagnetic scattering similar uniqueness results have been obtained (see, e.g. [3,7]). For
example, a general obstacle and its boundary conditions can be uniquely determined by electric far field patterns for an
infinite number of incident plane waves, and a ball can be uniquely determined for only one incident plane wave. However,
the following questions are still unknown for the case of electromagnetic scattering:

1. Given a priori information on the size of the scatterer, whether or not the scatterer can be uniquely determined by a
finite number of far field patterns depending on the diameter of the scatterer.

2. Whether or not a general scatterer can be uniquely determined by the far field pattern for only one incident plane
wave.

The second question is an open problem for both the acoustic and the electromagnetic scattering problems. For the
first question, it should be remarked that it was proved in [12] that the shape of a sound-soft/sound-hard ball in R

3 or a
sound-soft/sound-hard disk in R

2 is uniquely determined by a single far field datum measured at one fixed observation for
a single incident plane wave.

In this paper we consider the uniqueness question of determining a perfectly conducting ball in R
3 in inverse elec-

tromagnetic scattering problems by a finite number of electric far field patterns with a single incident direction and
polarization. Precisely, we prove, in Section 3, that if a perfectly conducting ball of radius R and centered at the origin
satisfies that kR <

√
2, then the ball can be uniquely determined by one electric far field datum E∞(d;d, p,k) measured at

the observation d (Theorem 3.1), which extends the result of [12] to the case of a perfectly conducting ball in inverse elec-
tromagnetic scattering, and in Section 4, that if the center of the ball is not given as a prior information then four electric
far field pattern measurements are sufficient to uniquely determine the radius and the center of the ball (Theorem 4.1). It
seems that four data are the least in the three-dimensional case since, in this case, there are totally four unknowns (the
radius and three components of the center of the ball) to be determined.

A main tool used in the proof of Theorem 3.1 is some new results on zeros of spherical Bessel and spherical Neumann
functions (Theorem 2.8), which are established in Section 2. Theorem 4.1 is proved using Theorem 3.1 in conjunction with
a translation relation between the electric far field patterns for perfectly conducting balls. This idea can also be applied in
the case of inverse acoustic scattering by a disk (in 2D) or a ball (in 3D) to determine both the radius and the center of the
disk (or the ball) by using three (or four) far field patterns with a single incident direction, which generalizes the results
in [12] for the case when the center is fixed at the origin (see Remark 4.2).

2. Zeros of spherical Bessel and spherical Neumann functions

Denote by jn(t) and yn(t) the spherical Bessel and Neumann functions of order n, respectively. Both functions satisfy the
spherical Bessel differential equation

t2 f ′′(t) + 2t f ′(t) + [
t2 − n(n + 1)

]
f (t) = 0, (2.1)

and the Wronskian equality

jn(t)y′
n(t) − j′n(t)yn(t) = 1

t2
. (2.2)

See [1,3,12] for more information on Bessel and Neumann functions. The following results can be found in [12].

Lemma 2.1. For the spherical Bessel functions and their derivatives, we have that for each n = 0,1,2, . . . ,
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jn(t) = tn

(2n + 1)!
[
1 + O

(
t2)], (2.3)

j′0(t) = − t

3

[
1 + O

(
t2)], (2.4)

j′n(t) = ntn−1

(2n + 1)!
[
1 + O

(
t2)] (2.5)

as t → +0, whereas for the spherical Neumann functions and their derivatives, we have that for each n = 0,1,2, . . . ,

yn(t) = − (2n)!
2nn!

1

tn+1

[
1 + O

(
t2)], (2.6)

y′
n(t) = (2n)!

2nn!
n + 1

tn+2

[
1 + O

(
t2)] (2.7)

as t → +0. Thus, for sufficiently small t > 0 and for each non-negative integer n, jn(t) and j′n(t) are positive with the only exception
that j′0(t) is negative near the origin, whereas yn(t) is negative and y′

n(t) is positive.

Now, denote by ξn,s, ηn,s, ξ ′
n,s and η′

n,s the sth positive zeros of jn(t), yn(t), j′n(t) and y′
n(t), respectively, for n ∈ N. Then

we have the following results which can be found in [12].

