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Variational approach to scattering of plane
elastic waves by diffraction gratings
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The scattering of a time-harmonic plane elastic wave by a two-dimensional periodic structure is studied. The grating
profile is given by a Lipschitz curve on which the displacement vanishes. Using a variational formulation in a bounded
periodic cell involving a nonlocal boundary operator, existence of solutions in quasiperiodic Sobolev spaces is investi-
gated by establishing the Fredholmness of the operator generated by the corresponding sesquilinear form. Moreover,
by a Rellich identity, uniqueness is proved under the assumption that the grating profile is given by a Lipschitz graph.
The direct scattering problem for transmission gratings is also investigated. In this case, uniqueness is proved except
for a discrete set of frequencies. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

This paper is concerned with the scattering of a time-harmonic plane elastic wave by an unbounded periodic structure. Such
structures are also called diffraction gratings and have many important applications in diffractive optics, radar imaging, and non-
destructive testing. We refer to the monograph [1] for historical remarks and details of these applications.

During the last 20 years, significant progress has been made concerning the mathematical analysis and the numerical approxima-
tion of grating diffraction problems for the case of incident acoustic or electromagnetic waves, using integral equation methods (e.g.
[2--6]) and variational methods (e.g. [4, 7--13]). In particular, the variational approach appeared to be well adapted to the analytical
and numerical treatment of rather general two-dimensional and three-dimensional periodic diffractive structures involving complex
materials and non-smooth interfaces.

In this paper we assume that a periodic surface divides the three-dimensional space into two non-locally perturbed half-spaces
filled with homogeneous and isotropic elastic media. Moreover, this surface is assumed to be invariant in the x3-direction, and its
cross section in the (x1, x2)-plane is to be represented by a curve � which is periodic in x1. All elastic waves are assumed to be
propagating perpendicular to the x3-axis, so that the problem can be treated as a problem of plane elasticity. The special case of
an inpenetrable surface on which all displacement vanishes leads to the Dirichlet (or first boundary value) problem for the Navier
system in the unbounded domain above the grating profile �, while the scattering by a transmission grating is modeled by a
corresponding transmission problem on the whole (x1, x2)-plane.

The first attempt to rigorously prove existence and uniqueness of solutions for the scattering of elastic waves by unbounded
surfaces is due to T. Arens; see [14, 15] for two-dimensional diffraction gratings and [16, 17] for more general rough surfaces.
In particular, in [14] existence and uniqueness of quasiperiodic solutions to the Dirichlet problem was established in the case that
the grating profile � is given by the graph of a smooth (C2) periodic function. The existence proof is based on the boundary integral
equation method where the solution is sought as a superposition of single and double layer potentials.

Our main aim in this paper is to study the same problem, but via a variational approach in general Lipschitz domains, which is
broad enough to cover most cases that arise in the applications of diffraction gratings. We reduce the Navier system with Dirichlet
boundary condition in the unbounded domain to an equivalent strongly elliptic variational problem in a bounded periodic cell
with a non-local boundary condition. An explicit representation of the Dirichlet-to-Neumann (DtN) map on the artificial boundary
is worked out, and a detailed analysis of this DtN map is employed to prove the strong ellipticity of the sesquilinear form. Applying
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the Fredholm alternative, we then prove that there always exists a quasiperiodic solution for either an incident pressure wave or
an incident shear wave.

To extend the uniqueness result of [14] to grating profiles given by a Lipschitz graph, we use a Rellich identity and adapt an
approach by Nečas [18, Chapter 5] to deal with the Lipschitz boundary. This generalizes the result of [19] for the scalar quasiperiodic
Helmholtz equation to the case of the Navier system. More general Rellich identities for the Navier equation (on bounded domains)
can be found in [20].

Moreover, the variational approach is extended to the case of transmission gratings where a Lipschitz interface separates two
homogenous elastic media characterized by constant elastic parameters. This allows us to obtain general existence results, and
uniqueness is proved except for a discrete set of frequencies. Note that this approach also applies to the case of several Lipschitz
interfaces.

The paper is organized as follows. In Section 2 we give the mathematical formulation of the scattering problem in the case of an
inpenetrable surface. Following [14], a radiation condition at infinity based on Rayleigh expansions is used. In Section 3 we formulate
the variational problem in a bounded periodic cell which is equivalent to the boundary value problem. Using Korn’s inequality and
the Fourier series representation of the DtN map, we prove the strong ellipticity of the variational equation over the energy space.
In Section 4 we present our solvability results for the Dirichlet case. The well-posedness for the boundary value problem with mixed
Dirichlet and impedance boundary conditions is also established. In Section 5 we prove existence and uniqueness results for the
transmission problem.

The problem of scattering by a diffraction grating can be seen as a special case of scattering by a rough surface. Note that the
periodicity considerably simplifies the mathematical argument, because the compact imbedding of Sobolev spaces can be applied
to a single period of the unbounded domain. For a rigorous mathematical analysis of rough surface scattering problems for the
Helmholtz equation via variational methods, we refer to [21--23]. The variational approach to scattering by a rough surface in an
elastic medium will be the task of future work.

2. Formulation of the Dirichlet problem

Let the profile of the diffraction grating be given by a Lipschitz curve �⊂R2 which is 2�-periodic in x1, and let D be the unbounded
domain above �. We assume the region D is filled with an isotropic, homogenous elastic medium characterized by the Lamé
constants �, � satisfying �>0,�+�>0. Let

kp :=� /
√

2�+�, ks :=� /
√

�

be the compressional and shear wave numbers, respectively. We assume that a time harmonic plane elastic wave uin with incident
angle �∈ (−� / 2,� / 2) is incident on � from above, which is either an incident pressure wave taking the form

uin =uin
p (x)= �̂ exp(ikp�̂ ·x) with �̂ := (sin�,−cos�), (1)

or an incident shear wave of the form

uin =uin
s (x)= �̂

⊥
exp(iks�̂ ·x) with �̂

⊥
:= (cos �, sin�). (2)

The propagation of time harmonic elastic waves in D is governed by the Navier equation (or system)

(�∗+�2)u=0 in D, �∗ :=��+(�+�)grad div , (3)

where u=uin +usc is the total displacement field and usc denotes the scattered field. Here �>0 stands for the angular frequency
of the harmonic motion, and we assume for simplicity that the mass density of the elastic medium is equal to one. Moreover, we
require that the total field satisfies the boundary condition

u=0 on �. (4)

The periodicity of the structure, together with the form of the incident waves, implies that the solution u must be quasiperiodic
with phase-shift � (or �-quasiperiodic), i.e.

u(x1 +2�, x2)=exp(2i��x1)u(x1, x2), (x1, x2)∈D, (5)

where either � :=kp sin� for the incident pressure wave (1) or � :=ks sin� for the incident shear wave (2).
To ensure well-posedness of the boundary value problem (3)–(5), a radiation condition must be imposed as x2 →+∞. First we

note that the scattered field usc, which also satisfies the Navier equation (3), can be decomposed in D as

usc = 1

i
(grad�+−−→

curl 	) with � :=− i

k2
p

div usc , 	 := i

k2
s

curl usc , (6)

where the two curl operators in R2 are defined by

curl u :=�1u2 −�2u1, u= (u1 , u2)	 and
−−→
curl v := (�2v,−�1v)	 ,
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and the scalar functions �, 	 satisfy the homogeneous Helmholtz equations

(�+k2
p)�=0 and (�+k2

s )	=0 in D. (7)

Here and in the following the notation �jv =�v / �xj is used. Note that the relations (6) and (7) follow from the well-known
decomposition [24] of the scattered field usc into its compressional and shear parts,

usc =up +us, up :=− 1

k2
p

grad div usc , us := 1

k2
s

−−→
curl curl usc,

and the fact that usc satisfies equation (3).
Now, as � and 	 are �-quasiperiodic solutions to the Helmholtz equation (7) in the unbounded domain D, we impose the usual

outgoing wave condition on them (see, e.g. [4]). For x2>�+, we assume that �, 	 have Rayleigh expansions of the form

