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Abstract
This paper is concerned with the inverse problem of scattering of time-harmonic
elastic waves from rigid periodic structures. We establish the factorization
method to identify an unknown diffraction grating profile (periodic surface)
from knowledge of the scattered compressional or shear waves measured
on a line above the periodic surface. Near-field operators are factorized by
selecting appropriate incident waves derived from quasi-periodic half-space
Green’s tensor to the Navier equation. The factorization method gives rise
to a uniqueness result for the inverse scattering problem by utilizing only
the compressional or shear components of the scattered field corresponding
to all quasi-periodic incident plane waves with a common phase-shift. A
number of computational examples are provided to show the accuracy of the
inversion algorithms, with emphasis placed on comparing reconstructions from
the scattered near field and those from its compressional and shear components.

(Some figures may appear in colour only in the online journal)

1. Introduction

The inverse scattering problem of recovering an unknown diffraction grating profile (periodic
structure) from the scattered field is of great importance, e.g., in diffractive optics,
quality control and design of diffractive elements with prescribed far-field patterns [7, 32].
Consequently, there is a vast literature on the reconstruction of grating interfaces modeled by
the Maxwell equations or the two-dimensional Helmholtz equation (see e.g. [1, 5, 6, 15, 18, 19,
21, 28, 30, 33, 34]). The inverse elastic scattering by periodic structures also has a wide field of
applications, particularly in geophysics, seismology and nondestructive testing. For instance,
identifying fractures in sedimentary rocks can have significant impact on the production of
underground gas and liquids by employing controlled explosions. The sedimentary rock under
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consideration can be regarded as a homogeneous transversely isotropic elastic medium with
periodic vertical fractures that can be extended to infinity in one of the horizontal directions.
Using an elastic plane wave as an incoming source, we thus obtain an inverse problem of shape
identification from knowledge of near-field data measured above the periodic structure; see
[29]. Analogous inverse problems also arise from using transient elastic waves to measure the
elastic properties or to detect flaws and cracks in concrete structures. Moreover, the problem
of elastic pulse transmission and reflection through the earth is fundamental to both the
investigation of earthquakes and the utility of seismic waves in search for oil and ore bodies
[16, 17].

This paper is concerned with the inverse elastic diffraction problem (IP) of recovering a
two-dimensional rigid diffraction grating profile from the scattered near field, which can be
regarded as a simple model problem in elasticity. The direct scattering problem (DP) can be
formulated as a Dirichlet boundary value problem for the time-harmonic Navier equation in
the unbounded domain above the scattering periodic surface. We refer to [3, 4, 11, 12, 14] or
section 2 of this paper concerning existence and uniqueness results for the direct scattering
problem. We shall establish the factorization method for (IP), generalizing the inversion
algorithms in acoustic scattering from bounded obstacles [6, 10, 23, 25] and diffraction
gratings [5, 6, 28] to the current situation. The factorization method was first put forward by
Kirsch [23] to reconstruct bounded obstacles from the spectral data of the far-field operator.
It requires neither computation of direct solutions nor initial guesses and provides a sufficient
and necessary condition for precisely characterizing the shape of the unknown scatterers. We
refer to [24, 30, 31] for the factorization method applied to inverse electromagnetic scattering
from bounded obstacles and diffraction gratings. Schiffer’s uniqueness theorem for (IP) was
already justified in [2]. It was proved that a smooth diffraction grating surface (C2) can be
uniquely determined from incident pressure waves for one incident angle and an interval of
wave numbers. Furthermore, a finite set of wave numbers is enough if a priori information
about the height of the grating curve is known. This extends the periodic version of Schiffer’s
theorem by Hettlich and Kirsch (see [19]) to the case of inverse elastic diffraction problems.
The application of the Kirsch–Kress optimization scheme to (IP) with one or several incident
elastic plane waves can be found in [13].

Compared with the scattering of acoustic waves, the elastic scattering is more complicated
in view of the coexistence of compressional (also called longitudinal or dilatational) waves
and shear (also called transverse or distortional) waves that propagate at different speeds. We
divide our inverse problems into two classes, depending on the phase-shifts of the incident
elastic plane waves for a fixed incident angle. For each class, we study the associated inverse
problems by utilizing the scattered compressional waves, shear waves or the entire scattered
near field. As a corollary, we obtain a uniqueness result using only the information of the
scattered compressional or shear waves corresponding to all incident elastic plane waves with
a common phase-shift. Such a result is in analogy with the one in [20] for bounded rigid
obstacles using only compressional or shear waves.

Inspired by the existing factorization methods for diffraction gratings [5, 28] as well as
for bounded obstacle scattering in a half-space [25, chapter 2.6], we choose two admissible
sets of incident waves based on the form of the quasi-periodic elastic Green’s tensor in a
half-plane. Such a Green’s tensor is derived from the general (non-quasi-periodic) half-plane
Green’s function (see [4]) through Poisson’s formula. The admissible sets of incident waves
enable us to factorize the near-field operators in a standard way. However, it should be pointed
out that the incident elastic waves we used are very artificial (see section 3) since they have
the same quasi-periodic phase-shift determined by a fixed incident angle and consist of not
only downward propagating waves but also upward propagating waves. This is because using

2



Inverse Problems 29 (2013) 115005 G Hu et al

only the downward propagating incident waves cannot lead to a desired factorization of the
near-field operator which an appropriate range identity can be applied to. On the other hand, it
is still an open problem on how to establish the factorization method by using a finite number
of plane waves with different incident angles in the range (−π/2, π/2); see section 3 for
more discussion. To apply appropriate range identities, we investigate the properties of the
middle operator for small frequencies; see remark 4.12. This differs from the factorization
method established in [5, 28], where the role of the positive part of the middle operator is
played by a single-layer operator whose kernel is the quasi-periodic fundamental solution to
the Helmholtz equation with the wave number k = i or k = 0. The injectivity of the middle
operator is justified under the assumption that the frequency of the incident waves is not the
quasi-periodic Dirichlet eigenvalue of the Lamé operator over a periodic strip.

The paper is organized as follows. In section 2, we formulate the direct and inverse elastic
scattering problems for diffraction gratings and collect some solvability results for the direct
problem. Section 3 is devoted to describing the half-space quasi-periodic Green’s tensor and
two admissible sets of incident elastic waves with distinct phase-shifts. In section 4, we provide
a theoretical justification of the factorization method, following the spirit of [5, 20]. Numerical
experiments are reported in section 5 to test the validity and stability of the factorization
method, with an emphasis on comparing reconstructions from utilizing the scattered near field
and those from its compressional and shear components.

2. Direct and inverse scattering problems

Let the diffraction grating profile be given by the graph � of a C2-smooth 2π -periodic function
f lying above the x1-axis, i.e., � = {x2 = f (x1) > 0, x1 ∈ R}. Denote by �� the unbounded
region above � and assume, for simplicity, that �� is occupied by a linear isotropic and
homogeneous elastic material with mass density 1. Suppose an incident pressure wave (with
the incident angle θ ∈ (−π/2, π/2)) given by

uin
p = θ̂ exp(ikpx · θ̂ ), θ̂ := (sin θ,− cos θ )T , x = (x1, x2) ∈ R

2, (2.1)

is incident on � from the region above. Here, kp := ω/
√

2μ + λ is the compressional wave
number, λ and μ denote the Lamé constants satisfying that μ > 0 and λ + μ > 0, ω > 0 is
the angular frequency of the harmonic motion and the symbol (·)T stands for the transpose
of a vector in R

2. The shear wave number is defined as ks := ω/
√

μ. The direct problem for
incident pressure waves aims to find the scattered field usc ∈ H1

loc(��)2 such that

(�∗ + ω2)usc = 0 in ��, �∗ := μ� + (λ + μ)grad div, (2.2)

usc = −uin
p on �. (2.3)

Recall that a function u is called quasi-periodic with the phase-shift α (or α-quasi-periodic) if

u(x1 + 2π, x2) = exp(2iαπ) u(x1, x2), (x1, x2) ∈ ��. (2.4)

Obviously, the incident pressure wave uin
p is α-quasi-periodic with α = kp sin θ over the

periodic domain ��. If the scattered field usc is also supposed to be quasi-periodic with the
same phase-shift as the incident wave, then problem (2.2) admits a unique solution that satisfies
the outgoing Rayleigh expansion

usc(x) =
∑
n∈Z

{
Ap,nWp,n

(
αn

βn

)
eiαnx1+iβnx2 + As,nWs,n

(
γn

−αn

)
eiαnx1+iγnx2

}
(2.5)
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for all x lying above the line �h := {x2 = h}. Here, h is an arbitrary number satisfying
h � �+ := max(x1,x2 )∈� x2, the constants Ap,n, As,n ∈ C are called the Rayleigh coefficients,
and the weights Wp,n and Ws,n are defined by

