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Abstract

This paper is concerned with a direct sampling method for imaging the support of a
frequency-dependent source term embedded in a homogeneous and isotropic medium. The
source term is given by the Fourier transform of a time-dependent source whose radiating
period in the time domain is known. The time-dependent source is supposed to be sta-
tionary in the sense that its compact support does not vary along the time variable. Via
a multi-frequency direct sampling method, we show that the smallest strip containing the
source support and perpendicular to the observation direction can be recovered from far-field
patterns at a fixed observation angle. With multiple but sparse observations directions, the
shape of the so-called Θ-convex hull of the source support can be recovered. The frequency-
domain analysis performed here can be used to handle inverse time-dependent source prob-
lems. Our algorithm has low computational overhead and is robust against noise. Numerical
experiments in both two and three dimensions have proved our theoretical findings.

Keywords: Inverse source problems, frequency-dependent source, multi-
frequency data, Fourier transform, direct sampling method.

1 Introduction

1.1 Mathematical formulation

Let 0 ≤ kmin < kmax and BR = {x ∈ R3 : |x| < R} for some R > 0. Consider a frequency-
dependent radiating problem in a homogeneous background medium in three dimensions. The
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acoustic wave propagation can be governed by the inhomogeneous Helmholtz equation{
∆u(x, k) + k2u(x, k) = f(x, k), k ∈ (kmin, kmax), x ∈ R3,

limr→∞ r(∂ru− iku) = 0, r = |x|,
(1.1)

where k > 0 is the wavenumber and f is the frequency-dependent source term. The radiation
condition at infinity in (1.1) is known as the Sommerfeld radiation condition, which holds uni-
formly in all directions x̂ = x/|x| ∈ S2 := {x ∈ R3 : |x| = 1}. Throughout the paper we suppose
that f(·, k) ∈ L2(BR), suppf(·, k) = D ⊂ BR for all k ∈ (kmin, kmax). Here D is supposed to be
a bounded domain such that R3\D is connected. For every k > 0, it is well known that there
exists a unique solution u ∈ H2(BR) to (1.1) with the explicit representation

u(x, k) =

∫
D

Φ(k)(x, y) f(y, k) dy, x ∈ R3. (1.2)

Here, Φ(k) is the fundamental solution to the Helmholtz equation (∆ + k2)u = 0, given by

Φ(k)(x, y) =
eik|x−y|

4π|x− y|
, x 6= y.

The Sommerfeld radiation condition gives rise to the following asymptotic behavior of u at
infinity (see [7]):

u(x) =
eik|x|

4π|x|
{
u∞(x̂, k) +O(r−2)

}
as |x| → ∞, (1.3)

where u∞(·, k) ∈ C∞(S2) is defined as the far-field pattern (or scattering amplitude) of u. It is
well known that the function x̂ 7→ u∞(x̂, k) is real-analytic on S2, where x̂ ∈ S2 is referred as the
observation direction. By (1.2), the far-field pattern u∞ of u can be expressed as

u∞(x̂, k) =

∫
D
e−ikx̂·yf(y, k) dy, x̂ ∈ S2, k > 0. (1.4)

In this paper we are interested in the following inverse problem: determine the position and
shape of the supportD from knowledge of multi-frequency far-field patterns at sparse observation
directions: {u∞(x̂j , k) : k ∈ (kmin, kmax), j = 1, 2, · · · , J} for some J ∈ N. The aim of this paper
is to explore a direct sampling method for imaging the support D = suppf(·, k) from numerical
point of view. As done in one of the authors’ previous paper [12], the frequency-dependent source
term is supposed to be a windowed Fourier transform of some time-dependent source term, i.e.,
there exists a time window (tmin, tmax) ⊂ R+ such that

f(x, k) =

∫ tmax

tmin

F (x, t)e−ikt dt, x ∈ D, k ∈ (kmin, kmax). (1.5)

Here the function F ∈ L∞(D × (tmin, tmax)) satisfies suppF (·, t) = D for all t ∈ (tmin, tmax) and
the time window (tmin, tmax) ⊂ R+ is supposed to be available in advance. In this paper F is
supposed to be real-valued subject to the positivity condition

F (x, t) > 0 a.e. x ∈ D, t ∈ (tmin, tmax). (1.6)
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In particular, F is allowed to vanish on the boundary of D for t ∈ (tmin, tmax). It is obvious
that the underlying source F is stationary in the sense that the shape of its support does not
vary with the time. By the assumption (1.5), we have f(x,−k) = f(x, k) for all k > 0 and thus
u∞(x̂,−k) = u∞(x̂, k).

1.2 Scientific context

If F (x, t) = f(x)δ(t), it follows from (1.5) that f(x, k) = f(x) is independent of frequencies. In
this special case the far-field pattern u∞ given by (1.3) is nothing else but the Fourier transform
of the space-dependent function at the Fourier variable ξ = kx̂ ∈ R3. For such space-dependent
inverse source problems, it is well-known that measurement data at a single frequency is severely
ill-posed and uniqueness is impossible due to the existence of non-radiating sources [4, 9]. We
refer to [25, 18, 13] for further discussions on recovering polygonal/polyhedral support of a source
function with a single pair of data. To overcome the ill-posedness, a wide range of literatures
are devoted to frequency-independent inverse problems from multi-frequency far-/near-field mea-
surement data. Uniqueness from the data of an interval of frequencies and observation angles
follows straightforwardly, because the measurement data are analytic with respect to both the
wavenumber k > 0 and the observation angle. Consequently, a couple of iterative and non-
iterative schemes (for example, sampling-type methods) have been proposed for recovering the
source function [1, 3, 6, 9, 26] as well as the shape of the support [2, 15, 16, 10, 8, 21]. Concern-
ing sampling-type methods to inverse obstacle scattering problems at a fixed energy, we refer
the readers to the monographs [7, 22, 17, 23] for an overview. The direct sampling method
[5, 14, 19, 20] (which is also called orthogonal sampling method [24, 11]) has also drawn a lot
of attentions, because it can be easily implemented and is rather robust against noise. The
purpose of this paper is to explore a direct sampling scheme for imaging the support of a class
of frequency-dependent source terms in the time-harmonic regime.