�(x)= ∑
n∈Z

Ap,n exp(i�nx1 + i
nx2), 	(x)= ∑
n∈Z

As,n exp(i�nx1 + i�nx2), (8)

where the constants Ap,n , As,n ∈C are called Rayleigh coefficients and

�+ := max
(x1 ,x2)∈�

x2, �n :=�+n, 
n :=

⎧⎪⎨
⎪⎩
√

k2
p −�2

n if |�n|�kp,

i
√

�2
n −k2

p if |�n|>kp,

(9)

and �n is defined analogously as 
n with kp replaced by ks. It follows from (6) that the two components of the scattered field
usc in D can be represented as

usc
1 = 1

i
(�1�+�2	), usc

2 = 1

i
(�2�−�1	). (10)

Therefore, we finally obtain a corresponding expansion of usc into outgoing plane elastic waves:

usc(x)= ∑
n∈Z

{
Ap,n

(
�n


n

)
exp(i�nx1 + i
nx2)+As,n

(
�n

−�n

)
exp(i�nx1 + i�nx2)

}
, (11)

for x2>�+. This is the radiation condition we are going to use in the following; see also [14]. Since 
n and �n are real for at most
a finite number of indices, only a finite number of plane waves in (11) propagate into the far field, with the remaining evanescent
waves (or surface waves) decaying exponentially as x2 →+∞. The above expansion converges uniformly with all derivatives in the
half-plane {x ∈R2 : x2�b}, for any b>�+, and the Rayleigh coefficients are uniquely determined by the Fourier coefficients ûn of the
function exp(−i�x1)usc(x1, b):

ûn =Dn

(
Ap,n exp(i
nb)

As,n exp(i�nb)

)
, Dn :=

(
�n �n


n −�n

)
. (12)

Note here that det Dn =−(�2
n +
n�n) 
=0 for all n∈Z. Our diffraction problem can now be formulated as the following boundary

value problem.
Dirichlet problem (DP): Given a grating profile curve �⊂R2 (which is 2�-periodic in x1) and an incident field uin of the form (1)

or (2), find a vector function u=uin +usc ∈H1
loc(D)2 that satisfies (3)–(5) and the radiation condition (11).

3. Variational formulation of (DP)

Following the approach of [4] in the case of the scalar Helmholtz equation, we propose an equivalent variational formulation of the
boundary value problem (DP), which is posed in a bounded periodic cell in R2 and is enforcing the radiation condition. Introduce
an artificial boundary

�b :={(x1, b) :0�x1�2�}, b>�+ ,

and the bounded domain

�b =��,b :={(x1, x2)∈D :0<x1<2�, x2<b},

lying between the segment �b and one period of the grating profile curve which we denote by � again. We assume that � is a
Lipschitz curve, so that �b is a bounded Lipschitz domain.

Let H1
� (�b) denote the Sobolev space of scalar functions on �b which are �-quasiperiodic with respect to x1. We introduce the

space

V� =V�(�b) :={u∈H1
� (�b)2 : u|� =0},

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010
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which is the energy space for our variational problem. In the following V� is equipped with the norm in the usual Sobolev space
H1(�b)2 of vector functions.

By the first Betti formula, it follows that for u, �∈V�

−
∫

�b

(�∗+�2)u·�dx =
∫

�b

(aL(u,�)−�2u·�)dx−
∫

�b

�·Tu ds, (13)

where the bar indicates the complex conjugate, and

aL(u,�)= (2�+�)(�1u1�1�1 +�2u2�2�2)+�(�2u1�2�1 +�1u2�1�2)+�(�1u1�2�2+�2u2�1�1)+�(�2u1�1�2+�1u2�2�1), (14)

and Tu stands for the stress vector or traction having the form:

Tu=2��nu+�ndiv u+�

(
n2(�1u2 −�2u1)

n1(�2u1 −�1u2)

)
, (15)

where n= (n1, n2)	 denotes the exterior unit normal on the boundary of �b. Moreover, we have

Tu=T(�,�)u :=2��2u+�

(
0

1

)
(�1u1 +�2u2)+�

(
1

0

)
(�1u2 −�2u1) on �b. (16)

Now we introduce the DtN map T on the artificial boundary �b. For any u∈H1
� (�b)2, we have

v :=u|�b ∈H1/ 2
� (�b)2, exp(−i�x1)v ∈H1/ 2

per(�b)2,

from the trace theorem, where Hs
�(�b) and Hs

per(�b) denote the Sobolev spaces of order s∈R of functions on �b that are

�-quasiperiodic and periodic, respectively. Note that an equivalent norm on Hs
�(�b)2 is given by

‖v‖Hs
�(�b)2 =

(∑
n∈Z

(1+|n|)2s |v̂n|2
)1/ 2

,

where v̂n ∈C2 are the Fourier coefficients of exp(−i�x1)v(x1, b). For any v ∈H1/ 2
� (�b)2, we define Tv as the traction Tusc on �b

where usc is the unique �-quasiperiodic solution of the homogenous Navier equation in {x2>b} which satisfies (11) and usc =v on
�b. The next lemma shows an explicit representation of T.

Lemma 1
With the notation introduced in (9), we have

Tv =T(�,�)v =− ∑
n∈Z

Wnv̂n exp(i�nx1) for v = ∑
n∈Z

v̂n exp(i�nx1)∈H1/ 2
� (�b)2, (17)

where

Wn =Wn(�,�) := 1

i

⎛
⎝ �2
n / dn 2��n −�2�n / dn

−2��n +�2�n / dn �2�n / dn

⎞
⎠ , dn :=�2

n +
n�n. (18)

Proof
Let usc be the radiating solution of (3) in {x2>0} such that usc =v on �b . Then usc takes the form (11), where the corresponding
Rayleigh coefficients Ap,n , As,n are given by (

Ap,n exp(i
nb)

As,n exp(i�nb)

)
=D−1

n v̂n; (19)

see (12). Moreover, from the representation (10) of usc, the Rayleigh expansions (8), (11) and the relations (7), (16), we obtain

Tusc = 2��2usc +�

(
0

1

)
(�1usc

1 +�2usc
2 )+�

(
1

0

)
(�1usc

2 −�2usc
1 ),

= 2��2usc − i�

(
0

1

)
��+ i�

(
1

0

)
�	,

= 2�
∑

n∈Z

{
i
nAp,n

(
�n


n

)
exp(i�nx1 + i
nx2)+ i�nAs,n

(
�n

−�n

)
exp(i�nx1 + i�nx2)

}

+ ∑
n∈Z

{
i�k2

pAp,n

(
0

1

)
exp(i�nx1 + i
nx2)− i�k2

s As,n

(
1

0

)
exp(i�nx1 + i�nx2)

}
.
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Together with (19), this implies

̂(Tv)n =
⎛
⎝ 2i�
n�n 2i��2

n − i�k2
s

2i�
2
n +�ik2

p −2i��n�n

⎞
⎠(Ap,n exp(i
nb)

As,n exp(i�nb)

)
,

= i

⎛
⎝ 2��n
n �2 −2��2

n

�2 −2��2
n −2��n�n

⎞
⎠D−1

n v̂n,

= i

dn

⎛
⎝ 2��n
n �2 −2��2

n

�2 −2��2
n −2��n�n

⎞
⎠(�n �n


n −�n

)
v̂n,

= i

⎛
⎝ �2
n / dn 2��n −�2�n / dn

−2��n +�2�n / dn �2�n / dn

⎞
⎠ v̂n,

= −Wnv̂n,

where ̂(Tv)n denotes the n-th Fourier coefficient of exp(−i�x1)Tv =exp(−i�x1)Tusc. This completes the proof by recalling the
definitions of Wn and dn in (18). �

