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DIRECT AND INVERSE ELASTIC SCATTERING FROM A LOCALLY
PERTURBED ROUGH SURFACE∗

GUANGHUI HU† , XIAOKAI YUAN‡ , AND YUE ZHAO§

Abstract. This paper is concerned with time-harmonic elastic scattering from a locally perturbed
rough surface in two dimensions. We consider a rigid scattering interface given by the graph of a one-
dimensional Lipschitz function which coincides with the real axis in the complement of some compact
set. Given the incident field and the scattering interface, the direct problem is to determine the
field distribution, whereas the inverse problem is to determine the shape of the interface from the
measurement of the field on an artificial boundary in the upper half-plane. We propose a symmetric
coupling method between finite element and boundary integral equations to show uniqueness and
existence of weak solutions. The synthetic data is computed via the finite element method with the
Perfectly Matched Layer (PML) technique. To investigate the inverse problem, we derive the domain
derivatives of the field with respect to the scattering interface. An iterative continuation method with
multi-frequency data is used for recovering the unknown scattering interface.

Keywords. Linear elasticity; Fredholm alternative; half-plane; rigid surface; inverse scattering;
multi-frequency data; local perturbation.

AMS subject classifications. 35A15; 74B05; 74J20; 78A46.

1. Introduction
The scattering problems in a locally perturbed half-space have attracted much at-

tention over the last twenty years. Such problems are also referred to as cavity scat-
tering problems in the literature. They have many applications in remote sensing,
geophysics, outdoor sound propagation, radar techniques and so on. Consequently, sig-
nificant progress has been made concerning the mathematical analysis and the numerical
approximation of the acoustic and electromagnetic scattering problems modeled by the
Helmholtz and Maxwell’s equations. We refer to [6–8, 20, 25–28, 32–34] for the varia-
tional and integral equation methods adopted to reduce the unbounded physical domain
to a truncated computational domain. However, little analysis for the Navier equation
has been carried out. This paper is devoted to direct and inverse time-harmonic elastic
scattering from a locally perturbed rigid rough surface in two dimensions. The relevant
phenomena for elastic wave propagation in a perturbed half-plane have many applica-
tions in geophysics, ocean acoustics and seismology (see e.g., [1,2,31] and the references
therein).

In contrast to acoustic and electromagnetic scattering problems, it seems impossible
to derive a transparent boundary condition (or the so-called non-reflecting boundary
operator) for Kupradze radiation solutions of the Navier equation in a half-space. This
is essentially due to the lack of an analogous reflection principle for the Navier equation
across a rigid flat surface. In the case of Helmholtz and Maxwell equations, the reflection
principles give rise to a serious expansion of half-space Sommerfeld radiation solutions
satisfying the Dirichlet or Neumann boundary condition on the ground plane. In this
paper, we propose a variational approach in a truncated bounded domain coupled with
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the Dirichlet-to-Neumann map derived from an integral representation of the outgoing
radiation solutions. The Dirichlet Green’s tensor in a half-plane is used as the kernel
of the single and double layer operators. Such kind of coupling scheme is closest to
the lines of [8, 19, 26]. It can be used to handle various boundary value problems in a
locally perturbed half-space, provided the Green’s function to the unperturbed problem
fulfills the outgoing radiation condition; see [9] for the treatment of the Robin boundary
condition and transmission conditions for the Helmholtz equation. We prove that the
resulting sesquilinear form is strongly elliptic and thus the Fredholm theory can be
applied to yield well-posedness. It should be noted that an efficient calculation of the
half-space’s Green’s tensor is not trivial. Hence, numerical approximations based on the
proposed coupling scheme is time-consuming. Instead, the finite element method with
the Perfectly Matched Layer (PML) technique will be employed as a forward solver.

The analysis for locally perturbed rough surfaces has significantly simplified the
arguments for general unbounded rough surfaces (see e.g., [4, 5, 12, 14]). In the latter
case, the perturbed field is required to fulfill a weak Upward Propagating Radiation
Condition (UPRC) in the half-space. Our solvability result shows that, in the locally
perturbed case, the perturbed wave field can be uniquely decomposed into the sum
of an outgoing plane wave (i.e., the reflected wave) and a Sommerfeld radiation wave
(i.e., the scattered wave), both of which satisfy the UPRC. Further, the numerical
approximation can be rigorously confined to a truncated bounded domain in the locally
perturbed case, which simplifies the analysis and calculation for general rough surfaces.
Variational approach for periodic rigid surfaces was established in [15,16].

The second half of this paper is concerned with the inverse problem of reconstructing
the shape of the scattering interface from near-field measurements of plane incident
waves incited at one or multiple frequencies. Relying on the variational arguments
presented in the first half and those in [18] and [21], we derive the Fréchet derivative of
the solution operator with respect to the scattering surface. A different approach based
on the integral equation was used in electromagnetism [30] and in elasticity [13, 23].
The shape derivative can be used to design an iterative continuation approach for shape
recovery from the data of several incident frequencies. At each iteration step, the
forward problem needs to be solved and the correctness of the parameters needs to
be evaluated. Various examples are presented to show the validity and accuracy of
our inversion algorithms. We refer to [10, 11, 34] for similar iterative approaches using
acoustic multi-frequency data for imaging a locally perturbed rough surface.

The Navier equation has a more complex form than the Helmholtz equation, be-
cause it accounts for both longitudinal (pressure) and transverse (shear) motions which
propagate at different wave speeds but are coupled together at the boundary of the
rigid body. As can be seen from this paper, the analysis and numerics for this vectorial
equation are more difficult than the scalar equations. We summarize the differences of
our article with the recent publication [24] as follows. First, one-dimensional periodic
surfaces are reconstructed in [24] from near-field data, whereas the perturbed section of
a straight line is retrieved within this paper. There are fundamental differences between
the two mathematical models, for instance, the Rayleigh Expansion Radiation Condi-
tion for periodic surfaces is much different from the outgoing radiation condition for
locally perturbed rough surfaces. Second, the arguments of [24] are based on a trans-
formed field expansion approach. The inversion scheme is applicable to periodic surfaces
with a sufficiently small height, although it requires the data of one incoming wave only.
On the other hand, the positions for measuring near-field data required by [24] should
be sufficiently close to the real surface. In this paper, the height of the locally per-
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turbed part can be arbitrarily large in theory and the initial guess is not necessarily
good enough. However, the near-field data of this paper are incited at multi-frequencies,
much more than the data of [24]. The domain-derivative method used in our paper also
differs from that of [24].

The remaining part of this paper is organized as follows. We formulate the forward
scattering problem in Section 2 and present the solvability results in Section 3. Section
4 is devoted to the proof of the Fréchet derivative and the presentation of our inversion
algorithms. Numerical tests will be reported in Section 5. Concluding remarks will be
presented in the last section.