When f depends on the wavenumber/frequency, the far-field pattern (1.4) is no longer the
Fourier transform of a source function, bringing essential difficulties in proving uniqueness and
also in designing inversion schemes. The inverse medium scattering can be equivalently trans-
formed into an inverse wave-number-dependent source problem. To the best of the authors’
knowledge, most existing methods cannot be carried over to this case for extracting information
on the support and source functions. Although a direct sampling scheme [2] has been tested for
recovering the shape of wave-number dependent sources, the numerical examples there were not
very satisfactory in comparison with the reconstructions for wave-number independent sources.
In [12], a factorization method has been established for recovering source terms of the form
(1.5), generalizing the earlier work of [10] to inverse wave-number-dependent source problems
with a known radiating period [tmin, tmax]. As mentioned in the previous subsection, such kind of
sources arises naturally from the Fourier transform of time-dependent source terms. Motivated
by [12] and [2], we consider within this paper the same kind of wave-number-dependent source
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as [12]. Our approach provides a tool for analyzing inverse time-dependent scattering problems
in the frequency domain via Fourier transform.

We compare the factorization scheme of [12] and the direct sampling method proposed in this
paper as follows. Fixing an observation direction, one can apply both of them to recover the the
smallest strip containing the source support and perpendicular to the observation direction from
the far-field data in two and three dimensions. Both of them are applicable to the near-field data
at multi-frequencies in three dimensions. The factorization method can be implemented with
the data from any interval of frequencies, but the direct sampling scheme requires all frequencies
in the positive axis. Like the multi-static case, the factorization scheme provides a sufficient
and necessary condition for imaging the strip, while the direct sampling method yields only a
sufficient condition. In this sense, the multi-frequency factorization method inherits the merits
of its multi-static version, due to the solid analysis from functional analysis. However, the
direct sampling method can be more easily implemented, because it only involves inner product
calculations. Further, the theoretical justification of the direct sampling, as done in this paper,
can be performed under less restrictive mathematical conditions. For example, the positivity
condition of the source function F can be further relaxed (see Remark 4.1), but the source was
required to be coercive in [12, 10].

In this paper the starting time point tmin and the terminal time point tmax of the source
radiating period are both supposed to be a priori known. If one of them is given, we can
also design a direct sampling scheme to recover the Θ-convex hull of the connected support by
increasing far-field observation directions. However, it remains unclear to us how to handle the
case when neither of them is known. The direct sampling scheme explored within this paper,
in particular the inversion theory from a single observation point, can be adapted to extract
information on the trajectory of a moving source under additional constraints, which will be
reported in our forthcoming papers.

The remaining part of this paper is organized as follows. In the subsequent two sections, we
design a direct sampling scheme using multi-frequency far-field patterns at sparse observation
direction in 2D. Numerical tests will be reported in Section 4 in the far-field case. In the final
Section 5, we extend the results of Sections 2 and 3 to the case of near-field measurement data
in three dimensions.

2 Inverse Fourier transform of far-field pattern

Let x̂ ∈ S2 be an observation direction and D ⊂ R3 be a bounded domain with C2-smooth
boundary. Define

x̂ ·D = {t ∈ R : t = x̂ · y for some y ∈ D}.
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Obviously, x̂ ·D is an interval of R. Introduce the notations

T := tmax − tmin, L := sup(x̂ ·D)− inf(x̂ ·D), Λ := T + L. (2.7)

In this paper the one-dimensional Fourier and inverse transforms are defined respectively by

(Fg)(k) :=

∫
R
g(ξ)e−ikξ dξ, k ∈ R,

(F−1f)(ξ) :=
1

2π

∫
R
f(k)eikξ dk, ξ ∈ R.

Definition 2.1. The supporting interval of the function f ∈ L2(R) is defined as the minimum
interval such that f vanishes almost every in the exterior of this interval.

Below we describe the supporting interval of the inverse Fourier transform of the far-field
pattern with respect to frequencies at a fixed observation direction.

Lemma 2.1. Under the assumption (1.6), the supporting interval of (F−1u∞(x̂, k))(t) is H :=(
inf(x̂ ·D) + tmin, sup(x̂ ·D) + tmax

)
and the function t 7−→ (F−1u∞)(t) is positive in H.

Proof. Combining (1.4) and (1.5), the far-field pattern u∞ of u can be expressed as

u∞(x̂, k) =

∫
D
f(y, k)e−ikx̂·ydy =

∫ tmax

tmin

∫
D
F (y, t)e−ik(x̂·y+t)dydt.

To write the above expression as a Fourier transform, we observe that∫
D
F (y, t)e−ik(x̂·y+t) dy =

∫
R
e−ikξ

(∫
Γ(ξ−t)

F (y, t)ds(y)

)
dξ

where Γ(t) ⊂ D is defined as

Γ(t) := {y ∈ D : x̂ · y = t} , t ∈ R.

Note that when Γ(ξ − t) = ∅, the aforementioned integral over Γ(ξ − t) is taken as zero. Conse-
quently,

u∞(x̂, k) =

∫
R
e−ikξg(ξ)dξ = (Fg)(k), (2.8)

with

g(ξ) :=

∫ tmax

tmin

∫
Γ(ξ−t)

F (y, t)ds(y)dt =

∫ ξ−tmin

ξ−tmax

∫
Γ(t)

F (y, ξ − t)ds(y)dt. (2.9)

Since Γ(t) = ∅ for t < inf(x̂ ·D) and t > sup(x̂ ·D), it is obvious that

g(ξ) = 0 if ξ < inf(x̂ ·D) + tmin or ξ > sup(x̂ ·D) + tmax.
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It remains to prove

g(ξ) > 0 if ξ ∈
(

inf(x̂ ·D) + tmin, sup(x̂ ·D) + tmax

)
. (2.10)

For such ξ, we suppose that

ξ = inf(x̂ ·D) + tmin + ε for some ε ∈ (0,Λ). (2.11)

Then it holds that

ξ − t ∈ (tmin, tmin + ε), if t ∈
(

inf(x̂ ·D), inf(x̂ ·D) + ε
)
.

Now we rewrite g as

g(ξ) =

∫ inf(x̂·D)+ε

inf(x̂·D)

∫
Γ(t)

F (y, ξ − t)ds(y)dt.

Observing for any ε ∈ (0,Λ) that(
inf(x̂ ·D), inf(x̂ ·D) + ε

)
∩
(

inf(x̂ ·D), sup(x̂ ·D)
)
6= ∅,(

tmin, tmin + ε
)
∩
(
tmin, tmax

)
6= ∅,

we deduce from the positivity assumption of F that g must be positive in
(

inf(x̂·D)+tmin, sup(x̂·
D) + tmax

)
.