Lemma 2.2. For n ∈ N ∪ {0} the positive zeros of jn(t) are interlaced with those of j′n(t) in the following way:√
n(n + 1) � ξ ′

n,1 < ξn,1 < ξ ′
n,2 < ξn,2 < ξ ′

n,3 < · · · ,
where the equal sign can only be possible for the case n = 0 and ξ ′

0,1 is defined to be zero. For n ∈ N ∪ {0}, the positive zeros of yn(t)
are interlaced with those of y′

n(t) as follows:√
n(n + 1) < n + 1

2
< ηn,1 < η′

n,1 < ηn,2 < η′
n,2 < ηn,3 < · · · .

Corollary 2.3. Let n ∈ N ∪ {0}. Then for each s ∈ N the sequences {ξn,s}∞n=0 and {ηn,s}∞n=0 are strictly monotonic increasing, that is

ξ0,s < ξ1,s < ξ2,s < · · · < ξn,s < ξn+1,s < · · · ,
η0,s < η1,s < η2,s < · · · < ηn,s < ηn+1,s < · · · .

Lemma 2.4. For n ∈ N ∪ {0}, the positive zeros of j′n(t) are interlaced with those of j′n+1(t):

ξ ′
n,1 < ξ ′

n+1,1 < ξ ′
n,2 < ξ ′

n+1,2 < ξ ′
n,3 < · · · ,

and the positive zeros of y′
n(t) are interlaced with those of y′

n+1(t):

η′
n,1 < η′

n+1,1 < η′
n,2 < η′

n+1,2 < η′
n,3 < · · · .

Corollary 2.5. Let n ∈ N ∪ {0}. Then for each s ∈ N the sequences {ξ ′
n,s}∞n=0 and {η′

n,s}∞n=0 are strictly monotonic increasing, that is

ξ ′
0,s < ξ ′

1,s < ξ ′
2,s < · · · < ξ ′

n,s < ξ ′
n+1,s < · · · ,

η′
0,s < η′

1,s < η′
2,s < · · · < η′

n,s < η′
n+1,s < · · · .

Concerning the zeros of the cylinder functions Cν(t) := α Jν(t) + βYν(t), where α, β are real constants, t is positive and
Jν(t), Yν(t) are Bessel and Neumann functions of order v defined for t > 0, respectively, we have the following result on
their interlacing character due to Dixon.

Lemma 2.6. Let a, b, c, d be constants such that ad 	= bc. Then the positive zeros of aCν(t) + btC ′
ν(t) that are larger than ν with ν � 0

are interlaced with those of cCν(t) + dt C ′
ν(t) that are larger than ν . Moreover, all these zeros are not repeated.

The above lemmas and corollaries can be found in [12]. The following corollary can be easily derived from Lemma 2.6.

Corollary 2.7. Let a, b, c, d be constants such that ad 	= bc. Then the positive zeros of ayn(t) + bty′
n(t) that are larger than n are

interlaced with those of cyn(t) + d ty′
n(t) that are larger than n. Moreover, all these zeros are not repeated.
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Theorem 2.8. For the spherical Bessel function jn(t) and the spherical Neumann function yn(t), we have that for all n ∈ N,

jn(t)yn(t) < 0 for t ∈ (0,2.798386),

jn(t) + t j′n(t) > 0 for t ∈ (0,2.08157598),

yn(t) + ty′
n(t) > 0 for t ∈ (0,

√
2 ).

Proof. By Lemma 2.1, it is known that for sufficiently small t > 0 jn(t) is positive and yn(t) is negative. Thus for all n ∈ N,

jn(t) > 0 for t ∈ (0,4.493409),

yn(t) < 0 for t ∈ (0,2.79836).

Since, by Corollary 2.3, ξ1,1 = 4.493409 is the smallest positive zero of jn(t) and η1,1 = 2.798386 is the smallest positive
zero of yn(t) (see [1]), then

jn(t)yn(t) < 0 for t ∈ (0,2.798386)

for all n ∈ N.