Wp,n :=
{

1, if |αn| < kp,

exp(−iβnh), if |αn| � kp,
Ws,n :=

{
1, if |αn| < ks,

exp(−iγnh), if |αn| � ks,
(2.6)

and

αn := α + n, βn = βn(θ ) :=
⎧⎨⎩

√
k2

p − α2
n if |αn| � kp,

i
√

α2
n − k2

p if |αn| > kp.
(2.7)

The parameter γn := γn(θ ) is defined similarly as βn with kp replaced by ks. For uniqueness
and existence of solutions to problem (2.2)–(2.5), we refer to [3] where the integral equation
method is used for smooth (C2) grating profiles and to [11, 12] where the variational approach
is applied to the case of general Lipschitz graphs in R

n (n = 2, 3). It is recently proved in
[14] that such an α-quasi-periodic solution is the unique solution to problem (2.2)–(2.5) in the
weighted Sobolev space

H1
 (Sh) := {u : u = (

1 + x2
1

)−/2
v, v ∈ H1(Sh)}, Sh := ��\{x = (x1, x2) : x2 > h}

for every h > �+ and −1 <  < −1/2. This implies that non-quasi-periodic or other
α′-quasi-periodic (α′ �= kp sin θ ) solutions to problem (2.2)–(2.5) do not exist in the space
H1

 (Sh). These solvability results in periodic structures extend those in acoustics (see [8, 9, 22])
to the case of elasticity. Moreover, they remain valid for a large class of quasi-periodic incident
elastic waves as considered in the subsequent sections of this paper, provided the scattering
surface is given by the graph of a periodic function. For non-graph grating profiles, the existence
of solutions to problem (2.2)–(2.5) can be proved by applying the Fredholm alternative (see
[11, 12]).

Since βn and γn are real for at most a finite number of indices n ∈ Z, only a finite number
of plane waves in (2.5) propagate into the far field, with the remaining evanescent waves (or
surface waves) decaying exponentially as x2 → +∞. The above expansion (2.5) converges
uniformly with all derivatives in the half-plane {x ∈ R

2 : x2 � h} for h > �+ and the
Rayleigh coefficients {Ap,n}n∈Z, {As,n}n∈Z ∈ �2. The scattered field can be decomposed into its
compressional and shear parts:

usc = usc
p + usc

s , usc
p := −1/k2

p grad div usc, usc
s := 1/k2

s
−→
curl curl usc,

where curl u := ∂1u2 − ∂2u1 for a vector function u = (u1, u2)
T and

−→
curl w = (∂2w,−∂1w)T

for a scalar function w. In particular, the P- and S-waves admit the Rayleigh expansions

usc
p :=

∑
n∈Z

[
Ap,n Wp,n (αn, βn)

T exp(iαnx1 + iβnx2)
]
,

usc
s :=

∑
n∈Z

[
As,nWs,n(γn,−αn)

T exp(iαnx1 + iγnx2)
] (2.8)

for x2 > h > �+, respectively, and satisfy the equations

(� + k2
p)u

sc
p = 0, curl usc

p = 0, (� + k2
s )u

sc
s = 0, div usc

s = 0 in ��.

The uniqueness and existence results for an incident pressure wave can all be extended to
the case with an incident shear wave uin

s of the form

uin
s = θ̂⊥ exp(iksx · θ̂ ), θ̂ := (sin θ,− cos θ )
, θ̂⊥ := (cos θ, sin θ )
, (2.9)
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which is ks sin θ -quasi-periodic. Note that the phase-shift of the (unique) scattered field
corresponding to (2.9) is α = ks sin θ , which differs from the case of P-wave incidence
given in (2.1).

In this paper, we are interested in the inverse problem of recovering an unknown rigid
diffraction grating profile (periodic scattering surface) � from the knowledge of the scattered
near field measured on �h for some fixed h > �+. Thus, the line �h denotes our detection
or measurement position. We always assume that the unknown grating profile � lies between
the lines �0 := {x2 = 0} and �h for some large h > 0. Let I1(α) and I2(α) be two
different admissible sets of elastic waves that are α-quasi-periodic. Given a fixed incident
angle θ ∈ (−π/2, π/2), this paper is devoted to studying the following inverse problems
(P j) and (S j), j = 1, 2, 3, by using kp sin θ -quasi-periodic and ks sin θ -quasi-periodic elastic
waves.

(P1) Reconstruct the diffraction grating profile � from the Rayleigh coefficients Ap,n, n ∈ Z,
of the compressional part usc

p of the scattered near field on �h corresponding to each
incident elastic wave uin ∈ I1(α) with α = kp sin θ .

(P2) Reconstruct the diffraction grating profile � from the Rayleigh coefficients As,n, n ∈ Z,
of the shear part usc

s of the scattered near field on �h corresponding to each incident elastic
wave uin ∈ I2(α) with α = kp sin θ .

(P3) Reconstruct the diffraction grating profile � from the Rayleigh coefficients Ap,n, As,n,
n ∈ Z, of the scattered near field usc on �h corresponding to each incident elastic wave
uin ∈ I1(α) ∪ I2(α) with α = kp sin θ .

The inverse problems (S j) are formulated similarly as (P j) with the quasi-periodicity
parameter replaced by α = ks sin θ . Our aim is to establish the factorization method for
numerically solving the inverse problems (P j) and (S j) and compare the numerical results
by using quasi-periodic incident waves with different phase-shifts and by using different
components of the scattered field. The admissible sets I j(α) of incident waves will be explicitly
defined in the following section.

3. The admissible sets of incident elastic waves

In contrast to the inverse scattering from bounded obstacles, the angle of incidence for
diffraction gratings has to be restricted to (−π/2, π/2) in order to reconstruct the diffraction
grating profile from above. However, it does not seem to be suitable to employ incident waves
with distinct angles in the range (−π/2, π/2) since the quasi-periodicity of the scattered field
varies with the angle of incidence. In the acoustic case, the authors of [5] suggest using the
following set of incident waves having a common phase-shift{

uin
n (y) := i

4πβn
[ei(αny1−βny2) − ei(αny1+βny2)], n ∈ Z

}
, y = (y1, y2) ∈ R

2, (3.1)

where βn is defined as in (2.7) with kp replaced by k. In (3.1), it is assumed that βn �= 0 for
all n ∈ Z, that is, the Rayleigh frequencies are excluded. Consequently, the periodic version
of the factorization method can be justified by using the single-layer potential whose kernel
is the α-quasi-periodic Green’s function to the Helmholtz equation (� + k2)u = 0 in a half-
plane. Note that each function uin

n in (3.1) satisfies the Dirichlet boundary condition on �0 and
consists of both upward and downward wave modes and that using only the downward wave
modes cannot lead to a desired factorization of the near-field operator to which an appropriate
range identity can be applied. Recall the following α-quasi-periodic Green’s function to the

5
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Helmholtz equation �u + k2u = 0 (see, e.g., [27]):

Gk(x, y) = i

4π

∑
n∈Z

1

βn
exp(iαn(x1 − y1) + iβn|x2 − y2|), x = (x1, x2), y = (y1, y2) ∈ R

2

with x − y �= n(2π, 0)T . Then, the difference Gk(x, y) − Gk(x, y′), with y′ = (y1, y2)
′ :=

(y1,−y2), is just the α-quasi-periodic Green’s function in the half-space x2 > 0 satisfying
the Dirichlet boundary condition on the boundary x2 = 0. Observe further that the incident
wave uin

n (y) coincides with the conjugate of the nth Rayleigh coefficient of the function
x → Gk(x, y) − Gk(x, y′) for x2 > y2. Inspired by these facts in acoustics, we introduce the
following two admissible sets of incident elastic waves for (P j) and (S j), j = 1, 2, 3:

I j(α) := {
uin

j,n(y), n ∈ Z
}
, j = 1, 2,

where uin
1,n(y) (or uin

2,n(y)) is defined as the conjugate of the nth Rayleigh coefficient of the
compressional (or shear) part of the function x → �D(x, y) (or multiplied by some constant)
for x2 > y2 > 0. Here, �D(x, y) stands for the α-quasi-periodic half-space Green’s tensor to
the Navier equation with the Dirichlet boundary condition on �0. The expression of �D(x, y),
which seems unknown by far in the literature, will be derived from the free-space elastic
Green’s tensor in the remaining part of this section.

We first recall the free-space fundamental solution to the Navier equation (2.2) (see, e.g.,
[4]):

�(x, y) = 1

μ
�ks (x, y) I + 1

ω2
gradx gradT

x [�ks (x, y) − �kp (x, y)],

where I, �k stand for the 2 × 2 unit matrix and the free-space fundamental solution to the
Helmholtz equation, respectively. Then, the α-quasi-periodic fundamental solution (Green’s
tensor) to the Navier equation takes the form

�(x, y) :=
∑
n∈Z

exp(−iα2πn)�(x + n(2π, 0), y), x − y �= n(2π, 0), n ∈ Z.