In Lemma 2.2 below, we assume that D = D1 ∪ D2 ⊂ R3 consists of two disconnected
components D1 and D2. We make the following assumption on the distance between D1 and
D2:

Assumption (A): It holds that

sup(x̂ ·D1) + tmax < inf(x̂ ·D2) + tmin or sup(x̂ ·D2) + tmax < inf(x̂ ·D1) + tmin.

In other words, inf(x̂ ·D2)− sup(x̂ ·D1) > T or inf(x̂ ·D1)− sup(x̂ ·D2) > T .

Physically, the Assumption (A) means that the wave signals radiated from D1 and D2 can be
separated in the observation direction x̂: see Figs. 1 and 2. Otherwise, the support of the these
waves can be overlapped along the propagating direction x̂.

Lemma 2.2. The supporting interval of (F−1u∞(x̂, k))(t) is H1∪H2 where Hj =
(

inf(x̂ ·Dj)+

tmin, sup(x̂ · Dj) + tmax

)
and the function t 7−→ (F−1u∞)(t) is positive in H1 ∪ H2. Further,

H1 ∪H2 is a subset of H =
(

inf(x̂ ·D) + tmin, sup(x̂ ·D) + tmax

)
under the Assumption (A),

and H1 ∪H2 = H if the Assumption (A) does not hold.

Remark 2.1. The assumption (A) ensures that the intervals H1 and H2 have no intersections,
i.e., H1 ∩H2 = ∅. In particular, (x ·D1) ∩ (x̂ ·D2) = ∅.
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Figure 1: Examples of D1 and D2 satisfying the Assumption (A). Here tmin = 0.5, tmax = 1, D1

is kite-shaped, D2 is elliptical and x̂ = (1, 0).

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

inf(x̂
·D

2 )

sup(x̂
·D

2 )

su
p
(x̂

·
D
2 )

+
t
m
ax

x̂
=
(
√
2

2 ,
√
2

2 )

inf(x̂
·D

1 )

sup(x̂
·D

1 )

in
f(x̂

·
D
1 )

+
t
m
in

D2

D1

Figure 2: Examples of D1 and D2 which do not satisfy the assumption (A). Here tmin = 1,
tmax = 5 and x̂ = (

√
2/2,
√

2/2). The acoustic waves radiated fromD1 andD2 can be overlapped.

7



Proof. As done in the proof of Lemma 2.1, the far-field far-field takes the form

u∞(x̂, k) =

∫ tmax

tmin

∫
D1∪D2

F (y, t)e−ik(x̂·y+t)dydt

=

∫
R
e−ikξg(ξ)dξ = (Fg)(k). (2.12)

Here g = g1 + g2 with the functions gj (j = 1, 2) defined as

gj(ξ) :=

∫ tmax

tmin

∫
Γj(ξ−t)

F (y, t)ds(y)dt =

∫ ξ−tmin

ξ−tmax

∫
Γj(t)

F (y, ξ − t)ds(y)dt. (2.13)

The set Γj(t) ⊂ Dj is defined as

Γj(t) := {y ∈ Dj : x̂ · y = t} , t ∈ R.

Hence, the inverse Fourier transform of the multi-frequency far-field patterns (2.12) is F−1u∞ =

g = g1 + g2. It follows from Lemma 2.1 that supp(gj) = Hj and gj > 0 in Hj for j = 1, 2. This
proves supp(F−1u∞) = supp(g) = H1 ∪H2 and g is positive in H1 ∪H2.

Noting that H1 ∩H2 = ∅ under the assumption (A), we obtain that H1 ∪H2 is a subset of
H. If H1 ∩H2 6= ∅, it is obvious that H1 ∪H2 = H.

3 Indicator and test functions

From Lemmas 2.1 and 2.2, one can extract information on the interval
(

inf(x̂ ·D) + tmin, sup(x̂ ·
D) + tmax

)
by taking the inverse Fourier transform of u∞(x̂, k) for all k > 0. Since tmin and

tmax are both given, this obviously yields information on the strip x̂ ·D. In this section we shall
design proper indicator functions to image the support x̂ ·D in a more straightforward manner.

We first suppose that D is connected. Given an observation direction x̂, we want to design
an indicator function y 7−→ I(y), y ∈ R2 such that

I(y) =

{
0 if x̂ · y ∈ x̂ ·D,
finite positive number if otherwise.

Introduce two test functions

φ
(x̂)
1 (y, k) := e−ik(x̂·y+tmin), φ

(x̂)
2 (y, k) := e−ik(x̂·y+tmax),

and two auxiliary indicator functions

I
(x̂)
j (y) =

∫
R
u∞(x̂, k) φ

(x̂)
j (y, k) dk, j = 1, 2, (3.14)

where y ∈ R2 is referred to as the sampling variable. Below we characterize the support of I(x̂)
j

(j = 1, 2).
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Theorem 3.1. Let x̂ ∈ S2 be fixed. We have

I
(x̂)
1 (y) =

{
0 for x̂ · y /∈

(
inf(x̂ ·D), sup(x̂ ·D) + T

)
,

finite positive number for x̂ · y ∈
(

inf(x̂ ·D), sup(x̂ ·D) + T
)
;

(3.15)

I
(x̂)
2 (y) =

{
0 for x̂ · y /∈

(
inf(x̂ ·D)− T, sup(x̂ ·D)

)
,

finite positive number for x̂ · y ∈
(

inf(x̂ ·D)− T, sup(x̂ ·D)
)
.

(3.16)

Proof. Denote by δ(·) the Dirac delta function. The test functions φ(x̂)
j (y, k) (j = 1, 2) can be

rephrased as

φ
(x̂)
1 (y, k) =

∫
R
e−ikξδ(ξ − x̂ · y − tmin)dξ = [F(δ(ξ − x̂ · y − tmin))](k),

φ
(x̂)
2 (y, k) =

∫
R
e−ikξδ(ξ − x̂ · y − tmax)dξ = [F(δ(ξ − x̂ · y − tmax))](k).