By Lemma 2.2 and Corollary 2.5, the smallest positive zeros of jn(t) and j′n(t) are given respectively by (see [1]):

ξ1,1 = 4.493409, ξ ′
1,1 = 2.08157598.

Thus we deduce from Lemma 2.1 that

jn(t) + t j′n(t) > 0 for t ∈ (0,2.08157598)

for all n ∈ N.

By (2.6) and (2.7) it can be seen that yn(t) + ty′
n(t) is positive for sufficiently small t > 0. Let ln1 and ln2 be the first and

second positive zeros of yn(t) + ty′
n(t). We may claim that ln1 > η′

1,1. In fact, if this were not true, that is ln1 < η′
1,1, then

by Corollary 2.7 we would conclude that

yn(t) + ty′
n(t) < 0 for t ∈ (ln1, ln2) (2.8)

for all n ∈ N. Thus, by Lemmas 2.1 and 2.2, it is easy to see that

yn
(
η′

1,1

) + ty′
n

(
η′

1,1

)
> 0.

This, together with (2.8), implies that

η′
1,1 > ln2. (2.9)

Now, by Corollary 2.7 with a = 1, b = 1, c = 0, d = 1, we deduce that the positive zeros of y′
n(t) are interlaced with those

of yn(t) + ty′
n(t). This contradicts (2.9). The claim is thus proved, so we conclude that

yn(t) + ty′
n(t) > 0 for t ∈ (

0, η′
1,1

)
for all n ∈ N. Since, by Lemma 2.2, η′

1,1 >
√

2, we then have

yn(t) + ty′
n(t) > 0 for t ∈ (0,

√
2 )

for all n ∈ N. The theorem is thus proved. �
3. Uniqueness for perfectly conducting balls centered at the origin

Theorem 3.1. Given an incident direction d ∈ S2 , a polarization p (p⊥d) and a wavenumber k > 0, let the incident plane wave be
Ei = peikx·d. If a perfectly conducting ball of radius R and centered at the origin satisfies that kR <

√
2, then the ball is uniquely

determined by one electric far field data E∞(d;d, p,k, R).

To prove the theorem we need the following lemmas of which the first one can be found in [3, Theorem 6.23].

Lemma 3.2. For the orthonormal system Y m
n , m = −n, . . . ,n, of spherical harmonics of order n > 0, the vector spherical harmonics

on the unit sphere Ω

Um
n = 1√ Grad Y m

n , V m
n = x̂ × Um

n
n(n + 1)
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for m = −n, . . . ,n, n ∈ N form a complete orthonormal system in T 2(Ω), where x̂ = x/|x|,
T 2(Ω) := {

a :Ω → C
3
∣∣ a ∈ L2(Ω), a · x̂ = 0

}
,

and Gradφ is the surface gradient of a continuously differentiable function φ on Ω defined by

Gradφ = ∂φ

∂θ
θ̂ + 1

sin θ

∂φ

∂ϕ
ϕ̂.

Here θ̂ , ϕ̂ are the unit vectors in the directions of the spherical coordinates (θ,ϕ), respectively.

For x ∈ R
3\{0} write

Mm
n (x) = curl

{
xjn

(
k|x|)Y m

n (x̂)
}
, Nm

n (x) = curl
{

xh(1)
n

(
k|x|)Y m

n (x̂)
}
.

Then by a direct calculation we have

Mm
n (x) = jn

(
k|x|)Grad Y m

n (x̂) × x̂, (3.1)

Nm
n (x) = h(1)

n
(
k|x|)Grad Y m

n (x̂) × x̂, (3.2)

and

x̂ × curl Mm
n (x) = 1

|x|
{

jn
(
k|x|) + k|x| j′n

(
k|x|)}x̂ × Grad Y m

n (x̂), (3.3)

x̂ × curl Nm
n (x) = 1

|x|
{

h(1)
n

(
k|x|) + k|x|h(1)′

n
(
k|x|)}x̂ × Grad Y m

n (x̂). (3.4)

