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In this work, we develop a general mathematical framework on regularized 
approximate cloaking of elastic waves governed by the Lamé system via the approach 
of transformation elastodynamics. Our study is rather comprehensive. We first 
provide a rigorous justification of the transformation elastodynamics. Based on the 
blow-up-a-point construction, elastic material tensors for a perfect cloak are derived 
and shown to possess singularities. In order to avoid the singular structure, we 
propose to regularize the blow-up-a-point construction to be the blow-up-a-small-
region construction. However, it is shown that without incorporating a suitable lossy 
layer, the regularized construction would fail due to resonant inclusions. In order 
to defeat the failure of the lossless construction, a properly designed lossy layer is 
introduced into the regularized cloaking construction. We derive sharp asymptotic 
estimates in assessing the cloaking performance. The proposed cloaking scheme is 
capable of nearly cloaking an arbitrary content with a high accuracy.

© 2015 Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cet article, on propose un cadre mathématique général pour la dissimulation 
d’une cible élastique dans le cadre des équations de Lamé via une approche de 
transformations élastodynamiques. Notre étude est exhaustive. Dans un premier 
temps on donne une justification rigoureuse des transformations élastodynamiques. 
En utilisant la construction d’un point singulier, on calcule les tenseurs élastiques 
nécessaires à l’invisibilité et on montre qu’ils possèent des singularités. Pour palier 
ce problème, on propose une méthode de régularisation. Cependant, on montre que 
sans l’incorporation d’une couche absorbante convenable, la structure régularisée 
présente des petites inclusions résonnantes qui la fragilise. Afin de contourner ce 
problème, on introduit une couche absorbante convenable lors de la construction. 
On quantifie les performances par des majorations asymptotiques optimales. La 
méthode proposée peut masquer quasi-complètement une cible arbitraire avec une 
bonne précision.

© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper concerns the cloaking of elastic waves. An elastic region is said to be cloaked if its content 
together with the cloak is “unseen” by the exterior elastic wave detections. In recent years, the study on elas-
tic cloaking has gained growing interest in the physics literature (cf. [9,20–22,47,53,54]), much followed the 
development of transformation-optics cloaking of optical waves including the acoustic and electromagnetic 
waves. A proposal for cloaking for electrostatics using the invariance properties of the conductivity equation 
was pioneered in [26,27]. Blueprints for making objects invisible to electromagnetic (EM) waves were pro-
posed in two articles in Science in 2006 [40,55]. The article by Pendry et al. uses the same transformation 
used in [26,27] while the work of Leonhardt uses a conformal mapping in two dimensions. The method 
based on the invariance properties of the equations modeling the optical wave phenomenon has been named 
transformation optics and has received a lot of attentions in the scientific community due to its signifi-
cant practical importance. We refer to the survey articles [16,28,29,45] and the references therein for the 
theoretical and experimental progress on optical cloaking.

The Lamé system governing the elastic wave propagation also possesses a certain transformation prop-
erty, in a more complicated manner than that for the optical wave equations. Using the transformation
property, the transformation-elastodynamics approach can be developed for the construction of elastic 
cloaks, following a similar spirit to the transformation-optics construction of optical cloaks. In a rather 
heuristic way, an ideal invisibility cloak can be obtained by the blow-up-a-point construction proceeded 
as follows. One first selects a region Ω in the homogeneous space for constructing the cloaking device. 
Let P ∈ Ω be a single point and let F be a diffeomorphism which blows up P to a region D within Ω. 
Using transformation-elastodynamics, the ambient homogeneous medium around P is then ‘compressed’ 
via the push-forward to form the cloaking medium in Ω\D, whereas the ‘hole’ D forms the cloaked region 
within which one can place the target object. The cloaking region Ω\D and the cloaked region D yield the 
cloaking device in the physical space, whereas the homogeneous background space containing the singular 
point P is referred to as the virtual space. Due to the transformation invariance of the elastic system, the 
exterior measurements corresponding to the cloaking device in the physical space are the same to those in 
the virtual space corresponding to a singular point. Intuitively speaking, the scattering information of the 
elastic cloak is ‘hidden’ in a singular point P .

However, the blow-up-a-point construction would yield server singularities for the cloaking elastic mate-
rial tensors. Most of the physics literature accepts the singular structure and focuses more on the application 
side (cf. [9,20,21,53]). To our best knowledge, there is very little mathematical study on rigorously dealing
with the singular elastic cloaking problem. On the other hand, there are a few mathematical works seriously 
dealing with the singular cloaking problems associated with the optical cloaks. Concurrently, there are two 
theoretical approaches in the literature: one approach is to accept the singularity and proposes to investigate 
the physically meaningful solutions, i.e. finite energy solutions, to the singular acoustic and electromagnetic 
wave equations (see [30,45]); the other approach is to regularize the singular ideal cloaking construction 
and investigate the near-invisibility instead; see [6,38] on the treatment of electrostatics, [4,7,37,41–43] on 
acoustics, and [8,10,11] on electromagnetism. In this work, we follow the latter approach to develop a general 
framework of constructing near-cloaks for elastic waves via the transformation-elastodynamics approach. 
Compared to the acoustic and electromagnetic cases, the elastic cloaking problem turns out to possess more 
complicated physical nature due to the coupling of shear and pressure waves that propagate at different 
speeds (see, e.g., [17–19,39]).