We refer to [3, section 6] for the convergence analysis of the above series. Similarly to the
form of �(x, y), the tensor �(x, y) can be written as (see [11])

�(x, y) = 1

μ
Gks (x, y)I + 1

ω2
gradx gradT

x [Gks (x, y) − Gkp (x, y)]

= 1

μ

(
Gks (x, y) 0

0 Gks (x, y)

)
+ 1

ω2

(
∂2

x1
∂x1∂x2

∂x2∂x1 ∂2
x2

)
[Gks (x, y) − Gkp (x, y)]. (3.2)

To split the function x → �(x, y) into its compressional and shear parts, we rewrite �(x, y)

as

�(x, y) =
∑
n∈Z

{
(αn, βn)

T P(n)(y)Wp,n exp(i(αnx1 + βnx2))
}

+
∑
n∈Z

{
(−γn, αn)

T S(n)(y)Ws,n exp(i(αnx1 + γnx2))
}

(3.3)

for x2 > y2, where Pn(y), Sn(y) ∈ C
2×1 will be referred to as the Rayleigh coefficients of the

compressional and shear parts of �(x, y), respectively. Inserting the representation of Gk(x, y)

into (3.2), we find

Pn(y) = i

4πω2Wp,nβn
(αn, βn)

T exp(−iαny1 − iβny2),

Sn(y) = i

4πω2Ws,nγn
(−γn, αn)

T exp(−iαny1 − iγny2) (3.4)
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for x2 > y2. It is worth pointing out that the difference �(x, y)−�(x, y′) is not the half-space
Green’s tensor to the Navier equation since it does not vanish on �0 by virtue of the derivative
with respect to x2 acting on Gks and Gkp . In [4], making use of the Fourier transform, Arens
has derived the non-quasi-periodic half-plane Green’s tensor of the form

�D(x, y) = �(x, y) − �(x, y′) + U (x, y), x �= y, x2, y2 > 0, (3.5)

with the correction term U (x, y) defined as the integral

U (x, y) := − i

2πω2

∫ ∞

−∞
(Mp(t, ηp(t), ηs(t); x2, y2) + Ms(t, ηp(t), ηs(t); x2, y2))e

−i(x1−y1)tdt,

Mp(t, ηp(t), ηs(t); x2, y2) := eiηp(t)(x2+y2) − ei(ηp(t)x2+ηs(t)y2)

ηp(t)ηs(t) + t2

( −t2ηs(t) t3

tηp(t)ηs(t) −t2ηp(t)

)
,

Ms(t, ηp(t), ηs(t); x2, y2) := eiηs(t)(x2+y2) − ei(ηs(t)x2+ηp(t)y2)

ηp(t)ηs(t) + t2

(−t2ηs(t) −tηp(t)ηs(t)
−t3 −t2ηp(t)

)
,

where

ηp(t) :=
⎧⎨⎩

√
k2

p − t2, t2 � k2
p,

i
√

t2 − k2
p, t2 > k2

p,
ηs(t) :=

{√
k2

s − t2, t2 � k2
s ,

i
√

t2 − k2
s , t2 > k2

s .

Motivated by the expression of �D, we define the half-space α-quasi-periodic Green’s tensor
in the following way:

�D(x, y) :=
∑
n∈Z

exp(−iα2πn)�D(x + n(2π, 0), y) = �(x, y) − �(x, y′) + Uα(x, y)

for x − y �= n(2π, 0)T , n ∈ Z, where

Uα(x, y) :=
∑
n∈Z

exp(−iα2πn)U (x + n(2π, 0), y). (3.6)

From Poisson’s summation formula, it is seen that∑
n∈Z

[exp(−iα2πn) exp(−i(x1 + 2nπ − y1)t)] = exp(−i(x1 − y1)t)
∑
n∈Z

δ(t + αn),

where δ(·) denotes the Dirac delta function. Inserting the previous identity back into (3.6)
yields an alternative expression of Uα:

Uα(x, y) := i

2πω2

∑
n∈Z

{[
ei(αnx1+βnx2 )(e−i(αny1−βny2) − e−i(αny1−γny2))

(
αnγn α2

n
βnγn αnβn

)

+ei(αnx1+γnx2)(e−i(αny1−γny2 ) − e−i(αny1−βny2))

(
αnγn −γnβn

−α2
n αnβn

) ]
αn

α2
n + βnγn

}
for x2 > y2. Hence, the nth Rayleigh coefficients of the compressional and shear parts of the
function x → Uα(x, y) can be formulated as (cf (2.8))

P̃(n)(y) = iαn

2πω2

e−i(αny1−βny2) − e−i(αny1−γny2)

Wp,n
(
α2

n + βnγn
) (γn, αn)

T ,

S̃(n)(y) = − iαn

2πω2

e−i(αny1−βny2) − e−i(αny1−γny2 )

Ws,n
(
α2

n + βnγn
) (−αn, βn)

T

for x2 > y2 with Wp,n,Ws,n given by (2.6).
To introduce our admissible sets of incident waves, as mentioned at the beginning of

this section, we define uin
1,n(y) and uin

2,n(y) as the conjugate of the nth Rayleigh coefficient of
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the compressional and shear parts of the function x → �D(x, y), respectively. That is, after
changing variables,

uin
1,n(x) := P(n)(x) − P(n)(x′) + P̃(n)(x), uin

2,n(x) := S(n)(x) − S(n)(x′) + S̃(n)(x) (3.7)

for n ∈ Z, where P(n) and S(n) are defined as in (3.4). More precisely, we can write uin
1,n and

uin
2,n as

uin
1,n(x) = −i

4πω2βnW p,n

(
uin

1,n,d(x) + uin
1,n,u(x)

)
,

uin
2,n(x) = −i

4πω2γ nW s,n

(
uin

2,n,d(x) + uin
2,n,u(x)

)
, (3.8)

with uin
j,n,d and uin

j,n,u, j = 1, 2, n ∈ Z, denoting the downward and upward propagating modes,
respectively, given by

uin
1,n,d(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α2
n−βnγn

α2
n+βnγn

(−αn

βn

)
ei(αnx1−βnx2) − 2αnβn

α2
n+βnγn

(
γn

αn

)
ei(αnx1−γnx2), |αn| � kp,(

αn

−βn

)
ei(αnx1−βnx2 ) + 2αnβn

α2
n−βnγn

(
γn

αn

)
ei(αnx1−γnx2), kp < |αn| < ks,(

αn

−βn

)
ei(αnx1−βnx2 ), |αn| � ks,

uin
1,n,u(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
αn

βn

)
ei(αnx1+βnx2), |αn| � kp,

−α2
n+βnγn

α2
n−βnγn

(
αn

βn

)
ei(αnx1+βnx2), kp < |αn| < ks,

−α2
n−βnγn

α2
n+βnγn

(
αn

βn

)
ei(αnx1+βnx2) − 2αnβn

α2
n+βnγn

(
γn

−αn

)
ei(αnx1+γnx2 ), |αn| � ks,

and

uin
2,n,d(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α2
n−βnγn

α2
n+βnγn

(
γn

αn

)
ei(αnx1−γnx2 ) − 2αnγn

α2
n+βnγn

(
αn

−βn

)
ei(αnx1−βnx2), |αn| � kp,

α2
n+βnγn

α2
n−βnγn

(
γn

αn

)
ei(αnx1−γnx2 ), kp < |αn| < ks,

−
(

γn

αn

)
ei(αnx1−γnx2), |αn| � ks,

uin
2,n,u(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
γn

−αn

)
ei(αnx1+γnx2), |αn| � kp,(

γn

−αn

)
ei(αnx1+γnx2) − 2αnγn

α2
n−βnγn

(
αn

βn

)
ei(αnx1+βnx2), kp < |αn| < ks,

α2
n−βnγn

α2
n+βnγn

(−γn

αn

)
ei(αnx1+γnx2 ) + 2αnγn

α2
n+βnγn

(
αn

βn

)
ei(αnx1+βnx2), |αn| � ks.

It can be readily checked that the uin
j,n are α-quasi-periodic solutions to the Navier equation

with the Dirichlet boundary condition on �0. Note that, for the inverse problems (P j) and (S j),
j = 1, 2, both compressional and shear waves are involved in the incident elastic waves uin

j,n,
n ∈ Z, although the measurement data only come from the compressional part when j = 1 or
the shear part in the case j = 2.

8
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Since the upward propagating modes occurring in the uin
j,n ( j = 1, 2) are not physically

meaningful incoming waves from ��, the scattered field usc
j,n due to uin

j,n cannot be generated
straightforwardly. Denoting by ũsc

j,n the scattered field corresponding to uin
j,n,d, we have

usc
1,n = −i

4πω2βnW p,n

(
ũsc

1,n − uin
1,n,u

)
, usc

2,n = −i

4πω2γ nW s,n

(
ũsc

2,n − uin
2,n,u

)
, n ∈ Z,

due to the linearity of the scattering solution with respect to the incident waves. Consequently,
the mth Rayleigh coefficients Aj,n

p,m and Aj,n
s,m of usc

j,n can be written as

Aj,n
p,m = −i

4πω2βnWp,n

(
Ã j,n

p,m − Âp,n
p,m

)
, Aj,n

s,m = −i

4πω2γ nWs,n

(
Ã j,n

s,m − Âp,n
s,m

)
for m, n ∈ Z, j = 1, 2, where Ã j,n

p,m and Â j,n
p,m (resp. Ã j,n

s,m and Â j,n
s,m ) denote the mth Rayleigh

coefficients of the compressional (resp. shear) part of ũsc
j,n and uin

j,n,u, respectively.