Lemma 3.3. Let the incident plane wave Ei be given as in Theorem 3.1 and let B(0, R) be a perfectly conducting ball. Then the scattered
field Es to the problem (1.1)–(1.2) has the following representation:

Es(x) =
+∞∑
n=1

n∑
m=−n

[
am

n Nm
n (x) + bm

n curl Nm
n (x)

]
, |x| > R,

where

am
n = − in4π R2 jn(kR)

n(n + 1)h(1)
n (kR)

p · Grad Y m
n (d) × d,

bm
n = − in−14π R2[ jn(kR) + kR j′n(kR)]

kn(n + 1)[h(1)
n (kR) + kRh(1)′

n (kR)]
p · Grad Y m

n (d)

and i = √−1.

Proof. By [3, Theorem 6.25] the scattered field Es can be written as

Es(x) =
+∞∑
n=1

n∑
m=−n

[
am

n Nm
n (x) + bm

n curl Nm
n (x)

]
, |x| > R,

where the series (together with its derivatives) converges uniformly on compact subsets of |x| > R. Thus, on the sphere
|x| = R we have

x̂ × Es(x) =
+∞∑
n=1

n∑
m=−n

[
am

n h(1)
n

(
k|x|)Grad Y m

n (x̂) + bm
n

1

|x|
{

h(1)
n

(
k|x|) + k|x|h(1)′

n
(
k|x|)}x̂ × Grad Y m

n (x̂)

]
. (3.5)

On the other hand, by Lemma 3.2 we have

x̂ × peikx·d =
+∞∑
n=1

n∑
m=−n

[
Am

n Grad Y m
n (x̂) + Bm

n x̂ × Grad Y m
n (x̂)

]
. (3.6)

From the boundary condition (1.2) it follows that x̂ × Es = −x̂ × peikx·d . This together with (3.5) and (3.6) implies that

am
n = − Am

n
(1)

, bm
n = − Bm

n R
(1) (1)′ . (3.7)
hn (kR) hn (kR) + kRhn (kR)
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We now compute Am
n and Bm

n . By (3.6) and Lemma 3.2, it is seen that

Am
n = 1

n(n + 1)

∫
Ω

x̂ × peikx·d · Grad Y m
n (x̂)ds, (3.8)

Bm
n = 1

n(n + 1)

∫
Ω

x̂ × peikx·d · x̂ × Grad Y m
n (x̂)ds = 1

n(n + 1)

∫
Ω

eikx·d p · Grad Y m
n (x̂)ds. (3.9)

By [3, Theorem 6.24], the pair E(x) = Mm
n (x), H(x) = 1

ik curl Mm
n (x) is an entire solution to the Maxwell equations (1.1) in R

3,

and the pair E(x) = Nm
n (x), H(x) = 1

ik curl Nm
n (x) is a solution to the Maxwell equations (1.1) in R

3\{0} satisfying the Silver–
Müller radiation condition (1.3). Thus, by the well-known Straton–Chu formula (see [3, Theorems 6.2 and 6.6]) together with
the aid of (3.1)–(3.4) we obtain that for x ∈ R

3 with |x| = R,

Nm
n (x) = h(1)

n (kR) curlx

∫
|y|=R

Grad Y m
n ( ŷ)Φ(x, y)ds(y)

+ h(1)
n (kR) + kRh(1)′

n (kR)

k2 R
curlx curlx

∫
|y|=R

ŷ × Grad Y m
n ( ŷ)Φ(x, y)ds(y), (3.10)

0 = jn(kR) curlx

∫
|y|=R

Grad Y m
n ( ŷ)Φ(x, y)ds(y)

+ jn(kR) + kR j′n(kR)

k2 R
curlx curlx

∫
|y|=R

ŷ × Grad Y m
n ( ŷ)Φ(x, y)ds(y), (3.11)

where

Φ(x, y) = 1

4π

eik|x−y|

|x − y| (x 	= y)

is the fundamental solution to the Helmholtz equation. By subtracting (3.11) multiplied with h(1)
n (kR) from (3.10) multiplied

with jn(kR) and using the Wronskian equality (2.2), we obtain that

jn(kR)Nm
n (x) = i

k3 R2
curlx curlx

∫
|y|=R

ŷ × Grad Y m
n ( ŷ)Φ(x, y)ds(y) (3.12)

for |x| > R . By using (3.2) and the identity

p · curlx curlx
[
C(y)Φ(x, y)

