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Abstract. This paper is concerned with the multi-frequency factorization method for imaging
the support of a wave-number-dependent source function. It is supposed that the source function is
given by the inverse Fourier transform of some time-dependent source with a priori given radiating
period. Using the multi-frequency far-field data at a fixed observation direction, we provide a compu-
tational criterion for characterizing the smallest strip containing the support and perpendicular to the
observation direction. The far-field data from sparse observation directions can be used to recover a
\Theta -convex polygon of the support. The inversion algorithm is proven valid even with multi-frequency
near-field data in three dimensions. The connections to time-dependent inverse source problems are
discussed in the near-field case. Numerical tests in both two and three dimensions are implemented
to show effectiveness and feasibility of the approach. This paper provides numerical analysis for a
frequency-domain approach to recover the support of an admissible class of time-dependent sources.

Key words. inverse source problem, Helmholtz equation, multi-frequency data, wave-number-
dependent sources, factorization method
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1. Introduction and problem formulation. Consider the time-dependent
acoustic wave radiating from a source term in an isotropic and homogeneous medium

\partial 2tU(x, t) =\Delta U(x, t)+S(x, t), (x, t)\in \BbbR 3 \times \BbbR +,

U(x,0) = \partial tU(x,0) = 0, x\in \BbbR 3,
(1.1)

where suppS(x, t) = D \times [tmin, tmax] \subset \BbbR 3 \times \BbbR + with tmax > tmin \geq 0. The wave
speed in the background medium has been normalized to be one. We suppose that
D\subset \BbbR 3 is a bounded Lipschitz domain such that \BbbR 3\setminus D is connected and that S(x, t)\in 
C([tmin, tmax],L

\infty (D)) is a real-valued function fulfilling the positivity constraint

S(x, t)\geq c0 > 0 a.e. x\in D, t\in [tmin, tmax].(1.2)

The above condition (1.2) implies that the location and shape of the time-dependent
source support D does not vary along with the time variable. The time interval
[tmin, tmax] \subset \BbbR + represents the duration period for source radiating. The solution
U can be given explicitly as the convolution of the fundamental solution to the wave
equation with the source term, that is,

U(x, t) =G(x, t) \ast S(x, t) :=
\int 
\BbbR +

\int 
\BbbR 3

G(x - y; t - \tau )S(y, \tau )dyd\tau ,(1.3)
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INVERSE WAVE-NUMBER-DEPENDENT SOURCE PROBLEMS 1373

where G(x, t) = \delta (t - | x| )
4\pi | x| is the Green's function to the wave equation in 3D. Taking

the inverse Fourier transform of U(x, t) with respect to the time variable, one deduces
from (1.3) that

w(x,k) :=
1\surd 
2\pi 

\int 
\BbbR 
U(x, t)eiktdt=

\int 
\BbbR 3

\Phi k(x, y)f(y, k)dy,(1.4)

where \Phi k(x, y) =
e\mathrm{i}k| x - y| 

4\pi | x - y| and f(y, k) denote respectively the inverse Fourier transforms

of the fundamental solution G(x  - y; t) and S(y, t). It is well known that \Phi k(x, y)
satisfies the Sommerfeld radiation condition. By the assumption of S, we have

f(x,k) =
1\surd 
2\pi 

\int 
\BbbR 
S(x, t)eiktdt=

1\surd 
2\pi 

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

S(x, t)eiktdt,(1.5)

which is compactly supported on D with respect to the space variables. Moreover,
f(\cdot , k) \in L2(D) for any k > 0. Therefore, it follows from (1.4) that w(\cdot , k) \in H2

loc(\BbbR 
3)

satisfies

\Delta w(x,k) + k2w(x,k) = - f(x,k), x\in \BbbR 3, k > 0,(1.6)

lim
r\rightarrow \infty 

r(\partial rw - ikw) = 0, r= | x| ,(1.7)

where the limit (1.7) holds uniformly in all directions \^x = x/| x| \in \BbbS 2 := \{ x \in \BbbR 3 :
| x| = 1\} . The Sommerfeld radiation condition (1.7) gives rise to the following asymp-
totic behavior at infinity:

w(x) =
eik| x| 

4\pi | x| 

\biggl\{ 
w\infty (\^x,k) +O

\biggl( 
1

| x| 

\biggr) \biggr\} 
as | x| \rightarrow \infty ,(1.8)

where w\infty (\cdot , k) \in C\infty (\BbbS 2) is referred to as the far-field pattern (or scattering ampli-
tude) of w. It is well known that the function \^x \mapsto \rightarrow w\infty (\^x,k) is real analytic on \BbbS 2,
where \^x\in \BbbS 2 is usually called the observation direction.

By (1.4), the far-field pattern w\infty of w can be expressed as

w\infty (\^x,k) =

\int 
D

e - ik\^x\cdot yf(y, k)dy, \^x\in \BbbS 2, k > 0.(1.9)

Furthermore, substituting (1.5) into (1.9), we obtain the expression of the far-field
pattern w\infty in the frequency domain as follows:

w\infty (\^x,k) =
1\surd 
2\pi 

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

e - ik(\^x\cdot y - t)S(x, t)dy dt, \^x\in \BbbS 2, k > 0.(1.10)

Noting that the time-dependent source S is real valued, we have f(x, - k) = f(x,k)
and thus w\infty (\^x, - k) = w\infty (\^x,k) for all k > 0. Let 0 \leq kmin < kmax and denote
by (kmin, kmax) the bandwidth of wave-numbers of the Helmholtz equation. In this
paper we are interested in the following inverse problem: determine the position and
shape of the support D from knowledge of the multi-frequency far/near-field patterns
\{ w\infty (\^xj , k) : k \in (kmin, kmax), j = 1,2, . . . , J\} .

If the source term is independent of frequencies (which corresponds to the crit-
ical case that S(x, t) = s(x)\delta (t) and f(x,k) = s(x)), the far-field pattern given by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
24

 to
 6

0.
29

.1
53

.1
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1374 HONGXIA GUO AND GUANGHUI HU

(1.9) is nothing else but the Fourier transform of the space-dependent source term
f at the Fourier variable \xi = k\^x \in \BbbR 3 multiplied by some constant. Since f is
compactly supported in D, its Fourier transform is analytic in \xi \in \BbbR 3. Hence, the far-
field measurements over an interval of frequencies and observation directions uniquely
determine the source function and also its support. A wide range of literature is de-
voted to inverse wavenumber-independent source problems with multi-frequency data,
for example, uniqueness proofs and increasing stability analysis with near-field mea-
surements [6, 7, 12, 15, 39] and a couple of numerical schemes such as the iterative
method, Fourier method, and test-function method for recovering the source function
[6, 8, 15, 45] and sampling-type methods for imaging the support [3, 17, 34]. On
the other hand, the inverse source problem with the measurement data at a single
frequency becomes severely ill-posed. It is impossible in general to determine a source
function (even its support) from a single far-field pattern due to the existence of non-
radiating sources; see, e.g., [11, 13, 14] for nonuniqueness examples. In a series papers
by Kusiak and Sylvester [38, 43, 44], the concept of convex scattering support has been
introduced to define the smallest convex set that carries a single far-field pattern. It
was shown in [10, 25] that a convex-polygonal source support and an admissible class
of analytic source functions can be uniquely determined by a single far-field pattern.
Numerical schemes such as the enclosure method [29] and one-wave factorization
method [40] were proposed for imaging the support of such convex-polygonal sources.
The filtered backprojection method [20, 21] and a hybrid method involving iterative
and range tests [2] were also investigated with a single far-field measurement.