The present study on regularized approximate cloaking of elastic waves is rather comprehensive and 
includes several salient ingredients. First, we provide a rigorous justification of the transformation elastody-
namics, which lacks in the physics literature. Particularly, we prove the well-posedness of the transformed 
Lamé system. This is presented in Section 2. In Section 3, we consider the elastic cloaking problem, and based 
on the blow-up-a-point transformation, we give the construction of an ideal elastic cloak and analyze the 
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singularity of the cloaking elastic material parameters. In Section 4, we introduce the regularized construc-
tion based on a blow-up-a-small-region transformation. Then, we show the existence of resonant inclusions 
which defy any attempt in achieving near-cloaks. Section 5 is devoted to the development of our near-cloaking 
scheme by incorporating a properly designed lossy layer into the regularized construction. We derive sharp 
estimate in assessing the cloaking performance. The asymptotic estimate is independent of the elastic content 
in the cloaked region, which means the proposed cloaking scheme is capable of nearly cloaking an arbitrary 
elastic object. The estimate is based on the use of a variety of variational arguments and layer-potential 
techniques. We also verify that the proposed lossy layer is a finite realization of the a traction-free lining.

Finally, we would like to mention in passing that our study may find important applications in seismic 
metamaterials (cf. [46,35,36,12]) to construct feasible devices for protecting key structures from the catas-
trophic destruction of natural earthquake waves or terrorist attacks (e.g., nuclear blast). For instance, the 
elastic invisibility cloak could be of great significance in safeguarding nuclear power plants, electric pylons, oil 
refineries, nuclear reactors and old or fragile monuments as well as the important components within them.

2. Lamé system and transformation elastodynamics

Consider the time-harmonic elastic wave propagating through an anisotropic medium occupying a 
bounded Lipschitz domain Ω ⊂ R

N (N = 2, 3). In linear elasticity, the spatially-dependent displacement 
vector u(x) = (u1, · · · , uN )(x) is governed by the following boundary value problem of the reduced Lamé 
system ⎧⎪⎪⎨⎪⎪⎩

N∑
j,k,l=1

∂

∂xj

(
Cijkl(x)∂uk

∂xl

)
+ ω2ρ(x)ui = 0, in Ω, i = 1, 2, · · · , N,

NCu = ψ ∈ H−1/2(∂Ω)N , on ∂Ω,

(1)

where ω denotes the frequency and the Neumann data NCu is defined as

NCu :=

⎛⎝ N∑
j,k,l=1

νjC1jkl
∂uk

∂xl
,

N∑
j,k,l=1

νjC2jkl
∂uk

∂xl
, · · · ,

N∑
j,k,l=1

νjCNjkl
∂uk

∂xl

⎞⎠
with ν = (ν1, ν2, . . . , νN ) ∈ S

N−1 denoting the exterior unit normal vector to ∂Ω. In (1), C = (Cijkl)Ni,j,k,l=1
is a fourth-rank constitutive material tensor of the elastic medium which shall be referred to as the stiffness 
tensor. ρ is a complex-valued function with �ρ > 0 and �ρ ≥ 0, respectively, denoting the density and 
damping parameter of the elastic medium. In this paper, we employ the notation {Ω; C, ρ} to denote the 
elastic medium supported in Ω characterized by the stiffness tensor C with entries Cijkl(x) ∈ L∞(Ω) and 
ρ ∈ L∞(Ω). The stiffness tensor satisfies the following symmetries for a generic anisotropic elastic material:

major symmetry: Cijkl = Cklij , minor symmetries: Cijkl = Cjikl = Cijlk, (2)

for all i, j, k, l = 1, 2, · · · , N . By Hooke’s law, the stress tensor σ relates with the stiffness tensor C via the 
identity σ(u) := C : ∇u, where the action of C on a matrix A = (aij) is defined as

C : A = (C : A)ij =
N∑

k,l=1

Cijkl akl.

Hence, the elliptic system in (1) can be restated as

∇ · (C : ∇u) + ω2ρu = 0 in Ω.
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Moreover, the boundary operator in (1) can be rewritten as NCu = ν · σ(u) = ν · (C : ∇u), which is exactly 
the stress vector or traction on ∂Ω.

The equivalent variational formulation of (1) reads as follows: find u = (u1, · · · , uN ) ∈ H1(Ω)N such that

aC(u, v) :=
∫
Ω

⎧⎨⎩
N∑

i,j,k,l=1

Cijkl
∂uk

∂xl

∂vi
∂xj

− ω2ρ(x)uivi

⎫⎬⎭ dx =
∫
∂Ω

ψ · vdx, (3)

for any v = (v1, v2, · · · , vN ) ∈ H1(Ω)N . Suppose further that the elastic tensor C satisfies the uniform 
Legendre ellipticity condition

N∑
i,j,k,l=1

Cijkl(x) aijakl ≥ c0

N∑
i,j=1

|aij |2, aij = aji, (4)

for all x ∈ Ω, i.e., (C(x) : A) : A ≥ c0||A||2 for all symmetry matrices A = (aij)Ni,j=1 ∈ R
N×N . Then the 

sesquilinear form on the left hand side of (3) satisfies Gårding’s inequality

aC(u, u) ≥ c0||∇u||L2(Ω)N×N − ω2 ||ρ||L∞(Ω)||u||L2(Ω)N for all u ∈ H1(Ω)N .