] = C(y) · curlx curlx
[

pΦ(x, y)
]
,

it follows from (3.12) that∫
|y|=R

ŷ × Grad Y m
n ( ŷ) · curlx curlx

[
pΦ(x, y)

]
ds(y) = −ik3 R2 jn(kR)h(1)

n
(
k|x|)p · Grad Y m

n (x̂) × x̂

for |x| > R .
Now, by the following asymptotic behavior

curlx curlx

(
p

eik|x−y|

|x − y|
)

= k2 eik|x|

|x|
{

e−ikx̂·y x̂ × (p × x̂) + O

( |p|
|x|

)}
, |x| → ∞,

h(1)
n (t) = 1

t
ei(t− n

2 π− π
2 )

{
1 + O

(
1

t

)}
, t → +∞,

we see that∫
|y|=R

eikx̂·y(x̂ × p × x̂) · ŷ × Grad Y m
n ( ŷ)ds(y) = −in4π R2 jn(kR)p · Grad Y m

n (x̂) × x̂.

It thus follows that∫
eikx·d p · x̂ × Grad Y m

n (x̂)ds(x) = −in4π R2 jn(kR)p · Grad Y m
n (d) × d.
|x|=R
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This together with (3.8) implies that

Am
n = in4π R2 jn(kR)

n(n + 1)
p · Grad Y m

n (d) × d.

To compute Bm
n , we first derive from (3.10) and (3.11) that[

jn(kR) + kR j′n(kR)
]
Nm

n (x) = − i

kR
curlx

∫
|y|=R

Grad Y m
n ( ŷ)Φ(x, y)ds(y),

where use has been made of the Wronskian equality (2.2). By (3.2), the asymptotic behavior of the spherical Hankel function
and the equality

∇x

(
eik|x−y|

|x − y|
)

= ik
eik|x|

|x|
{

e−ikx̂·y x̂ + O

(
1

|x|
)}

, |x| → ∞,

it follows that for |x| > R ,∫
|y|=R

e−ikx̂·y x̂ × Grad Y m
n ( ŷ)ds(y) = 4π R[ jn(kR) + kR j′n(kR)](−i)n+1

k
Grad Y m

n (x̂) × x̂.

Thus, ∫
|y|=R

eikx̂·y Grad Y m
n ( ŷ)ds(y) = −4π R[ jn(kR) + kR j′n(kR)]in+1

k
Grad Y m

n (x̂) + C(x̂)x̂

for some function C(x̂). This, together with (3.9) and the fact that p · d = 0, implies that

Bm
n = in−14π R[ jn(kR) + kR j′n(kR)]

kn(n + 1)
p · Grad Y m

n (d).

Combining (3.5) and (3.7) completes the proof of the lemma. �
Remark 3.4. By [3, Theorem 6.26] and Lemma 3.3, the electric far field pattern E∞ of the scattered field Es is given by

E∞(x̂;d, p,k, R) = 1

k

+∞∑
n=1

1

in+1

n∑
m=−n

{
ikbm

n Grad Y m
n (x̂) − am

n x̂ × Grad Y m
n (x̂)

}
=

+∞∑
n=1

4π iR2

kn(n + 1)

{
jn(kR) + kR j′n(kR)

h(1)
n (kR) + kRh(1)′

n (kR)

n∑
m=−n

[
p · Grad Y m

n (d)
]

Grad Y m
n (x̂)

+ jn(kR)

h(1)
n (kR)

n∑
m=−n

[
p · Grad Y m

n (d) × d
]

Grad Y m
n (x̂) × x̂

}
. (3.13)

By using [3, Theorem 2.8] it can be easily shown that the above electric far field pattern satisfies the well-known theorem
of Karp (see [3, p. 197]):

E∞(Q x̂; Q d, Q p,k, R) = Q E∞(x̂;d, p,k, R) (3.14)

for all x̂,d ∈ Ω , all p ∈ R
3 and all rotations Q , i.e., for all real orthogonal matrices Q with det Q = 1.