In contrast to the vast literature for space-dependent source terms, little is known
if the source function depends on both frequency/wave-number and spatial variables.
Here we assume that the dependence on the frequency is unknown. One can see the
essential difficulties from the expression (1.9), where the far-field pattern is no longer
the Fourier transform of the source function. Hence, most existing methods cannot be
straightforwardly carried over to frequency-number-dependent source terms. In this
paper, we consider an inverse frequency-dependent source problem originating from
inverse time-dependent source problems. The temporal function is supposed to be
unknown, but the starting and terminal time points for radiating are given. Conse-
quently, the source term takes a special integral form of the time-dependent source
function (see (1.5)) with a priori given source radiating period [tmin, tmax]. This is
motivated by the Fourier method of [26, 27, 28] for proving uniqueness in determin-
ing the source function of inhomogeneous hyperbolic equations with vanishing initial
data. In these works the inverse time-dependent problems were reduced to equivalent
problems in the time-harmonic regime with multi-frequency data. The proposed fac-
torization scheme seems not applicable to general wave-number-dependent sources,
because we do not know how to get a desirable factorization form of the far-field
operator. Confined by such source functions, we think it is nontrivial to extend our
method to inverse medium scattering problems with multi-frequency data. We re-
fer the reader to [16, 18, 19, 23, 32, 33, 41] for the application of the sampling-type
methods to nonlinear inverse problems modeled by the Helmholtz equation.

The multi-static factorization method [35, 37], which was proposed by Kirsch
in 1998, provides a necessary and sufficient criterion for precisely characterizing the
shape and location of a scattering obstacle, utilizing the multi-static spectral system
of the far-field operator. The multi-frequency factorization method was rigorously
justified in [17] for recovering the smallest strip K

(\^x)
D that contains the support D
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INVERSE WAVE-NUMBER-DEPENDENT SOURCE PROBLEMS 1375

of a wave-number-independent source and is orthogonal to the observation direction
\^x. Moreover, the \Theta -convex polygon of the support can be recovered from the multi-
frequency far-field data over sparse observation directions. The aim of this paper is
to establish the analogue of the multi-frequency factorization method [17] for imaging
the support of a wave-number-dependent source function of the form (1.5). We prove
a new range identity for connecting ranges of the far-field operator F and the ``data-
to-pattern"" operator L. This yields a computational criterion for characterizing the
\Theta -convex hull of D using the multi-frequency far-field data over sparse observation
directions; see Theorem 4.2.

If the near-field measurement data are available in three dimensions, the recon-
struction scheme can be used for recovering the minimum and maximum distance
between the support and a measurement position. The connection between the near-
field factorization method and the time-dependent wave radiating problems will be
discussed in section 4. In two dimensions, the factorization method with far-field data
still remains valid, but the near-field version no longer holds true, perhaps due to the
lack of Huygens's principle. It is worth noting that the wave-number-dependence of
sources makes this paper quite different from [17]. It is necessary to know the ra-
diating period [tmin, tmax] of the time-dependent source in advance. Physically, this
can be explained by the fact that arrival and terminal time points of wave signals at
an observation point are available; we refer the reader to section 4 for the physical
interpretation. However, the a priori information on the radiating period [tmin, tmax]
can be relaxed to the condition that either tmin or tmax is known, and this will be
studied in our future works. The reconstruction method considered here can be re-
garded as a frequency-domain method for recovering the support of a time-dependent
source fulfilling the positivity condition (1.2). The novelty of this paper lies in the es-
tablishment of the multi-frequency factorization method for an inverse wave-number-
dependent source problem. This has been achieved by considering a special kind of
source term. The factorization scheme for general source terms, including inverse
medium scattering problems, still remains open.

The remainder of the paper is organized as follows. In section 2, the concept of the
multi-frequency far-field operator is introduced, and a new range identity is verified.
Section 3 is devoted to the choice of test functions for characterizing the strip K

(\^x)
D

through the ``data-to-pattern"" operator L. In section 4 we define indicator functions
using the far-field and near-field data measured at one or several observation direc-
tions/points. Numerical examples are reported in section 5. In [25] we also present
analysis and numerics for imaging two disconnected supports.

Below we introduce some notation to be used throughout this paper. Unless
otherwise stated, we always suppose that D is connected and bounded. Given \^x\in \BbbS 2,
we define \^x \cdot D := \{ t\in \BbbR : t= \^x \cdot y for some y \in D\} \subset \BbbR . Hence, (inf(\^x \cdot D), sup(\^x \cdot D))
must be a finite and connected interval on the real axis. A ball centered at y \in \BbbR 3

with the radius \epsilon > 0 will be denoted as B\epsilon (y). For brevity we write B\epsilon =B\epsilon (0) when
the ball is centered at the origin. Obviously, \^x\cdot B\epsilon (y) = (\^x\cdot y - \epsilon , \^x\cdot y+\epsilon ). In this paper
the one-dimensional Fourier and inverse Fourier transforms are defined respectively
by

(\scrF f)(k) = 1\surd 
2\pi 

\int 
\BbbR 
f(t)e - ikt dt, (\scrF  - 1v)(t) =

1\surd 
2\pi 

\int 
\BbbR 
v(k)eikt dk.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1376 HONGXIA GUO AND GUANGHUI HU

2. Factorization of far-field operator and a new range identity. Following
the ideas of [17], we introduce the central frequency kc and half of the bandwidth of
the given data as kc := (kmin+ kmax)/2, K := (kmax - kmin)/2. For every fixed \^x\in \BbbS 2,
we define the far-field operator by

(F\phi )(\tau ) = (F (\^x)\phi )(\tau ) :=

\int K

0

w\infty (\^x,kc + \tau  - s)\phi (s)ds, \tau \in (0,K).(2.1)

Since w\infty (\^x,k) is analytic with respect to the wave number k \in \BbbR , the operator
F (\^x) : L2(0,K)\rightarrow L2(0,K) is bounded. For notational convenience we introduce the
space XD := L2(D \times (tmin, tmax)). Denote by \langle \cdot , \cdot \rangle XD

the inner product over XD.
Below we shall prove a factorization of the far-field operator.

Theorem 2.1. We have F =L\scrT L\ast , where L=L
(\^x)
D is defined by

(Lu)(\tau ) =

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

e - i\tau (\^x\cdot y - t)u(y, t)dydt, \tau \in (0,K),(2.2)

for all u\in XD, and \scrT :XD \rightarrow XD is a multiplication operator defined by

(\scrT u)(y, t) := 1\surd 
2\pi 
e - ikc(\^x\cdot y - t) S(y, t)u(y, t).(2.3)

Proof. We first claim that the adjoint operator L\ast : L2(0,K)\rightarrow XD of L can be
expressed by

(L\ast \phi )(y, t) :=

\int K

0

ei\tau (\^x\cdot y - t)\phi (\tau )d\tau , \phi \in L2(0,K).(2.4)

Indeed, for u\in XD and \phi \in L2(0,K), it holds that

\langle Lu,\phi \rangle L2(0,K) =

\int K

0

\biggl( \int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

e - i\tau (\^x\cdot y - t)u(y, t)dy dt

\biggr) 
\phi (\tau )d\tau 

=

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

u(y, t)

\Biggl( \int K

0

\phi (\tau )ei\tau (\^x\cdot y - t)d\tau 

\Biggr) 
dy dt= \langle u,L\ast \phi \rangle XD

,

which implies (2.4). By the definition of \scrT ,

(\scrT L\ast \phi )(y, t) =
1\surd 
2\pi 
e - ikc(\^x\cdot y - t) S(y, t)

\int K

0

eis(\^x\cdot y - t)\phi (s)ds, \phi \in L2(0,K).

Hence, combining (1.5), (2.2), and (2.1) yields

(L\scrT L\ast \phi )(\tau ) =

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

e - i\tau (\^x\cdot y - t)

\Biggl( 
1\surd 
2\pi 
e - ikc(\^x\cdot y - t) S(y, t)

\int K

0

eis(\^x\cdot y - t)\phi (s)ds

\Biggr) 
dy dt

=
1\surd 
2\pi 

\int K

0

\int 
D

e - i(kc+\tau  - s)\^x\cdot y\phi (s)

\biggl( \int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

S(y, t)ei(kc+\tau  - s)t dt

\biggr) 
dy ds

=
1\surd 
2\pi 

\int K

0

\int 
D

e - i(kc+\tau  - s)\^x\cdot y\phi (s)f(y, kc + \tau  - s)dy ds= (F\phi )(\tau ).