Next we introduce the sesquilinear form B(u,�) defined by

B(u,�) :=
∫

�b

(aL(u,�)−�2u·�)dx−
∫

�b

�·Tu ds ∀u,�∈V� , (20)

with Tu :=T(u|�b ). Note that, by Lemma 1, Tu takes the form

Tu=− ∑
n∈Z

Wnûn exp(i�nx1), (21)

where ûn are the Fourier coefficients of exp(−i�x1)u(x1 , b). Applying Betti’s identity (13) to a solution u=usc +uin of (DP) and using
the fact that

Tu =T(usc +uin)=Tusc +Tuin =Tu+f0 , with f0 :=Tuin −Tuin ,

we obtain the following variational formulation of (DP): Find u∈V� such that

B(u,�)=
∫

�b

f0 ·�ds ∀�∈V� . (22)

Here

f0 = fp,0 := 2i
0kp(�+2�)

d0

(−�

�0

)
exp(i�x1 − i
0b) (23)

for an incident pressure wave of the form (1), and

f0 = fs,0 :=−2i�0ks�

d0

(

0

�

)
exp(i�x1 − i�0b) (24)

for an incident shear wave of the form (2). The problems (DP) and (22) are equivalent in the following sense.

Remark 1
If u∈H1

loc(D)2 is a solution of the boundary value problem (DP), then u|�b satisfies the variational problem (22). Conversely, a

solution u∈V�(�b) of (22) can be extended to a solution u=uin +usc of the Navier equation (3) for x2�b, where usc is defined by
the relations (11), (12) via the Fourier coefficients ûn of exp(−i�x1)(u−uin)(x1, b).

To study the form B, the following lemma is needed. For a matrix M∈C2×2, let ReM := (M+M∗ ) / 2, and we shall write ReM>0 if
ReM is positive-definite. Here M∗ is the adjoint of M with respect to the scalar product (·, ·)C2 in C2.

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010
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Lemma 2
Let Wn =Wn(�,�) be defined as in Lemma 1. Then

(i) Given a fixed frequency �>0, we have ReWn>0 for all sufficiently large |n|.
(ii) There exists a sufficiently small frequency �0>0 such that

(ReWnz, z)C2�C|n||z|2 ∀z ∈C2, ∀�∈ (0,�0], ∀n 
=0, (25)

with some constant C>0 independent of � and n.

Proof
We can write the matrix Wn as

Wn =
(

an icn

−icn bn

)
, an :=−i

�2
n

dn
, bn :=−i

�2�n

dn
, cn := �n

dn
(�2 −2�dn). (26)

Let first �>0 be fixed. We have


n = i
√

(n+�)2 −k2
p ∼ i|n|, �n = i

√
(n+�)2 −k2

s ∼ i|n| as |n|→∞, (27)

and, on using Taylor expansions,

dn =�2
n +
n�n = (n+�)2

⎧⎨
⎩1−

√
1− k2

p

(n+�)2

√
1− k2

s

(n+�)2

⎫⎬
⎭

∼ k2
p +k2

s

2
, as |n|→∞. (28)

Moreover, from (26)–(28) we have, for sufficiently large |n|,

an>0, bn>0 cn ∈R, ReWn =
(

an icn

−icn bn

)
. (29)

Note that the relation Re.Wn>0 holds if and only if

an>0 and det(ReWn)=anbn −c2
n>0. (30)

It is easily seen that

det(ReWn) = 1

d2
n

(−�4
n�n −�2
n(�2 −�dn)2),

= 1

dn
(−�4 +4�2

n�(�2 −�dn)), (31)

which together with (28) and the relations kp =� /
√

2�+�, ks =� /
√

� implies that

�2 −�dn ∼�2 − �

2

(
�2

2�+�
+ �2

�

)
=�2 �+�

2(2�+�)
>0, as |n|→∞. (32)

From (31) and (32) we now obtain the second inequality of (30) for all |n| sufficiently large, which completes the proof of
assertion (i).

To prove assertion (ii), we also need to analyze the behavior of ReWn as �→0. Notice that, for all sufficiently small �>0 and
n 
=0, we have the relations


n / i�C|n|, �n / i�C|n|, (33)

with a positive constant C independent of � and n. Moreover, by arguing as in (28),

dn =�2 3�+�

2�(2�+�)
+O(�4) as �→0,

which yields

�2 −�dn =�2 �+�

2(2�+�)
+O(�4) as �→0, (34)

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010
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uniformly in n 
=0. Thus, combining (31), (33), and (34), we find that there exists a sufficiently small frequency �0>0 such that,
for all �∈ (0,�0] and n 
=0,

|n|−1an�c>0, |n|−2 det(ReWn)�c>0,

which means that the matrices |n|−1ReWn are uniformly positive-definite; compare (30). This implies estimate (25) and finishes the
proof of assertion (ii). �

It follows from Lemma 1 and the relations (26)–(28) that the DtN operator T maps the Sobolev space H1/ 2
� (�b)2 continuously

into H−1/ 2
� (�b)2. Therefore, the sesquilinear form B(u,�) defined in (20) is bounded on the energy space V� . Setting

B(u,�)= (Bu,�)�b ∀u,�∈V� , (35)

the form B obviously generates a continuous linear operator B : V� →V ′
� . Here V ′

� denotes the dual of the space V� with respect to
the duality (·, ·)�b extending the scalar product in L2(�b)2.

We call a bounded sesquilinear form B(·, ·) given on some Hilbert space X strongly elliptic if there exists a compact form q(·, ·)
such that

|ReB(u, u)|�c‖u‖2
X −q(u, u) ∀u∈X.

To establish the strong ellipticity of the sesquilinear form B defined in (20), we need the following auxiliary results on the bilinear
form aL defined in (14), which can be written as

aL(u, v)=�div udiv v+2�
2∑

i,j=1

ij(u)
ij(v) 
ij(u) := (�jui +�iuj) / 2.

Under our assumptions on the Lamé constants, �>0,�+�>0, we have the estimate (e.g. [25, Chap. 5.4])

∫
G

aL(u, u)dx�C(G)
2∑

i,j=1
‖
ij(u)‖2

L2(G) ∀u∈H1(G)2, (36)

with a positive constant C(G), for each bounded Lipschitz domain G⊂R2. To obtain a lower bound for the second term in (36), the
well-known Korn’s inequality can be used; see e.g. [26, Chapter 10], [27, Chapter 3] for a proof.

Lemma 3
For each bounded Lipschitz domain G⊂R2, we have the inequality

2∑
i.j=1

‖
ij(v)‖2
L2(G) +

2∑
i=1

‖vi‖2
L2(G)�C(G)‖v‖2

H1(G)2 ∀v ∈H1(G)2. (37)

Remark 2
Let G be a bounded Lipschitz domain in R2, and suppose that �0 ⊂�G has positive Lebesgue measure. Then, using (37) and the
arguments in the proof of [27, Chapter 3,Theorem 3.3], one can prove that

‖v‖2
H1(G)2�C(G)

(
‖v‖2

L2(�0)2 +
2∑

i,j=1
‖
ij(v)‖2

L2(G)

)
∀v ∈H1(G)2.

In particular, if v ∈H1(G)2 satisfies v|�0 =0, we see that

|v| :=
(

2∑
i,j=1

‖
ij(v)‖2
L2(G)

)1/ 2

is an equivalent norm of v in H1(G)2, and from (36) we then have the estimate∫
G

aL(v, v)dx�C(G)‖v‖2
H1(G)2

with C(G)>0 not depending on v.