In order to prove our main theorem, we need the following result.

Lemma 3.5. For n = 1,2, . . . , we have

n∑
m=−n

[
p · Grad Y m

n (d)
]

Grad Y m
n (d) = 1

8π
n(n + 1)(2n + 1)C(d, p),

n∑
m=−n

[
p · Grad Y m

n (d) × d
]

Grad Y m
n (d) × d = 1

8π
n(n + 1)(2n + 1)C(d, p),

where

C(d, p) = (θ̂ · p)θ̂ + (ϕ̂ · p)ϕ̂

is a constant vector depending on d and p and θ̂ , ϕ̂ are the unit vectors in the directions of the spherical coordinates (θ,ϕ), respectively.
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Proof. From the additional theorem of the spherical harmonic functions:

n∑
m=−n

Y m
n (x̂)Y m

n ( ŷ) = 2n + 1

4π
Pn(cosω)

where ω denotes the angle between x̂ and ŷ and Pn denote the Legendre polynomial, it follows that

n∑
m=−n

[
p · Grad Y m

n (x̂)
]

Grad Y m
n ( ŷ) = 2n + 1

4π
Grad ŷ

[
p · Gradx̂ Pn(cosω)

]
.

Now, fix d ∈ S2 and p ∈ R
3 with p⊥d. We may choose a proper coordinate system ox1x2x3 such that the spherical

coordinate representation d = d(θ,ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) satisfies θ 	= 0. Let x̂ = x̂(θ1,ϕ1), ŷ = ŷ(θ2,ϕ2) lie in a
small coordinate neighborhood of d so that

cosω = sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2 =: f (θ1, θ2,ϕ1,ϕ2).

Then

Gradx̂ Pn(cosω) = P ′
n fθ1 θ̂1 + 1

sin θ1
P ′

n fϕ1 ϕ̂1,

where

P ′
n = dPn(t)

dt
, fθi = ∂ f

∂θi
, fϕi = ∂ f

∂ϕi
, i = 1,2.

Thus, we have

Grad ŷ

[
p · Gradx̂ Pn(cosω)

] = (
P ′′

n fθ2 fθ1 + P ′
n fθ1θ2

)
(θ̂1 · p)θ̂2 + (

P ′′
n fθ2 fϕ1 + P ′

n fϕ1θ2

) 1

sin θ1
(ϕ̂1 · p)θ̂2

+ (
P ′′

n fϕ2 fθ1 + P ′
n fθ1ϕ2

) 1

sin θ2
(θ̂1 · p)ϕ̂2 + (

P ′′
n fϕ2 fϕ1 + P ′

n fϕ1ϕ2

) 1

sin θ2

1

sin θ1
(ϕ̂1 · p)ϕ̂2,

where P ′′
n = d2 Pn(t)/dt2, gϕθ = ∂2 g/∂ϕ∂θ for a function g(ϕ, θ). Let x̂ = ŷ = d(θ,ϕ) in the above equation, that is θi = θ ,

ϕi = ϕ (i = 1,2). Then ω = 0 and

fθi = fϕi = fϕiθ j = 0, fθiθ j = 1, fϕiϕ j = sin2 θ, i, j = 1,2, i 	= j,

so that

Grad ŷ

[
p · Gradx̂ Pn(cos θ)

]∣∣
x̂= ŷ=d = P ′

n(1)
[
(θ̂ · p)θ̂ + (ϕ̂ · p)ϕ̂

]
.

Since Pn(t) satisfies the Legendre differential equation(
1 − t2)P ′′

n − 2t P ′
n(t) + n(n + 1)Pn(t) = 0, n = 0,1,2, . . . , −1 � t � 1,

we have

P ′
n(1) = n(n + 1)

2
, n = 0,1,2, . . . .