As a consequence, there exists a unique weak solution to (3) for all frequencies ω ∈ R+ excluding possibly 
a discrete set D with the only accumulating point at infinity. The well-posedness of the boundary value 
problem (1) allows one to define the boundary Neumann-to-Dirichlet (NtD) map as follows

ΛC,q : H−1/2(∂Ω)N → H1/2(∂Ω)N , ΛC,qψ = u|∂Ω,

where u ∈ H1(Ω)N is the unique solution to (1). Throughout the rest of the paper, we refer to an elastic 
medium {Ω; C, ρ} as regular if it satisfies the major symmetry in (2) and the uniform Legendre ellipticity 
condition in (4), otherwise it is called singular. We note that for a regular elastic medium, the corresponding 
Lamé system is well-posed provided ω /∈ D.

If an elastic material is isotropic and homogeneous, one has

C(x) ≡ C(0), C
(0)
ijkl = λδi,jδk,l + μ(δi,kδj,l + δi,lδj,k). (5)

That is, the stiffness tensor is constant throughout the material with the Lamé constants λ and μ satisfying 
μ > 0, Nλ + 2μ > 0. For simplicity, the mass density is usually normalized to be one in an isotropic 
homogeneous medium, i.e., ρ(x) ≡ 1. Under these assumptions, the stress tensor takes the form

σ(u) = λ I div u + 2με(u), ε(u) := 1
2
(
∇u + ∇u�)

,

where I stands for the N ×N identity matrix. In this case, the Lamé system (1) reduces to the boundary 
value problem for Navier’s equation,

Lu + ω2u = 0 in Ω, Tu = ψ on ∂Ω, (6)

where Tu = Tλ,μu := ν · (C(0) : ∇u) stands for the traction on the boundary of the isotropic medium 
{Ω; C(0), 1}, and

Lu := ∇ · (C(0) : ∇u) = μΔu + (λ + μ) grad div u.
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In two dimensions, Tu can be explicitly written as

Tu := 2μ∂νu + λ ν div u + μτ(∂2u1 − ∂1u2), τ := (−ν2, ν1), ν = (ν1, ν2), (7)

whereas in three dimensions,

Tu := 2μ∂νu + λ ν div u + μν × curlu, ν = (ν1, ν2, ν3). (8)

Here and also in what follows, we write Tλ,μu = Tu to drop the dependence of Tλ,μ on the Lamé constants 
λ and μ. Moreover, we shall refer to {Ω; C(0), 1} as the free space or reference space in our subsequent study 
on the invisibility cloaking.

Let x̃ = F (x) : Ω → Ω̃ be a bi-Lipschitz and orientation-preserving mapping. The push-forwards of C
and ρ are defined respectively by

F∗C := C̃ = C̃iqkp(x̃) = 1
det(M)

⎧⎨⎩
N∑

l,j=1

Cijkl
∂x̃p

∂xl

∂x̃q

∂xj

⎫⎬⎭
∣∣∣∣∣
x=F−1(x̃)

,

F∗ρ := ρ̃ =
(

ρ

det(M)

) ∣∣∣∣
x=F−1(x̃)

, M =
(
∂x̃i

∂xj

)N

i,j=1
. (9)

For notational convenience, we shall write ∇̃ = ∇x̃ and denote by {Ω̃; C̃, ρ̃} = F∗{Ω; C, ρ} the push-forward 
defined in (9). We first show the following transformation invariance of the Lamé system (1), which shall 
play a crucial role in designing nearly cloaking devices to be exploited in subsequent sections.

Lemma 2.1. (i) The function u ∈ H1(Ω)N is a solution to ∇ · (C : ∇u) + ω2ρu = 0 in Ω if and only if 
ũ = (F−1)∗u := u ◦ F−1 ∈ H1(Ω̃)N is a solution to

∇̃ · (C̃ : ∇̃ũ) + ω2ρ̃ũ = 0 in Ω̃. (10)

(ii) If the boundary ∂Ω remains fixed under the transformation, i.e., F = Identity on ∂Ω, then ΛC,ρ = ΛC̃,ρ̃.

Proof. By changing the variables x̃ = F (x) in the sesquilinear form of (3) and using Green’s formula, 
one has

∫
∂Ω

ψ · vds =
∫
Ω̃

⎧⎨⎩
N∑

i,q,k,p=1

C̃iqkp
∂ũk

∂x̃p

∂ṽi
∂x̃q

− ω2ρ̃(x̃)ũiṽi

⎫⎬⎭ dx̃

= −
∫
Ω̃

{
div(C̃ : ∇ũ) + ω2ρ̃ũ

}
· ṽ dx̃ +

∫
∂Ω̃

NCũ · ṽ ds. (11)

By choosing v ∈ C∞
0 (Ω)N , we see ṽ ∈ H1

0 (Ω̃)N and hence (11) readily implies that div(C̃ : ∇ũ) + ω2ρ̃ũ = 0
in Ω̃.