We are now ready to prove the main result of this section.

Theorem 1
Assume that the grating profile � is a Lipschitz curve. Then the sesquilinear form B defined in (20) is strongly elliptic over V� .
Moreover, the operator B defined by (35) is always a Fredholm operator with index zero.
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Proof
Since u vanishes on �, it follows from Korn’s inequality (see Lemma 3 and Remark 2) that there exists a positive constant C
such that ∫

�b

aL(u, ū)dx�C‖u‖2
H1(�b)2 =C‖u‖2

V�
∀u∈V� . (38)

Moreover, the operator K : V� →V ′
� defined by

(Ku,�)�b =−�2
∫

�b

u·�̄dx ∀u,�∈V�, (39)

is compact. To prove the strong ellipticity of the form B defined in (20), it is now sufficient to verify that T is the sum of a finite
dimensional operator and an operator T1 with

Re

{
−
∫

�b

u·T1u ds

}
�0 ∀u∈H1

� (�b)2. (40)

To do so, we apply (21) and set

T1u :=− ∑
|n|�n0

Wnûn, T0 :=T−T1.

where n0 ∈N is sufficiently large, so that

Re(Wnz, z)C2�0 ∀z ∈C2 ∀|n|�n0, (41)

by Lemma 2 (i). Then the operator T0 is finite dimensional, and (40) is a consequence of (41). This finishes the proof of the strong
ellipticity of the form B over V� , and the Fredholm property of B follows in a standard way. �

4. Existence and uniqueness results

In this section, we establish existence and uniqueness theorems for the boundary value problem (DP), or equivalently, the variational
problem (22) in the case of arbitrary frequencies. Problem (22) can also be written in the form

Bu=F0, F0 ∈V ′
� , (42)

where F0 is given by the right-hand side of (22), and the operator B : V� →V ′
� is defined by (35) via the sesquilinear form (20).

Let u∈V� be a solution of the homogeneous equation Bu=0. Then u can be extended to a radiating solution of (3) in D by
setting u(x)=usc(x) for x2�b, where usc is defined by the expansion (11) with the Rayleigh coefficients Ap,n , As,n, which are uniquely
determined by the Fourier coefficients ûn of exp(−i�x1)u(x1, b) via the relation (12). We will need the following technical result,
which has already been proved in [14]. Here we prefer to give a more direct proof that is based on the Fourier series representation
of the DtN operator.

Lemma 4
If u∈V� satisfies Bu=0, then

Ap,n =0 for |�n|<kp and As,n =0 for |�n|<ks. (43)

Proof
Taking imaginary parts in the variational Equation (22) with �=u and f0 =0, we are going to prove that

ImB(u, u)=−Im

∫
�b

u ·Tu ds=−2��2

( ∑
|�n|<kp


n|Ap,n|2 + ∑
|�n|<ks

�n|As,n|2
)

, (44)

which implies (43) since the left-hand side of (44) is zero. Rewrite the relation (12) in the form

ûn =DnAn, An :=
(

Ap,n exp(i
nb)

As,n exp(i�nb)

)
.

Then the Fourier coefficients ŵn of exp(−i�x1)Tu(x1, b) can be written as

ŵn = iGnAn, Gn :=
⎛
⎝ 2��n
n �2 −2��2

n

�2 −2��2
n −2��n�n

⎞
⎠ ;
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see the proof of Lemma 1. Hence we get∫
�b

u·Tu ds=2�
∑

n∈Z

(iGnAn, DnAn)C2 ==2�
∑

n∈Z

(iLnAn, An)C2 ,

where Ln :=D∗
nGn can be written as

Ln =
(

�n 
n

�n −�n

)⎛⎝ 2��n
n �2 −2��2
n

�2 −2��2
n −2��n�n

⎞
⎠ ,

=
⎛
⎝ 4��2

n(Im
n)i+�2
n (�2 −2��2
n)�n −2��n
n�n

2��n
n�n −(�2 −2��2
n)�n 4��2

n(Im�n)i+�2�n

⎞
⎠ .

Thus we obtain

Im

∫
�b

u·Tu ds=2�Im
∑

n∈Z

(iLnAn, An)C2 =2�
∑

n∈Z

(ReLnAn, An)C2 .

Finally, we note that the matrix ReLn is diagonal,

ReLn =diag{en, fn} with en :=
⎧⎨
⎩

�2
n for �2
n<k2

p,

0 for �2
n�k2

p,
fn :=

⎧⎨
⎩

�2�n for �2
n<k2

s ,

0 for �2
n�k2

s .

This completes the proof of (44). �

The above lemma shows that a solution to the homogenous equation Bu=0 can only consist of exponentially decaying
modes. Obviously this does not imply the uniqueness in problem (42); however, a solvability result can be proved by combining
Theorem 1 and Lemma 4.

Theorem 2
Assume that the grating profile � is a Lipschitz curve. Then, for all incident waves of the form (1) or (2), there exists a solution to
the variational problem (22) and hence to the problem (DP).

Proof
By Theorem 1, Equation (42) is solvable if its right-hand side F0 is orthogonal (with respect to the duality (·, ·)�b ) to all solutions v
of the homogenous adjoint equation B∗v =0. Here the adjoint operator B∗ : V� →V ′

� of B satisfies (cf. (20) and (35))

(B∗v,	)�b = (v,B	)�b =B(	, v)=
∫

�b

(aL(v,	)−�2v ·	)dx−
∫

�b

	·T∗v ds ∀	∈V� ,

where the adjoint T∗ of T takes the form (cf. Lemma 1 and (21))

T∗v =− ∑
n∈Z

W∗
n v̂n exp(i�nx1) for v|�b = ∑

n∈Z

v̂n exp(i�nx1).

Let v ∈V� be an arbitrary solution of the equation B∗v =0, i.e.

B(	, v)=0 ∀	∈V� . (45)

Then we can extend v to a solution of (3) in the unbounded domain D by setting

v(x)= ∑
n∈Z

{
Ap,n

(
�n

−
n

)
exp(i�nx1 −
nx2)+As,n

(−�n

−�n

)
exp(i�nx1 − i�nx2)

}
, (46)

for x2�b, where the Rayleigh coefficients Ap,n , As,n ∈C of v are determined by the Fourier coefficients v̂n of exp(−i�x1)v|�b via the
relation

v̂n =
(

�n −�̄n

−
̄n −�n

)(
Ap,n exp(−i
̄nb)

As,n exp(−i�̄nb)

)
; (47)

compare (12). Note that (46) is an expansion into incoming plane elastic waves, and as in the proof of Lemma 1, it can be verified
that Tv =T∗v on �b. Moreover, arguing as in the proof of Lemma 4, it follows that each solution v of (45) has vanishing Rayleigh
coefficients of the incoming modes,

Ap,n =0 for |�n|<kp and As,n =0 for |�n|<ks. (48)
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Consider first equation (42) in the case of an incident pressure wave (1) where the right-hand side is given by (22), (23). Then (48)
implies that Ap,0 =As,0 =0, hence

(F0, v)�b =
∫

�b

fp,0 ·v ds=0 for each solution v of (45);

note that kp<ks and �=�0 =kp sin�. For an incident shear wave (2), where the right-hand side of (42) is given by (22), (24), with
�=ks sin�, from (48) we only obtain As,0 =0 in general. However, this is enough to imply, together with (24) and (46), that

(F0, v)�b =
∫

�b

fs,0 ·v ds=2�Ap,0fs,0 ·
(

�

−
0

)
=0,

for each solution v of (45). Thus the right-hand side of Equation (42) is orthogonal to each solution of (45), which finishes the proof
of the theorem. �

We next give the main theorem of this section. Supposing the grating surface is given by a Lipschitz graph, we establish the
uniqueness in the Dirichlet problem for arbitrary frequencies. Such a uniqueness result has already been obtained in [14] for smooth
profile functions; see also [4] in the case of the scalar Helmholtz equation. Our uniqueness proof is essentially based on a (periodic)
Rellich identity and follows the approach of [19] in the scalar case. To deal with the Lipschitz boundary, we adapt Nečas’ method
[18, Chapter 5] of approximating the grating profile by smooth curves.