4. The factorization method

Since the inverse problems (P j) and (S j) ( j = 1, 2, 3) are very similar, we only consider the
inverse problems (P j). With necessary modifications on the quasi-periodicity, the mathematical
argument automatically carries over to the inverse problems (S j). Thus, unless otherwise stated
we always assume α = kp sin θ for some fixed θ ∈ (−π/2, π/2). The unknown grating profile
� will be recovered from the information of the Rayleigh coefficients of the scattered P- or
S-waves, corresponding to each incident elastic wave from the admissible set I1(α) or I2(α)

of α-quasi-periodic functions introduced in section 3.
Thanks to the periodicity of the grating profile and the α-quasi-periodicity of the solutions,

our discussion is restricted to one periodic cell. Consequently, we redefine the region and the
boundary as

�� := {x ∈ R
2 : x1 ∈ (0, 2π), x2 > f (x1) > 0},

� := {x ∈ R
2 : x1 ∈ (0, 2π), x2 = f (x1)},

�h := {x ∈ R
2 : x1 ∈ (0, 2π), x2 = h}

for some h > �+ > 0. Analogously, we set R
2
π := {y = (y1, y2) ∈ R

2 : 0 < y1 < 2π}.
Introduce the domain �h := �+

h ∪ � ∪ �−
−h, where

�+
h := {x ∈ R

2 : x1 ∈ (0, 2π), 0 < f (x1) < x2 < h},
�−

−h := {x ∈ R
2 : x1 ∈ (0, 2π), −h < x2 < f (x1)}.

With Green’s tensor �, we define the periodic single-layer potential

(SLϕ)(x) :=
∫

�

�(x, y)ϕ(y) ds(y), x ∈ R
2
π , (4.1)

and the corresponding single-layer boundary operator

Sϕ(x) =
∫

�

�(x, y)ϕ(y) ds(y), x ∈ �.

Similarly, one can define the integral operators SLD and SD with the kernel � replaced by the
half-space Green’s tensor �D, i.e.,

(SLDϕ)(x) :=
∫

�

�D(x, y)ϕ(y) ds(y), x ∈ R
2
π ,

SDϕ(x) :=
∫

�

�D(x, y)ϕ(y) ds(y), x ∈ �.

9
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In what follows, we sometimes employ the notation SL(ω), SL(ω)
D , S (ω) and S (ω)

D to indicate
their dependence on the frequency ω.

For s ∈ R, let Hs
α(·) denote the Sobolev spaces of scalar functions in the domain (·)

which are α-quasi-periodic with respect to x1. Analogously to the factorization method for
bounded obstacle scattering problems, we now define the periodic version of the so-called
data-to-pattern operator Gj, the Herglotz operator Hj and the near-field operator Nj for (P j),
j = 1, 2, 3.

Definition 4.1. The data-to-pattern operators Gj : H1/2
α (�)2 → l2, j = 1, 2, are defined as

G1(ϕ) = {Ap,n : n ∈ Z}, G2(ϕ) = {As,n : n ∈ Z} for ϕ ∈ H1/2
α (�)2,

where Ap,n (resp. As,n) denote the nth Rayleigh coefficients of the compressional (resp. shear)
part of the unique scattered field usc to problem (2.2)–(2.5) with the boundary value data
usc = ϕ on �. The operator G3 : H1/2

α (�)2 → l2 × l2 is defined as the product of G1 and G2,
that is, G3 := G1 × G2.

Definition 4.2. With the incident waves uin
j,n given in (3.8), the Herglotz operators Hj : l2 →

H1/2
α (�)2 for j = 1, 2 and H3 : l2 × l2 → H1/2

α (�)2 are defined as

[Hj(b)](x) :=
∑
n∈Z

bnuin
j,n(x), j = 1, 2, H3(a, b) := H1(a) + H2(b), x ∈ �

for a = (an)n∈Z, b = (bn)n∈Z ∈ l2.

Definition 4.3. Define the near-field operators Nj : l2 → l2, j = 1, 2, and N3 : l2×l2 → l2×l2

as

Nj = −GjHj, j = 1, 2, 3.

The Herglotz operator H3 is a combination of kp sin θ -quasi-periodic incident waves
uin

1,n and the ks sin θ -quasi-periodic ones uin
2,n with different weights. The near-field operator

Nj ( j = 1, 2) maps the combination of the incident waves uin
j,n to the Rayleigh coefficients of

the compressional part ( j = 1) or the shear part ( j = 2) of the associated scattered field.
Take a fixed vector C ∈ C

2×1 and some point y = (y1, y2) ∈ R
2
π . In view of Green’s

tensor �(x, y) given in (3.3), we can explicitly formulate the Rayleigh coefficients Cp,n(y)

and Cs,n(y) of the compressional and shear parts of the function x → �(x, y)C as

Cp,n(y) = i

4πω2βnWp,n
exp(−iy · (αn, βn)

T )[(αn, βn)
T · C],

Cs,n(y) = i

4πω2γnWs,n
exp(−iy · (αn, γn)

T )[(−γn, αn)
T · C] (4.2)

for x2 > y2 > 0. The sequences Cp,n and Cs,n will be utilized to characterize the region beneath
the periodic scattering surface.

Lemma 4.4. Assume C ∈ C
2×1 is a non-zero complex vector and y ∈ R

2
π . Then,

{Cp,n(y)}n∈Z ∈ R[G1] ⇔ y ∈ R
2
π\��,

{Cs,n(y)}n∈Z ∈ R[G2] ⇔ y ∈ R
2
π\��,

{Cp,n(y)}n∈Z × {Cs,n(y)}n∈Z ∈ R[G3] ⇔ y ∈ R
2
π\��.

Here, the notation R[·] denotes the range of an operator.

10
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Proof. We only need to consider the sequence {Cp,n(y) : n ∈ Z} since the other cases can be
dealt with in the same manner. Obviously, we have {Cp,n(y) : n ∈ Z} ∈ l2 whenever y2 < h.
If y ∈ R

2
π\��, then {Cp,n(y) : n ∈ Z} = N1(ϕ) with ϕ = (�(x, y)C)|� ∈ H1/2

α (�)2.
Assume that {Cp,n(y) : n ∈ Z} = N1(ϕ̃) for some ϕ̃ ∈ H1/2

α (�)2 and y ∈ �
+
h . Denote

by �C
P(x) the pressure part of the function �(x, y)C restricted to �h and by usc the scattered

field of problem (2.2)–(2.5) with the boundary data usc = ϕ̃ on �. The coincidence of �C
P

with the compressional part usc
p of usc on �h implies that �C

P(x) = usc
p in x2 > h, due to

the uniqueness of the Dirichlet boundary value problem in a half-plane. Together with the
unique continuation of solutions to the Helmholtz equation, this further yields the fact that
�C

P(x) = usc
p in �+

h \{y}. On one hand, we have div usc
p = div usc ∈ L2

loc(�
+
h ). On the other

hand, there holds div �C
P(x) = divx[�(x, y)C] /∈ L2

loc(�
+
h ) since the shear part of usc is

divergence-free and divx[�(x, y)C] ∼ O(|x − y|−1) as x → y in �+
h \{y}. This contradiction

implies that y ∈ R
2
π\��. �

By lemma 4.4, the grating profile � can be identified theoretically from the ranges of Gj

for any j = 1, 2, 3, which, however, cannot be numerically implemented. Note that only the
near-field operators Nj can be discretized from knowledge of the Rayleigh coefficients due
to the admissible incident waves. The essence of the factorization method is to connect the
range of Nj with that of Gj so that the grating profile can be retrieved from the spectrum of
Nj. To this end, we will factorize Nj in terms of Gj as shown in the following lemma. In the
following, H∗

j ( j = 1, 2, 3) denotes the adjoint operator of Hj. Recall that SD stands for the
single-layer boundary operator whose kernel is the half-space Green’s tensor �D.

Lemma 4.5. It holds that H∗
j = GjSD and the factorization Nj = −GjS∗

DG∗
j for j = 1, 2, 3.

Proof. For ϕ ∈ H−1/2
α (�)2, let (GjSDϕ)n represent the nth Rayleigh coefficient of GjSD(ϕ),

j = 1, 2. From the definition of SD, Gj and uin
j,n, we deduce that (cf (3.7))

(GjSDϕ)n =
∫

�

uin
j,n · ϕ ds, j = 1, 2.