This proves the factorization F =L\scrT L\ast .

The operator L
(\^x)
D maps a time-dependent source function S(x, t) supported on

D \times [tmin, tmax] to multi-frequency far-field patterns at the observation direction \^x,

that is, w\infty (\^x, \cdot ) = (L
(\^x)
D S)(\cdot ). It will be referred to as the ``data-to-pattern"" operator

within this paper. Denote by Range(L
(\^x)
D ) the range of the operator L

(\^x)
D (see (2.2))

acting on XD.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
24

 to
 6

0.
29

.1
53

.1
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



INVERSE WAVE-NUMBER-DEPENDENT SOURCE PROBLEMS 1377

Lemma 2.1. The operator L
(\^x)
D :XD \rightarrow L2(0,K) is compact with dense range.

Proof. For any u \in XD, it holds that L
(\^x)
D u \in H1(0,K) by definition (2.2). Since

H1(0,K) is compactly embedded into L2(0,K), we get the compactness of L
(\^x)
D . To

prove the denseness of Range(L
(\^x)
D ) in L2(0,K), we only need to prove the injectivity

of (L
(\^x)
D )\ast . If (L

(\^x)
D )\ast \phi = 0 for some \phi \in L2(0,K), from (2.4) it follows that\int K

0

ei\tau (\^x\cdot y - t)\phi (\tau )d\tau = 0 in XD.

Denote by \~\phi the extension of \phi by zero from (0,K) to \BbbR . The previous relation implies

0 =
1\surd 
2\pi 

\int 
\BbbR 
ei\tau (\^x\cdot y - t) \~\phi (\tau )d\tau = (\scrF  - 1 \~\phi )(\xi ),

where \xi = \^x \cdot y - t\in (inf(\^x \cdot D) - tmax, sup(\^x \cdot D) - tmin). The analyticity of (\scrF  - 1 \~\phi )(\xi ) in
\xi \in \BbbR yields the identical vanishing of the inverse Fourier transform of \~\phi . This proves
\phi = 0 and thus the injectivity of (L

(\^x)
D )\ast .

Now we want to connect the ranges of F and L. The existing range identities (see,
e.g., [37, Theorem 2.15] and [36, Theorems 4.1 and 4.4]) are not applicable to our case,
because the real part of the middle operator \scrT (see (2.3)) cannot be decomposed into
the sum of a positive and a compact operator. Nevertheless, the multiplication form
of the middle operator motivates us to establish a new range identity. We first recall
that, for a bounded operator F : Y \rightarrow Y in a Hilbert space Y , its real and imaginary
parts are defined respectively by ReF = (F + F \ast )/2, ImF = (F  - F \ast )/(2i), which
are both self-adjoint operators. Furthermore, by spectral representation we define the
self-adjoint and positive operator | ReF | as

| ReF | =
\int 
\BbbR 
| \lambda | dE\lambda if ReF =

\int 
\BbbR 
\lambda dE\lambda .

The self-adjoint and positive operator | ImF | can be defined analogously. In this
paper the operator F\# is defined as F\# := | ReF | + | ImF | . If F\# is self-adjoint and

positive, its square root F
1/2
\# is well defined. We need the following auxiliary result

from functional analysis.

Theorem 2.2. Let X and Y be Hilbert spaces and let F : Y \rightarrow Y , L :X\rightarrow Y , and
\scrT :X\rightarrow X be bounded linear operators such that F = L\scrT L\ast . We make the following
assumptions:

(i) L is compact with dense range and thus L\ast is compact and one-to-one.
(ii) Re\scrT and Im\scrT are both one-to-one and the operator \scrT \# = | Re\scrT | + | Im\scrT | :

X\rightarrow X is coercive, i.e., there exists c > 0 with\bigl\langle 
\scrT \#\varphi ,\varphi 

\bigr\rangle 
X
\geq c | | \varphi | | 2X for all \varphi \in X.

Then the operator F\# is positive and the ranges of F
1/2
\# : Y \rightarrow Y and L : X \rightarrow Y

coincide.

Proof. We first recall from Part A in the proof of [37, Theorem 2.15] that it is
sufficient to assume that L\ast : Y \rightarrow X has dense range in X. If otherwise, we may
replace X by the closed subspace Range(L\ast ) by using the orthogonal projection from
X onto Range(L\ast ). Below we shall prove the decomposition F\# = L\scrT \#L\ast . For this
purpose we only need to show

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1378 HONGXIA GUO AND GUANGHUI HU

| ReF | =L | Re \scrT | L\ast , | ImF | =L | Im \scrT | L\ast .(2.5)

It suffices to consider the real part of F , because the imaginary part can be treated
similarly. Since ReF = L (Re \scrT )L\ast is self-adjoint, it has a complete orthonormal
eigensystem \{ (\lambda j ,\psi j) : j \in \BbbN \} . Hence, the space Y can be split into two closed
orthogonal subspaces Y = Y  - \oplus Y + with

Y  - = span\{ \psi j : \lambda j \leq 0\} , Y + = span\{ \psi j : \lambda j \geq 0\} .

We note that Y  - \cap Y + = \{ 0\} , since \lambda j = 0 yields \psi j = 0. It is obvious that
\langle (ReF )\psi ,\psi \rangle Y is nonnegative on Y + and nonpositive on Y  - .

Consequently, \langle (Re \scrT )\phi ,\phi \rangle X is nonnegative on U+ :=L\ast (Y +) and is nonpositive
on U - :=L\ast (Y  - ), because

\langle (Re \scrT )\phi ,\phi \rangle X = \langle (Re \scrT )L\ast (\psi \pm ),L\ast (\psi \pm )\rangle X = \langle (ReF )(\psi \pm ),\psi \pm \rangle Y \lesseqqgtr 0,(2.6)

where \phi =L\ast (\psi \pm ) with \psi \pm \in Y \pm . This implies that

\langle (Re \scrT )\phi ,\phi \rangle X = 0 if \phi \in U+ \cap U - .(2.7)

For \phi \in U+ \cap U - , we have \phi \pm + t\phi \in U\pm for all \phi \pm \in U\pm and for all t \in \BbbC . This
together with the relation (2.7) leads to \langle (Re \scrT )\phi ,\phi \pm \rangle X = 0; see Part C in the proof of
[37, Theorem 2.15]. From this we deduce that (Re \scrT )\phi = 0. Since Re\scrT is one-to-one,
we thus obtain \phi = 0. In view of the denseness of the range of L\ast , this proves the
orthogonal decomposition X =U+ \oplus U - .

To proceed with the proof, we denote by P\pm 
Y the orthogonal projectors from Y

onto Y \pm . Since ReF is invariant on both Y + and Y  - , there holds

| ReF | = (P+  - P - )(ReF ) = (ReF )(P+  - P - ) =L (Re \scrT )L\ast (P+  - P - ).(2.8)

Introduce the orthogonal projections Q\pm 
U : X \rightarrow U\pm . It is then easy to conclude the

relations (Re \scrT )L\ast P\pm 
Y = (Re \scrT )Q\pm 

UL
\ast . Therefore, using (2.8) and (2.6), we get

| ReF | =L (Re \scrT )L\ast (P+
Y  - P - 

Y ) =L [(Re \scrT )(Q+
U  - Q - 

U )]L
\ast =L | Re \scrT | L\ast ,

which proves the first relation in (2.5) and thus also the decomposition F\# =L\scrT \#L\ast .
By the second assumption (ii), we obtain the positivity of F\#. By the coercivity of \scrT \#,
we can define the square root operator \scrT 1/2

\# , which is also coercive and self-adjoint.
Thus, we have a decomposition of F\# in the form

F\# = (L\scrT 1/2
\# ) (L\scrT 1/2

\# )\ast = F
1/2
\# (F

1/2
\# )\ast .