Theorem 3
If � is a Lipschitz graph, then the operator B : V� →V ′

� is invertible. In particular, the variational problem (22) and hence problem
(DP) have a unique solution for all incident waves of the form (1) or (2).

Proof
By Theorem 1, we only need to prove the uniqueness. Let u∈V� be a solution of the homogeneous equation Bu=0, and let
Ap,n, As,n be its Rayleigh coefficients which are determined by the Fourier coefficients ûn of exp(−i�x1)u|�b via the relation (12).

Step 1. We first prove that the theorem holds for periodic C2 graphs. In this case, u∈H2(�b)2 ∩V� , and using integration by parts,
we obtain

2Re

∫
�b

(�∗+�2)u·�2u dx =
∫

��b

(�nu·�2u+�tu·�1u+n2�2|u|2)ds, (49)

where �t denotes the tangential derivative on the boundary. Analogously, using integration by parts again, we get

2Re

∫
�b

grad div u·�2u dx =2Re

∫
��b

n1�2u1div u ds+
∫

��b

n2(|�2u2|2 −|�1u1|2)ds. (50)

Then it follows from (49) and (50) that

2Re

∫
�b

(�∗+�2)u·�2u dx =
∫

��b

(�(�nu·�2u+�tu·�1u)+n2�2|u|2)ds

+(�+�)

{
2Re

∫
��b

n1�2u1div u ds+
∫

��b

n2(|�2u2|2 −|�1u1|2)ds

}
. (51)

Note that (51) is a special case of the Rellich identity for the Navier equation proved in [20, Proposition 2]. Since u vanishes on �,
we have �tu=−n2�1u+n1�2u=0 on �, which implies that

n1�2u=n2�1u, �1u=n1�nu and �2u=n2�nu on �.

Thus the integral over � on the right-hand side of (51) takes the form∫
�

(�|�nu|2 +(�+�)|div u|2)n2 ds. (52)

Moreover, using the Rayleigh expansion (11) of u for x2�b, one can verify by careful calculations that the integral over �b in (51)
takes the form

∫
�b

(�(|�2u1|2 −|�1u2|2)+(�+2�)(|�2u2|2 −|�1u1|2)+�2|u|2)ds=4��2

⎛
⎝ ∑

|�n|<k2
p


2
n|Ap,n|2 + ∑

|�n|<k2
s

�2
n|As,n|2

⎞
⎠ , (53)

and combining (51)–(53) gives

2Re

∫
�b

(�∗+�2)u·�2u dx =
∫

�
(�|�nu|2 +(�+�)|div u|2)n2 ds+4��2

⎛
⎝ ∑

|�n|<k2
p


2
n|Ap,n|2 + ∑

|�n|<k2
s

�2
n|As,n|2

⎞
⎠ . (54)
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This is just the quasiperiodic version of the Rellich identity (51) for our variational problem (42). Now we observe that the left-hand
side of (54) vanishes, and by Lemma 4 the boundary term (53) vanishes, too. Therefore, (54) implies that �nu=0 on �, using the fact
that −n2�C>0 on �. Note that � is assumed to be the graph of a C2 function. Finally, as a consequence of Holmgren’s uniqueness
theorem and the unique continuation principle, u must vanish in all of �.

Step 2. Now we consider the general case that the profile of the diffraction grating is given by the graph

�=�f :={(t, f (t))∈R2 : t∈ [0, 2�]},

where f is a periodic Lipschitz function of period 2�. Again we have to show that a solution u∈V� to the homogeneous problem
(42) vanishes in �b =��,b ; recall that b>max{f (t) : t∈ [0, 2�]}. Consider the inhomogeneous boundary value problem

(�∗+�2 + i)v =g := iu in �b,

v|� =0, Tv−T(�,�)v = 0 on �b.
(55)

One easily verifies that the operator B1 : V� →V ′
� generated by the sesquilinear form

B1(v,�) :=
∫

�b

(aL(v,�)−(�2 + i)v ·�)dx−
∫

�b

� ·T(�,�)v ds,

is invertible. Indeed, as in Theorem 1 it follows that B1 is Fredholm with index zero, and arguing as in the proof of Lemma 4 we
obtain that ImB1(w, w)=0, w ∈V� , implies that

4��2

⎛
⎝ ∑

|�n|<k2
p


2
n|Ãp,n|2 + ∑

|�n|<k2
s

�2
n|Ãs,n|2

⎞
⎠+

∫
�b

|w|2 dx =0,

where Ãp,n , Ãs,n are the Rayleigh coefficients of a solution w to the homogeneous problem (55) (with g=0). Hence w must vanish
in �b .

Therefore v =u is the unique solution of the inhomogeneous problem (55) in V� =V�(�b). Following the proof of [18, Theorem
5.1.1], we choose C∞ profiles �j =�fj

such that the Lipschitz constants of fj are uniformly bounded in j, and

�j
b =��j ,b ⊂�b, max{|fj(t)−f (t)| : t∈ [0, 2�]}→0 as j →∞. (56)

Let uj ∈V�(�j
b) be the solution of the problem (55) for �j

b, which is unique by step 1. Extending uj by zero to �b\�j
b, we regard

uj ∈V�(�b) as a solution of the problem (55) with the right-hand side gj ∈L2(�b) where gj denotes the extension of −iu|
�

j
b

by zero.

Then, from (56) we have gj →g in L2(�b), and the invertibility of B1 implies

uj →u in V�(�b), j →∞. (57)

We rewrite the boundary value problem for uj as

(�∗+�2)uj = hj := i(u−uj ) in �j
b,

v|�j = 0, Tuj −T(�,�)uj =0 on �b.
(58)

Note that uj ∈V�(�j
b)⊂V�(�b) can be extended to a radiating solution of the Navier equation in the unbounded domain D, using

the expansion (11) with the Rayleigh coefficients A
j
p,n , A

j
s,n determined by the Fourier coefficients û

j
n of exp(−i�x1)uj(x1, b) via the

relation (12). Applying the periodic Rellich identity (54) to problem (58), we obtain

2Re

∫
�b

hj ·�2uj dx =
∫

�j

(�|�nuj|2 +(�+�)|div uj|2)n2 ds+ Ij ,

Ij := 4��2

⎛
⎝ ∑

|�n|<k2
p


2
n|Aj

p,n|2 + ∑
|�n|<k2

s

�2
n|Aj

s,n|2
⎞
⎠ .

(59)

Moreover, setting �=uj in the variational formulation of (58),

B(uj,�) :=
∫

�b

(aL(uj,�)−�2uj ·�)dx−
∫

�b

�·T(�,�)uj ds,

= −
∫

�b

hj ·uj dx, �∈V�(�b),
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and taking imaginary parts, we get (cf. (44))

Ij =−ImB(uj, uj)= Im

(∫
�b

hj ·uj dx

)
,

which implies Ij →0 as j →∞ in view of (57) and the definition of hj in (58). From (59) we then have, on using the uniform estimate
−n2�C>0 on �j for all j ∈N, ∫

�j

|�nuj|2 ds→0, j →∞. (60)

We may identify the spaces L2(�j) and L2(�) with L2(0, 2�) via the norm

‖v◦fj‖L2(0,2�) =
(∫ 2�

0
|v(t, fj (t))|2 dt

)1/ 2

, v ∈L2(�j),

with �0 =�, f0 = f , which is a uniformly equivalent norm with respect to j. From (60) we get �nuj|�j →0 in L2(0, 2�)2, which together

with uj|�j =0, j ∈N, implies that Tuj|�j →0 in L2(0, 2�)2. Here T denotes the traction operator defined in (15). Moreover, then it

follows from (57) and the relation �|�j →�|� in L2(0, 2�)2 (cf. Lemma 2.4.5 in [18]) that, by passing to the limit in Betti’s identity,∫
�j

�·Tuj ds=B(uj,�)+
∫

�b

hj ·uj dx ∀�∈H1
� (�b)2,

we obtain that B(u,�)=0 for all �∈H1
� (�b)2, hence Tu|� =0. Note that the trace Tu|� in the sense of H−1/ 2 is defined by∫

�
�·Tu ds=B(u,�) ∀�∈H1

� (�b)2.