The relations H∗
j = GjSD, j = 1, 2, then follow directly from the previous identity and the

definition of Hj. This further yields the factorization Nj = −GjHj = −GjS∗
DG∗

j . From
the definitions of H3 and G3, we arrive at the result that H∗

3 = H∗
1 × H∗

2 = G3SD. Thus,
N3 = −G3H3 = −G3S∗

DG∗
3. �

We now introduce the concept of the Dirichlet eigenvalue for quasi-periodic Lamé
operators over a periodic domain.

Definition 4.6. The frequency ω of an incidence wave is called a Dirichlet eigenvalue of the
α-quasi-periodic Lamé operator over the periodic layer �−

0 := {x : 0 < x2 < f (x1), 0 <

x1 < 2π} if there exists a non-trivial α-quasi-periodic solution u to the Navier equation (2.2)
on �−

0 such that u = 0 on � and �0. Accordingly, u is called the Dirichlet eigenfunction with
the phase-shift α.

Using variational arguments and standard spectral theory for compact operators, one
can show that the Dirichlet eigenvalues form a countable set and the positive eigenvalues
can be represented in terms of a min–max principle (see [2]). A further investigation of
the monotonicity of these eigenvalues in [2] leads to Schiffer’s uniqueness theorem for the
inverse elastic scattering by rigid periodic surfaces. For the inverse problems (P j), we make
the following assumption.

11
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Assumption (A). The frequency ω is not a Dirichlet eigenvalue of the quasi-periodic Lamé
operator over the periodic region �−

0 with the phase-shift α = kp sin θ .

This assumption will be used to verify the injectivity of the single-layer boundary operator
SD, see lemma (4.7) (iii) and remark 4.8 below. Before describing the properties of the middle
operator S∗

D involved in the factorization Nj = −GjS∗
DG∗

j , we recall that the real and imaginary
parts of an operator T on a Hilbert space are given by

Re(T ) := (T + T ∗)/2, Im(T ) := (T − T ∗)/(2i).

Let the dual form 〈·, ·〉 denote the dual pair between H−1/2
α (�)2 and H1/2

α (�)2 which extends
the inner product of L2(�)2.

Lemma 4.7. (i) There exist an angle φ ∈ (0, π/2) and a sufficiently small frequency ω0 > 0
such that the real part of the operator exp(−iφ)S (ω) is self-adjoint and positive definite when
ω ∈ (0, ω0]. Particularly, there exists a constant c > 0 such that

Re〈ϕ, exp(−iφ)S (ω)ϕ〉 � cω‖ϕ‖2
H−1/2

α (�)2 , ∀ϕ ∈ H−1/2
α (�)2,∀ω ∈ (0, ω0]. (4.3)

(ii) For any ω1 ∈ (0, ω0], the operator SD
(ω) − S (ω1) is compact from H−1/2

α (�)2 to
H1/2

α (�)2 and thus S (ω)
D is a Fredholm operator with index zero for any ω ∈ R

+.
(iii) Under the assumption (A), the middle operator −S∗

D : H−1/2
α (�)2 → H1/2

α (�)2 is
injective.

(iv) −Im(S∗
D) is non-negative over H−1/2

α (�)2, that is,

−〈ϕ, Im(S∗
D)ϕ〉 � 0 f or all ϕ ∈ H−1/2

α (�)2.

Proof. (i) Define u(x) := SL(ω)ϕ(x), x ∈ R
2
π . Then, u satisfies the Navier equation in R

2
π\�,

the upward Rayleigh expansion (2.5) for x2 > �+ and an analogous downward Rayleigh
expansion in x2 < �− := minx∈�{x2}. From the first Betti’s formula and the jump relations
for periodic single-layer potentials, it follows that

〈ϕ,S (ω)ϕ〉 =
∫

�

(∂νu+ − ∂νu−) · u ds

=
∫

�h

[E (u, u) − ω2|u|2] dx −
∫

�h

T +
ω u · u ds −

∫
�−h

T −
ω u · u ds, (4.4)

where �h = {x ∈ R
2
π : −h < x2 < h}. In (4.4), the bilinear form E (·, ·) is defined as

E (u, v) = (2μ + λ)(∂1u1∂1v1 + ∂2u2∂2v2) + μ(∂2u1∂2v1 + ∂1u2∂1v2)

+μ(∂2u1∂1v2 + ∂1u2∂2v1) + λ(∂1u1∂2v2 + ∂2u2∂1v1),

and T ±
ω are the Dirichlet-to-Neumann maps defined on �±h, respectively, given by (see [11])

T ±
ω v = −

∑
n∈Z

Mn,ωv̂n exp(iαnx1) for v =
∑
n∈Z

v̂n exp(iαnx1) ∈ H1/2
α (�±h)

2. (4.5)

The matrices Mn,ω ∈ C
2×2 in (4.5) are of the form

Mn,ω := 1

i

(
ω2βn/tn 2μαn − ω2αn/tn

−2μαn + ω2αn/tn ω2γn/tn

)
, tn = α2

n + βnγn. (4.6)

Consequently,

Re〈ϕ, exp(−iφ)S (ω)ϕ〉 = cos φ

∫
�h

[
E (u, u) − ω2|u|2]

dx

− Re

{
exp(iφ)

∫
�h∪�−h

T ±
ω u · u ds

}
. (4.7)

12
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We claim that there exist φ ∈ (0, π/2) and ω∗ > 0 such that for all u ∈ H1/2
α (�±h)

2, ω ∈
(0, ω∗] there holds the inequality

− Re

{
exp(iφ)

∫
�±h

T ±
ω u · u ds

}
� cω‖u‖2

H1/2
α (�±h )2 (4.8)

with some constant c > 0 independent of ω and u; see lemma A.1 (i) in the appendix for the
proof. By the Friedrich-type inequality for the Navier equation (see, e.g., [11, remark 2]) and
the trace lemma, it follows from (4.7) and (4.8) that

Re〈ϕ, exp(−iφ)S (ω)ϕ〉 � c̃ω‖u‖2
H1(�h )2 − ω2‖u‖2

L2(�h)2

� cω‖u‖2
H1(�h )2

� cω‖u‖2
H1/2(�)2 , (4.9)

for some constants c̃, c > 0 and for all ω ∈ (0, ω0], with ω0 being sufficiently small.
Arguing in the same way as in [6], one can show that the single-layer boundary operator
S(ω) : H−1/2

α (�)2 → H1/2
α (�)2 is an isomorphism provided � is the graph of some function.

Now the estimate (4.3) follows from (4.9) for some sufficiently small positive number ω0.
(ii) We write S (ω)

D − S (ω1) = S (ω)
D − S (ω) + S (ω) − S (ω1 ). From the definitions of S (ω)

D
and S (ω), we see that the kernels of S (ω)

D − S (ω) and S (ω) − S (ω1) are both smooth. Hence,
S (ω)

D − S (ω1 ) is compact from H−1/2
α (�)2 to H1/2

α (�)2. By (i), S (ω)
D is a Fredholm operator

with index zero.
(iii) Since SD is a Fredholm operator with index zero, we have dim(Ker(SD)) =

dim(Ker(S∗
D)). Hence, it suffices to prove the injectivity ofSD. Define the single-layer potential

u(x) = SLDϕ(x) for x ∈ R
2
π . If SDϕ = 0 on �, then u = 0 on �. Moreover, we have u = 0

in �+
h due to the uniqueness of the direct scattering problem. Observing that u satisfies the

Navier equation on �−
0 and vanishes on � and �0, we obtain u = 0 in �−

0 by assumption (A).
The jump relations for SLϕ finally yield ϕ = 0 on �.

(iv) For ϕ ∈ H−1/2
α (�)2, there holds

−〈ϕ, Im(S∗
D)ϕ〉 = Im〈ϕ,S∗

Dϕ〉 = Im〈SDϕ, ϕ〉 = −Im〈ϕ,SDϕ〉.
Thus, we only need to prove that −Im〈ϕ,SDϕ〉 � 0. To this end, define u(x) :=
SL(ω)

D ϕ(x), x ∈ R
2
π . Arguing similarly as in (i) with �−h replaced by �0 and using the

fact that u vanishes on �0, we obtain (see [11])

−Im〈ϕ,SDϕ〉 = Im
∫

�h

T u · u ds = 2πω2

⎛⎝ ∑
|αn|<kp

βn|Ap,n|2 +
∑

|αn|<ks

γn|As,n|2
⎞⎠ � 0,

where Ap,n and As,n denote the Rayleigh coefficients of the compressional and shear parts of
u, respectively. �

Remark 4.8. To prove the injectivity of SD, we think it is necessary to make the assumption
(A); see the proof of lemma 4.7 (iii). Note that the single-layer potential (4.1) consists of
both upward and downward propagating modes in the region − f (x1) < x2 < f (x1) and is
non-analytic on the two curves x2 = f (x1) and x2 = − f (x1). An analogous assumption to
assumption (A) above could be used to close a gap in the proof of [5, lemma 2.5 (i)], where a
half-space quasi-periodic Green’s function for the Helmholtz equation is involved.

Before stating the range identity, we need the following compactness and denseness results
of the data-to-pattern operators Gj.