2. Problem formulation
Consider a two-dimensional locally perturbed half-plane Γf ={x∈R2 :x2 =

f(x1), x1∈R}, where f is a Lipschitz continuous function and is assumed to satisfy
f(x1) = 0 when |x1|>R for some R>0. This means that Γf is a local perturbation of the
straight line Γ0 ={x∈R2 :x2 = 0}, since it coincides with Γ0 in {x= (x1,x2)∈Γf : |x1|>
R}; see Figure 2.1. Denote by Ω ={x∈R2 :x2>f(x1), x1∈R} the space above Γf , which
is filled with a homogeneous and isotropic elastic medium. Set ΛR := Γf ∩{x : |x1|≤R},
which contains the perturbed part of the straight line Γ0. Denote by ΩR={x∈Ω : |x|<
R} the truncated bounded domain, and by B+

R ={x∈R2 : |x|<R, x2>0} the upper
half-circle. Let SR={x∈Ω : |x|=R} and denote by ν the unit normal vector on SR,
pointing into the exterior of ΩR. Obviously, ∂ΩR= ΛR∪SR.

Fig. 2.1. Geometry settings for elastic scattering from a locally perturbed half-plane.

Let uin be a time-harmonic plane wave which is incident on the scattering surface
Γf from above in Ω. More explicitly, uin is allowed to be a general elastic plane wave
of the form

uin = c1u
in
p +c2u

in
s , c1,c2∈C, (2.1)

where uin
p is the compressional plane wave of the form

uin
p = [sinθ,−cosθ]>eiκ1(x1 sinθ−x2 cosθ)

and uin
s is the shear plane wave

uin
s = [cosθ, sinθ]>eiκ2(x1 cosθ+x2 sinθ),
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where θ∈ (−π/2, π/2) is the incident angle, and

κ1 =ω/
√
λ+2µ, κ2 =ω/

√
µ (2.2)

are the compressional and shear wavenumbers, respectively. Here ω>0 is the angular
frequency, λ and µ are the Lamé constants satisfying µ>0 and λ+µ>0 which implies
that κ1<κ2. It can be verified that the incident field uin satisfies the two-dimensional
Navier equation:

µ∆uin +(λ+µ)∇∇·uin +ω2uin = 0 in Ω. (2.3)

The displacement of the total field u also satisfies the same Navier equation:

µ∆u+(λ+µ)∇∇·u+ω2u= 0 in Ω. (2.4)

In this paper, we assume that Γf is a rigid impenetrable interface, that is,

u= 0 on Γf . (2.5)

Due to the local perturbation, the total field u can be decomposed into three parts: the
incident field uin, the reflected wave ure, and the scattered field usc:

u=uin +ure +usc,

where ure is the reflected field solving the unperturbed scattering problem

µ∆ure +(λ+µ)∇∇·ure +ω2ure = 0 in x2>0,

ure +uin = 0 on x2 = 0,

and usc satisfies the outgoing Kupradze radiation condition (see Definition 2.1 below).
It should be remarked that the reflected field ure does not fulfill the outgoing Kupradze
radiation condition. Enforcing the Upward Propagating Radiation Condition (see [12,
14]) on ure in the half-plane x2>0, we may get a unique solution of ure. More explicitly,
the reference field u0 :=uin +ure takes the form

u0(x) = (c1/κ1)Up(x)+(c2/κ2)U s(x), (2.6)

where c1 and c2 are the coefficients attached to the incident plane pressure and shear
waves in (2.1), respectively, and

Up(x) =

[
αp

−βp

]
ei(αpx1−βpx2)−

α2
p−βpηp

α2
p +βpηp

[
αp

βp

]
ei(αpx1+βpx2)

− 2αpβp

α2
p +βpηp

[
ηp

−αp

]
ei(αpx1+ηpx2),

U s(x) =

[
βs

αs

]
ei(αsx1−βsx2)− βsηs−α2

s

α2
s +βsηs

[
βs

−αs

]
ei(αsx1+βsx2)

− 2αsβs

α2
s +βsηs

[
αs

ηs

]
ei(αsx1+ηsx2),

with

αp =κ1sin θ, βp =κ1cos θ, ηp =
√
κ2

2−α2
p,
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αs =κ2sin θ, βs =κ2cos θ, ηs =
√
κ2

1−α2
s .

The scattered field usc also satisfies the Navier equation

µ∆usc +(λ+µ)∇∇·usc +ω2usc = 0 in Ω. (2.7)

Let w= [w1, w2]> be a vector function and let w be a scalar function. Introduce
the two dimensional curl operators

curlw :=∂1w2−∂2w1, curlw := [∂yw,−∂xw]>.

By Helmholtz decomposition, any solution of (2.7) can be split into its compressional
and shear parts:

usc =∇φ1 +curlφ2, (2.8)

where φj ,j= 1,2 are scalar potential functions satisfying the Helmholtz equations

∆φj+κ2
jφj = 0. (2.9)

We require φj to satisfy the Sommerfeld radiation condition in the half-plane:

lim
ρ→∞

ρ1/2 (∂ρφj− iκjφj) = 0, ρ= |x|, x∈{|x|>R}∩R2
+. (2.10)

The above asymptotics lead to the far-field data φ∞j of φj (j= 1,2):

φj(x) =
eiκjρ

√
ρ

{
φ∞j (x̂)+O(1/ρ)

}
, as ρ= |x|→∞. (2.11)

Denote by Φ∞1 and Φ∞2 the far-field patterns of ∇φ1 and curlφ2, respectively. Then
the far-field pattern of usc is defined as the sum of Φ∞1 and Φ∞2 .

Definition 2.1. The vector usc, which is a solution to the Navier Equation (2.7) is
said to satisfy the half-plane Kupradze radiation condition if its compressional part φ1

and shear part φ2 satisfy (2.10).

Given the incident field uin and the interface Γf , the direct (forward) scattering
problem is to determine the displacement of the total field u. The inverse problem is to
determine the perturbed part ΛR from the boundary measurement of the displacement
u on SR incited by one or several incident fields.

To investigate both direct and inverse problems, we need some functional spaces as
follows. Define the Sobolev space

H1
ΛR

(ΩR) ={u∈H1(ΩR) :u= 0 on ΛR},

which is equipped with the usual H1-norm

‖u‖1,ΩR
=
(∫

ΩR

|∇u|2 + |u|2dx
)1/2

.

Let XR=H1
ΛR

(ΩR)2 =H1
ΛR

(ΩR)×H1
ΛR

(ΩR) be a Cartesian product space which is
equipped with the norm:

‖u‖XR
= (‖u1‖21,ΩR

+‖u2‖21,ΩR
)1/2.
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Denote by X−1
R =H−1

ΛR
(ΩR)×H−1

ΛR
(ΩR) the dual space of XR, where H−1

ΛR
(ΩR) is the

dual space of H1
ΛR

(ΩR). Introduce the Sobolev spaces on an open arc (see e.g., [29]):

H1/2(SR)2 :={u|SR
:u∈H1/2(∂ΩR)2},

H̃1/2(SR)2 :={u∈H1/2(∂ΩR)2 : supp(u)⊂SR}.