Application of [37, Theorem 1.21] gives (F
1/2
\# ) =Range (L).

To apply Theorem 2.2 to our inverse problem, we set F = F
(\^x)
D , X = XD, Y =

L2(0,K) and let \scrT be the multiplication operator of (2.3). Since the source function
S(x, t) is real valued, it follows from (2.3) that

(Re \scrT )u=
1\surd 
2\pi 

cos
\bigl( 
kc(\^x \cdot y - t)

\bigr) 
S(y, t)u(y, t),

(Im \scrT )u=
1\surd 
2\pi 

sin
\bigl( 
kc(\^x \cdot y - t)

\bigr) 
S(y, t)u(y, t),
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INVERSE WAVE-NUMBER-DEPENDENT SOURCE PROBLEMS 1379

both of which are one-to-one operators from XD onto XD. The coercivity assumption
on S yields the coercivity of \scrT \#, that is,

\langle \scrT \# u,u\rangle =
\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

1\surd 
2\pi 

\Bigl( 
| cos

\bigl( 
kc(\^x \cdot y - t)

\bigr) 
| + | sin

\bigl( 
kc(\^x \cdot y - t)

\bigr) 
| 
\Bigr) 
S(y, t) | u(y, t)| 2 dydt

\geq 1\surd 
2\pi 

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

S(y, t) | u(y, t)| 2 dydt\geq 1\surd 
2\pi 
c0 | | u| | 2XD

.

As a consequence of Theorem 2.2, we obtain

Range [(F
(\^x)
D )

1/2
\# ] = Range (L

(\^x)
D ) for all \^x\in \BbbS 2.(2.9)

Let \chi (k)\in L2(0,K) be some test function. Denote by (\lambda 
(\^x)
n ,\psi 

(\^x)
n ) an eigensystem

of the positive and self-adjoint operator (F
(\^x)
D )\#, which is uniquely determined by the

multi-frequency far-field patterns \{ w\infty (\^x,k) : k \in (kmin, kmax)\} . Applying Picard's
theorem and Theorem 2.2, we obtain

\chi \in Range(L
(\^x)
D ) if and only if

\infty \sum 
n=1

| \langle \chi ,\psi (\^x)
n \rangle | 2

| \lambda (\^x)n | 
<\infty .(2.10)

To establish the factorization method, we now need to choose a suitable class of test
functions, which usually rely on a sample variable in \BbbR 3. The inclusion relationship
between the test function and Range(L

(\^x)
D ) should be associated with the inclusion

relationship between the corresponding sample variable and the region D.

Remark 2.1. In the special case that kmin = 0, we can also apply the range identity
of [36, Theorem 4.1] to get (2.9). In fact, since w\infty (\^x, - k) =w\infty (\^x,k), we may extend
the bandwidth from (0, kmax) to ( - kmax, kmax). Hence, one deduces from these new
measurement data with kmin =  - kmax that kc = 0 and K = kmax. Consequently,
the middle operator \scrT is self-adjoint, due to the multiplication form \scrT u = S u for
u \in XD. This implies that F

(\^x)
D is also self-adjoint. Moreover, F

(\^x)
D and \scrT are both

positive definite under the assumption (1.2) and thus (F
(\^x)
D )\# = F

(\^x)
D , \scrT \# = \scrT . The

range identity stated in Theorem 2.2 allows us to handle a more general class of
wave-number bands, in particular an interval of wave-numbers bounded away from
zero.

3. Range of \bfitL 
(\^\bfitx )
\bfitD and test functions. In this section we choose a proper class

of test functions to characterize the range of L
(\^x)
D . Throughout the paper we set

T := tmax  - tmin > 0.

Lemma 3.1. Let D1,D2 \subset \BbbR 3 be bounded domains such that \^x \cdot D1 \cap \^x \cdot D2 = \emptyset .
Suppose one of the following relations holds:

inf(\^x \cdot D1) - sup(\^x \cdot D2)>T, inf(\^x \cdot D2) - sup(\^x \cdot D1)>T.(3.1)

Then Range(L
(\^x)
D1

)\cap Range(L
(\^x)
D2

) = \{ 0\} , that is, the ranges of L
(\^x)
Dj

over XD1
and XD2

have trivial intersections.

Proof. Let fj \in XDj be such that L
(\^x)
D1
f1 = L

(\^x)
D2
f2 := \scrG (\cdot , \^x). By the definition of

L
(\^x)
D (see (2.2)), the function

\tau \mapsto \rightarrow \scrG (\tau , \^x) =
\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D1

e - i\tau (\^x\cdot y - t)f1(y, t)dydt=

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D2

e - i\tau (\^x\cdot y - t)f2(y, t)dydt
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1380 HONGXIA GUO AND GUANGHUI HU

belongs to L2(0,K). Since \scrG (\cdot , \^x) is analytic, the previous relation is valid for all
\tau \in \BbbR . Extending fj by zero from (tmin, tmax) to \BbbR and letting \xi = \^x \cdot y - t, we can
rewrite the integrals over Dj as\int 

Dj

e - i\tau (\^x\cdot y - t)fj(y, t)dy=

\int 
\BbbR 
e - i\tau \xi 

\int 
\Gamma j(\xi +t,\^x)

fj(y, t)ds(y)d\xi ,

where \Gamma j(t, \^x)\subset Dj is defined as

\Gamma j(t, \^x) := \{ y \in Dj : \^x \cdot y= t\} \subset \BbbR 3, t\in \BbbR , j = 1,2.

This implies that the function \scrG (\cdot , \^x) is the Fourier transform of gj :

\scrG (\tau , \^x) =
\int 
\BbbR 
e - i\tau \xi gj(\xi , \^x)d\xi , \tau \in \BbbR ,(3.2)

with

gj(\xi , \^x) :=

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
\Gamma j(\xi +t,\^x)

fj(y, t)ds(y)dt=

\int \xi +t\mathrm{m}\mathrm{a}\mathrm{x}

\xi +t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
\Gamma j(t,\^x)

fj(y, t - \xi )ds(y)dt

for j = 1,2. By the arbitrariness of \tau \in \BbbR , we get from (3.2) that g1(\xi , \^x) = g2(\xi , \^x)
for all \xi \in \BbbR . On the other hand, observing that

\Gamma j(t, \^x) = \emptyset if t > sup(\^x \cdot Dj) or t < inf(\^x \cdot Dj),

we have

gj(\xi , \^x) = 0 if \xi + tmin> sup(\^x \cdot Dj) or \xi + tmax< inf(\^x \cdot Dj).

This implies

suppgj(\cdot , \^x)\subset 
\Bigl( 
inf(\^x \cdot Dj) - tmax, sup(\^x \cdot Dj) - tmin

\Bigr) 
, j = 1,2,

By the conditions in (3.1), it is clear that one of the following relations holds:

inf(\^x \cdot D1) - tmax > sup(\^x \cdot D2) - tmin,

inf(\^x \cdot D2) - tmax > sup(\^x \cdot D1) - tmin,

leading to g1(\xi , \^x) = g2(\xi , \^x)\equiv 0 for all \xi \in \BbbR in any case. Recalling (3.2), we obtain

L
(\^x)
D1
f1 =L

(\^x)
D2
f2 \equiv 0.

As a consequence of the proof of Lemma 3.1, we can get information on the
supporting interval of the inverse Fourier transform of L

(\^x)
D f for f \in XD as follows.

Corollary 3.1. Let D\subset \BbbR 3 be a bounded domain and tmax > tmin. Define

\scrG (\tau , \^x) :=
\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

e - i\tau (\^x\cdot y - t)f(y, t)dydt, f \in XD.