Before proceeding to prove the second assertion, we verify the uniform Legendre elliptic condition for the 
transformed tensor C̃iqkp. Indeed, for any symmetric matrix A = (aij) ∈ R

N×N it holds that

N∑
i,q,k,p=1

C̃iqkp aiq akp = 1
det(M)

N∑
i,q,k,p,l,j=1

Cijkl
∂x̃p

∂xl

∂x̃q

∂xj
aiq akp

= 1
det(M)

N∑
Cijkl ãij ãkl (12)
i,j,l,k=1



1050 G. Hu, H. Liu / J. Math. Pures Appl. 104 (2015) 1045–1074
with

ãij =
N∑
q=1

∂x̃q

∂xj
aiq, i, j = 1, 2, · · · , N.

In view of the Legendre elliptic condition for C and the bi-Lipschitz assumption on F , we deduce from (12)
that

N∑
i,q,k,p=1

C̃iqkp ãij ãkl ≥ c0

N∑
i,j=1

|ãij |2 ≥ c̃0

N∑
i,j=1

|aij |2

for some constant c̃0 > 0. That is, the transformed tensor C̃ satisfies the uniform Legendre elliptic condition. 
Therefore, the transformed Lamé system is well-posed and particularly we have a well-defined NtD map 
ΛC̃,ρ̃ : H−1/2(Ω̃)N → H1/2(Ω̃)N associated with the transformed system.

Finally, suppose that F = Identity on ∂Ω and NC̃ũ = NCu = ψ on ∂Ω for some ψ ∈ H−1/2(Ω̃)N .
Then, one has

ΛC̃,ρ̃ψ = ũ|∂Ω = (u ◦ F−1)|∂Ω = u|∂Ω = ΛC,ρψ,

which readily implies that ΛC̃,ρ̃ = ΛC,ρ.
The proof is complete. �

Remark 2.1. The transformed elastic tensor C̃ possesses only the major symmetry, i.e.,

C̃iqkp = 1
det(M)

N∑
l,j=1

Cijkl
∂x̃p

∂xl

∂x̃q

∂xj
= 1

det(M)

N∑
l,j=1

Cklij
∂x̃p

∂xl

∂x̃q

∂xj

= 1
det(M)

N∑
j,l=1

Ckjil
∂x̃p

∂xj

∂x̃q

∂xl
= C̃kpiq,

where the second equality follows from the major symmetry of C. However, C̃ does not possess the minor 
symmetry. In fact, it has been pointed out by Milton et al. [47] that the invariance of the Lamé system 
can be achieved only if one relaxes the assumption on the minor symmetry of the transformed elastic 
tensor. This has led Norris and Shuvalov [53] and Parnell [54] to explore the elastic cloaking by using 
Cosserat material or by employing non-linear pre-stress in a neo-Hookean elastomeric material. Design 
of transformation-elastodynamics-based Cosserat elastic cloaks (without the minor symmetry) has been 
numerically tested in the cylindrical case [9] as well as in the spherical case [20]. Note that the transformed 
equation (10) retains its original form of the Lamé system and avoids any coupling between stress and 
velocity. Furthermore, the transformed mass density is still isotropic. We refer to [47,53,20,9] for discussions 
and investigations of the form of the elastodynamic equations under general transformations.

3. Elastic cloaking and blowup construction

We are in a position to introduce the elastic cloaking for our study. Henceforth, we let Ω ⊂ R
N and 

D � Ω be bounded and connected smooth domains. It is further assumed that Ω\D is connected and D
contains the origin. Let h ∈ R+ and Dh := {hx; x ∈ D}. Let D1/2 represent the region which we intend to 
cloak and let

{D1/2; C(a), ρ(a)}
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be the target medium. From a practical viewpoint, throughout the present study, we assume that 
{D1/2; C(a), ρ(a)} is arbitrary but regular. Let

{Ω\D1/2; C(c), ρ(c)} (13)

be a properly designed layer of elastic medium, which is referred to as the cloaking medium. Let

{Ω; C, ρ} =
{
{Ω\D1/2; C(c), ρ(c)} in Ω\D1/2,

{D1/2; C(a), ρ(a)} in D1/2,
(14)

be the extended medium occupying Ω and let ΛC,ρ be the associated NtD map. Next, we introduce the “free” 
NtD map as follows. Let v be the solution to the Navier equation in the free space {Ω; C(0), 1} (cf. (6))

L v + ω2v = 0 in Ω, T v = ψ ∈ H−1/2(∂Ω)N on ∂Ω. (15)

It is assumed that −ω2 is not an eigenvalue of the elliptic operator L with the traction-free boundary 
condition on ∂Ω, and hence one has a well-defined “free” NtD map

Λ0ψ = v|∂Ω

where v ∈ H1(Ω)N solves (15). The solution v to (15) can be decomposed into its compressional and shear 
parts as v = vp + vs, where in three dimensions

vp := − 1
k2
p

grad div v , kp = ω/
√

(2μ + λ) , (16)

vs := 1
k2
s

curl curl v , ks = ω/
√
μ, (17)

and kp, ks are known as the compressional and shear wave numbers, respectively. It is straightforward to 
verify that the functions vp and vs satisfy the vectorial Helmholtz equations

(Δ + k2
p) vp = 0, curl vp = 0 in Ω, (18)