Then we denote by H−1/2(SR)2 the dual space of H̃1/2(SR)2, and by H̃−1/2(SR)2 the
dual space of H1/2(SR)2.

3. Direct scattering
In this section, we prove that the direct scattering problem admits a unique weak

solution in XR. We propose a variational formulation in ΩR coupled with a Dirichlet-
to-Neumann map derived from the integral representation of the scattered field usc in
{x∈Ω : |x|>R}.

We begin by introducing the free space Green’s tensor for the two-dimensional
Navier equation, given by

G(x,y) =− 1

µ
Φ(x,y;κ2)I2−

1

ω2
∇x∇>x

(
Φ(x,y;κ2)−Φ(x,y;κ1)

)
, (3.1)

where I2 is the 2×2 identity matrix and the scalar function

Φ(x,y;κ) =
i

4
H

(1)
0 (κ|x−y|) (3.2)

is the fundamental solution for the two-dimensional Helmholtz equation. Here, H
(1)
0 is

the Hankel function of the first kind with order zero. Denote by GH(x,y), y2>0, the
Green’s tensor to the unperturbed Dirichlet boundary value problem in a half-plane:

µ∆GH(x,y)+(λ+µ)∇∇·GH(x,y)+ω2GH(x,y) =−δ(x−y)I2 in x2>0, x 6=y,
GH(x,y) = 0 on x2 = 0.

Below, the expression of GH is presented; see e.g. [4, 5].

Lemma 3.1. The Green’s tensor GH(·,y), (y∈Ω) can be expressed as

GH(x,y) =G(x,y)−G(x,y′)+U(x,y),

U(x,y) =− i

2πω2

∫ ∞
−∞

(
Mp(ξ,γp,γs;x2,y2)+Ms(ξ,γp,γs;x2,y2)

)
e−i(x1−y1)ξdξ, (3.3)

where

Mp(ξ,γp,γs;x2,y2) =
eiγp(x2+y2)−ei(γpx2+γsy2)

γpγs +ξ2

[
−ξ2γs ξ3

ξγpγs −ξ2γp,

]
Ms(ξ,γp,γs;x2,y2) =

eiγs(x2+y2)−ei(γsx2+γpy2)

γpγs +ξ2

[
−ξ2γs −ξγpγs

−ξ3 −ξ2γp,

]
Here, y′= (y1,−y2), for y= (y1,y2)∈R2, γp =

√
κ2

1−ξ2, γs =
√
κ2

2−ξ2. Moreover, the
columns of the matrix function GH(·,y) and the rows of the matrix function GH(x,·)
satisfy the half-plane Kupradze radiation condition.

We introduce the generalized stress (or traction) operator on SR, defined by

Ta,bu= (µ+a)∂νu+bν∇·u−aτ curlu, (3.4)
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where ν= (ν1,ν2) denotes the unit normal directed into the exterior of ΩR, τ := (−ν2,ν1)
is the tangential vector, and a and b are real numbers satisfying a+b=λ+µ. Through-
out this paper, we choose

a=
µ(λ+µ)

λ+3µ
, b=

(λ+µ)(λ+2µ)

λ+3µ
.

For simplicity, we denote Ta,b by Tν . With this choice, by Betti’s formula, we obtain
the following variational formulation: find u∈XR such that∫

ΩR

ε(u,ϕ)−ω2u ·ϕdx−
∫
SR

ϕ ·Tνuds= 0 (3.5)

for all ϕ∈XR, where

ε(u,ϕ) = (2µ+λ)(∂1u1∂1ϕ1 +∂2u2∂2ϕ2)+µ(∂2u1∂2ϕ1 +∂1u2∂1ϕ2)

+
(λ+µ)(λ+2µ)

λ+3µ
(∂1u1∂2ϕ2 +∂2u2∂1ϕ1)+

µ(λ+µ)

λ+3µ
(∂2u1∂1ϕ2 +∂1u2∂2ϕ1).

We note that the above symmetric sesquilinear form ε(·, ·) and the associated boundary
operator Tν differ from the usual ones. In this case, Tν is called the pseudo stress
operator [22]. We refer to [4,22] for a general form of the Betti’s formula. The following
lemma gives the coercive estimate of ε(·, ·).

Lemma 3.2. The symmetric sesquilinear form ε(·, ·) has the coercive estimate∫
ΩR

ε(u,ū)dx≥ 2µ2

λ+3µ

∫
ΩR

|∇u|2dx. (3.6)

Proof. From the definition of ε(·, ·), we have

ε(u,ū) = (λ+2µ)(|∂1u1|2 + |∂2u2|2)+µ(|∂2u1|2 + |∂1u2|2)

+
(λ+µ)(λ+2µ)

λ+3µ
(∂1u1∂2ū2 +∂2u2∂1ū1)+

µ(λ+µ)

λ+3µ
(∂2u1∂1ū2 +∂1u2∂2ū1)

= (λ+2µ)(|∂1u1|2 + |∂2u2|2)+µ(|∂2u1|2 + |∂1u2|2)

+
(λ+µ)(λ+2µ)

λ+3µ
2Re(∂1u1∂2ū2)+

µ(λ+µ)

λ+3µ
2Re(∂2u1∂1ū2).

By µ>0 and λ+µ>0, we have λ+µ> (λ+µ)(λ+2µ)
λ+3µ . On the other hand, we have

|2Re(∂1u1∂2ū2)|≤ |∂1u1|2 + |∂2u2|2.

Hence we can obtain that

(λ+2µ)(|∂1u1|2 + |∂2u2|2)+
(λ+µ)(λ+2µ)

λ+3µ
2Re(∂1u1∂2ū2)

≥
(
λ+2µ− (λ+µ)(λ+2µ)

λ+3µ

)
(|∂1u1|2 + |∂2u2|2)

=
2µ(λ+2µ)

λ+3µ
(|∂1u1|2 + |∂2u2|2). (3.7)
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Similarly, since µ> µ(λ+µ)
λ+3µ and

|2Re(∂2u1∂1ū2)|≤ |∂2u1|2 + |∂1u2|2,

we have

µ(|∂2u1|2 + |∂1u2|2)+
µ(λ+µ)

λ+3µ
2Re(∂2u1∂1ū2)

≥
(
µ− µ(λ+µ)

λ+3µ

)
(|∂2u1|2 + |∂1u2|2)

=
2µ2

λ+3µ
(|∂2u1|2 + |∂1u2|2). (3.8)

Consequently, combining (3.7) and (3.8) and from 2µ(λ+2µ)
λ+3µ > 2µ2

λ+3µ , we have

ε(u,ū)≥ 2µ2

λ+3µ
(|∂1u1|2 + |∂2u2|2 + |∂2u1|2 + |∂1u2|2),

which completes the proof.