Lemma 4.9. The operators Gj for j = 1, 2, 3 are all compact and have a dense range.

13



Inverse Problems 29 (2013) 115005 G Hu et al

Lemma 4.9 can be proved in a standard way; see [28, chapter 2] for a proof in the inverse
acoustic scattering from penetrable diffraction gratings, which can be readily adapted to the
Navier equation case. Lemmas 4.7 and 4.9 allow us to directly apply the range identity of
[30, theorem 3.4.1] to the factorization of the near-field operators Nj established in lemma
4.5. The following abstract range identity generalizes the one contained in [28, chapter 1], the
proof of which is essentially based on the approach of Kirsch and Grinberg [25, theorem 2.15]
(cf [30]).

Lemma 4.10 (Range identity). Let X ⊂ U ⊂ X∗ be a Gelfand triple with the Hilbert space
U and reflexive Banach space X such that the embedding is dense. Furthermore, let Y be a
second Hilbert space and F : Y → Y , G : X → Y and T : X∗ → X be linear and bounded
operators with F = GT G∗. Suppose further that

(a) G is compact and has a dense range.
(b) There exists t ∈ (0, 2π) with cos t �= 0 such that Re[exp(it)T ] has the form

Re[exp(it)T ] = T0 + T1 with some compact operator T1 and some coercive operator
T0 : X∗ → X, that is, there exists c > 0 with

〈ϕ, T0ϕ〉 � c‖ϕ‖2 f or all X∗. (4.10)

(c) Im(T ) is non-negative on X, that is, 〈Im(T )ϕ, ϕ〉 � 0 for all ϕ ∈ X. Moreover, we assume
that one of the following conditions is fulfilled.

(d) T is injective.
(e) Im(T ) is positive on the finite-dimensional null space of Re[exp(it)T ], that is, for all

ϕ �= 0 such that Re[exp(it)T ]ϕ = 0 we have 〈Im(T )ϕ, ϕ〉 > 0.

Then, the operator F� := |Re[exp(it)F]| + Im(F ) is positive definite, and the ranges of
G : X → Y and F1/2

� : Y → Y coincide.

Making use of lemma 4.10, we can characterize the region beneath the periodic scattering
surface in terms of the spectrum of the near-field operators Nj, j = 1, 2, 3.

Theorem 4.11. Let the assumption (A) hold and define the sequences {Cp,n(z)}n∈Z, {Cs,n(z)}n∈Z

as in (4.2) for z ∈ R
2
π . Then, the point z ∈ R

2
π\�� if and only if one of the following conditions

holds:

(i) {Cp,n(z)}n∈Z ∈ R
[
(N1�)

1/2
]
,

(ii) {Cs,n(z)}n∈Z ∈ R
[
(N2�)

1/2
]
,

(iii) {Cp,n(z)}n∈Z × {Cs,n(z)}n∈Z ∈ R
[
(N3�)

1/2
]
,

where Nj� := |Re[exp(it)Nj]| + Im(Nj), j = 1, 2, 3.

Proof. By lemma 4.4, it suffices to verify the coincidence of the ranges of (Nj�)
1/2 and Gj

for j = 1, 2, 3. To do this, we shall apply lemma 4.10 to the factorizations Nj = −GjS∗
DG∗

j
by verifying the conditions (a)–(d) with T = −S∗

D, F = Nj and G = Gj for j = 1, 2, 3. The
condition (a) follows from lemma 4.9, while the conditions (c) and (d) follow from lemma 4.7
(iv) and (iii), respectively. It remains to verify the condition (b). Indeed, letting ω1 ∈ (0, ω0]
and φ ∈ (0, π/2) be given as in lemma 4.7, we obtain

− Re〈ϕ, exp(it)S (ω1)∗ϕ〉= −Re〈exp(−it)S (ω1 )ϕ, ϕ〉 = Re〈ϕ, exp(−i(t−π))S (ω1 )ϕ〉 (4.11)

for all ϕ ∈ H−1/2
α (�)2. Taking t = π + φ ∈ (π, 3/2π) in (4.11), we then conclude from (4.3)

and the previous identity that

−Re〈ϕ, exp(it)S (ω1)∗ϕ〉 � c‖ϕ‖2
H−1/2

α (�)2 , c > 0.

14



Inverse Problems 29 (2013) 115005 G Hu et al

This, together with lemma 4.7 (ii), implies the condition (b) in lemma 4.10 with T0 =
−Re[exp(it)S (ω1)∗] and T1 = −Re[exp(it)(S (ω) − S (ω1))∗]. �

Let (σ
( j)
n , e( j)

n ) be the eigensystem of Nj�. By theorem 4.11 and Picard’s range criterion
[26, theorem A.54], it follows that z ∈ R

2
π\�� if and only if one of the following conditions

holds:

(i)
∑∞

n=1 |〈{Cp,n(z)}n∈Z, {e(1)
n }n∈Z〉l2 |2/σ (1)

n < ∞ or, equivalently,

W1(z) =
[ ∞∑

n=1

∣∣〈{Cp,n(z)}n∈Z,
{
e(1)

n

}
n∈Z

〉
l2

∣∣2
/σ (1)

n

]−1

> 0,

(ii)
∑∞

n=1 |〈{Cs,n(z)}n∈Z, {e(2)
n }n∈Z〉l2 |2/σ (2)

n < ∞ or, equivalently,

W2(z) =
[ ∞∑

n=1

∣∣〈{Cs,n(z)}n∈Z,
{
e(2)

n

}
n∈Z

〉
l2

∣∣2
/σ (2)

n

]−1

> 0,

(iii)
∑∞

n=1 |〈{Cp,n(z)}n∈Z × {Cs,n(z)}n∈Z, {e(3)
n }n∈Z〉l2 |2/σ (3)

n < ∞ or, equivalently,

W3(z) =
[ ∞∑

n=1

∣∣〈{Cp,n(z)}n∈Z × {Cs,n(z)}n∈Z,
{
e(3)

n

}
n∈Z

〉
l2

∣∣2
/σ (3)

n

]−1

> 0.

Thus, the grating profile � can be identified by first selecting sampling points from the set
{(z1, z2) ∈ R

2
π : 0 < z2 < h} and then computing the value of one of the three indicator

functions Wj(z), j = 1, 2, 3. The values of the indicator function Wj(z) for z lying below
the grating profile � will be relatively larger than those above the grating profile � which
are actually zero. In this way, we establish the factorization method in elastic scattering by
rigid surfaces, using the kp sin θ -quasi-periodic incident elastic waves uin

1,n. By the proof of
theorem 4.11, the parameter t entering into Nj� will be selected depending on the choice of
the angle φ ∈ (0, π/2) given explicitly in the appendix.

Remark 4.12. In inverse acoustic scattering by diffraction gratings, the role of the positive
coercive operator is usually played by the single-layer boundary operator whose kernel is the
quasi-periodic fundamental solution to the Helmholtz equation with the wavenumber k = i or
k = 0. This gives rise to an analogous inversion algorithm to theorem 4.11 with the parameter
t = 0. In the elastic case, more mathematical arguments would be involved in analyzing
the Dirichlet-to-Neumann map and the middle operator when ω = i or ω = 0. This is the
reason why we turn to investigate the properties of the middle operator with small frequencies
as shown in lemma 4.7 (i). However, our numerical experiments illustrate that the inversion
algorithms with t = 0 still work well although its theoretical justification is not available yet.

The factorization method using ks sin θ -quasi-periodic incident plane waves for the
problems (S j) can be established analogously.

Corollary 4.13. Suppose

(i) ω is not a Dirichlet eigenvalue of the quasi-periodic Lamé operator in the periodic layer
�−

0 with the phase-shift α = ks sin θ ,
(ii) either sin2 θ < μ/(λ + 2μ) or | sin θ | > 1/2 holds.

Then the results of theorem 4.11 for (P j) apply to the corresponding inverse problems (S j),
j = 1, 2, 3.
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Figure 1. Test surfaces.

Note that the second condition in corollary 4.13 ensures the inequality (4.3) for
α = ks sin θ ; see lemma A.1 (ii). Combining theorem 4.11 and corollary 4.13, we obtain
the following uniqueness results by utilizing only the compressional or shear part of the
scattered field corresponding to incident elastic waves with a common phase-shift. Define

I(α) := {(αn,−βn)
T exp(i(αnx1−βnx2)) : n ∈ Z} ∪ {(γn, αn)

T exp(i(αnx1−γnx2)) : n ∈ Z}

Corollary 4.14. Given an incident angle θ ∈ (−π/2, π/2). Under the conditions in
theorem 4.11 (resp. corollary 4.13), a rigid diffraction grating profile can be uniquely
determined from the knowledge of the compressional or shear part of the scattered field
corresponding to each incoming wave from the set I(α) with α = kp sin θ (resp. α = ks sin θ ).