(3.17)

Applying the Parserval’s identity and properties of Fourier transform, we deduce from (2.8) and
(3.14) that

I
(x̂)
1 (y) =

∫
R
u∞(x̂, k)φ

(x̂)
1 (k)dk

=

∫
R

[Fg(ξ)](k) [F(δ(ξ − x̂ · y − tmin))](k)dk

=

∫
R
g(ξ) δ(ξ − x̂ · y − tmin)dξ

= g(x̂ · y + tmin). (3.18)

where g is defined by (2.9). From Lemma 2.1, we know supp g =
(

inf(x̂ · D) + tmin, sup(x̂ ·
D) + tmax

)
and g is positive in supp g. Therefore, g(x̂ · y + tmin) > 0 for all y ∈ R3 such that

x̂ · y ∈
(

inf(x̂ ·D), sup(x̂ ·D) + T
)
. On the other hand, it is also obvious that g(x̂ · y+ tmin) = 0

for all x̂ · y /∈
(

inf(x̂ · D), sup(x̂ · D) + T
)
, which proves (3.15). The results in (3.16) can be

verified analogously.

The indicator function for imaging x̂ ·D is defined as follows:

I(x̂)(y) :=

[
1

I
(x̂)
1 (y)

+
1

I
(x̂)
2 (y)

]−1

=
I

(x̂)
1 (y) I

(x̂)
2 (y)

I
(x̂)
1 (y) + I

(x̂)
2 (y)

.

Now we state the indicating behavior of I(x̂).

Theorem 3.2. Let x̂ ∈ S2 be fixed and assume that D is connected. Then

I(x̂)(y) =

{
0 for x̂ · y /∈ x̂ ·D,
finite positive number for x̂ · y ∈ x̂ ·D.

(3.19)
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Proof. It is obvious that

x̂ ·D =
(

inf(x̂ ·D)− T, sup(x̂ ·D)
)
∩
(

inf(x̂ ·D), sup(x̂ ·D) + T
)
.

Hence, if x̂ ·y ∈ x̂ ·D, one deduces from Theorem 3.1 that 0 < I
(x̂)
j (y) <∞ for j = 1, 2, implying

0 < I(x̂)(y) <∞.
On the other hand, if x̂ · y /∈ x̂ · D, we have either x̂ · y /∈

(
inf(x̂ · D) − T, sup(x̂ · D)

)
or

x̂ · y /∈
(

inf(x̂ ·D), sup(x̂ ·D) + T
)
. In the former case, we get I(x̂)

1 (y) = 0 and in the latter case
I

(x̂)
2 (y) = 0. Hence, there must hold I(x̂)(y) = 0 for x̂ · y /∈ x̂ ·D.

IfD consists of two components, we can get analogous results to Theorem 3.2. In the following
theorem, the intervals H1 and H2 corresponding to D1 and D2 are defined as in Lemma 2.2.

Theorem 3.3. Let D = D1 ∪D2 where Dj ⊂ R3 are bounded domains such that D1 ∩D2 = ∅
and let x̂ ∈ S2 be fixed. Under the Assumption (A), we have

I(x̂)(y) =

{
0 for x̂ · y /∈

⋃
j=1,2{x̂ ·Dj},

finite positive number for x̂ · y ∈
⋃
j=1,2{x̂ ·Dj}.

(3.20)

If the Assumption (A) does not hold, then I(x̂)(y) = 0 for x̂ · y /∈ x̂ ·D.

Proof. Let g1 and g2 be defined as in (2.13) with the support supp(gj) = Hj for j = 1, 2.
Analogously to the proof of Theorem 3.2, we obtain

I
(x̂)
1 (y) = g1(x̂ · y + tmin) + g2(x̂ · y + tmin),

I
(x̂)
2 (y) = g1(x̂ · y + tmax) + g2(x̂ · y + tmax).

Under the Assumption (A), it follows from Lemma 2.2 that supp(g1 + g2) = H1∪H2 and g1 + g2

is positive in H1 ∪H2. Hence,

I
(x̂)
1 (y) = 0 if x̂ · y /∈

⋃
j=1,2

(
inf(x̂ ·Dj), sup(x̂ ·Dj) + T

)
,

0 < I
(x̂)
1 (y) <∞ if x̂ · y ∈

⋃
j=1,2

(
inf(x̂ ·Dj), sup(x̂ ·Dj) + T

)
,

I
(x̂)
2 (y) = 0 if x̂ · y /∈

⋃
j=1,2

(
inf(x̂ ·Dj)− T, sup(x̂ ·Dj)

)
,

0 < I
(x̂)
1 (y) <∞ if x̂ · y ∈

⋃
j=1,2

(
inf(x̂ ·Dj)− T, sup(x̂ ·Dj)

)
.

By the definition of I(x̂), one can get the relations shown in (3.20) under the Assumption (A).
Without the Assumption (A), we deduce from the proof of Theorem 3.2 that

supp(I
(x̂)
1 ) ⊂

(
inf(x̂ ·D), sup(x̂ ·D) + T

)
,

supp(I
(x̂)
2 ) ⊂

(
inf(x̂ ·D)− T, sup(x̂ ·D)

)
10



and I(x̂)
j > 0 in supp(I

(x̂)
1 ) for j = 1, 2. This yields

supp(I(x̂)) = supp(I
(x̂)
1 ) ∩ supp(I

(x̂)
2 ) =

(
inf(x̂ ·D), sup(x̂ ·D)

)
= x̂ ·D.

In other words, I(x̂)(y) = 0 for x̂ · y /∈ x̂ ·D.

4 Two-dimensional numerical experiments with multi-frequency
far-field patterns

In this section, we shall numerically reconstruct the source support D ⊂ R2 from the multi-
frequency far-field data {u∞(x̂m, k) : k ∈ (0,K),m = 1, 2, · · · ,M}, where x̂m ∈ S2 and K > 0 is
a truncated number. Unless otherwise stated, we suppose thatD is connected. Since the function
k 7→ u∞(x̂, k) can be analytically extended onto the negative axis by u∞(x̂,−k) = u∞(x̂, k) for
k > 0, the indicators functions (3.14) can be approximated by

I
(x̂)
j (y) ≈

∫ K

−K
u∞(x̂, k) φ

(x̂)
j (y, k) dk

=

∫ K

0
u∞(x̂, k) φ

(x̂)
j (y, k) dk +

∫ 0

−K
u∞(x̂, k) φ

(x̂)
j (y, k) dk

=

∫ K

0
u∞(x̂, k) φ

(x̂)
j (y, k) dk +

∫ K

0
u∞(x̂, k) φ

(x̂)
j (y, k) dk

= 2Re

{∫ K

0
u∞(x̂, k) φ

(x̂)
j (y, k) dk

}
(4.21)

for j = 1, 2. Using multiple observations, we shall utilize the reciprocal of the sum of (I(x̂m))−1

(m = 1, 2, · · · ,M) as a new indicator, that is,

I(y) =

[
M∑
m=1

1

I(x̂m)(y)

]−1

=

[
M∑
m=1

I
(x̂m)
1 (y) + I

(x̂m)
2 (y)

I
(x̂m)
1 (y) I

(x̂m)
2 (y)

]−1

. (4.22)

The convex hull of the source region D (that is, the intersections of all half spaces containing D)
can be approximated by the intersection of the strips S(x̂m) := {y ∈ R2 : x̂ · y ∈ x̂m ·D}. Define
the Θ-convex hull of D (see [25]) determined by the directions {x̂m : m = 1, 2, ...,M} as

ΘD :=
M⋂
m=1

S(x̂m).