By applying Green’s formula and the half-plane Kupradze radiation condition it is
easy to derive the Green’s representation formula for the scattered wave usc:

usc =

∫
SR

Tν(y)GH(x,y) ·usc(y)−GH(x,y) ·Tν(y)u
sc(y)ds(y), x∈Ω\ΩR. (3.9)

Taking the limit x→SR in (3.9) and setting p=Tνu
sc|SR

∈H−1/2(SR)2, we obtain

(
1

2
I−D)(usc|SR

)+Sp= 0 on SR. (3.10)

Here I is the identity operator, D and S are the double layer and single layer operators
over SR, respectively, defined by

(Dg)(x) =

∫
SR

Tν(y)GH(x,y) ·g(y)ds(y),

(Sg)(x) =

∫
SR

GH(x,y) ·g(y)ds(y). (3.11)

Combining (3.5) and (3.10) yields the variational formulation for the unknown solution
pair (u,p)∈XR×H−1/2(SR)2 :=X as the following

B((u,p),(ϕ,χ)) =

[
b1((u,p),(ϕ,χ))
b2((u,p),(ϕ,χ))

]
=

[ ∫
SR
Tνu0 ·ϕds∫

SR
( 1

2I−D)(u0|SR
) ·χds

]
(3.12)

for all (ϕ,χ)∈X, where u0 =uin +ure is the reference field and

b1((u,p),(ϕ,χ)) =

∫
ΩR

ε(u,ϕ)−ω2u ·ϕdx−
∫
SR

ϕ ·pds,

b2((u,p),(ϕ,χ)) =

∫
SR

(
(
1

2
I−D)(u|SR

)+Sp
)
χds.
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Remark 3.3. The variational formulation (3.12) and our scattering problem are
equivalent in the following sense. If u=u0 +usc is a solution to our original problem,
then the restriction of u to ΩR satisfies the variational Equation (3.12). On the other
hand, if u∈XR is a solution to (3.12), then one may extend usc from ΩR to Ω\ΩR
through (3.9). It follows from (3.10) that the jump of usc is continuous at SR, and if ω2

is not a Dirichlet eigenvalue of the operator −(µ∆+(λ+µ)∇(∇·)) over B+
R , the jump

of ∂νu
sc is also continuous at SR. Hence, u∈H1

loc(Ω) and u−u0 satisfies the radiation
solution (2.10). Note that we can always choose R>0 such that ω2 is not the Dirichlet
eigenvalue. This implies that the inverse of S exists.

Below we state the well-posedness of the direct scattering problem.

theorem 3.1. For any incident plane wave at the frequency ω>0, there exists
a unique solution u∈XR of the form u=uin +ure +usc where the scattered field usc

satisfies the half-plane Kupradze radiation condition and the reference field u0 =uin +
ure is given by (2.6).

Proof. Since Γf is the graph of a Lipschitz function, from solvability of rough
surface scattering [14], there exists a unique solution v :=u−uin which fulfills the Up-
ward Propagation Radiation Condition (UPRC) for the Navier equation. Since the
UPRC covers outgoing plane waves and the Sommerfeld radiation solutions, we get
usc =ure= 0 if uin = 0. This proves uniqueness. To prove the existence of usc, we only
need to show that the variational formulation (3.12) is of Fredholm type.

By Riesz representation theorem, there exist linear operators

T1,J1 :H1
ΛR

(Ω)2→H−1
ΛR

(Ω)2,

T2 :H−1/2(SR)2→H−1
ΛR

(Ω)2,

T3 :H−1/2(SR)2→ H̃1/2(SR)2,

J2 :H1
ΛR

(ΩR)2→ H̃1/2(SR)2,

such that for (u,p),(ϕ,χ)∈X,

(T1u,ϕ) : =
1

2

∫
ΩR

ε(u,ϕ̄)+ω2u ·ϕ̄dx,

(J1u,ϕ) : =−
∫

ΩR

ω2u ·ϕ̄dx,

〈T2p,ϕ〉 : =
1

2

∫
SR

p ·ϕ̄ds,

〈T3p,χ〉 : =

∫
SR

Sp · χ̄ds,

〈J2u,χ〉 : =−
∫
SR

D(u|SR
) · χ̄ds.

Here (·,·) denotes the duality between H1
ΛR

(ΩR)2 and H−1
ΛR

(ΩR)2, whereas 〈·,·〉 the du-

ality between H̃1/2(SR)2 and H−1/2(SR)2. By Sobolev embedding theorems, J1 is com-
pact. The operator J2 is also compact, since the double layer operator D : H̃1/2(SR)2→
H̃1/2(SR)2 is compact (see [29]). This follows from the special choice of the values a
and b in the definition of the generalized stress operator, for which the kernel in the
definition of the double layer operator D has a weak singularity (see Chapter 3 in [3]).
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Then, we may rewrite B :X×X→C2 as

B((u,p),(ϕ,χ)) = 〈B1(u,p),(ϕ,χ)〉+〈B2(u,p),(ϕ,χ)〉

where 〈·, ·〉 denotes the duality betweenX andX−1, and the operators Bj :X→X−1, j=
1,2 are defined as

B1 :=

[
T1 −T2

T ∗2 T3

]
, B2 :=

[
J1 0
J2 0

]
.

By Lemma 3.2, T1 is a coercive operator over H1
ΛR

(ΩR)2. Following the arguments in
the proof of [29, Theorem 7.6], one can prove that T3 is a strongly elliptic operator over
H−1/2(SR)2. Hence, the real part of B1, given by

ReB1 :=
B1 +B∗1

2
=

[
T1

T3

]
is strongly elliptic over X. Since B2 is also compact, the operator B is Fredholm with
index zero. Applying the Fredholm alternative yields the existence of solutions.

Remark 3.4. Once the data of usc are computed on ΩR, the far-field pattern of usc

can be represented as

u∞(x̂) =

∫
SR

G∞H (x̂,y) ·Tν(y)[u
sc(y)]−Tν(y)[G

∞
H (x̂,y)] ·usc(y)ds(y), (3.13)

where G∞H (x̂,y) stands for the far-field pattern of the function x→G∞H (x,y) as |x|→∞
in the upper half-space.

4. Inverse scattering
In this section, we study the domain derivative and propose a continuation method

for the inverse scattering problem. Throughout this section, we suppose that ω2 is not
a Dirichlet eigenvalue of the Navier equation in B+

R . Note that this assumption can
always be fulfilled by slightly changing R. For simplicity, in this section, we define the
traction operator by (that is, we take a= 0, b=λ+µ in (3.4))

Tνu :=µ∂νu+(λ+µ)(∇·u)ν on SR.

Then the symmetric sesquilinear form ε(·,·) can be rewritten as

ε(u,ϕ) =µ∇u :∇ϕ+(λ+µ)(∇·u)(∇·ϕ).

Here A :B= tr(AB>) is the Frobenius inner product of square matrices A and B.

4.1. Domain derivative. Given h>0, introduce a domain ΩhR bounded by ΛhR
and SR, where

ΛhR={x+hp(x) :x∈ΛR},

Here, the profile function f is assumed to be in C2(R) and the function p=
(p1(x),p2(x))>∈C2(ΛR,R2) satisfies p= 0 on boundary of the locally perturbed sur-
face ΛR. Since ω2 is not an eigenvalue, the single layer operator defined in (3.11) is
invertible. Hence, we introduce a Dirichlet-to-Neumann map on SR:

Tνu=Au+g,
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where

A :=−S−1(
1

2
I−D),

and

g=Tνu0−Au0.