Then the support of the inverse Fourier transform of \scrG (\cdot , \^x) is contained in the interval\bigl( 
inf(\^x \cdot D) - tmax, sup(\^x \cdot D) - tmin

\bigr) 
.

For any y \in \BbbR 3 and \epsilon > 0, define the test function \phi 
(\^x)
y,\epsilon \in L2(0,K) by

\phi (\^x)y,\epsilon (k) =
1

T | B\epsilon (y)| 

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
B\epsilon (y)

e - ik(\^x\cdot z - t)dzdt, k \in (0,K),(3.3)
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−4 −2 2 4

−4

−2

2

4

x1

x2

x̂ = (1, 0)

K
(x̂)
D

D

inf(x̂ ·D) sup(x̂ ·D)

Fig. 1. Illustration of the strip K
(\^x)
D with \^x= (1,0).

where | B\epsilon (y)| = 4/3\pi \epsilon 3 denotes the volume of the ball B\epsilon (y) \subset \BbbR 3. As \epsilon \rightarrow 0, there
holds the convergence

\phi (\^x)y,\epsilon (k)\rightarrow \phi (\^x)y (k) :=
1

T

\biggl( \int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

eiktdt

\biggr) 
e - ik\^x\cdot y.(3.4)

Below we describe the supporting interval of the inverse Fourier transform of the
test functions defined by (3.3).

Lemma 3.2. For \epsilon > 0, we have

[\scrF  - 1\phi (\^x)y,\epsilon ](\xi )> 0 if \xi \in (\^x \cdot y - \epsilon  - tmax, \^x \cdot y+ \epsilon  - tmin),(3.5)

[\scrF  - 1\phi (\^x)y,\epsilon ](\xi ) = 0 if \xi /\in (\^x \cdot y - \epsilon  - tmax, \^x \cdot y+ \epsilon  - tmin).(3.6)

Proof. As done in (3.2), we can rewrite \phi 
(\^x)
y,\epsilon as the Fourier transform of g\epsilon (\xi , \^x):

\phi (\^x)y,\epsilon (\tau ) =

\int 
\BbbR 
e - i\tau \xi g\epsilon (\xi , \^x)d\xi , g\epsilon (\xi , \^x) =

1

T | B\epsilon (y)| 

\int \xi +t\mathrm{m}\mathrm{a}\mathrm{x}

\xi +t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
\Gamma (t,\^x)

ds(z)dt,

with \Gamma (t, \^x) = \{ z \in B\epsilon (y) : \^x \cdot z = t\} . Hence, \scrF  - 1\phi 
(\^x)
y,\epsilon =

\surd 
2\pi g\epsilon (\cdot , \^x). Observing that

sup
\bigl( 
\^x \cdot B\epsilon (y)

\bigr) 
= \^x \cdot y+ \epsilon , inf

\bigl( 
\^x \cdot B\epsilon (y)

\bigr) 
= \^x \cdot y - \epsilon ,

we obtain (3.5) and (3.6) from the expression of g\epsilon (\cdot , \^x).
Introduce the strip (see Figure 1)

K
(\^x)
D := \{ y \in \BbbR 3 : inf(\^x \cdot D)< \^x \cdot y < sup(\^x \cdot D)\} \subset \BbbR 3.(3.7)

The set K
(\^x)
D \subset \BbbR 3 represents the smallest strip containing D and perpendicular

to the vector \^x \in \BbbS 2. We shall establish a computational criterion for imaging K
(\^x)
D

from the multi-frequency far-field data u\infty (\^x,k) with k \in (kmin, kmax).

Lemma 3.3. (i) For y \in K(\^x)
D , there exists \epsilon 0 > 0 such that \phi 

(\^x)
y,\epsilon \in Range(L

(\^x)
D ) for

all \epsilon \in (0, \epsilon 0).

(ii)If y /\in K(\^x)
D , we have \phi 

(\^x)
y,\epsilon /\in Range(L

(\^x)
D ) for all \epsilon > 0.
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1382 HONGXIA GUO AND GUANGHUI HU

Proof. (i) If \^x \cdot y \in \^x \cdot D, there must exist some z \in D and \epsilon 0 > 0 such that

\^x \cdot y= \^x \cdot z and B\epsilon (z)\subset D for all \epsilon \in (0, \epsilon 0). Moreover, we have \phi 
(\^x)
y,\epsilon = \phi 

(\^x)
z,\epsilon . Set

u(x, t) :=

\biggl\{ 1
| B\epsilon (z)| T if x\in B\epsilon (z), t\in (tmin, tmax),

0 if otherwise.

It is obvious that u(x, t) \in L2(D \times (tmin, tmax). By the definition of L
(\^x)
D (see (2.2)),

it is easy to see that \phi 
(\^x)
z,\epsilon =L

(\^x)
D u.

(ii) Given y /\in K
(\^x)
D , we suppose on the contrary that \phi 

(\^x)
y,\epsilon = L

(\^x)
D f with some

f \in L2(D\times (tmin, tmax)), i.e.,

\phi (\^x)y,\epsilon (\tau ) =

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

e - i\tau (\^x\cdot z - t)f(z, t)dzdt, \tau \in (0,K).(3.8)

By the analyticity in \tau , the above relation can be extended to \tau \in \BbbR . Hence, the sup-
porting intervals of the inverse Fourier transform of both sides of (3.8) must coincide.
Using (3.5) and Corollary 3.1, we obtain

(\^x \cdot y - \epsilon  - tmax, \^x \cdot y+ \epsilon  - tmin) \subset (inf(\^x \cdot D) - tmax, sup(\^x \cdot D) - tmin) ,

leading to

inf(\^x \cdot D) + \epsilon \leq \^x \cdot y\leq sup(\^x \cdot D) - \epsilon for all \epsilon > 0.(3.9)

This implies that y \in K(\^x)
D , a contradiction to the assumption y /\in K(\^x)

D . This proves

\phi 
(\^x)
y,\epsilon /\in Range(L

(\^x)
D ) for all \epsilon > 0.

4. Indicator functions with multi-frequency far/near-field data. By

Lemma 3.3, the functions \phi 
(\^x)
y,\epsilon with a small \epsilon > 0 can be taken as test functions

to characterize D through (2.10). We first consider the indicator function involving

\phi 
(\^x)
y,\epsilon :

W (\^x)
\epsilon (y) :=

\left[  \infty \sum 
n=1

| \langle \phi (\^x)y,\epsilon ,\psi 
(\^x)
n \rangle | 2L2(0,K)

| \lambda (\^x)n | 

\right]   - 1

, y \in \BbbR 3.(4.1)

The analogue of (4.1) was used in [17] for imaging the support of a wave-number-
independent source function. Combining Theorem 2.2 and Lemma 3.3 yields the
following theorem.

Theorem 4.1. (i) If y \in K(\^x)
D , there exists \epsilon 0 > 0 such that W

(\^x)
\epsilon (y) > 0 for all

\epsilon \in (0, \epsilon 0).

(ii) If y /\in K(\^x)
D , there holds W

(\^x)
\epsilon (y) = 0 for all \epsilon > 0.

Since \phi 
(\^x)
y,\epsilon convergences uniformly to \phi 

(\^x)
y over the finite wave-number interval

[kmin, kmax], we shall use the limiting function \phi 
(\^x)
y in place of \phi 

(\^x)
y,\epsilon in the aforemen-

tioned indicator function. Consequently, we introduce a new indicator function,

W (\^x)(y) :=

\left[  \infty \sum 
n=1

| \langle \phi (\^x)y ,\psi 
(\^x)
n \rangle | 2L2(0,K)

| \lambda (\^x)n | 

\right]   - 1

\sim 

\left[  N\sum 
n=1

| \langle \phi (\^x)y ,\psi 
(\^x)
n \rangle | 2L2(0,K)

| \lambda (\^x)n | 

\right]   - 1

(4.2)
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INVERSE WAVE-NUMBER-DEPENDENT SOURCE PROBLEMS 1383

for y \in \BbbR 3, where the integer N \in \BbbN is a truncation number. Taking the limit \epsilon \rightarrow 0
in Theorem 4.1, it follows that

W (\^x)(y) =

\Biggl\{ 
\geq 0 if y \in K(\^x)

D ,

0 if y /\in K(\^x)
D .