Since ΘD ⊂ S(x̂m) for all m = 1, 2, ...,M , one can reconstruct the Θ-convex hull of D from sparse
observation directions by plotting the indicator function I(y).
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Theorem 4.1. Let D ⊂ R2 be connected. We have

I(y) =

{
0 for y /∈ ΘD,

finite positive number for y ∈ ΘD.
(4.23)

Proof. If y ∈ ΘD, then y ∈ S(x̂m) for all m = 1, 2, ...,M , yielding that x̂m ·y ∈ x̂m ·D. Hence, one
deduces from Theorem 3.1 that 0 < I(x̂m)(y) <∞ for allm = 1, 2, ...,M , implying 0 < I(y) <∞.
On the other hand, if y /∈ ΘD, it holds that y /∈ S(x̂`) for some x̂`. Again using Theorem 3.1 we
obtain 1

I(x̂`)(y)
=∞. Hence, there must hold I(y) = 0 for y ∈ ΘD.

To balance the indicator values for different observation directions, we normalize the indicator
functions I and I(x̂m) by

Ĩ(x̂m)(y) :=
I(x̂m)(y)−miny∈Ω I

(x̂m)(y)

maxy∈Ω I(x̂m)(y)−miny∈Ω I(x̂m)(y)

I(y) =

[
M∑
m=1

1

Ĩ(x̂m)(y)

]−1

, Ĩ(y) :=
I(y)−miny∈Ω I(y)

maxy∈Ω I(y)−miny∈Ω I(y)
.

where Ω ⊃ D is a search domain for imaging D. The normalization ensures that the values
of the indicators Ĩ(x̂m) and Ĩ are positive with the maximum value one. By Theorem 3.2, one
can expect that Ĩ should be relatively larger in D than those values in the exterior of D. Our
numerical examples are tested by the normalized indicators.

With all observations x̂ ∈ S2, one can easily obtain the following uniqueness result.

Theorem 4.2. Suppose that the positivity condition (1.6) holds on the connected domain D ⊂
R3 and the radiating period (tmin, tmax) is given. Then the multi-frequency far-field patterns{
u∞(x̂, k) : ∀ x̂ ∈ S2, k ∈ (0,K)

}
with some K > 0 uniquely determine the convex hull of D.

Note that the knowledge of u∞(x̂, k) in the frequency interval (0,K) is equivalent to the
far-field data for all k > 0, due to the analyticity of u∞(x̂, k) in k > 0.

Remark 4.1. We think that the positivity condition over D can be further relaxed, for example,
F remains positive only in a neighborhood of ∂ (D × (tmin, tmax)). Even without the positivity
assumption, one can get the same uniqueness if the source function F and the boundary of the
domain D are both analytic.

Remark 4.2. In the direct sampling scheme, it is essential to explain properties of the indicator
function I(x̂) at a fixed observation point. In this paper the indicating behavior of the truncated
indicator (4.21) is interpreted as the approximation of the original indicators (3.14) whose prop-
erties are rigorously justified in Theorem 3.1. This is different from an alternative explanation
made in [2] where the truncated indicator was shown to decay as 1/|y| when the sampling variable
y moves away from D.
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4.1 Reconstructions from a single observation direction

In this subsection, we illustrate numerical reconstructions of the strip S(x̂) from multi-frequency
far-field data {u∞(x̂, kn) : kn = nK/N ∈ (0,K], n = 1, 2, · · · , N} in R2 using the indicator Ĩ(x̂).
It is supposed that x̂ = (cos θ, sin θ) with some fixed θ ∈ (0, 2π]. We select the source functions
that are real-valued and are constrained by (1.6). If not otherwise stated, we choose K = 20

and N = 200 as the default setting. In Figs 3 (a), (b) and (c), we set F (x, t) = 1 supported
on a kite-shaped domain, fix θ = π/2 and plot the normalized indicators Ĩ(x̂)

j for j = 1, 2 and
Ĩ(x̂). To make inversion results more intuitive, we set a threshold ε > 0 in Figs. (d), (e) and (f),
respectively. It is obvious that Ĩ(x̂)

j (j = 1, 2) can be used to capture the strip x̂ ·D with a shift
T = 2 on the upper and bottom boundaries. The strip S(x̂) has been accurately recovered by
the normalized indicator Ĩ(x̂).

(a) Indicator Ĩ(x̂)1 (b) Indicator Ĩ(x̂)2 (c) Indicator Ĩ(x̂)

(d) Ĩ(x̂)1 , ε = 0.007 (e) Ĩ(x̂)2 , ε = 0.007 (f) Ĩ(x̂), ε = 0.007

Figure 3: Reconstructions of a kite-shaped support with different indicators defined as (3.15),
(3.16) and (3.19). The Fourier transform window is (tmin, tmax) = (0, 2).

Three different source functions and three observation directions are selected in Fig. 4.
We choose F (x, t) = 1 and θ = π/4 in Fig.4 (a); F (x, t) = t and θ = 3π/4 in Fig.4 (b) and
F (x, t) = (x2

1 +x2
2 +10)t and θ = 2π in Fig. 4. These figures are reconstructed by the normalized

indicator Ĩ(x̂) and are not processed by a threshhold. One can conclude that strip S(x̂) can be
well recovered by using the multi-frequency data at a single observation direction.

13



(a) F = 1, θ = π/4 (b) F = t, θ = 3π/4 (c) F = (x21 + x22)t, θ = 2π

Figure 4: Reconstructions for a kite-shaped support by using a single observation direction
x̂ = (cos θ, sin θ) and multi-frequency far-field data. The Fourier transform window is (0, 0.1).