(Δ + k2
s) vs = 0, div vs = 0 in Ω . (19)

This implies that the compressional and shear waves propagate at different speeds. By the elliptic equations 
(18) and (19), one can define another two boundary NtD maps

Λ(p)
0 : H−1/2(∂Ω)N → H1/2(∂Ω)N , Λ(p)

0 ψ = vp|∂Ω,

Λ(s)
0 : H−1/2(∂Ω)N → H1/2(∂Ω)N , Λ(s)

0 ψ = vs|∂Ω,

where vp, vs ∈ H1(Ω)N are solutions to (18) and (19), respectively, prescribed with the boundary values

Tpvp = ψ, Tsvs = ψ on ∂Ω, (20)

with the operators Tp and Ts given by (in three dimensions)

Tpvp := 2μ∂νvp + λ ν div vp, Tsvs := 2μ∂νvs + μν × curl vs.

One observes that (19) is equivalent to the Maxwell system curl curl vs−k2
sv

s = 0 in Ω, hence the boundary 
data ν × curl vs := ψ̃ ∈ H−1/2(Div, ∂Ω) is sufficient to uniquely determine vs ∈ H(curl, Ω); we refer to [13]
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for the definition of Sobolev spaces mentioned here. Since boundary value problems (18), (19) and (20) are 
not always solvable for general ψ ∈ H−1/2(∂Ω)N , we define the admissible sets of inputs by

P := {ψ ∈ H−1/2(∂Ω)N : there exists a vp to (18) such that Tpvp = ψ},

S := {ψ ∈ H−1/2(∂Ω)N : there exists a vs to (19) such that Tsvs = ψ}.

Then it is clear that (18), (19) and (20) are uniquely solvable for every ψ ∈ P (resp. ψ ∈ S), provided ω2

is not an eigenvalue of the operator L with the traction-free boundary condition.

Definition 3.1. The layer of elastic medium {Ω\D1/2; C(c), ρ(c)} is said to be a full elastic cloak if
ΛC,ρ(ψ) = Λ0(ψ) for all ψ ∈ H−1/2(∂Ω)N ; it is called a compressional elastic cloak if Λ(p)

0 (ψ) = ΛC,ρ(ψ) for 
all ψ ∈ P; and it is called a shear elastic cloak if Λ(s)

0 (ψ) = ΛC,ρ(ψ) for all ψ ∈ S.

We would like to emphasize that the shear and pressure waves are inherently coupled in the Lamé system 
and that an incident pure shear or pressure wave would incite the two kinds of waves simultaneously in 
general. An inverse problem of significant importance arising in practical applications is to infer information 
of the interior object {Ω; C, ρ} by knowledge of the exterior elastic wave measurements. The boundary NtD 
map ΛC,ρ encodes the exterior measurements that one can obtain. We refer to [1,5,15,31–33,14,24,25,23,51,
48–50] for the theoretical unique identifiability results and numerical reconstruction algorithms developed 
for these inverse problems. According to Definition 3.1, the cloaking layer {Ω\D1/2; C(c), ρ(c)} makes itself 
and the elastic object {D1/2; C(a), ρ(a)} undetectable by the exterior elastic wave measurements.

In this paper we focus on the design of full elastic cloaks. In what follows, we show that the entire elastic 
waves diffracted by {D1/2; C(a), ρ(a)} can be cloaked if and only if both the compressional and shear waves 
can be cloaked.

Lemma 3.1. Let {Ω; C, ρ} be an elastic cloak as described above, which is assumed to be regular. Then, 
ΛC,ρ = Λ0 if and only if ΛC,ρ = Λ(p)

0 and ΛC,ρ = Λ(s)
0 .

Proof. The necessity follows directly from the fact that the equations in (18) and (19) can be reformulated 
as the Navier equation (15).

Next, we prove the sufficiency. Let v and u solve the boundary value problems (15) and (1), respectively. 
The function v can be decomposed as v = vp+vs with vp, vs ∈ H1(Ω)N given by (16) and (17), respectively. 
Set ψp := Tvp = Tpvp and ψs := Tvs = Tsvs in Ω. Then ψp + ψs = Tv = ψ on ∂Ω. Consider the boundary 
value problems

∇ · (C : ∇up) + ω2ρup = 0 in Ω, NCup = ψp on ∂Ω,

∇ · (C : ∇us) + ω2ρus = 0 in Ω, NCus = ψs on ∂Ω.

By uniqueness of solutions to (1), we have u = up + us. On the other hand, it follows from the assumptions 
Λ(p)

0 = ΛC,ρ and Λ(s)
0 = ΛC,ρ that up = vp and us = vs on ∂Ω. Therefore,

Λ0ψ = v = vp + vs = up + us = u = ΛC,ρψ on ∂Ω.