Consider the variational problem in the perturbed domain ΩhR: Find uh∈H1
Λh

R
(ΩhR)2

such that

bh(uh,vh) = 〈g,vh〉SR
, ∀vh∈H1

ΛR
(ΩhR)2, (4.1)

where the sesquilinear form bh :H1
Λh

R
(ΩhR)2×H1

Λh
R

(ΩhR)2→C is defined by

bh(uh,vh) =µ

∫
Ωh

R

∇uh :∇v̄hdy+(λ+µ)

∫
Ωh

R

(∇·uh)(∇· v̄h)dy

−ω2

∫
Ωh

R

uh · v̄hdy−〈Auh,vh〉SR
. (4.2)

Define a nonlinear scattering operator: F

F : ΛhR→γuh

where γ is the trace operator onto SR. The domain derivative of the operator F on the
boundary ΛR along with the direction p is defined by

F ′(ΛR;p) := lim
h→0

F(ΛhR)−F(ΛR)

h
= lim
h→0

γuh−γu
h

.

For a given p, we extend its domain to Ω̄+
R by requiring that p(x) = (0,0)> if |x|>

R−α for some small positive constant α, and y= ξh(x) =x+hp(x) maps ΩR to ΩhR.
It is clear to note that ξh is a diffeomorphism from ΩR to ΩhR for sufficiently small h.
Denote by ηh(y) : ΩhR→ΩR the inverse map of ξh.

Define ŭ(x) = (ŭ1,ŭ2)> := (uh ◦ξh)(x). It follows from the change of variable y=
ξh(x) that ∫

Ωh
R

(∇uh :∇v̄h)dy=

2∑
j=1

∫
ΩR

∇ŭjJηhJ>ηh∇¯̆vj det(Jξh)dx,∫
Ωh

R

(∇·uh)(∇· v̄h)dy=

∫
ΩR

(∇ŭ :J>ηh)(∇¯̆v :J>ηh)det(Jξh)dx,∫
Ωh

R

uh · v̄hdy=

∫
ΩR

ŭ · ¯̆vdet(Jξh)dx,

where v̆(x) = (v̆1, v̆2)> := (vh ◦ξh)(x), Jηh and Jξh are the Jacobian matrices of the
transforms ηh and ξh, respectively.

For an arbitrary test function vh in the domain ΩhR, it is easy to note that v̆ is a
test function in the domain ΩR, according to the transform. Therefore, the sesquilinear
form bh in (4.2) becomes

bh(ŭ,v) =

2∑
j=1

µ

∫
ΩR

∇ŭjJηhJ>ηh∇v̄j det(Jξh)dx+(λ+µ)

∫
ΩR

(∇ŭ :J>ηh)
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×(∇v̄ :J>ηh)det(Jξh)dx−ω2

∫
ΩR

ŭ · v̄det(Jξh)dx−〈Aŭ,v〉∂B+
R
,

which gives an equivalent variational formulation to (4.1):

bh(ŭ,v) = 〈g,v〉∂B+
R
, ∀v∈H1

ΛR
(ΩR)2. (4.3)

A simple calculation yields

b(ŭ−u,v) = b(ŭ,v)−〈g,v〉∂B+
R

= b(ŭ,v)−bh(ŭ,v) = b1 +b2 +b3,

where

b1 =

2∑
j=1

µ

∫
ΩR

∇ŭj
(
I−JηhJ>ηh det(Jξh)

)
∇v̄j dx, (4.4)

b2 = (λ+µ)

∫
ΩR

(∇· ŭ)(∇· v̄)−(∇ŭ :J>ηh)(∇v̄ :J>ηh)det(Jξh)dx, (4.5)

b3 =ω2

∫
ΩR

ŭ · v̄
(
det(Jξh)−1

)
dx. (4.6)

Here I is the identity matrix. Following the definitions of the Jacobian matrices, we
may easily verify that

det(Jξh) = 1+h∇·p+O(h2),

Jηh =J−1
ξh
◦ηh= I−hJp+O(h2),

JηhJ
>
ηhdet(Jξh) = I−h(Jp+J>p )+h(∇·p)I+O(h2),

where the matrix Jp=∇p. Substituting the above estimates into (4.4)-(4.6), we obtain

b1 =

2∑
j=1

µ

∫
ΩR

∇ŭj
(
h(Jp+J>p )−h(∇·p)I+O(h2)

)
∇v̄j dx,

b2 = (λ+µ)

∫
ΩR

h(∇· ŭ)(∇v̄ :J>p )+h(∇· v̄)(∇ŭ :J>p )

−h(∇·p)(∇· ŭ)(∇· v̄)+O(h2)dx,

b3 =ω2

∫
ΩR

ŭ · v̄
(
h∇·p+O(h2)

)
dx.

Hence we have

b

(
ŭ−u
h

,v

)
=g1(p)(ŭ,v)+g2(p)(ŭ,v)+g3(p)(ŭ,v)+O(h), (4.7)

where

g1 =

2∑
j=1

µ

∫
ΩR

∇ŭj
(
(Jp+J>p )−(∇·p)I

)
∇v̄j dx,

g2 = (λ+µ)

∫
ΩR

(∇· ŭ)(∇v̄ :J>p )+(∇· v̄)(∇ŭ :J>p )−(∇·p)(∇· ŭ)(∇· v̄)dx,
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g3 =ω2

∫
ΩR

(∇·p)ŭ · v̄ dx.

theorem 4.1. Let u be the solution of problem (2.4). Given p, the domain derivative
of the scattering operator F is F ′(ΛR;p) =γu′, where u′ is the unique weak solution of
the boundary value problem:

µ∆u′+(λ+µ)∇∇·u′+ω2u′= 0 in ΩR,

u′=−(p ·ν)∂νu on ΛR,

µ∂νu
′+(λ+µ)(∇·u′)ν=Au′ on SR.

(4.8)

Proof. Given p, we extend it to Ω̄+
R as before. It follows from the well-posedness

of problem (3.12) that ŭ→u in H1
ΛR

(ΩR)2 as h→0. Taking the limit h→0 in (4.7)
gives

b

(
lim
h→0

ŭ−u
h

,v

)
=g1(p)(u,v)+g2(p)(u,v)+g3(p)(u,v), (4.9)

which shows that (ŭ−u)/h is convergent in H1
ΛR

(ΩR)2 as h→0. Denote by u̇ this limit
and rewrite (4.9) as

b(u̇,v) =g1(p)(u,v)+g2(p)(u,v)+g3(p)(u,v). (4.10)

First we compute g1(p)(u,v). Noting p= 0 on SR and using the identity

∇u
(
(Jp+J>p )−(∇·p)I

)
∇v̄=∇· [(p ·∇u)∇v̄+(p ·∇v̄)∇u−(∇u ·∇v̄)p]

−(p ·∇u)∆v̄−(p ·∇v̄)∆u,

we obtain, from the divergence theorem, that

g1(p)(u,v) =−
2∑
j=1

µ

∫
ΩR

(p ·∇uj)∆v̄j+(p ·∇v̄j)∆uj dx

−
2∑
j=1

µ

∫
ΛR

(p ·∇uj)(ν ·∇v̄j)+(p ·∇v̄j)(ν ·∇uj)−(p ·ν)(∇uj ·∇v̄j)ds

=−µ
∫

ΩR

(p ·∇u) ·∆v̄+(p ·∇v̄) ·∆udx

−µ
∫

ΛR

(p ·∇u) ·(ν ·∇v̄)+(p ·∇v̄) ·(ν ·∇u)−(p ·ν)(∇u :∇v̄)ds.