Finally, since the Dirichlet and Neumann data of u vanish on �, we obtain u=0 in �b by the unique continuation principle. �

Remark 3
(i) Assume that � is given by a piecewise smooth graph having only a finite number of corner points (with non-zero angles). Then
the uniqueness already follows from the arguments in step 1 of the above proof. In that case each solution to problem (22) satisfies
u∈H3/ 2+
(�b)2 for some 
>0, so that the integration by parts in the Rellich identity (51) is justified. Moreover, then the uniqueness
result extends to the case that the x2-component of the normal, −n2, vanishes on a subset of � and has a positive lower bound
on the other parts, e.g. in the case of rectangular groove gratings where the profile consists of a finite number of horizontal and
vertical segments only.

(ii) If the grating profile � is given by a general Lipschitz curve, we can only prove the uniqueness for all sufficiently small
frequencies �. To see this, we decompose the operator B into the sum A+K, where K is the operator defined in (39) and A is
defined by

(Av,�)�b =
∫

�b

aL(v,�)dx−
∫

�b

�·Tv ds ∀v,�∈V�. (61)

From Lemma 1 we get, for any v ∈V�,

Re

{
−
∫

�b

v ·Tv ds

}
=2�

∑
n 
=0

Re(Wnv̂n, v̂n)C2 +2�Re(W0v̂0, v̂0)C2 , (62)

where v̂n are the Fourier coefficients of exp(−i�x1)v(x1 , b). For the last term in (62) we have

|(W0û0, v̂0)C2 |=O(�)|v̂0|2 as �→0;

see the definition of Wn in (18). Then it follows from Lemma 2(ii) applied to the second term in (62) and from estimate (38) that
the operator A defined in (61) is coercive, i.e.

|Re(Av, v)�b |�C‖v‖2
V�

∀v ∈V�,

if � is sufficiently small. Here the constant C>0 does not depend on �. Finally, we have

‖K‖V�→V ′
�
=O(�2) as �→0,

which implies that the operator B=A+K is always invertible if � is sufficiently small.
(iii) Relying on the above uniqueness result for small frequencies, it is possible to prove the invertibility of the operator B for

all frequencies �>0 with the possible exception of a discrete set in (0,∞); see Theorem 6 below in the case of the transmission
problem.
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To conclude this section, we present an existence and uniqueness result in the case where the Dirichlet condition (4) in the
diffraction problem (DP) is replaced by the mixed Dirichlet and Robin boundary conditions:

u=0 on �D, Tu− i�u=0 on �I . (63)

We assume that � has a Lipschitz dissection �=�D ∪�∪�I, where �D and �I are two disjoint and relative open subsets of �
having � as their common boundary (see [26, p. 99]). On �I , �∈C is assumed to be a constant with Re�>0. In this case, the proof
of uniqueness becomes easy because of the impedance coefficient � on �I. The boundary conditions (63) lead to the following
variational problem in the bounded periodic cell �b: Find u∈E� :={v ∈H1

� (�b)2 : v =0 on �D} such that∫
�b

(aL(u,�)−�2u·�)dx− i�
∫

�I

u·�ds−
∫

�b

�·Tu ds=
∫

�b

f0 ·�ds ∀�∈E� , (64)

where f0 is defined by (23) for an incident pressure wave, and by (24) for an incident shear wave.

Theorem 4
If �I 
=∅, then there always exists a unique solution u∈E� to the variational problem (64).

Proof
It follows from the proof of Theorem 1 that the operator generated by the sesquilinear form of (64) is a Fredholm operator with
index zero. Thus it is enough to prove the uniqueness. Letting f0 =0, u=� and taking imaginary parts in (64), we have (cf. (44))

−Re�
∫

�I

|u|2 ds= Im

∫
�b

u ·Tu ds�0,

which implies that u=0 on �I. This means that u has vanishing Dirichlet and Neumann data on �I, and as a consequence of the
unique continuation principle, u=0 on �b. �

5. Solvability results for transmission gratings

The aim of this section is to provide a solvability theory of quasiperiodic transmission problems for the two-dimensional Navier
system. Suppose the whole (x1, x2)-plane is filled with elastic materials which are homogenous above and below a certain periodic
interface �. We assume throughout this section that � is a 2�-periodic Lipschitz curve. Let D± be the unbounded domains above
and below �, respectively. We assume that the Lamé coefficients �± ,�± in D± are certain constants satisfying �±>0, �±+�±>0,
and that the mass densities �± are certain positive constants in these subdomains. Let

k±
p :=�

√
�± / (2�±+�±), k±

s :=�
√

�± / �± (65)

be the corresponding compressional and shear wave numbers, respectively. As in Section 2 we assume that a time harmonic plane
elastic wave uin with incident angle � is incident on � from D+, which is either an incident pressure wave of the form (1), or an
incident shear wave of the form (2), with kp , ks replaced by k+

p , k+
s . Then we are looking for the total displacement field u,

u=uin +u+ in D+ , u=u− in D− , (66)

where the scattered fields u± satisfy the corresponding �-quasiperiodic Navier equations

(�∗+�2�±)u± =0 in D± , with u±(x1 +2�, x2)=exp(2i��x1)u±(x1, x2), (67)

and either � :=k+
p sin� for an incident pressure wave or � :=k+

s sin� for an incident shear wave. On the interface the continuity of
the displacement and the stress lead to the transmission conditions

uin +u+ =u− , T+(uin +u+)=T−u− on �, (68)

where the corresponding stress operators are defined as in (15), with �, � replaced by �± , �±. Finally, we need to impose appropriate
radiation conditions on the scattered fields as x2 →±∞. Introduce the notation

�+ := max
(x1 ,x2)∈�

x2, �− := min
(x1 ,x2)∈�

x2,

let �n :=�+n, and define 
±
n and �±

n as in (9) with kp , ks replaced by k±
p , k±

s . Then we insist that the scattered fields u± admit the

following Rayleigh expansions (cf. (11)), for x2≷�±:

u±(x)= ∑
n∈Z

{
A±

p,n

(
�n

±
±
n

)
exp(i�nx1 ± i
±

n x2)+A±
s,n

(±�±
n

−�n

)
exp(i�nx1 ± i�±

n x2)

}
, (69)
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J. ELSCHNER AND G. HU

where for any b+>�+, b−<�−, the Rayleigh coefficients are related with the Fourier coefficients û±
n of exp(−i�x1)u±(x1,±b) by

the relations (cf. (12))

û±
n =D±

n A±
n , D±

n :=
(

�n ±�±
n

±
±
n −�n

)
, A±

n :=
(

A±
p,n exp(±i
±

n b±)

A±
s,n exp(±i�±

n b±)

)
. (70)

Note that detD±
n 
=0 for all n∈Z. The diffraction problem for transmission gratings can now be formulated as the following boundary

value problem.
Transmission problem (TP): Given a grating profile curve �⊂R2 (which is 2�-periodic in x1) and an incident plane pressure or

shear wave uin, find a vector function u∈H1
loc(R2)2 that satisfies (66)–(69).