Next, we perform numerical tests by using different Fourier transform windows (tmin, tmax).
We fix x̂ = (cos θ, sin θ), θ = 3π/4 and fix the source function F (x, t) = (x2

1 +x2
2 +10)t supported

on the kite-shaped domain. We set tmin = 0 in Figure 5. Take tmax = 1, N = 200 in Fig.
5 (a); tmax = 3, N = 300 in Fig. 5(b); tmax = 8, N = 800 in Fig.5 (c). It is obvious
that the source support lies in the smallest strip perpendicular to the observation direction.
Fixing T = tmax − tmin = 0.1, we change tmin = 1, 2, 3 in Fig. 6. The previous two groups of
experiments have shown that the choice of the Fourier transform window (tmin, tmax) does not
effect the reconstructions at a single observation direction.

(a) T = 1 (b) T = 3 (c) T = 8

Figure 5: Reconstructions of a kite-shaped support with F (x, t) = (x2
1 + x2

2 + 10)t and θ = 3π/4

with different Fourier transform windows (tmin, tmax) = (0, T ).

Finally, we consider a support with two disconnected components, a kite and an ellipse, which
satisfy the assumption(A) for some observation direction x̂. In Fig. 7 (a), the observation angle
is taken as θ = π/4, and the strip goes along the direction of 3π/4 , separating the two supports
precisely. The kite-ellipse-shaped supports lie within the strips obtained from the observation
angle 3π/4, which are visualized in Fig.7 (b). Since the distance assumption(A) is not satisfied
at the angle θ = 3π/4, the two supports are not separated but lie within the strip perpendicular
to the observation direction. We set the observation angle to θ = 2π in Fig.7 (c). The recovered
strips along the direction (1, 0) precisely separates the two components.
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(a) tmin = 1, T = 0.1 (b) tmin = 2, T = 0.1 (c) tmin = 3, T = 0.1

Figure 6: Reconstructions of a kite-shaped support with F (x, t) = (x2
1 + x2

2 + 10)t and θ = π/4

with different Fourier transform windows (tmin, tmin + T ).

(a) θ = π/4 (b) θ = 3π/4 (c) θ = 2π

Figure 7: Reconstructions of a kite-ellipse-shaped support from different observation angles. Here
F (x, t) = (x2

1 + x2
2 + 10)t and the Fourier transform window is taken as (0, 0.1).

4.2 Reconstructions from sparse observation directions

In this subsection, we test the performance of the multi-frequency sampling method with M

observation directions x̂m = (cos θm, sin θm), θm =
m− 1

M
π, m = 1, 2, · · · ,M . The experimental

results for reconstructing a kite-shaped source support are shown in Fig. 8, where F (x, t) =

(x2
1 +x2

2 + 10)t. Evidently, the recovery quality has been improved as the number of observation
angles increases in Fig.8. In the case M = 8, the shape of the kite can be well restored.
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(a) M = 2 (b) M = 4 (c) M = 8

Figure 8: Reconstructions of two disconnected supports with the source function F (x, t) =

(x2
1 + x2

2 + 10)t, the Fourier transform window (0, 0.1) and using M directions.

As done in the single observation case, we also illustrate the reconstructions with different
radiating periods (0, T ) of the Fourier transformation in Fig.9. Fixing tmin = 0 and K = 20, we
set T = tmax − tmin = 1 and N = 200 in Fig.9 (a); T = 3 and N = 200 in Fig.9 (b); T = 5 and
N = 300 in Fig.9 (c). Even for large T we observe that the reconstructed Θ-convex hull reflects
the location and shape of the support.

In Fig.10, we focus on the case of two disconnected supports. The kite-ellipse-shaped domain
can be restored pretty well by using 16 observations. We set the source function F (x, t) =

(x1 +10)t supported on the kite centered at (0,−2) and the ellipse centered at (0, 3) in Fig.10(a);
F (x, t) = (x2

1 + x2
2 + 10)t supported on the kite centered at (−2,−2) and the ellipse centered at

(3, 3) in Fig.10(b); F (x, t) = (x2 + 10)t with the kite-center at (−2, 0) and the ellipse center at
(3, 0) in Fig.10(c). These figures are truncated by a threshold ε = 0.30 in Figures 10(d), (e) and
(f).

(a) T = 1 (b) T = 3 (c) T = 5

Figure 9: Reconstructions of a kite-shaped support source F (x, t) = (x2
1 +x2

2 +10)t with different
Fourier transform windows (0, T ) by using M = 12 observations.
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(a) F = (x1 + 10)t (b) F = (x21 + x22 + 10)t (c) F = (x2 + 10)t

(d) F = (x1 + 10)t, ε = 0.30 (e) F = (x21 + x22 + 10)t, ε = 0.30 (f) F = (x2 + 10)t, ε = 0.30

Figure 10: Reconstructions of a kite-ellipse-shaped support with different locations and sources
by using 16 observations. The Fourier transform windows is (0, 0.1).

We show the experimental examples in Fig. 11 by using different Fourier transform windows
(0, T ). The reconstructions of two disconnected supports are displayed in Fig.11, where we fix
tmin = 0 and K = 20. We choose T = tmax − tmin = 1 and N = 200 in Fig.11 (a), T = 3

and N = 300 in Fig.11 (b), T = 7 and N = 300 in Fig.11 (c). In the last case of T = 7, the
reconstruction is distorted because the assumption (A) is not satisfied. Here we choose M = 16

observation directions.
Finally, we examine the sensitivity of the direct sampling algorithm to noise. The synthetic

data is polluted by noise via the following formula

u∞δ (x̂, k) = u∞(x̂, k) + δR ◦ u∞(x̂, k), (4.24)

where δ is the noise level, R ∈ RW×N is a uniformly distributed random matrix with the random
variable ranging from −1 to 1 and ◦ represents the Hadamard product. We test three different
noise levels δ = 10%, 50%, and 100%. The recovered results are displayed in Fig.12, from which
one can conclude that the inversion algorithm is rather robust against noise. This phenomenon
has also been reported in other existing literatures (see e.g., [5, 19]). In our tests, we find that
boundaries of the strips S(x̂m) are also visible at high noise levels.
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(a) T = 1 (b) T = 3 (c) T = 7

Figure 11: Reconstructions of a kite-shaped support with F (x, t) = (x2
1 +x2

2 +10)t with different
Fourier transform windows (0, T ).

(a) δ = 10% (b) δ = 50% (c) δ = 100%

Figure 12: Reconstructions of a kite-shaped support with F (x, t) = (x2
1 +x2

2 +10)t with different
noise levels δ.