The proof is complete. �
In the rest of this section, using the transformation-elastodynamics approach based on Lemma 2.1, we 

present the blow-up-a-point construction of an ideal full elastic cloak. This elastic cloak has been studied in 
the physics and engineering literature (cf. [9,20,21]), and we shall focus on analyzing the singular structure 
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from a mathematical point of view. Henceforth, we denote by BR the central ball of radius R > 0, and SR the 
boundary of BR, i.e., SR = {x; |x| = R}. We take Ω = B2 and D1/2 = B1, following the notations introduced 
earlier in this section. Let {B2; C(0), 1} be the isotropic homogeneous free space, and let Λ0 = ΛC(0),1 on S2
be the free NtD boundary operator. Consider the transformation

F :
{

B2\{0} → B2\B1,

x → y = (1 + |x|
2 ) x

|x| .
(21)

The transform F blows up the origin in the reference space to B1 while maps B2\{0} to B2\B1 and keeps 
the sphere S2 fixed. Using the transformation F , the reference medium in B2\{0} is then push-forwarded 
to form the transformation medium in {B2\B1; C(c), ρ(c)} as follows:

C(c)(y) := F∗(C(0))(x)|x=F−1(y), ρ(c)(y) = F∗(1)(x)|x=F−1(y), y ∈ B2\B1. (22)

Let us consider the boundary value problem (1) in Ω = B2 with

{B2; C, ρ} =
{
{B2\B1; C(c), ρ(c)} in B2\B1,

{B1; C(a), ρ(a)} in B1,
(23)

which defines the NtD map ΛC,ρ on S2. By Lemma 2.1, one may infer that ΛC,ρ = Λ̃0 on S2, where Λ̃0 is 
the NtD map associated with the elastic configuration {B2\{0}; C(0), 1}. Noting that the inhomogeneity of 
the elastic medium {B2\{0}; C(0), 1} is supported in a singular point, one may infer that Λ̃0 = Λ0, which in 
turn implies that ΛC,ρ = Λ0. That is, the construction (23) yields an ideal full elastic cloak. However, the 
above argument is rather heuristic and intuitive. Indeed, we shall show that the cloaking elastic medium 
parameters C(c) and ρ(c) possess singularities, which make the attempt to rigorously justify the ideal elastic 
cloak highly nontrivial; see [30,44] for the relevant discussions on the singular optical cloaking of acoustic 
and electromagnetic waves.

Next, let us determine the explicit expressions of the material parameters for the cloaking medium in (22). 
First, one can easily obtain that the Jacobian matrix of F in (21) and its determinant are given as follows:

M(y) = r

2(r − 1)(I − ŷ ⊗ ŷ) + 1
2 ŷ ⊗ ŷ, ŷ := y/r, r = |y|,

det(M) =
{ r

4(r−1) , if N = 2,
r2

8(r−1)2 , if N = 3.

Hence, by Lemma 2.1, the push-forwarded elastic tensor and density in B2\B1 are given by

C(c)(y) =
M(y) 
 C(0)(x)|x=F−1(y) 
M(y)�

det(M) , ρ(c)(y) = [det(M)]−1, (24)

where the operator 
 denotes the multiplication between a matrix and a fourth-rank tensor. More precisely, 
in view of the definition of F∗ in Lemma 2.1, we have for C(c) = (C(c)

ijkl)Ni,j,k,l=1 that

⎛⎜⎜⎜⎝
C

(c)
i1k1 C

(c)
i1k2 · · · C

(c)
i1kN

C
(c)
i2k1 C

(c)
i2k2 · · · C

(c)
i2kN

...
... · · ·

...
(c) (c) (c)

⎞⎟⎟⎟⎠ = M

⎛⎜⎜⎜⎝
C

(0)
i1k1 C

(0)
i1k2 · · · C

(0)
i1kN

C
(0)
i2k1 C

(0)
i2k2 · · · C

(0)
i2kN

...
... · · ·

...
(0) (0) (0)

⎞⎟⎟⎟⎠M�/ det(M) (25)
CiNk1 CiNk2 · · · CiNkN CiNk1 CiNk2 · · · CiNkN
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for i, k = 1, 2, · · · , N . Writing the fourth-rank tensor C(0) in the tensor product form (C(0)
ijkl)Ni,j,k,l=1 =

(C(0)
i·k·)Ni,k=1 ⊗ (C(0)

·j·l)Nj,l=1, with the second-rank tensors (C(0)
i·k·)Ni,k=1 and (C(0)

·j·l)Nj,l=1, then the multiplication 
operator 
 in the first relation of (24) is understood as the two-mode tensor–matrix product in the sense 
of (25). It is easily seen that the push-forwarded density ρ(c) vanishes on the inner boundary of the cloaking 
device, namely S1, in RN . To see the singularity of C(c), we insert the expression of M into C(c),

C(c)(y) = r2

4(r − 1)2 (I − ŷ ⊗ ŷ) 
 C(0) 
 (I − ŷ ⊗ ŷ) [det(M)]−1

+ r

4(r − 1)(I − ŷ ⊗ ŷ) 
 C(0) 
 (ŷ ⊗ ŷ) [det(M)]−1

+ r

4(r − 1)(ŷ ⊗ ŷ) 
 C(0) 
 (I − ŷ ⊗ ŷ) [det(M)]−1

+ 1
4(ŷ ⊗ ŷ) 
 C(0) 
 (ŷ ⊗ ŷ) [det(M)]−1. (26)

Clearly, in two dimensions, the item in the first line in (26) has a singularity of the form 1/(r− 1) as r → 1, 
while the item in the fourth line vanishes on S1. The 3D spherical cloak obtained by blowing up a single 
point turns out to be less singular than the 2D one, since there are no unbounded entries in the transformed 
elasticity tensor. Using the relations

(ŷ ⊗ ŷ)(ŷ ⊗ ŷ) = (ŷ ⊗ ŷ), (I − ŷ ⊗ ŷ)(ŷ ⊗ ŷ) = 0,

one can deduce from (26) that

C(c)(y) : (ŷ ⊗ ŷ) = 1
4 det(M) C

(0)(y) : (ŷ ⊗ ŷ) → 0

as |y| → 1. This implies that the tensor C(c) does not satisfy the uniform Legendre ellipticity condition (4)
in B2.