(4.3)

Hence, the values of W (\^x) in the strip K
(\^x)
D should be relatively bigger than those

elsewhere. In the case of sparse observation directions \{ \^xj : j = 1,2, . . . ,M\} , we shall
make use of the following indicator function:

W (y)=

\left[  M\sum 
j=1

1

W (\^xj)(y)

\right]   - 1

=

\left[  M\sum 
j=1

N\sum 
n=1

| \langle \phi (\^xj)
y ,\psi 

(\^xj)
n \rangle | 2L2(0,K)

| \lambda (\^xj)
n | 

\right]   - 1

, y \in \BbbR 3.(4.4)

Define the \Theta -convex hull of D associated with \{ \^xj : j = 1,2, . . . ,M\} as \Theta D :=\bigcap 
j=1,2,\cdot \cdot \cdot ,M K

(\^xj)
D .

Theorem 4.2. We have W (y)\geq 0 if y \in \Theta D and W (y) = 0 if y /\in \Theta D.

Proof. If y \in \Theta D, then y \in K(\^xj)
D for all j = 1,2, . . . ,M , yielding that \^xj \cdot y \in \^xj \cdot D.

Hence, one deduces from Theorem 4.1 that 0\leq W (\^xj)(y)<\infty for all j = 1,2, . . . ,M ,
implying that 0 \leq W (y). On the other hand, if y /\in \Theta D, there must exist some unit

vector \^xl such that y /\in K(\^xl)
D . Again, using Theorem 4.1, we get

[W (\^xl)(y)] - 1 =

\infty \sum 
n=1

| \langle \phi (\^xl)
y ,\psi 

(\^xl)
n \rangle | 2L2(0,K)

| \lambda (\^xl)
n | 

=\infty ,

which proves W (y) = 0 for y /\in \Theta D.

The values of W (y) are expected to be large for y \in \Theta D and small for those
y /\in \Theta D. Below we shall provide a physical interpretation of the proposed inversion
algorithm and build up connections with the time-dependent inverse source problems.
We first remark that the above factorization method with multi-frequency data carries
over to near-field measurements in three dimensions. More precisely, the proposed
factorization method can be slightly modified to get an image of the annular region

\~K
(x)
D := \{ y \in \BbbR 3 : inf

z\in D
| x - z| < | x - y| < sup

z\in D
| x - z| \} \subset \BbbR 3(4.5)

for every fixed measurement position | x| = R. For this purpose we suppose D \subset BR

for some R> 0 and define the near-field operator \scrN (x) :L2(0,K)\rightarrow L2(0,K) by

(\scrN (x)\phi )(\tau ) :=

\int K

0

w(x,kc + \tau  - s)\phi (s)ds, \tau \in (0,K),(4.6)

where x \in \partial BR is a measurement position and w \in H2(BR) is the solution to the
Helmholtz equation (1.6). Following the proof of Theorem 2.1, we obtain a factoriza-

tion of the near-field operator as \scrN (x) = \~L \~T \~L\ast , where \~L = \~L
(x)
D : XD \rightarrow L2(0,K) is

defined by

(\~Lu)(\tau ) =

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
D

ei\tau (| x - y| +t)u(y, t)dydt, \tau \in (0,K),
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1384 HONGXIA GUO AND GUANGHUI HU

for all u\in XD, and the middle operator \~T :XD \rightarrow XD is again a coercive multiplication
operator defined by

( \~Tu)(y, t) :=
eikc(| x - y| +t)

\surd 
32\pi 3| x - y| 

u(y, t)S(y, t), | x| =R.

Choose the test function

\~\phi (x)y,\epsilon (k) :=
1

T | B\epsilon (y)| 

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\int 
B\epsilon (y)

eik(| x - z| +t)

4\pi | x - z| 
dz dt,

which tends uniformly to

\~\phi (x)y (k) :=
 - i eik| x - y| 

4\pi k| x - y| T
\bigl( 
eikt\mathrm{m}\mathrm{a}\mathrm{x}  - eikt\mathrm{m}\mathrm{i}\mathrm{n}

\bigr) 
,

as \epsilon \rightarrow 0 for all k \in [kmin, kmax]. Introduce the indicator function

\widetilde W (x)(y) :=

\left[  \infty \sum 
n=1

| \langle \~\phi (x)y , \~\psi 
(x)
n \rangle | 2L2(0,K)

| \~\lambda (x)n | 

\right]   - 1

, y \in \BbbR 3,(4.7)

where (\~\lambda 
(x)
n , \~\psi 

(x)
n ) is an eigensystem of the near-field operator (\scrN (x))\#. As the coun-

terpart to (4.4), one can show in the near-field case that the following holds.

Corollary 4.1. We have Range [(\scrN (x))
1/2
\# ] =Range (\~L(x)) for all x\in \partial BR. The

indicator \widetilde W (x) \geq 0 in \~K
(x)
D and vanishes identically in the exterior of \~K

(x)
D .

Now we want to bridge this near-field indicator function with the time-domain
signals of wave equations. In the near-field case, we suppose that the sparse data
are given by \{ w(xj , k) : xj \in \partial BR, k \in (kmin, kmax)\} , which can be considered as
the inverse Fourier transform of the time-dependent data \{ U(xj , t) : xj \in \partial BR, t \in 
(0, T )\} for some T > 2R+ tmax. The time-dependent signal t \mapsto \rightarrow U(x, t) with a fixed
x \in \partial BR has a compact support, because the source term is compactly supported in
D \times [tmin, tmax]. Physically, this can be explained by the Huygens principle in 3D.
Since the wave speed has been normalized to be one, it is not difficult to observe that
the arrival time point Tarr and the terminal time point Tter of the signal recorded by
the sensor at | x| =R are

Tarr = tmin + inf
z\in D

| x - z| , Tter = tmax + sup
z\in D

| x - z| ,

respectively, where [tmin, tmax] represents the duration period for source radiating.
This explains why the minimum distance and maximum distance between a measure-
ment position x and our target D (which are equivalent to the annulus \~K

(x)
D ) can be

recovered from the multi-frequency near-field data at | x| =R.

5. Numerical examples. In this section, we present a couple of numerical
examples in \BbbR 2 and \BbbR 3 to test the proposed factorization method with far-field and
near-field measurements. All numerical examples are implemented by MATLAB.

5.1. Numerical implements with far-field measurements in \BbbR 2. We first
describe the reconstruction procedure with multi-frequency far-field data over a single
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INVERSE WAVE-NUMBER-DEPENDENT SOURCE PROBLEMS 1385

or multiple observation direction(s). Unless otherwise stated, we always assume
kmin = 0. With such a choice the far-field operator (2.1) can be simplified to be

(F (\^x)\phi )(\tau ) =

\int k\mathrm{m}\mathrm{a}\mathrm{x}

0

w\infty (\^x, \tau  - s)\phi (s)ds, L2(0, kmax)\rightarrow L2(0, kmax)(5.1)

by taking kc = 0 and K = kmax; see Remark 2.1. In our numerical examples
below, we consider 2N  - 1 wave-number samples w\infty (\^x,kn), n = 1,2, . . . ,N,, and
w\infty (\^x, - kn), n= 1,2, . . . ,N - 1, of the far field, where kn = (n - 0.5)\Delta k, \Delta k := kmax/N .
Using the 2N  - 1 samples of the far field in (5.1) and applying the midpoint rule, we
obtain from (5.1) that

(F (\^x)\phi )(\tau n)\approx 
N\sum 

m=1

w\infty (\^x, \tau n  - sm)\phi (sm)\Delta k,

where \tau n := n\Delta k and sm := (m - 0.5)\Delta k, n,m = 1,2, . . . ,N . Accordingly, a discrete
approximation of F (\^x) is given by the Toeplitz matrix

F (\^x) :=

\left(       
w\infty (\^x,k1) w\infty (\^x,k1) \cdot \cdot \cdot w\infty (\^x,kN - 2) w\infty (\^x,kN - 1)

w\infty (\^x,k2) w\infty (\^x,k1) \cdot \cdot \cdot w\infty (\^x,kN - 3) w\infty (\^x,kN - 2)
...