5 Reconstructions from near-field measurements in R3

In this section, we suppose that D ⊂ BR ⊂ R3 for some R > 0 and take the near-field measure-
ment data on sparse observation points lying on |x| = R. We remark that it seems difficult to
extend the results of this section to two dimensions, perhaps due to the lack of Huygens’ prin-
ciple in 2D. For simplicity we supposed that D is connected. For source supports with multiple
components, one can proceed with analogous arguments to the far-field case in two dimensions.

5.1 Indicator and test functions

By (1.2), the near-field data can be expressed as

u(x, k) =

∫
D

eik|x−y|

4π|x− y|

∫ tmax

tmin

F (y, t)e−iktdtdy, x ∈ R3.

The supporting interval of the Fourier transform of the near-field data with respect to frequencies
is stated below.
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Lemma 5.1. Let the assumption (1.6) hold true and fix some x0 ∈ ∂BR. The supporting interval
of F−1[u(x0, k)] is

H0 :=
(
tmin − sup

z∈D
|x0 − z|, tmax − inf

z∈D
|x0 − z|

)
.

Moreover, the function t 7−→ (F−1u)(t) is positive in H0.

Proof. For t ∈ R, define
Γ(t) := {y ∈ D : |x0 − y| = t} .

Like the far-field case, we reformulate the near-field expression as the Fourier transform by

u(x0, k) =

∫ tmax

tmin

∫
D
F (y, t)

e−ik(t−|x0−y|)

4π|x0 − y|
dydt

=

∫ tmax

tmin

∫
R

∫
Γ(t−ξ)

F (y, t)
e−ikξ

4π(t− ξ)
ds(y)dξdt

=

∫
R
e−ikξh(ξ)dξ = (Fh)(k), (5.25)

where

h(ξ) :=

∫ tmax−ξ

tmin−ξ

∫
Γ(t)

F (y, t+ ξ)

4πt
ds(y)dt, ξ ∈ R. (5.26)

Since Γ(t) = ∅ for t < infz∈D |x0 − z| or t > supz∈D |x0 − z|, we have h(ξ) = 0 for ξ <

tmin − supz∈D |x0 − z| or ξ > tmax − infz∈D |x0 − z|. Thus,

supp (F−1u(x0, k)) = supp (h) ⊂ H0.

Next we show that h is positive for t ∈ H0. For ξ ∈ H0, we suppose that

ξ = tmin − sup
z∈D
|x− z|+ ε for some ε ∈ (0,Λ),

with the notations
Λ := T + L, L := sup

z∈D
|x0 − z| − inf

z∈D
|x0 − z|.

The number Λ > 0 represents the length of the interval H0. By the assumption (1.6), we deduce
from (5.26) that

h(ξ) =

∫ supz∈D |x0−z|−ε+T

infz∈D |x0−z|

∫
Γ(t)

F (y, t+ ξ)

4πt
ds(y)dt. (5.27)

We observe that

ξ + t ∈
(
tmin − L+ ε, tmax

)
if t ∈

(
inf
z∈D
|x0 − z|), sup

z∈D
|x0 − z| − ε+ T

)
,
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and that for any ε ∈ (0,Λ),(
inf
z∈D
|x0 − z|), sup

z∈D
|x0 − z| − ε+ T

)
∩
(

inf
z∈D
|x0 − z|), sup

z∈D
|x0 − z|

)
6= ∅,(

tmin − L+ ε, tmax

)
∩
(
tmin, tmax

)
6= ∅.

This together with the positivity of F proves h > 0 in H0.

For some fixed |x| = R, we introduce two test functions

ψ
(x)
1 (y, k) := eik(|x−y|−tmin), ψ

(x)
2 (y, k) := eik(|x−y|−tmax),

and two auxiliary indicator functions

I
(x)
j (y) :=

∫
R
u(x, k) ψ

(x)
j (y, k) dk, j = 1, 2. (5.28)

From the multi-frequency near-field data u(x, k) at the observation point x ∈ ∂BR, we want to
image the annular domain

A(x) := {y ∈ R3 : inf
z∈D
|x− z| < |x− y| < sup

z∈D
|x− z|}.

For this purpose, we design the indicator function

I(x)(y) :=

[
1

I
(x)
1 (y)

+
1

I
(x)
2 (y)

]−1

=
I

(x)
1 (y) I

(x)
2 (y)

I
(x)
1 (y) + I

(x)
2 (y)

, y ∈ R3. (5.29)

Theorem 5.1. Let D ⊂ BR for some R > 0 and we fix some |x| = R. Then it holds that

I(x)(y) =

{
0 for y /∈ A(x),

finite positive number for y ∈ A(x).

Proof. Arguing analogously to the proof of (3.17), we see

ψ
(x)
1 (y, k) = [F(δ(ξ + |x− y| − tmin)](k),

ψ
(x)
2 (y, k) = [F(δ(ξ + |x− y| − tmax)](k).

In view of (5.25) and (5.26), we get

I
(x)
1 (y) = h(tmin − |x− y|), I

(x)
2 (y) = h(tmax − |x− y|). (5.30)

Hence, using the results of Lemma 5.1 yields

I
(x)
1 (y) =

{
0 for |x− y| /∈

(
infz∈D |x− z| − T, supz∈D |x− z|

)
,

finite positive number for |x− y| ∈
(

infz∈D |x− z| − T, supz∈D |x− z|
)
;

I
(x)
2 (y) =

{
0 for |x− y| /∈

(
infz∈D |x− z|, supz∈D |x− z|+ T

)
,

finite positive number for |x− y| ∈
(

infz∈D |x− z|, supz∈D |x− z|+ T
)
.

Now, the indicating behavior of I(x) follows from the fact suppI(x) := supp I
(x)
1 ∩ supp I

(x)
2 =

(infz∈D |x− z|, supz∈D |x− z|).
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Using the multi-frequency data taking at sparse observation positions xm ∈ ∂BR (m =

1, 2, · · · ,M), one can design a new indicator function via superposition for imaging the inter-
section

⋂M
m=1A(xm). We omit the details for brevity, since it can be done analogously to the

far-field case in 2D.