We have calculated the cloaking elastic medium parameters in the Cartesian coordinates using the identity 
(25). The derivation of the cloaking medium tensor in the 2D polar coordinates (r, θ) or 3D spherical 
coordinates (r, θ, ϕ) can be proceeded as follows. Noting the symmetric matrix ŷ ⊗ ŷ maps y to its radial 
direction, one can see that the Jacobian matrix M in the polar or spherical coordinates is of the form

M =
(

1/2 0
0 r

2(r−1) IN−1

)
(27)

where IN−1 denotes the (N−1) ×(N−1) identify matrix. Here we have employed the following conventional 
correspondence between indexes: 1 �→ r, 2 �→ θ, 3 �→ ϕ in RN , N = 2, 3. Recalling the Voigt notation for 
tensor indices,

11 �→ 1, 22 �→ 2, 33 �→ 3, 23, 32 �→ 4, 13, 31 �→ 5, 12, 21 �→ 6,

we may write the elasticity tensor (5) as

Cαβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Cαβ =

⎛⎝λ + 2μ λ 0
λ λ + 2μ 0
0 0 μ

⎞⎠ (28)
0 0 0 0 0 μ
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in three and two dimensions, respectively, with α, β = 1, 2, · · · , N . Using the polar coordinates in 2D, one 
can deduce from (25), (27) and (28) the transformed elasticity tensor C(c) with eight nontrivial entries 
(see also [9]):

C(c)
rrrr = (λ + 2μ)(r − 1)/r, C

(c)
θrθr = μr/(r − 1),

C
(c)
rrθθ = C

(c)
θθrr = λ, C

(c)
rθθr = C

(c)
θrrθ = μ,

C
(c)
rθrθ = μ(r − 1)/r, C

(c)
θθθθ = (λ + 2μ)r/(r − 1).

Physically, the vanishing of C(c)
rrrr, C(c)

rθrθ and the singularity of C(c)
θθθθ, C

(c)
θrθr on S1 imply an infinite velocity 

of the pressure and shear waves propagating along the inner side of the cloaking interface. The stress tensor 
for the 3D spherical cloak turns out to have 21 nontrivial entries in B2\B1 with ten of them vanishing on 
the sphere S1; we refer to [20] for detailed discussions.

4. Regularized blowup construction and cloak-busting inclusions

It is seen from our earlier discussion that an elastic cloak can be obtained by using the transformation-
elastodynamics approach through a blowup transformation. However, as shown in the last section, the 
blow-up-a-point construction produces singular cloaking medium parameters, which pose server difficulties 
not only to the corresponding mathematical analysis but also to the practical realization. The singular cloak-
ing medium comes from the use of the singular blowup transformation (21). In order to avoid the singular 
structure, it is natural to regularize the singular blow-up-a-point transformation F as follows. Let h ∈ R+

be a sufficiently small regularization parameter, and consider the transformation Fh : B2\Bh → B2\B1
defined by

Fh(x) :=
{( 2−2h

2−h + |x|
2−h

)
x
|x| for h ≤ |x| ≤ 2,

x
h for |x| < h.

It is easy to verify that Fh : B2 → B2 is bi-Lipschitz, orientation-preserving and Fh|∂B2 = Identity. 
Moreover, Fh degenerates to the singular transformation F in (21) as h → +0. Now we consider the 
cloaking construction similar to (23) of the form

{B2; C, ρ} =
{
{B2\B1; C(c)

h , ρ
(c)
h } in B2\B1,

{B1; C(a), ρ(a)} in B1,
(29)

with the cloaking medium given by

C(c)
h (y) := (Fh)∗(C(0))(x)|x=F−1

h (y), ρ
(c)
h (y) = (Fh)∗(1)(x)|x=F−1

h (y), y ∈ B2\B1. (30)

We let Λh
C,ρ denote the NtD map associated with the elastic configuration in (29). Since Fh degenerates 

to the singular blow-up-a-point transformation as h → +0, one may expect that Λh
C,ρ → Λ0 as h → +0. 