Consequently, we have

n∑
m=−n

[
p · Grad Y m

n (d)
]

Grad Y m
n (d) = 1

8π
n(n + 1)(2n + 1)C(d, p),

where

C(d, p) = (θ̂ · p)θ̂ + (ϕ̂ · p)ϕ̂

is a tangential vector depending on p and d.
Arguing similarly as above gives that

n∑
m=−n

[
p · Grad Y m

n (d) × d
]

Grad Y m
n (d) × d = 1

8π
n(n + 1)(2n + 1)C ′(d, p),

where
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C ′(d, p) = [
(θ̂ × d) · p

]
θ̂ × d + [

(ϕ̂ × d) · p
]
ϕ̂ × d

is also a tangential vector depending on p and d. Since

ϕ̂ × d = θ̂ , θ̂ × d = −ϕ̂,

then C ′(d, p) = C(d, p). The proof is thus completed. �
We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Choose the coordinate system used in the proof of Lemma 3.5. From (3.13) and Lemma 3.5 it follows
that

E∞(d;k,d, p, R) = iR2

2k

∞∑
n=1

(2n + 1)

{
jn(kR) + kR j′n(kR)

h(1)
n (kR) + kRh(1)′

n (kR)
+ jn(kR)

h(1)
n (kR)

}
C(d, p).

Suppose there are two balls with different radius R1 and R2 (< R1) generating the same electric far field pattern on the
unit ball at x̂ = d, that is,

E∞(d;k,d, p, R1) = E∞(d;k,d, p, R2).

Then we have

R2
1

∞∑
n=1

(2n + 1)

{
jn(kR1) + kR1 j′n(kR1)

h(1)
n (kR1) + kR1h(1)′

n (kR1)
+ jn(kR1)

h(1)
n (kR1)

}

= R2
2

∞∑
n=1

(2n + 1)

{
jn(kR2) + kR2 j′n(kR2)

h(1)
n (kR2) + kR2h(1)′

n (kR2)
+ jn(kR2)

h(1)
n (kR2)

}
. (3.15)

Set

fn(t) := jn(t) + t j′n(t)

h(1)
n (t) + th(1)′

n (t)
= αn(t) + iα̃n(t),

gn(t) := jn(t)

h(1)
n (t)

= βn(t) + iβ̃n(t)

for t ∈ (0,∞) and n = 1,2, . . . . Then it is easy to see that

αn(t) = x2(t)

x2(t) + y2(t)
, βn(t) = j2

n(t)

j2
n(t) + y2

n(t)
,

where x(t) = jn(t) + t j′n(t), y(t) = yn(t) + ty′
n(t). From (3.15) it follows that

t2
1

∞∑
n=1

(2n + 1)
[
αn(t1) + βn(t1)

] = t2
2

∞∑
n=1

(2n + 1)
[
αn(t2) + βn(t2)

]
, (3.16)

where t2 = kR2 < kR1 = t1. Now, making use of the definition of αn(t), the Bessel differential equation (2.1) and the Wron-
skian equality (2.2), it is derived that

α′
n(t) = 2x(t)y(t)

[x2(t) + y2(t)]2

n(n + 1) − t2

t2
.

By Theorem 2.8, it is seen that for n = 1,2, . . . , α′
n(t) > 0 for t ∈ (0,

√
2 ), which implies that αn(t) is strictly monotonic

increasing for t ∈ (0,
√

2 ) uniformly for n = 1,2, . . . . Similarly, it can be shown that βn(t) is strictly monotonic increas-
ing for t ∈ (0,

√
2 ) uniformly for n = 1,2, . . . . Thus we have, on noting that 0 < t2 < t1 <

√
2, that t2

1[αn(t1) + βn(t1)] >

t2
2[αn(t2) + βn(t2)] > 0 for n = 1,2, . . . . This contradicts the equality (3.16). The theorem is thus proved. �

4. Uniqueness for perfectly conducting balls without a prior information on the center

Theorem 4.1. Let the incident plane wave Ei be given as in Theorem 3.1 and let B(x, R) be a perfectly conducting ball centered at x
with radius R. Let d1 = d and let d j ∈ S2 ( j = 2,3,4) be such that d2 − d, d3 − d, d4 − d are three linearly independent vectors in R

3 .
For R1, R2 ∈ R+ and x1, x2 ∈ R

3 , if kR1,kR2 <
√

2 and

E∞
(
d j;d, p, B(x1, R1)

) = E∞
(
d j;d, p, B(x2, R2)

)
, j = 1,2,3,4,
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then

R1 = R2, x1 = x2.