Since µ∆u+(λ+µ)∇∇·u+ω2u= 0 in ΩR, we have, from the integration by parts, that

µ

∫
ΩR

(p ·∇v̄) ·∆udx

=−(λ+µ)

∫
ΩR

(p ·∇v̄) ·(∇∇·u)dx−ω2

∫
ΩR

(p ·∇v̄) ·udx

=(λ+µ)

∫
ΩR

(∇·u)∇·(p ·∇v̄)dx+(λ+µ)

∫
ΛR

(∇·u)(ν ·(p ·∇v̄))ds

−ω2

∫
ΩR

(p ·∇v̄) ·udx.
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Using the integration by parts again yields

µ

∫
ΩR

(p ·∇u) ·∆v̄dx=−µ
∫

ΩR

∇(p ·∇u) :∇v̄dx−µ
∫

ΛR

(p ·∇u) ·(ν ·∇v̄)ds.

It is easy to verify that∫
ΛR

(p ·∇v̄) ·(ν ·∇u)−(p ·ν)(∇u :∇v̄)ds= 0.

Noting v= 0 on ΛR and

(∇·p)(u · v̄)+(p ·∇v̄) ·u=∇·((u · v̄)p)−(p ·∇u) · v̄,

we obtain by the divergence theorem that∫
ΩR

(∇·p)(u · v̄)+(p ·∇v̄) ·udx=−
∫

ΩR

(p ·∇u) · v̄dx.

Combining the above identities, we conclude that

g1(p)(u,v)+g3(p)(u,v) =µ

∫
ΩR

∇(p ·∇u) :∇v̄dx−(λ+µ)

∫
ΩR

(∇·u)∇·(p ·∇v̄)dx

−ω2

∫
ΩR

(p ·∇u) · v̄dx+(λ+µ)

∫
ΛR

(∇·u)(ν ·(p ·∇v̄))ds.

(4.11)

Next, we compute g2(p)(u,v). It is easy to verify that∫
ΩR

(∇·u)(∇v̄ :J>p )+(∇· v̄)(∇u :J>p )dx=

∫
ΩR

(∇·u)∇·(p ·∇v̄)dx

−
∫

ΩR

(∇·u)(p ·(∇·(∇v)>))dx+

∫
ΩR

(∇· v̄)∇·(p ·∇u)dx

−
∫

ΩR

(∇· v̄)(p ·(∇·(∇u)>))dx.

Using the integration by parts, we obtain∫
ΩR

(∇·p)(∇·u)(∇· v̄)dx

=−
∫

ΩR

p ·∇((∇·u)(∇· v̄))dx−
∫

ΛR

(∇·u)(∇· v̄)(ν ·p)ds

=−
∫

ΩR

(∇· v̄)(p ·(∇·(∇u)>))dx−
∫

ΩR

(∇·u)(p ·(∇·(∇v)>))dx

−
∫

ΛR

(∇·u)(∇· v̄)(ν ·p)ds.

Since v= 0 on ΛR, we have ∂τv= 0, which implies that

ν2∂x1
v1 =ν1∂x2

v1, ν2∂x1
v2 =ν1∂x2

v2.
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Hence, we get ∫
ΛR

(∇·u)(∇· v̄)(ν ·p)ds=

∫
ΛR

(∇·u)(ν ·(p ·∇v̄))ds.

Combining the above identities gives

g2(p)(u,v) = (λ+µ)

∫
ΩR

(∇·u)∇·(p ·∇v̄)dx+(λ+µ)

∫
ΩR

∇·(p ·∇u)(∇· v̄)dx

−(λ+µ)

∫
ΛR

(∇·u)(ν ·(p ·∇v̄))ds. (4.12)

Noting (4.10), and adding (4.11) and (4.12), we obtain

b(u̇,v) =µ

∫
ΩR

∇(p ·∇u) :∇v̄dx+(λ+µ)

∫
ΩR

∇·(p ·∇u)(∇· v̄)dx

−ω2

∫
ΩR

(p ·∇u) · v̄dx.

Define u′= u̇−p ·∇u. It is clear to note that p ·∇u= 0 on SR since p= 0 on SR. Hence,
we have

b(u′,v) = 0, ∀v∈H1
ΛR

(ΩR)2, (4.13)

which shows that u′ is the weak solution of the boundary value problem (4.8). To verify
the boundary condition of u′ on SR, we recall the definition of u′ and have

u′= lim
h→0

ŭ−u
h
−p ·∇u=−p ·∇u on ΛR,

since ŭ=u= 0 on ΛR. Noting that u= 0 and thus ∂τu= 0 on ΛR, we have

p ·∇u= (p ·ν)∂νu+(p ·τ )∂τu= (p ·ν)∂νu, (4.14)

which completes the proof by combining (4.13) and (4.14).

4.2. Reconstruction method. Denote by ΛN the approximation of the locally
perturbed surface ΛR, where

ΛN =
{

(x1,x2)∈R2 :x2 =fN (x1), |x1|<R
}
,

and

fN (x) =

N∑
i=1

ciB
3
i (x).

Here {B3
i } are third order B-splines with uniformly distributed nodes {ti} in [−R,R].

To reconstruct the locally perturbed surface, it suffices to determine the coefficients ci.
Let ΩN be the domain bounded by ΛN and SR. Denote a vector of coefficients C=

(c1,...,cN )>∈RN , and a vector of measurement data U = (u(x1),...,u(xM ))>∈C2M ,
where xm∈SR,m= 1,...,M . The inverse problem can be formulated to solve an ap-
proximate nonlinear equation

FN (C) =U ,
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where the operator FN maps a vector in RN into another vector in C2M .
The following theorem is a direct conclusion of Theorem 4.1.

theorem 4.2. Let uN be the solution of the variational problem (3.5) with the locally
perturbed surface ΛN . The operator FN is differentiable and its derivatives are given by

∂FN,m(C)

∂cn
=u′n(xm), n= 1,...,N ;m= 1,..,M,

where u′n is the unique weak solution of the boundary value problem
µ∆u′n+(λ+µ)∇∇·u′n+ω2u′n= 0 in ΩN ,

u′n=−(pn ·ν)∂νuN on ΛN ,

µ∂νu
′
n+(λ+µ)(∇·u′n)ν=Au′n on SR.