Following the approach of Section 3, we reduce the problem (TP) to a variational problem in a bounded periodic cell in R2,
enforcing the transmission and radiation conditions. Introduce artificial boundaries

�± :={(x1, b±) :0�x1�2�}, b+>�+ , b−<�−

and the bounded domains

�=�b− ,b+ := (0, 2�)× (b− , b+), �± :=D± ∩�.

The DtN maps T± on the artificial boundaries �± have the Fourier series representations (cf. (70) and Lemma 1)

T±u± :=− ∑
n∈Z

W±
n û±

n exp(i�nx1), u± = ∑
n∈Z

û±
n exp(i�nx1)∈H1/ 2

� (�±)2, (71)

where the matrices W±
n =W±

n (�,�) take the form (cf. (18))

W±
n := 1

i

⎛
⎝ �2�±
±

n / d±
n 2�±�n −�2�±�n / d±

n

−2�±�n +�2�±�n / d±
n �2�±�±

n / d±
n

⎞
⎠ , d±

n :=�2
n +
±

n �±
n . (72)

Applying the first Betti formula on each subdomain �± to a solution of (TP), and using the transmission conditions (68) at the
interface and the DtN operators (71), we obtain the following variational formulation of (TP) on the bounded domain �: Find
u∈H1

� (�)2 such that

B(u,�) :=
∫

�
(aL(u,�)−�2�u·�)dx−

∫
�+

�·T+u ds−
∫

�−
�·T−u ds,

=
∫

�+
f0 ·�ds ∀�∈H1

� (�)2. (73)

Here the domain integral is understood as the sum of the integrals∫
�±

(a±
L (u,�)−�2�±u·�)dx,

where the bilinear forms a±
L are defined as in (14), with �, � replaced by �±,�±, and the right-hand side is given by (cf. (22)–(24))

f0 = fp,0 := 2i
+
0 k+

p (�++2�+)

d+
0

(−�

�+
0

)
exp(i�x1 − i
+

0 b+) (74)

for an incident pressure wave, and

f0 = fs,0 :=−2i�+
0 k+

s �+

d+
0

(

+

0

�

)
exp(i�x1 − i�+

0 b+) (75)

for an incident shear wave. As in (35), the sesquilinear form B defined in (73) generates a continuous linear operator B from H1
� (�)2

into its dual (H1
� (�)2)′, with respect to the pairing (u,�)� =∫� u·�̄, via

B(u,�)= (Bu,�)�, ∀u,�∈H1
� (�)2. (76)

The following lemma extends Lemma 4 to the transmission case.

Lemma 5
Let B be the operator defined in (76). If u∈H1

� (�)2 satisfies Bu=0, then

A±
p,n =0 for |�n|<k±

p and A±
s,n =0 for |�n|<k±

s , (77)

where A±
p,n, A±

s,n are the Rayleigh coefficients of u defined via (70) with the Fourier coefficients û±
n of exp(−i�x1)u(x1, b±).
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Proof
As in the proof of Lemma 4, we can verify the identity

ImB(u, u) = −Im

∫
�+

u ·T+u ds− Im

∫
�−

u ·T−u ds,

= −2��2

⎛
⎝ ∑

|�n|<k+
p


+
n |A+

p,n|2 + ∑
|�n|<k+

s

�+
n |A+

s,n|2 + ∑
|�n|<k−

p


−
n |A−

p,n|2 + ∑
|�n|<k−

s

�−
n |A−

s,n|2
⎞
⎠ , (78)

and taking imaginary parts in the variational equation (73) with �=u and f0 =0, we then obtain the relation (77). �

The following result extends Theorems 1 and 2 to the transmission problem.

Theorem 5
(i) The sesquilinear form B defined by (73) is strongly elliptic over H1

� (�)2, and the operator B defined in (76) is Fredholm with index
zero.

(ii) For all incident plane pressure or shear waves, there exists a solution to the variational problem (73) and hence to problem
(TP).

Proof
(i) It follows from the estimate (36) applied to the subdomains �± and from Korn’s inequality (see Lemma 3) on � that there exist
positive constants c, C such that ∫

�
(aL(u, ū)+c|u|2)dx�C||u||2H1(�)2 ∀u∈H1

� (�)2. (79)

As in the proof of Theorem 1, from Lemma 2 (i) we obtain

Re

{
−
∫

�±
u ·T±

1 u ds

}
�0 ∀u∈H1

� (�)2, (80)

by setting (cf. (71), (72))

T±
1 u :=− ∑

|n|�n0

W±
n û±

n , T±
0 :=T±−T±

1 ,

where û±
n are the Fourier coefficients of exp(−i�x1)u(x1 , b±) and n0 is sufficiently large. Note that the operators T±

0 are finite

dimensional. Moreover, the operator K : H1
� (�)2 → (H1

� (�)2)′ defined by

(Ku,�)� =−(�2 +c)

∫
�

u·�̄dx ∀u,�∈H1
� (�)2,

is compact. Now the strong ellipticity of the form B defined in (73) follows from (79) and (80).
(ii) To ensure existence of solutions, we only need to prove that the relation∫

�+
f0 ·v ds=0, (81)

holds for all v ∈H1
� (�)2 in the null space of the adjoint operator, i.e. B∗v =0, where f0 is the right-hand side defined in (74) and

(75), respectively; see the proof of Theorem 2. Here the adjoint B∗ of B satisfies (cf. (73) and (76)), for all 	∈H1
� (�)2,

(B∗v,	)� =B(	, v)=
∫

�
(aL(v,	)−�2v ·	)dx−

∫
�+

	 ·(T+)∗v ds−
∫

�−
	·(T−)∗v ds,

where the adjoints (T±)∗ take the form (cf. (71) and (72))

(T±)∗v =− ∑
n∈Z

(W±
n )∗v̂±

n exp(i�nx1) for v|�± = ∑
n∈Z

v̂±
n exp(i�nx1).

Let v ∈H1
� (�)2 be an arbitrary solution of the equation B∗v =0, i.e.

B(	, v)=0 ∀	∈H1
� (�)2. (82)

We can extend v to a solution of (3) in R2 by using Rayleigh expansions (69) for x2�b+ and x2�b− , respectively, with 
±
n , �±

n

replaced by −
±
n , −�±

n . Here the Rayleigh coefficients A±
p,n , A±

s,n of v are determined by the Fourier coefficients v̂±
n of exp(−i�x1)v|�±

via the relations (70), again with 
±
n , �±

n replaced by −
±
n , −�±

n ; compare (46) and (47).
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Arguing as in the proof of Lemma 5, we now obtain that each solution v of (82) has vanishing Rayleigh coefficients of the
incoming modes in D+ ,

A+
p,n =0 for |�n|<k+

p and A+
s,n =0 for |�n|<k+

s . (83)

Finally, recalling the definition of f0 (see (74) or (75)), the relation (81) follows from (83) as in the proof of Theorem 2. �

Following the approach in [10--12] in the case of electromagnetic diffraction gratings, we finally establish some uniqueness results
for the variational problem (73) and hence for the boundary value problem (TP).

Theorem 6
If uin is an incident pressure wave of the form (1) (with kp =k+

p ), then

(i) There exists �0>0 such that the variational problem (73) admits a unique solution u∈H1
� (�)2 for all incident angles and

for all frequencies �∈ (0,�0].
(ii) For all but a sequence of countable frequencies �j , �j →∞, the variational problem (73) (with fixed incidence angle �) admits

a unique solution u∈H1
� (�)2.