5. Numerical experiments

In this section, we report numerical experiments to test the validity and accuracy of the
factorization method for the inverse problems (P j) and (S j), j = 1, 2, 3. To generate
the synthetic scattering data for downward incoming waves uin

j,n,d(n ∈ Z) from the set
I j(α), we solve an equivalent first-kind integral equation on � to problem (2.2)–(2.5) by
using the discrete Galerkin method given in [13]. The nth Rayleigh coefficients Aj,m

p,n and Aj,m
s,n

corresponding to the incident wave uin
j,m can be computed through the analysis at the end of

section 3. Define the (2M + 1) × (2M + 1) matrix N(M)
j,τ as

N(M)
j,τ :=

⎛⎜⎜⎜⎜⎝
Aj,−M

τ,−M Aj,−M+1
τ,−M · · · Aj,0

τ,−M · · · Aj,M
τ,−M

Aj,−M
τ,−M+1 Aj,−M+1

τ,−M+1 · · · Aj,0
τ,−M+1 · · · Aj,M

τ,−M+1
...

...
...

...
...

...
Aj,−M

τ,M Aj,−M+1
τ,M · · · Aj,0

τ,M · · · Aj,M
τ,M

⎞⎟⎟⎟⎟⎠, j = 1, 2, τ = p, s (5.1)

for some M > 0. Then, the near-field operators Nj ( j = 1, 2) can be approximated by the
matrices N(M)

1 := N(M)

1,p and N(M)

2 := N(M)

2,s , respectively, whereas the discretization of N3 leads
to the (4N + 2) × (4N + 2) matrix

N(M)

3 :=
(

N(M)

1,p N(M)

2,p

N(M)

1,s N(M)

2,s

)
.

Let the singular value decomposition of Re[eiφN(M)] be given by

Re(eiφN(M)) = V DV −1,

16
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Figure 2. Experiment 1, surface (i): ω = 5, λ = 1, μ = 2, M = 30; kp = √
5, ks = 5/

√
2.

with D being the matrix of eigenvalues and V being the matrix of the corresponding
eigenvectors of Re(eiφN(M)). Then, the operator N� can be approximated by

N(M)
� = V DV −1 + Im(N(M)).

Suppose we have the singular value decomposition of N(M)
� :

N(M)
� = USU−1

with S being the diagonal matrix of singular values σl and U = (ψn,l ) being the matrix of
the left singular vectors. Then, the Picard’s range criterion can be approximated by the cut-off
series

17
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Figure 3. Experiment 1, surface (ii): ω = 5, λ = 1, μ = 2, M = 30; kp = √
5, ks = 5/

√
2.

W̃1(z) :=
[

2M+1∑
l=1

1

σl

∣∣∣∣∣
M∑

n=−M

Cp,n(z)ψn+M+1,l

∣∣∣∣∣
]−1

,

W̃2(z) :=
[

2M+1∑
l=1

1

σl

∣∣∣∣∣
M∑

n=−M

Cs,n(z)ψn+M+1,l

∣∣∣∣∣
]−1

,

W̃3(z) :=
[

4M+2∑
l=1

1

σl

∣∣∣∣∣
M∑

n=−M

(
Cp,n(z)ψn+M+1,l + Cs,n(z)

)
ψn+M+2,l

∣∣∣∣∣
]−1

.
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Figure 4. Experiment 1, surface (iii): ω = 5, λ = 1, μ = 2, M = 30; kp = √
5, ks = 5/

√
2.

We consider the following three grating profiles in our numerical experiments (see
figure 1):

(i) f (x) = 0.6 + 0.5 sin(x), x ∈ (0, 2π), h = 1.3,
(ii) f (x) = 0.5 + 0.3 sin(x) + 0.2 sin(2x), x ∈ (0, 2π), h = 1.2,

(iii) f (x) = 0.2 + 0.2 exp(sin(3x)) + 0.3 exp(sin(4x)), x ∈ (0, 2π), h = 1.8.

In figure 1, the red horizontal line indicates the detection (or measurement) position �h

for the scattered field.
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Figure 5. Experiment 2: ω = 5, λ = 1, μ = 2, M = 30; kp = √
5, ks = 5/

√
2, θ = 0.

Experiment 1. We apply the factorization method to the inverse problems (P j) and
(S j), j = 1, 2, 3 with fixed parameters ω = 5, λ = 1, μ = 2, M = 30 for distinct incident
angles θ = π/6, π/3. With these settings we have the compressional wavenumber kp = √

5
and the shear wavenumber ks = 5/

√
2, implying that most of our measurement data (Rayleigh

coefficients) are from the surface waves with only a few from the propagating modes. We
used unpolluted scattered near field taken on �h to reconstruct surfaces (i)–(iii). It can be seen
from figures 2–4 that the factorization method gives satisfactory reconstructions particularly
for mild surfaces (surface (i)), although poor reconstructions occur when the surface has deep
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Figure 6. Experiment 3 for different ω, where θ = 0, M = 30, h = 1.2.

Figure 7. Experiment 3 for different M, where ω = 5, θ = 0, h = 1.2.

grooves (e.g., surface (ii)) or oscillates heavily (e.g., surface (iii)). Evidently, using the entire
near-field data gives better images than using only P-part or S-part data. In figure 2, the
reconstructions for (P j) and (S j) are nearly the same using different types of incident waves
and Rayleigh coefficients, but those for (P3) and (S3) appear more reliable (see also figures 3
and 4). However, in our settings it is not easy to conclude which one is superior by using
P-part data and S-part data. The incident angles seem to have little effect on the quality of the
reconstructions.

Experiment 2. We take surface (ii) as an example to investigate the sensitivity of the
factorization method to noisy data. We only consider the inverse problems (P j), j = 1, 2, 3
for the incident angle θ = 0 and take the other parameters as shown in experiment 1. The
Rayleigh coefficients are perturbed by the multiplication of (1+δ%ξ ) with the noise level δ%,
where ξ is an independent and uniformly distributed random variable generated between −1
and 1. Figure 5 illustrates the reconstructions from different noise levels at δ% = 2%, 5%, 8%,
respectively. It is seen that the factorization method with synthetic data is not very sensitive to
the noise, and using the full near-field data seems more stable than using only compressional
or shear waves.

Experiment 3. In the final experiment, we want to explore possible approaches to improve
the reconstructions. At first, we consider the inverse problem (P1) for recovering surface
(ii) with fixed M = 30, θ = 0 and with different incidence frequencies ω = 5, 10, 20.
Figure 6 shows that higher frequency waves provide more accurate images than using lower
frequencies. This can be explained by the fact that the number of propagating modes for
ω = 20 (kp ≈ 8.9) is much more than that for ω = 5 (kp ≈ 2.24). The propagating wave
modes contain more information on the scattering surface than the surface (evanescent) modes,
because the latter propagates only along the grating profile and decays exponentially in the
x2-direction. This is confirmed again in figure 8 for recovering the surface (iii) with different
detection positions. Since surface waves nearly cannot be measured at locations far away from
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Figure 8. Experiment 3 for different h, where ω = 5, θ = 0, M = 30.

the profile, lowering the height of the measurement position contributes to better imaging
quality. To see the effects of evanescent waves, we fix ω = 5, θ = 0 and compare the
numerical reconstructions of surface (ii) with different M. From figure 7, we conclude that
increasing the number of evanescent waves will enhance the imaging quality.
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Appendix

The following properties of the Dirichlet-to-Neumann (DtN) maps at small frequencies were
used in the proof of lemma 4.7 (i). With the help of lemma A.1, we have established the
factorization method for any frequency of incidence in section 4.

Lemma A.1.

(i) Let the DtN map Tω be given by (4.5) with α = kp sin θ . Then, there exist an angle
φ ∈ (0, π/2) and a sufficiently small frequency ω0 > 0 such that

− Re

{
exp(iφ)

∫
�±h

Tωu · u ds

}
� c ω‖u‖2

H1/2
α (�±h)2 , c > 0 (A.1)

uniformly for u ∈ H1/2
α (�±h)

2 and ω ∈ (0, ω0].
(ii) In the case α = ks sin θ , the first assertion remains valid provided either sin2 θ <

μ/(λ + 2μ) or | sin θ | > 1/2.