(4.15)

Here pn(x1) = (x1,B
3
n(x1))>.

We remark that, since SR is C∞-smooth and the boundary condition on SR is non-
local, the weak solution to (4.15) is C∞-smooth up to the boundary SR by standard
elliptic interior estimate. Therefore, the values of u′n at xm are all well-defined.

The inverse problem can be formulated as the minimization problem:

min
C
q(C), C∈RN ,

where the cost function is defined as

q(C) =
1

2
||FN (C)−U ||2 =

1

2

M∑
m=1

|FN,m(C)−u(xm)|2.

By using Theorem 4.2, we have, from a simple calculation, that

∇q(C) =

(
∂q(C)

∂c1
,...,

∂q(C)

∂cN

)>
,

where

∂q(C)

∂cn
= Re

M∑
m=1

u′n(xm) ·(F̄N,m(C)− ū(xm)).

We assume that the scattering data U is available over a range of angular fre-
quencies ω∈ [ωmin, ωmax], which may be divided into ωmin =ω0<ω1< ·· ·<ωK =ωmax.
Correspondingly, the compressional wavenumber may be divided into κ1,min =κ1,0<
κ1,1< ·· ·<κ1,K =κ1,max and the shear wavenumber may be divided into κ2,min =κ2,0<
κ2,1< ·· ·<κ2,K =κ2,max.

We now propose an algorithm to reconstruct the coefficients ci, i= 1,...,N.

(1) Set an trivial initial approximation: cj = 0,j= 1,...,N , i.e., the initial approximation
is a flat surface.

(2) Begin with the smallest frequency ω0, and seek an approximation to the functions
fN by B-Splines with N number of uniformly distributed nodes in [−R,R].

fk0 =

N∑
i=1

c0iB
3
i (x).
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Fig. 5.1. A typical diagram of the computational domain for PML problem.

Denote Ck0 = (c1,c2,. ..,cN )> and consider the iteration

C
(l+1)
k0

=C
(l)
k0
−ε∇q(C(l)

k0
), l= 1,. ..,L,

where ε>0 and L>0 are the step size and the number of iterations for a fixed
frequency, respectively.

(3) Increase to the next higher frequency ω1 of the available data. Repeat Step 2 with
the previous approximation to fN as the starting point.

(4) Repeat Step 3 until a prescribed highest frequency ωK is reached.

5. Numerical experiments

5.1. Forward problem. The scattering data is obtained by using the finite ele-
ment method with the Perfectly Matched Layer (PML) technique in a locally perturbed
half-plane, which is implemented via Freefem++ [17]. The forward scattering problem
can be equivalently formulated as the following boundary value problem

µ∆v+(λ+µ)∇∇·v+ω2v= 0 in Ω, (5.1)

v=−u0 on Γf ,

where v= [v1,v2]> satisfies the outgoing Sommerfeld radiation condition in Ω and u0 is
the reference field. The physical domain of interest is

Ωa := Ω∩{x :−a≤x1≤a,f(x1)≤x2≤a}

for some a>R, which contains the semi-circle SR. Here the function f(x1) depicts
the profile. We introduce an absorbing layer of width L and pose a boundary value
problem in the computational domain Ωa+L, as shown in Figure 5.1. We note that,
since v=u0 = 0 on {(x1,0) :a< |x1|<a+L}, the truncation of the physical domain in
the x1-direction does not give rise to truncation errors in our numerical scheme. Let
s1(x1) = 1+iσ1(x1),s2(x2) = 1+iσ2(x2) be the absorbing medium property, where σ1

and σ2 are positive continuous functions satisfying σ1 =σ2 = 0 in the physical domain.
Then the forward scattering data are obtained by numerically solving the following
PML-equations in the computational domain Ωa+L:

(λ+2µ)∂1(
s2

s1
∂1v1)+µ∂2(

s1

s2
∂2v1)+(λ+µ)∂2

1,2v2 +s1s2ω
2v1 = 0,
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µ∂1(
s2

s1
∂1v2)+(λ+2µ)∂2(

s1

s2
∂2v2)+(λ+µ)∂2

1,2v1 +s1s2ω
2v2 = 0,

together with the Dirichlet boundary conditions

v=−u0 on Γf ∩{x : |x1|<a}, v= 0 on ΓPML,

where ΓPML =∂Ωa+L \(Γf ∩{x : |x1|<a}).

5.2. Inverse problem. In this section, we present three examples to show
the results of the inversion scheme proposed in Section 4. The finite element solution
obtained by PML-scheme is interpolated uniformly to get the near-field data measured
on SR. To test the stability, we add an amount of relative noise to the data

uδ(xi) =u(xi)(1+δ rand), i= 1,. ..,M,

where rand are uniformly distributed random numbers in [−1, 1].
In the following three examples, we take the Lamé constants λ= 2,µ= 1, which

account for the compressional wavenumber κ1 =ω/2. The incident wave is taken as
a single compressional wave at normal incidence, i.e. uin = [0,1]e−iκ1y. The radius
of the half-circle B+

R is R= 1, and the total number of measurement points are M =
100. The noise level of measurement is δ= 5%. We take the scattering data at nine
frequencies ωi= 2i+3,i= 1,2..,9, and the corresponding compressional wave number is
κ1,i= 2.5,3.5,...,10.5. For fixed angular frequency ωi= 2i+3 in each iteration, the total
number of iterations is 10+ i with step size 0.0005/i.

Example 1. Consider a locally perturbed surface with two separated upward parts
represented by

f(x1) =


0.1+0.1cos(4π(x1 +0.15)+π), x1∈ [−0.65,−0.15),

0.05+0.05cos(4π(x1−0.15)+π), x1∈ [0.15,0.65],

0, otherwise.

It is expected that our method works very well even by using only a few scattering data.
We use only a single compressional plane wave at normal incidence to illuminate the
surface. Figure 5.3 shows the numerical results, where the computed scattering surface
(dot-dashed line) is plotted against the exact surface (dashed line) for different data
apertures(solid line). Figure 5.3(a) shows the exact surface and the initial guess of the
flat surface. Figure 5.3(b) shows the reconstructed surface by using the full aperture
data, i.e., the observation angle ψ∈ [0,π]. The result is perfect. Figure 5.3(c) shows
how the maximal frequency influences the quality of the reconstruction. Figure 5.3(c)
shows that if we use lower maximal frequency, i.e., ω= 5,..,13, the main feature of the
surface can be recovered, but the small details can not be reconstructed unless higher
maximal frequency is used. We also investigate how the data aperture influences the
quality of the reconstruction. Figures 5.3(d)-(e) plot the reconstructed surfaces and
the corresponding data aperture for the construction. We choose the observation angle
ψ∈ [0.5π,π] in Figure 5.3(d), and ψ∈ [0.25π,π] in Figure 5.3(e). It can be clearly noted
that the part of the surface can be accurately reconstructed as long as it can be seen,
i.e., the observation angles can cover that part. Finally, Figure 5.3(f) shows the result
by using a single frequency ω= 21. It can be clearly noted that the result converges to
a local minimum which is far away from true surface. This illustrates the importance
of using continuation technique.
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Fig. 5.2. Reconstruction of a surface with a height of 0.4.
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Fig. 5.3. example 1: two upward surfaces. computed (dot-dashed line) against exact (dashed
line). (a) exact surface and initial guess of the flat surface; (b) ψ∈ [0, π]; (c) ψ∈ [0, π] with ω= 5, ...,13;
(d)ψ∈ [π/2, π]; (e) ψ∈ [π/4, π]; (f) reconstruction from a single frequency ω= 21.