5.2 Numerical tests using near-field measurements in R3

In this section, we present numerical reconstructions of the source support D ⊂ R3 from the
multi-frequency data {u(xm, k) : xm ∈ ∂BR, k ∈ (0,K),m = 1, 2, · · · ,M} at sparse observation
positions. Here K > 0 is a truncated number. In view of Theorem 5.1, the smallest annu-
lar domain containing the support and centered at x can be restored using the indicator I(x)

(5.29) from the near-field data u(x, k), k ∈ (0,K). To discretize the integral with respect to
wavenumbers, we take

kn := n∆k with ∆k :=
K

N
> 0.

The indicator functions I(x)
j (y) defined by (5.28) can be approximated by

I
(x)
j (y) ∼ 2Re

{∫ K

0
u(x, k)ψ

(x)
j (y, k) dk

}
, j = 1, 2.

Then the source support D can be imaged by plotting the indicator

I(y) =

[
M∑
m=1

1

I(xm)(y)

]−1

=

[
M∑
m=1

I
(xm)
1 (y) + I

(xm)
2 (y)

I
(xm)
1 (y) I

(xm)
2 (y)

]−1

, y ∈ R3. (5.31)

Similarly to the far-field case (see Theorem 5.1), we have the following result with sparse obser-
vation positions.

Theorem 5.2. Suppose that the positivity condition (1.6) holds on the domain D ⊂ BR. Then
it holds that

I(y) =

{
0 for y /∈

⋂M
m=1A(xm),

finite positive number for y ∈
⋂M
m=1A(xm).

(5.32)

Unless otherwise stated, we takeK = 20 and N = 100 as default in the following experiments.
Example 1 In this example, we illustrate the reconstructions of the annular A(x) for a cube

by plotting the indicator I(x)(y) in (5.29). We set the time dependent source function to be
F (x, t) = (x2

1 + x2
2 + x2

3 + 1)(t+ 1) which satisfies the positivity condition (1.6). We assume that
F is supported in D × (tmin, tmax) with tmin = 0 and tmax = 0.1. The cube D is defined by (see
Figure 13 (a))

D = {(x1, x2, x3) : |x1| < 1, |x2| < 1 and |x3| < 1}.

We take the observation point at x = (3, 0, 0) and plot the indicator in the search domain [−3, 3]3.
Figures 13 (b) and (c) show visualizations of the indicator function (5.29) in the search area.

21



Fig.13 (b) shows a slice of the reconstruction at y2 = 0. We see that the cross of the plane
y2 = 0 with the smallest annular containing the square (in red) and centered at x = (3, 0, 0) is
nicely reconstructed. Fig.13 (c) illustrates an iso-surface of the reconstruction at the iso-level
1.8× 10−2. The iso-surfaces perfectly enclose the cube-shaped support.

(a) Geometry of source support (b) Slice at y2 = 0 (c) Iso-surface level = 1.8× 10−2

Figure 13: Reconstruction of a cube-shaped support using multi-frequency data from a single
observation point.

Example 2. We continue Example 1 with multiple observation points. A visualiza-
tion of the indicator function (5.31) is shown in Fig.14 with M observation points. The
multi-frequency data at two observation points {(3, 0, 0), (−3, 0, 0)} are utilized in Fig.14
(a), and the data at four observation points {(3, 0, 0), (−3, 0, 0), (0, 3, 0), (0,−3, 0)} in Fig.14
(b), where the position of the source is nicely reconstructed. Using six observation points
{(3, 0, 0), (−3, 0, 0), (0, 3, 0), (0,−3, 0), (0, 0, 3), (0, 0,−3)} in Fig.14 (c), we can see that both the
shape and location of the source support are well reconstructed.

(a) M = 2 (b) M = 4 (c) M = 6

Figure 14: Reconstruction of a cube-shaped support using multi-frequency data from multiple
observation points. The number of observation points is M = 2, 4, 6 and the corresponding
iso-surface levels are 2.5× 10−2, 1.2× 10−2 and 7× 10−3, respectively.

To clearly illustrate the reconstructions in Fig.14, we also plot the projections of the images
onto the oy1y2, oy1y3 and oy2y3 planes. From these 2D visulizations one sees that the projections
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at y1−axis are [−1, 1] in Fig.14 (a), the projections on 0y1y2 is square [−1, 1]2 in Fig.14 (b)
and the projections are all squares [−1, 1]2 in Fig.14 (c), which prove the accuracy of the 3D
reconstructions. Fig.15 shows slices of the reconstruction at the planes y1 = 0, y2 = 0 and y3 = 0

using the data at six observation points (see Fig.14 (c)). For comparison we also demonstrate
the boundary of the source support’s slice with the red solid line. These slices also confirm the
accuracy of our algorithm.

(a) Slice at y3 = 0 (b) Slice at y2 = 0 (c) Slice at y1 = 0

Figure 15: Slices of the reconstruction from six observation points at the planes y3 = 0, y2 = 0

and y1 = 0.

In Figs. 16 and 17, we show slices of the reconstructions of a cubic source with a longer
radiating period (tmin, tmax). Different Fourier transform windows from the data measured at
six observation points (like the case in Fig.14 (c)) are used. The radiating period (resp. Fourier
transform window) is taken as (0, 0.5) in Fig.16 and (0, 1) in Fig. 17. It can be observed that,
even for a long duration T = tmax − tmin, satisfactory inversions for capturing the shape and
location of the source can be achieved. However, the size of the support becomes distorted as T
increases. The quality on reconstructing the size can be improved by increasing the number of
frequencies. The longer the time-dependent source lasts, the more the number of frequencies is
needed. Of course the number of observation points affects the resolution of the reconstructions
as well. In Fig.18, we use more multi-frequency data to improve the quality of reconstruction in
Fig.17. Here we take N = 400 and K = 20. It is observed that the cube is nicely restored with
more multi-frequency data.
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(a) Iso-surface level = 2.9× 10−2 (b) Slice at y2 = 0 (c) Slice at y1 = 0

Figure 16: Reconstruction of a cube-shaped support using multi-frequency data from six obser-
vation points. The Fourier transform window is (0, 0.5).

(a) Iso-surface level = 6× 10−2 (b) Slice at y2 = 0 (c) Slice at y1 = 0

Figure 17: Reconstruction of a cube-shaped support using multi-frequency data from six obser-
vation points. The Fourier transform window is (0, 1).

(a) Iso-surface level = 2.68× 10−2 (b) Slice at y2 = 0 (c) Slice at y1 = 0

Figure 18: Reconstruction of a cube-shaped support using more multi-frequency data from six
observation points. The Fourier transform window is (0, 1). Here we take N = 400.
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