Proof. (i) We prove (A.1) only for the DtN map defined on �h. By the definition of Tω, we
have

−
∫

�h

T +
ω u · u ds =

∑
n∈Z

(Mn,ωun, un)C2 , ∀u ∈ H1/2
α (�h)

2,

where {un}n∈Z stands for the Fourier coefficients of exp(−iαx1)u|�h . Thus, by the definition
of the norm of H1/2

α (�±h)
2 it suffices to prove the existence of φ ∈ (0, π/2) and ω0 > 0
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such that

Re(exp(iφ)Mn,ω z, z)C2 � c ω (1 + |n|) |z|2 for all ω ∈ (0, ω0], n ∈ Z, z ∈ C
2. (A.2)

Observe that

Re
(

exp(iφ)Mn,ω

) = cos φ Re(Mn,ω) − sin φ Im(Mn,ω) (A.3)

and that for α = kp sin θ ,

{n : |αn| < kp} = {0}, {n : |αn| > ks} = {n : n �= 0}, {n : kp � |αn| � ks} = ∅ (A.4)

if ω → 0. For notational convenience, we write (cf 4.6)

Mn,ω =
(

ian icn

−icn ibn

)
, an = −ω2βn

tn
, bn = −ω2γn

tn
, cn = αn

tn
(ω2 − 2μtn). (A.5)

We first prove (A.2) in the case n �= 0. Elementary calculation shows that

tn = α2
n −

√
α2

n − k2
p

√
α2

n − k2
s = k2

p + k2
s

2
+ O(ω4) as ω → 0. (A.6)

Combining (A.4) and (A.6) then yields

ian = −iω2βn/tn � c1ω(1 + |n|) > 0, Im Mn,ω = 0,

det(Re Mn,ω) = (
4α2

nμ(ω2 − μtn) − ω4
)
/tn � c2ω

2(1 + |n|)2 > 0 (A.7)

as ω → 0, with some constants c1, c2 > 0 independent of u and ω. The estimate (A.2) then
follows from (A.7) and (A.3) for all φ ∈ (0, π/2) and n �= 0.

We next consider the case n = 0. In this case, we have a0, b0, c0, t0 ∈ R and

Re(M0,ω) =
(

0 ic0

−ic0 0

)
, Im(M0,ω) =

(
a0 0
0 b0

)
.

Consequently,

Re(exp(iφ)M0,ω) =
( −a0 sin φ ic0 cos φ

−ic0 cos φ −b0 sin φ

)
.

Moreover, the (1, 1)th entry and the determinant of the above matrix can be more precisely
reformulated in terms of λ,μ, ω and φ as

−a0 sin φ = ω
√

2μ + λ cos θ sin φ/H0(θ, λ, μ),

det[Re(exp(iφ)M0,ω)] = ω2(2μ + λ)
(

tan2 φ − H1(θ, λ, μ)
)
/H2

0 (θ, λ, μ),

where

H0(θ, λ, μ) := sin2 θ + cos θ

√
(2μ + λ)/μ − sin2 θ > 0,

H1(θ, λ, μ) :=
sin2 θ

[
1 − 2μ

(
sin2 θ
2μ+λ

+ 1√
2μ+λ

cos θ

√
1
μ

− sin2 θ
2μ+λ

)]2

cos θ

√
(2μ + λ)/μ − sin2 θ

� 0.

Taking φ ∈ (0, π/2) such that tan2 φ > H1(θ, λ, μ), we obtain

−a0 sin φ � cω, det[Re(exp(iφ)M0,ω)] � cω2, ∀ω ∈ (0, ω0]

for some constant c > 0 independent of ω ∈ (0, ω0]. This yields the estimate (A.2) for n = 0.
The first assertion is thus proven.

(ii) Let α = ks sin θ . If sin2 θ < μ/(λ + 2μ) (or equivalently k2
p > k2

s sin2 θ ), then the
relations in (A.4) remain valid for small ω. Hence, repeating the same arguments as in proving
(i) gives the estimate (A.1) for this case.
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Next, consider the case sin2 θ � μ/(λ + 2μ) and sin2 θ > 1/4. Similarly as in (i), it is
enough to prove (A.2).

For n �= 0 and small ω, we have βn = i|βn|, γn = i|γn| and tn = α2
n − |βn||γn| if sin2 θ �

μ/(λ + 2μ). Consequently, by (A.5) we have Im(Mn,ω) = 0 and (Re(Mn,ω)z, z) � c ω|n||z|2
for z ∈ C

2, n �= 0, ω ∈ (0, ω0]. Therefore, for any φ ∈ (0, π/2) one can prove the inequality
(A.2) again whenever n �= 0.

Additional arguments are needed in the case n = 0, for which we have β0 = i|β|,
γ0 = γ , t0 = α2 + i|β|γ and

M0,ω = i

t0
N0, N0 :=

(−iω2β c0

−c0 −ω2γ

)
, c0 = α(ω2 − 2μt0).

By elementary calculations, the matrix Re(eiφM0,ω) can be written in the form

Re(eiφM0,ω) = cos φ

α4 + |β|2γ 2
Ñ0,ω,

Ñ0,ω :=
(

(α2 + tan φ|β|γ )ω2|β| id
−id (tan φα2 − |β|γ )ω2γ

)
,

where

d = (tan φα2 − |β|γ )2μα|β|γ + (α2 + tan φ|β|γ )α(ω2 − 2μα2).

For small ω, the (1, 1)th entry of the matrix Ñ0,ω has the lower bound

(α2 + tan φ|β|γ )ω2|β| � c1ω
5, ∀φ ∈ (0, π/2), c1 = c1(φ) > 0.

The determinant of Ñ0,ω can be written as

det(Ñ0,ω) = tan φI1(θ, λ, μ, ω) − I2(θ, λ, μ, ω),

where

I1 = (α2 + |β|2γ 2)|β|γ (4 sin2 θ − 1)ω2,

I2 = (α3(ω2 − 2μα2) − 2μα|β|2γ 2)2 + ω4|β|2γ 2α2 > 0.

Obviously, I1 > 0 if | sin θ | > 1/2. Now, choosing φ ∈ (0, π/2) such that tan φ > I2/I1 > 0,
we deduce that

det(Ñ0,ω) � c2ω
6 as ω → 0

for some constant c2 = c2(φ) > 0. Finally, making use of the asymptotic behavior
α4 + |β|2γ 2 ∼ ω4 as ω → 0, we obtain (A.2) for n = 0 when sin2 θ � μ/(λ + 2μ)

and sin2 θ > 1/4. The second assertion (ii) is thus proved. �

Remark A.2. Note that in the case | sin θ | < 1/2, we have det(Ñ0,ω) < 0, and the matrix
Re(eiφ M0,ω) is then not definite.
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(Berlin: Springer) pp 87–102

[23] Kirsch A 1998 Characterization of the shape of a scattering obstacle using the spectral data of the far field
operator Inverse Problems 14 1489–512

[24] Kirsch A 2004 The factorization method for Maxwell’s equations Inverse Problems 20 S117–34
[25] Kirsch A and Grinberg N 2008 The Factorization Method for Inverse Problems (New York: Oxford University

Press)
[26] Kirsch A 2011 An Introduction to the Mathematical Theory of Inverse Problems 2nd edn (New York: Springer)
[27] Linton C M 1998 The Green’s function for the two-dimensional Helmholtz equation in periodic domains J. Eng.

Math. 33 377–401
[28] Lechleiter A 2008 Factorization methods for photonics and rough surfaces PhD Thesis University of Karlsruhe,

Karlsruhe, Germany
[29] Nakagawa S, Nihei K T, Myer L R and Majer E L 2003 Three-dimensional elastic wave scattering by a layer

containing vertical periodic fractures J. Acoust. Soc. Am. 113 3012–23
[30] Nguyen D L 2012 Spectral methods for direct and inverse scattering from periodic structures PhD Thesis Ecole

Polytechnique, Palaiseau, France
[31] Sandfort K 2010 The factorization method for inverse scattering from periodic inhomogeneous media

PhD Thesis University of Karlsruhe, Karlsruhe, Germany
[32] Turunen J and Wyrowski F (ed) 1997 Diffractive Optics for Industrial and Commercial Applications (Berlin:

Akademie)
[33] Yang J, Zhang B and Zhang R 2012 A sampling method for the inverse transmission problem for periodic media

Inverse Problems 28 035004
[34] Yang J, Zhang B and Zhang R 2013 Reconstruction of penetrable grating profiles Inverse Problems Imaging

at press

25

http://dx.doi.org/10.1007/s00607-004-0092-0
http://dx.doi.org/10.1088/0266-5611/19/5/311
http://dx.doi.org/10.1137/1.9780898717594
http://dx.doi.org/10.1002/mma.1670170502
http://dx.doi.org/10.1137/090776111
http://dx.doi.org/10.1088/0266-5611/23/1/002
http://dx.doi.org/10.1142/S0218202511500199
http://dx.doi.org/10.1016/0165-2125(80)90016-5
http://dx.doi.org/10.1121/1.381642
http://dx.doi.org/10.1088/0266-5611/18/3/311
http://dx.doi.org/10.1088/0266-5611/13/2/010
http://dx.doi.org/10.1088/0266-5611/29/1/015009
http://dx.doi.org/10.1088/0266-5611/15/4/315
http://dx.doi.org/10.1088/0266-5611/14/6/009
http://dx.doi.org/10.1088/0266-5611/20/6/S08
http://dx.doi.org/10.1007/978-1-4419-8474-6
http://dx.doi.org/10.1023/A:1004377501747
http://dx.doi.org/10.1121/1.1572139
http://dx.doi.org/10.1088/0266-5611/28/3/035004

	1. Introduction
	2. Direct and inverse scattering problems
	3. The admissible sets of incident elastic waves
	4. The factorization method
	5. Numerical experiments
	Acknowledgments
	Appendix 
	References