It can be seen from Figure 5.2 that a locally perturbed surface with a relatively
large height of 0.4 can be also well-reconstructed.

Example 2. Consider a locally perturbed surface with both upward and downward
parts represented by

f(x1) =


0.1+0.1cos(4π(x1 +0.15)+π), x1∈ [−0.65,−0.15),

−0.05−0.05cos(4π(x1−0.15)+π), x1∈ [0.15,0.65],

0, otherwise.

Due to the upward and downward feature, this surface is more difficult than the first
example. We use only a single compressional plane wave at normal incidence to illu-
minate the surface. Figure 5.4(a) shows the exact surface and the initial guess of the
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flat surface. Figure 5.4(b) shows the reconstructed surface by using the full aperture
data, i.e., the observation angle ψ∈ [0,π]. Figure 5.4(c) shows the result by using lower
maximal frequency, i.e., ω= 5,..,13. Figures 5.4(d)-(e) plot the reconstructed surfaces
and the corresponding data aperture for the construction. We obtain that the part of
the surface can be accurately reconstructed as long as it can be seen, i.e., the observa-
tion angles can cover that part. Finally, Figure 5.4(f) shows the result by using a single
frequency ω= 21.
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Fig. 5.4. example 2: upward and downward surface. computed (dot-dashed line) against exact
(dashed line). (a) exact surface and initial guess of the flat surface; (b) ψ∈ [0, π]; (c) ψ∈ [0, π] with
ω= 5, ...,13; (d)ψ∈ [π/2, π]; (e) ψ∈ [π/4, π]; (f) reconstruction from a single frequency ω= 21.

Example 3. Consider a locally perturbed surface with two separated downward
parts represented by

f(x1) =


−0.1−0.1cos(4π(x1 +0.15)+π), x1∈ [−0.65,−0.15),

−0.05−0.05cos(4π(x1−0.15)+π), x1∈ [0.15,0.65],

0, otherwise.

Due to the two downward feature, our problem is equivalent to a multi-cavity scattering
problem. We use only a single compressional plane wave at normal incidence to illu-
minate the surface. Figure 5.5(a) shows the exact surface and the initial guess of the
flat surface. Figure 5.5(b) shows the reconstructed surface by using the full aperture
data, i.e., the observation angle ψ∈ [0,π]. Figure 5.5(c) shows the result by using lower
maximal frequency, i.e., ω= 5,..,13. Figures 5.5(d)-(e) plot the reconstructed surfaces
and the corresponding data aperture for the construction. We obtain that the part of
the surface can be accurately reconstructed as long as it can be seen, i.e., the observa-
tion angles can cover that part. Finally, Figure 5.5(f) shows the result by using a single
frequency ω= 21.
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Fig. 5.5. Example 3: the two downward profile. computed (dot-dashed line) against exact (dashed
line). (a) exact surface and initial guess of the flat surface; (b) ψ∈ [0, π]; (c) ψ∈ [0, π] with ω= 5, ...,13;
(d)ψ∈ [π/2, π]; (e) ψ∈ [π/4, π]; (f) reconstruction from a single frequency ω= 21.

Example 4. Consider a multiscale surface represented by

f(x1) =

{
0.13+0.1cos((4/3)πx1)+0.03cos((16/3)πx1 +π), x1∈ [−0.75,0.75],

0, otherwise,

This surface has two scales. The macro-scale part of the surface is a cos function
with period 1.5 and the micro-scale part is a perturbation by cos function with smaller
period 3

8 . This example illustrates that the macro-scale part can be reconstructed
by using low frequency, but the micro-scale part can only be reconstructed with high
frequency. Figure 5.6(a) shows the exact surface and the initial guess of the flat surface.
Figure 5.6(b) shows the reconstructed surface by using the full aperture data, i.e., the
observation angle ψ∈ [0,π]. Figure 5.6(c) shows the result by using lower maximal
frequency, i.e., ω= 5,..,13. Figures 5.6(d)-(e) plot the reconstructed surfaces and the
corresponding data aperture for the construction. We obtain that the part of the surface
can be accurately reconstructed as long as it can be seen, i.e., the observation angles
can cover that part. Finally, Figure 5.6(f) shows the result by using a single frequency
ω= 21.

Our inversion scheme requires an efficient forward solver to compute the domain
derivative problem. In fact, we need to compute N times the solution u′n of (4.15) and
one time the total field ū that corresponds to the current approximated surface. Multi-
plying them with the number of iterations gives the compuational cost of our method.
Since the descent method for most time is of first order, we need many iterations in
order to get a good approximation. The larger the height of the surface, the more the
number of the iterations. This means that the number of direct problems to be solved
is quite large. However, since the main computational efforts are spent on the calcula-
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Fig. 5.6. example 4: multiscale surface. computed (dot-dashed line) against exact (dashed line).
(a) exact surface and initial guess of the flat surface; (b) ψ∈ [0, π]; (c) ψ∈ [0, π] with ω= 5, ...,13;
(d)ψ∈ [π/2, π]; (e) ψ∈ [π/4, π]; (f) reconstruction from a single frequency ω= 21.

tion of u′n, the total cost can be reduced by parallel schemes with enough computing
cores. Let us also mention that our continuation approach using multi-frequencies does
not require a good initial guess. In our examples, two upward surfaces, upward and
downward surfaces, two downward surfaces as well as multiscale surfaces can be almost
perfectly reconstructed from the initial guess of the unperturbed flat surface. This is
the advantage of our proposed method.

6. Concluding remarks

In this paper we have proved well-posedness of time-harmonic elastic scattering from
a locally perturbed rigid rough surface in 2D. Thanks to the Dirichlet Green’s tensor in
a half-plane, we have established an equivalent variational formulation in a truncated
bounded domain coupled with a transparent boundary condition derived from the inte-
gral representation of the scattered field. Our studies show that, due to the presence of
a local perturbation, both analysis and numerics for rough surface scattering problems
can be significantly simplified. This enables us to deeply interpret the perturbed wave
modes scattered back into the upper half-plane. An iterative continuation method was
proposed for reconstructing the unknown interface by applying the domain derivative
formula. Extension of these works to 3D requires analysis of the Green’s tensor in
a half-space and an efficient algorithm for the direct scattering problem. This paper
also provides insight into the more practical problems under the traction-free boundary
condition. Further, the direct and inverse problems for general rough surfaces are chal-
lenging. Progress in these directions will be reported in our forthcoming publications.
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