...
...

...

w\infty (\^x,kN - 1) w\infty (\^x,kN - 2) \cdot \cdot \cdot w\infty (\^x,k1) w\infty (\^x,k1)
w\infty (\^x,kN ) w\infty (\^x,kN - 1) \cdot \cdot \cdot w\infty (\^x,k2) w\infty (\^x,k1)

\right)       \Delta k,

where w\infty (\^x,kn) = w\infty (\^x, - kn), n = 1, . . . ,N  - 1, and F (\^x) is an N \times N complex

matrix. For any point y \in \BbbR 2 we define the test function vector \phi 
(\^x)
y \in \BbbC N from (3.4)

by

\phi (\^x)y :=

\biggl( 
 - i

T\tau 1
(ei\tau 1T  - 1)e - i\tau 1\^x\cdot y, . . . ,

 - i

T\tau N
(ei\tau NT  - 1)e - i\tau N \^x\cdot y

\biggr) 
,(5.2)

where T = tmax  - tmin. Denoting by \{ (\~\lambda (\^x)n ,\psi 
(\^x)
n ) : n = 1,2, . . . ,N\} an eigensystem

of the matrix F (\^x), one then deduces that an eigensystem of the matrix (F (\^x))\# :=

| Re (F (\^x))| + | Im(F (\^x))| is \{ (\lambda (\^x)n ,\psi 
(\^x)
n ) : n = 1,2, . . . ,N\} , where \lambda (\^x)n := | Re (\~\lambda (\^x)n )| +

| Im(\~\lambda 
(\^x)
n )| . A plot of W (\^x)(y) should yield a visualization of the strip K

(\^x)
D (see (4.5))

containing the source support. In the following numerical examples, the frequency
band is taken as (0,16\pi /6) with kmax = 16\pi /6, N = 16, and \Delta k = \pi /6. The wave-
number-dependent source term f(x,k) is supposed to be given by (1.5). We always
take tmin = 0 and tmax = T = 0.1 unless otherwise specified.

5.1.1. One observation direction. We first consider reconstruction of the
strip K

(\^x)
D from the multi-frequency far-field data w\infty (\^x,\pm kn). In Figure 2, we show

a visualization of reconstructions of three sources supported on a kite-shaped domain
at the observation direction \^x = (cos\theta , sin\theta ) with the angle \theta \in (0,2\pi ]. The time-
dependent source functions are chosen as S(x, t) satisfying the positivity assumption
(1.2). We choose S(x, t) = 3(t+ 1) and \theta = \pi /4 in Figure 2(a); S(x, t) = 3x1(t+ 1)
and \theta = \pi /2 in Figure 2(b); S(x, t) = 3(x21 + x22  - 4)(t+ 1) and \theta = 3\pi /4 in Figure
2(c). The boundary of D is also shown in the picture (pink solid line). (Color is
available online.) As predicted by our theoretical results, the reconstructions nicely

approximate the smallest strip K
(\^x)
D perpendicular to the observation directions that

contains the support.
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1386 HONGXIA GUO AND GUANGHUI HU

(a) S = 3(t+ 1), \theta = \pi /4 (b) S = 3x1(t+ 1), \theta = \pi /2 (c) S = 3(x2
1+x2

2 - 4)(t+ 1), \theta =
3\pi /4

Fig. 2. Reconstructions using a single observation direction and multi-frequency far-field data
for a kite-shaped support. We choose t\mathrm{m}\mathrm{i}\mathrm{n} = 0 and t\mathrm{m}\mathrm{a}\mathrm{x} = T = 0.1.

(a) T = 1 (b) T = 2 (c) T = 3

Fig. 3. Reconstructions of a kite-shaped support with S = 3(x2
1 + x2

2  - 4)(t+ 1) and \theta = 3\pi /4
with different inverse Fourier transform windows (0, T ).

(a) T0 = 1, T = 0.1 (b) T0 = 2, T = 0.1 (c) T0 = 3, T = 0.1

Fig. 4. Reconstructions of a kite-shaped support with S = 3(x2
1 + x2

2  - 4)(t+ 1), \theta = 3\pi /4, and
with different inverse Fourier transform windows of the form (T0, T0 + T ).

Next, we continue the numerical example for S(x, t) = 3(x21 + x22  - 4)(t+ 1)
and \theta = 3\pi /4 in Figure 2(c) but with different inverse Fourier transform windows
(tmin, tmax). We take tmin = 0, tmax = T with T = 1,2,3 in Figure 3. The inverse
Fourier transform window is taken to be (tmin, tmax) = (T0, T0 + T ) in Figure 4, with
T = 0.1 and T0 = 1,2,3. In the last case, one needs to discretize the test vector
(5.2). It is clearly shown that the source still lies in the smallest strip perpendicular
to the observation direction. The numerical examples in Figures 3 and 4 show that
our inversion algorithm is feasible for any tmin and tmax.

5.1.2. Multiple observation directions. We present the reconstruction of a
kite-shaped source using M observation directions with the observation angles \theta m =
m - 1
M \pi , m= 1, . . . ,M .

We show in Figure 5 a visualization of the reconstructed source with S(x, t) =
3(x21 + x22)(t+ 1). Since the observation directions are perpendicular to each other

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INVERSE WAVE-NUMBER-DEPENDENT SOURCE PROBLEMS 1387

(a) M = 2 (b) M = 5 (c)M = 8

Fig. 5. Reconstructions of a kite-shaped source for S = 3(x2
1 + x2

2)(t+ 1) with M observation
directions. The inverse Fourier transform window (t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) is chosen as t\mathrm{m}\mathrm{i}\mathrm{n} = 0 and t\mathrm{m}\mathrm{a}\mathrm{x} = 0.1.

(a)T = 1 (b) T = 5 (c)T = 7

Fig. 6. Reconstructions from M = 8 observation directions for a kite-shaped support. We choose
S = 3(x2

1 + x2
2)(t+ 1) and different inverse Fourier transform windows of the form (0, T ).

(a) S = 3(x1 + 3)(t+ 1) (b) S = 3(x2 + 3)(t+ 1) (c) S = 3(x2
1 + x2

2)(t+ 1)

Fig. 7. Reconstructions of the shape of a source with two components from 8 observation di-
rections. The inverse Fourier time window is (0, T ) with T = 0.1.

if M = 2, the strips K
(\^x1)
D and K

(\^x2)
D are also perpendicular to each other as shown

in Figure 5(a). It is clear that intersection of the strips contains the source support
in Figure 5(a), (b), and (c), which approximates the convex hull of the support. Of
course the number of observation directions affects reconstruction qualities: the more
directions, the better the reconstructions.

We continue the numerical example in Figure 5(c) by choosing different inverse
Fourier transform time windows (0, T ). The resulting reconstructions are shown in
Figure 6 with three different choices T = 1,5,7. The results are getting worse with
increasing T , but they still contain useful information on the location and shape of
the source support D. In all the other numerical examples, we take T = 0.1 to get
precise reconstructions.

Next we consider a source with two disconnected components: one component
is kite-shaped and the other one is elliptic. We choose different source functions in
Figure 7. It is shown that the two components are both precisely recovered using

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1388 HONGXIA GUO AND GUANGHUI HU

(a) T = 1 (b) T = 3 (c) T = 5

Fig. 8. Reconstructions of two disjoint components from 8 observation directions with different
time windows (0, T ). The source function is S = 3(x2

1 + x2
2)(t+ 1).