Proof
(i) Assuming there exists a solution u∈H1

� (�)2 to the homogeneous problem (73), so that B(u, u)=0, we shall prove that u=0 in �.
Applying Lemma 2(ii) to the DtN operators (71), we obtain that, for all �∈ (0,�0] with �0 sufficiently small,

I := Re

(
−
∫

�+
u ·T+u ds−

∫
�−

u·T−u ds

)
,

= 2�
∑

n∈Z

(Re(W+
n û+

n , û+
n )C2 +Re(W−

n û−
n , û−

n )C2 ),

� C
∑

n 
=0
(|n|(|û+

n |2 +|û−
n |2))+Re(W+

0 û+
0 , û+

0 )C2 +Re(W−
0 û−

0 , û−
0 )C2 , (84)

where û±
n are the Fourier coefficients of exp(−i�x1)u(x1 , b±). Here and in the following C denotes various positive constants not

depending on u and �. Let A±
p,n , A±

p,n be the Rayleigh coefficients of u which are defined via the relations (70).

As k+
s >k+

p , it follows from Lemma 5 that A+
p,0 =A+

s,0 =0, which implies û+
0 =0. Recall that


±
n =

√
(k±

p )2 −�2
n, �±n =

√
(k±

s )2 −�2
n, �n =n+k+

p sin�, �=�0, (85)

in the case of an incident pressure wave with incidence angle �, where the square roots are chosen such that their imaginary parts
are non-negative. Therefore, the estimate (84) can be written as

I�C

(
||u||2

H1/2
� (�+)2 + ∑

n 
=0
|n||û−

n |2
)

+Re(W−
0 û−

0 , û−
0 )C2 ∀�∈ (0,�0]. (86)

Furthermore, from the definition of W−
0 in (72), we have the bound

|(W−
0 û−

0 , û−
0 )C2 |�C�|û−

0 |2�C�||u||2H1(�)2 . (87)

Combining the estimates (84), (86), and (87) and using the definition of the sesquilinear form B in (73), we obtain for �∈ (0,�0]

0=ReB(u, u)�
∫

�
aL(u, u)dx+C||u||2

H1/2
� (�+)2 −C�||u||2H1(�)2 ,

which leads to ∫
�

aL(u, u)dx+C||u||2
H1/2

� (�+)2�C�||u||2H1(�)2 . (88)

Now it follows from the estimate (36) applied to the subdomains �± and from Remark 3 applied to � that the square root of the
left-hand side of the inequality (88) is an equivalent norm on H1

� (�)2. Therefore, it follows that u=0 in � if the frequency � is
sufficiently small.

(ii) To study the uniqueness for arbitrary frequencies � using analytic Fredholm theory, it is necessary to replace Equation (73)
on the �-dependent space H1

� (�)2 by an equivalent variational problem acting on the same energy space,

V =H1
per(�)2 :={u∈H1(�)2 : u is 2�−periodic in x1},

for each �. Recall that (cf. (65) and (85))

�=k+
p sin�=� sin�

√
�+ / (2�++�+). (89)
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J. ELSCHNER AND G. HU

So, instead of the operator B : H1
� (�)2 → (H1

� (�)2)′ defined by (76), we consider the operator

B� : V →V ′ , B�u :=exp(−i�x1)B(exp(i�x1)u), u∈V, (90)

where V ′ is the dual of V with respect to the pairing (·, ·)�. Note that B� is then generated by the sesquilinear form

B�(u,�) :=B(exp(i�x1)u, exp(i�x1)�), u,�∈V,

which can be written as (cf. (73))

B�(u,�)=
∫

�
(aL,�(u,�)−�2�u·�)dx−

∫
�+

�·T+
� u ds−

∫
�−

�·T−
� u ds, (91)

where the bilinear form aL,� on �± is defined as in (14), with �, � replaced by �±, �± , and �1 replaced by the differential operator
�1,� =�1 + i�, and where (cf. (71), (72))

T±
� u :=− ∑

n∈Z

W±
n (�,�)û±

n exp(inx1), u|�± = ∑
n∈Z

û±
n exp(inx1)∈H1/ 2

per (�±)2. (92)

To indicate the dependence on the frequency �, we shall write B� =B(�) and T±
� =T±(�) in the following. Note that the operator

generated by the first term of the form (91) depends analytically on �∈C, while for the DtN operators (92) this is only valid if one
avoids the set of exceptional values (the Rayleigh frequencies) where one of the numbers 
±

n , �±
n vanishes (cf. (65), (85)):

R={� :∃n∈Z such that �2
n =�2�± / (2�±+�±) or �2

n =�2�± / �±}. (93)

It follows immediately from Theorem 5 and (90) that B(�) : V →V ′ is a Fredholm operator with index zero for all �>0. Moreover, by
assertion (i), we can choose �0>0 sufficiently small so that B(�0) is invertible. Then B(�) is invertible if and only if the operator

A(�) := I+K(�) : V →V, K(�) :=B(�0)−1(B(�)−B(�0)), (94)

is invertible, where I denotes the identity operator. To prove that the operator K(�) defined in (94) is compact on V , we note that

((B(�)−B(�0))u,�)� =−
∫

�+
�(T+(�)−T+(�0))u ds−

∫
�−

�(T−(�)−T−(�0))u ds−(�−�0)

∫
�

�u�dx, u,�∈V, (95)

and (cf. (92))

(T±(�)−T±(�0))u=− ∑
n∈Z

(W±
n (�,�)−W±

n (�0,�))û±
n exp(inx1).

Then the uniform estimates

‖W±
n (�,�)−W±

n (�0,�)‖C2→C2�c(�,�0) ∀n∈Z,

together with the trace and imbedding theorems for periodic Sobolev spaces, imply the compactness of the form (95) and hence
that of K(�).

Since K(�) is a compact operator function depending analytically on � if � /∈R (cf. (93), (85)) and A(�0) is invertible, it follows
from the analytic Fredholm theory (e.g. [28, Theorem 8.26]) that A(�) is invertible for all �∈U := (0,∞)\R, with the possible
exception of some discrete subset, say D, of U. Thus assertion (ii) is proved if we show that a point �∗ ∈R cannot be an accumulation
point of D. It follows from the definition of 
±

n ,�±
n (cf. (85)) that, in some neighborhood of �∗, the operator functions T±(�),

and hence B(�), K(�), A(�) are analytic in z := (�−�∗)1/ 2, where the branch of the root is chosen such that its imaginary part
is non-negative. Then, applying [28, Theorem 8.26] to the operator function A(z)= I+K(z) in a neighborhood of z =0, gives the
desired result. �

Remark 4
(i) For an incident shear wave uin, Theorem 6 holds under the additional assumption that k−

p >k+
s , or equivalently, �− / (2�−+

�−)>�+ / �+. Note that the relations (85) hold with �n =n+k+
s sin�, so that in the proof of the corresponding assertion (i) one

obtains û−
0 =0 and thus estimate (88) with the corresponding boundary term on �−. We do not know whether this condition can

be removed.
(ii) Assume that the elastic material is homogeneous above a periodic Lipschitz interface �+ and below another periodic Lipschitz

interface �−, whereas the elastic medium between �+ and �− may be inhomogeneous with piecewise constant Lamé parameters
�,� and density � having jumps at certain (finitely many) disjoint periodic Lipschitz interfaces. Then Theorems 5 and 6 can easily
be extended to these more general periodic diffractive structures.

(iii) The uniqueness result of Theorem 3 does not hold for the transmission problem (TP). Even in the special case of two half-planes
with certain elastic parameters �±, �± , �± and the transmission conditions (68) on the line {x2 =0}, there may exist non-trivial
solutions of the homogeneous problem (Rayleigh surface waves) that decay exponentially as x2 →±∞; see [29]. Hence additional
conditions must be imposed on the elastic parameters to guarantee the uniqueness. However, so far we do not know of any general
result in this direction.
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