Proof. We first establish a connection between the electric far field patterns for translational, perfectly conducting balls,
which generalizes the result of [8] for disks in R

2. For simplicity, we write E∞(x̂; B(x, R)) = E∞(x̂;d, p, B(x, R)) and B R =
B(0, R). Clearly, we have the following translation relation:

B(y0, R) = {
y ∈ R

3
∣∣ y = x + y0, x ∈ B R

}
.

For any y = x + y0 ∈ ∂ B(y0, R) with x ∈ ∂ B R , we have

ν(y) × Es(y, B(y0, R)
) = −ν(y) × Ei(y)

= − y − y0

‖y − y0‖ × peiky·d

= −x̂ × peikx·deiky0·d

= −x̂ × Ei(x)eiky0·d

= x̂ × Es(x, B R)eiky0·d

= ν(y) × {
eiky0·d Es(y − y0, B R)

}
.

By the uniqueness of the exterior problem of the Maxwell equations for perfectly conducting balls it follows that

Es(y, B(y0, R)
) = eiky0·d Es(y − y0, B R), ∀y ∈ R

3\B(y0, R). (4.1)

This implies that for any y = x + y0 ∈ ∂ B(y0, R) with x ∈ ∂ B R ,

ν(y) × curl Es(y, B(y0, R)
) = y − y0

‖y − y0‖ × curl Es(y − y0, B R)eiky0·d = ν(x) × curl Es(x, B R)eiky0·d. (4.2)

From (4.1) and (4.2) it is seen that the electric far field pattern associated with B(y0, R) can be characterized as follows
(see [3]):

E∞
(
x̂, B(y0, R)

) = ik

4π
x̂ ×

∫
∂ B(y0,R)

[
ν(y) × Es(y, B(y0, R)

) + ν(y) × 1

ik
curl Es(y, B(y0, R)

) × x̂

]
e−ikx̂·y ds(y)

= ik

4π
x̂ ×

∫
∂ B R

[
ν(x) × Es(x, B R) + ν(x) × 1

ik
curl Es(x, B R) × x̂

]
e−ikx̂·x ds(x)eiky0·(d−x̂)

= eiky0·(d−x̂)E∞(x̂, B R).

From this and the assumption we have

eikx1·(d−d j)E∞(d j, B R1 ) = eikx2·(d−d j)E∞(d j, B R2 ), j = 1,2,3,4. (4.3)

For j = 1 we have, on noting that d1 = d, that

E∞(d, B R1 ) = E∞(d, B R2 ).

This together with Theorem 3.1 implies that R1 = R2. Let R1 = R2 = R . Then (4.3) gives

E∞(d j, B R)eik(x1−x2)·(d−d j) = E∞(d j, B R), j = 2,3,4.

Thus, for j = 2,3,4, we have

(x1 − x2) · (d − x̂ j) = 0, j = 2,3,4.

Since d2 − d, d3 − d, d4 − d are three linearly independent vectors in R
3, we obtain that x1 = x2. The proof is thus com-

plete. �
Remark 4.2. (i) From Theorems 3.1 and 4.1, it is seen that three more far field data are added to locate the center of the
ball. It seems that these data are the least in the three-dimensional case since, in this case, there are totally four unknowns
(the radius and three components of the center of the ball) to be determined.

(ii) Our method can be applied in the case of inverse acoustic scattering by a disk (in 2D) or a ball (in 3D) to obtain
that the radius R and the center of a sound-soft disk with R < 0.8935769/k or a sound-hard disk with R < 1/k can be
uniquely determined by three far field data and that the radius R and the center of a sound-soft ball with R < π/(2k) or
a sound-hard ball with R <

√
2/k can be uniquely determined by four far field data (see [12] for the corresponding results

when the center is fixed at the origin).
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