(a) \delta = 0 (b) \delta = 2\%

(c) \delta = 5\% (d) \delta = 10\%

Fig. 9. Reconstructions of a kite-shaped source from 8 observation directions with S = 3(t+ 1)
at different noise levels \delta .

8 observation directions. It is worth mentioning that the inverse Fourier transform
time widow (0, T ) should not be too big in this case. If T is increasing from 1 to
5, the images will be distorted; see Figure 8. This is due to the fact that the wave-
fields radiated from the two components and received by the sensors cannot be split.
Figure 8(b) can be improved if we increase the number of frequencies. However, if
T is larger than the distance between the two components (see Figure 8(c)), the two
components cannot be well separated. Instead, the convex hull of the union of these
two components can be recovered.

To test the sensitivity of the algorithm with respect to measurement noise, we
pollute the far-field data matrix by F

(\^x)
\delta := F (\^x) + \delta \| F (\^x)\| 2\scrM , where \delta is the noise

level and \scrM \in \BbbR N\times N is a uniformly distributed random matrix with the random
variable ranging from  - 1 to 1. We present the reconstruction in the noise-free case
in Figure 9(a). The resulting reconstructions are shown in Figure 9(b), (c), and (d)
at three noise levels. The images are clearly getting distorted at higher noise levels,
but the location of the source can still be well captured.
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INVERSE WAVE-NUMBER-DEPENDENT SOURCE PROBLEMS 1389

5.2. Numerical implements with near-field measurements in \BbbR 3. In the
following numerical examples, the frequency band is also taken as (0,16\pi /6) with
kmax = 16\pi /6,N = 16, and \Delta k = \pi /6. Here we clarify that an iso-surface represents

the points in three-dimensional space where the indicator function \widetilde W (y) or W (y)
has a constant value and that an iso-surface level typically refers to a specific value
of the indicator function \widetilde W (y) or W (y) in space. In the first example, we use the

indicator function \widetilde W (x)(y) of (4.7) to reconstruct the annulus \widetilde K(x)
D in (4.5) for a

cube. We take the temporal and spatial dependent source functions to be F (x, t) =
(x21+x

2
2+x

2
3+1)(t+1) and the support of the source is assumed to be D\times [tmin, tmax].

The cubeD is defined byD= \{ (x1, x2, x3) : | x1| \leq 0.5, | x2| \leq 0.5, | x3| \leq 0.5\} (see Figure
10(a)). We take tmin = 0, tmax = 0.1 and set the measurement point at (1.5,0,0). Then\widetilde W (x)(y) is plotted over the searching domain [ - 1.5,1.5]3 in Figure 10(b) and (c). We
present a slice of the reconstruction at y2 = 0 in Figure 10(b), from which we conclude
that the cross of the plane y2 = 0 with the smallest annulus containing the square (in
pink) and centered at x= (1.5,0,0) is nicely reconstructed. Figure 10(c) illustrates an
iso-surface of the reconstruction at the iso-level 1\times 10 - 3. The iso-surfaces perfectly
enclose the cube-shaped support.

Next we continue the above test with multiple observation points. A visual-
ization of the indicator function is shown in Figure 11 with six observation points
\{ (1.5,0,0), ( - 1.5,0,0), (0,1.5,0), (0, - 1.5,0), (0,0,1.5), (0,0, - 1.5)\} . Figure 11(a) pre-
sents an iso-surface of the reconstruction at the iso-level 5\times 10 - 3 and the projections
of the images onto the oy1y2, oy1y3, and oy2y3 planes. It is clearly shown that pro-
jections are all squares [ - 0.5,0.5]2, justifying the accuracy of our 3D reconstructions.
Figures 11(b) and (c) illustrate slices of the reconstructions at the planes y2, y3 = 0
and y1, y2 = 0 using the data at six observation points. These slices also confirm the
accuracy of the 3D reconstructions.

In Figures 12 to 14, we show iso-surfaces and slices of the 3D reconstruction of
the cubic source with a longer radiating period (tmin, tmax). Different inverse Fourier

(a) Geometry of a cubic support (b) A slice at y2 = 0 (c) Iso-surface level = 1× 10−3

Fig. 10. Reconstructions of a cube from the data measured at one observation point (1.5,0,0).

(a) Iso-surface level = 5\times 10 - 3 (b) Slices at y2, y3 = 0 (c) Slices at y1, y2 = 0

Fig. 11. Reconstructions of a cube from six observation points.
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1390 HONGXIA GUO AND GUANGHUI HU

(a) Iso-surface level =1.3× 10−1 (b) Slices at y2, y3 = 0 (c) Slices at y1, y2 = 0

Fig. 12. Reconstructions of a cube from six observation points.

(a) Iso-surface level = 9\times 10 - 1 (b) Slices at y2, y3 = 0 (c) Slices at y1, y2 = 0

Fig. 13. Reconstructions of a cube from six observation points.

(a) Iso-surface level = 1.6 (b) Slices at y2, y3 = 0 (c) Slices at y1, y2 = 0

Fig. 14. Reconstructions of a cube with six observation points.

transform windows from the data measured at six observation points are used. We
choose the radiating period (resp., inverse Fourier transform window) as (0,1) in
Figure 12, as (0,3) in Figure 13, and as (0,5) in Figure 14. It can be observed that,
even for a long duration T = tmax  - tmin, satisfactory inversions for capturing the
shape and location of the source support D can be achieved by taking different iso-
surface levels. We also present some slices of the reconstructions, which all confirm
effectiveness of our algorithm.

5.3. Comparison between far-field and near-field measurements in \BbbR 3.
We continue to consider the example in subsection 5.2, where the exact geometry of
the source support is cubic. Theoretically, the geometry can be exactly recovered
using three properly chosen observation directions from the far-field measurements
and approximately recovered using three properly chosen observation points in \BbbR 3.
In the numerical examples below, we choose tmin = 0 and tmax = 0.1. Using three
observation directions \^x= \{ (1,0,0), (0,1,0), (0,0,1)\} in Figure 15(a) from the far-field
measurements, we can see that both the location and shape of the cubic source support

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INVERSE WAVE-NUMBER-DEPENDENT SOURCE PROBLEMS 1391

(a) Iso-surface level = 2× 10−4 (b) Iso-surface level = 1.4× 10−2

Fig. 15. Reconstructions of a cube from three observation directions with the far-field measure-
ments in (a) and from three observation points with the near field measurement in (b).

(a) A slices at y1 = 0 (b) A slices at y2 = 0 (c) A slices at y3 = 0

Fig. 16. Reconstructions of a cube with three observation directions for far-field case.

(a) A slices at y1 = 0 (b) A slices at y2 = 0 (c) A slices at y3 = 0

Fig. 17. Reconstructions of a cube with three observation points for near field case.

are perfectly reconstructed just as our theoretical results predict. To clearly illustrate
the reconstruction, we also plot the projections of the images onto the oy2y3, oy1y3,
and oy1y2 planes. From the 2D visualizations one sees that the projections are all
squares [ - 0.5,0.5]2. Figure 16 shows slices of the reconstruction at the planes y1 = 0,
y2 = 0, and y3 = 0. For comparison we also demonstrate the boundary of the source
support slice with the pink solid line. These slices also confirm the accuracy of our
algorithm. While using three observation points x = \{ (1.5,0,0), (0,1.5,0), (0,0,1.5)\} 
from the near-field measurement in Figure 15(b), we can see that only the location
is captured, but the shape, which is not accurately reconstructed, is even severely
disturbed. We also present slices of the reconstruction in Figure 17. The shape of the
source support is well constructed, because the image is formed by the intersection of
annulus (just as Figure 10(c)) centered at the three observation points respectively.
However, in the far-field case with one observation point, the source support is located
between two planes that are perpendicular to the observation direction.
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