That is, (29) would produce an approximate elastic cloak, namely a near-cloak. However, in what follows, we 
shall show that no matter how small h ∈ R+ is, there always exists a certain elastic inclusion {B1; C(a), ρ(a)}
depending on h, that defies any attempt to achieve the near-cloak. Indeed, we shall show that for any 
h ∈ R+, there exists a certain elastic inclusion {B1; C(a), ρ(a)} such that the corresponding Λh

C,ρ is not even 
well-defined due to resonance. In doing so, we first note that by using Lemma 2.1, the NtD map associated 
with {B2; C, ρ} in (29) is the same as the one associated with the virtual elastic configuration
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{B2; C̃, ρ̃} := (F−1
h )∗{B2; C, ρ} =

{
{B2\Bh; C(0), 1} in B2\Bh,

{Bh; C̃(a), ρ̃(a)} in Bh,
(31)

where {Bh; C̃(a), ρ̃(a)} = (F−1
h )∗{B1; C(a), ρ(a)}. That is, the NtD map Λh

C,ρ characterizes the boundary effect 
due to the small inclusion {Bh; C̃(a), ρ̃(a)} supported in Bh. Since the target elastic medium {B1; C(a), ρ(a)}
is arbitrary but regular, we see that the content of the small inclusion {Bh; C̃(a), ρ̃(a)} is in principle also 
arbitrary but regular. Hence, in order to show the failure of the near elastic cloaking construction (29), it 
is sufficient to show that for any h ∈ R+, there always exists a certain {Bh; C̃(a), ρ̃(a)} such that the NtD 
map ΛC̃,ρ̃ associated with the elastic configuration {B2; C̃, ρ̃} is not well-defined due to resonance.

We would like to appeal for a bit more general study in two dimensions only by considering the following 
Lamé system: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇ · (C(0) : ∇u1) + ω2ρ1u1 = 0 in r0 < |x| < r1,

∇ · (C(0) : ∇u0) + ω2ρ0u0 = 0 in |x| < r0,

Tu1 = 0 on |x| = r1,

u1 = u2, Tu1 = Tu2 on |x| = r0.

(32)

Here, ρ1, ρ0 are two positive constants, ω ∈ R+ is a fixed frequency, and the elastic tensor C(0) is given 
by (5) with fixed Lamé constants λ, μ in |x| < r1. In what follows we shall verify that, for any r0 < r1, 
there always exist constant densities ρ0, ρ1 > 0 for which the system (32) admits non-trivial solutions. This 
implies that resonance occurs and the boundary NtD map is not well-defined for the system. Clearly, this 
also indicates the failure of the near-cloaking construction (29) due to the existence of resonant inclusions.

Let (r, ϕ) be the polar coordinates of x = (x1, x2) ∈ R
2. We look for special solutions to (32) of the form

uj = cj ∇x(J0(k(j)
p r)), ∇x := (∂x1 , ∂x2), k(j)

p := ω2
√
ρj/(λ + 2μ), cj ∈ C,

i.e., uj consists of spherically-symmetric compressional waves only. Here J0 denotes the Bessel function of 
order zero. Similar examples can be constructed for general elastic waves by using the Bessel function of 
order n. Simple calculations show that

uj = cj k
(j)
p J ′

0(k(j)
p r)

(
cosϕ
sinϕ

)
. (33)

Since (Δ +(k(j)
p )2)J0(k(j)

p r) = 0, one can readily check that uj satisfy the Navier equations in (32) and that

Tu1 = (k(1)
p )2

(
cosϕ
sinϕ

)[
2μJ ′′

0 (k(1)
p r1) − λJ0(k(1)

p r1)
]
c1 on |x| = r1.

On the other hand, the transmission conditions on |x| = r0 in (32) are equivalent to (see Lemma 4.1 below)

u1 = u2,
∂u1

∂r
= ∂u2

∂r
on |x| = r0, (34)

due to the invariance of the Lamé constants on both sides of the interface. Inserting (33) into (34) yields 
the linear system (

(k(1)
p r0) J ′

0(k
(1)
p r0) −(k(2)

p r0) J ′
0(k

(2)
p r0)

(k(1)
p r0)2 J ′′

0 (k(1)
p r0) −(k(2)

p r0)2 J ′′
0 (k(2)

p r0)

)(
c1
c2

)
= 0.

Introduce the functions
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f(t) := 2μJ ′′
0 (t) − λJ0(t), g(t) := J ′

0(t)
t J ′′

0 (t)
.

Since there are infinitely many positive zeros of f tending to infinity, we may choose a ρ1 > 0 such that 
f(k(1)

p r1) = 0. Set t1 := k
(1)
p r0. Then we can find a t2 ∈ R+, t2 �= t1 such that

g(t1) = g(t2) if J ′′
0 (t1) �= 0; J ′′

0 (t2) = 0 if J ′′
0 (t1) = 0.

Now, the number ρ2 > 0 is chosen such that the relation k(2)
p r0 = t2 holds. With those choices of ρ1

and ρ2, we have the homogeneous Neumann boundary condition Tu1 = 0 on |x| = r1. Moreover, due to 
the vanishing of the determinant of the matrix, one can find a nontrivial solution (c1, c2) to the above 
linear system so that the transmission conditions hold true. Hence we have constructed a non-trivial pair 
of solutions (u1, u2) to (32) for any fixed r0 < r1 and ω ∈ R+.

Finally, we give the proof of (34).

Lemma 4.1. Let D ⊂ Ω be a C2-smooth domain in R2. Assume that u1 ∈ H1(Ω\D)2, u2 ∈ H1(D)2 satisfy 
the transmission condition u1 = u2, Tu1 = Tu2 on ∂D. Then ∂νu1 = ∂νu2 on ∂D.

Proof. We carry out the proof by making use of the definition (7). Let ν = (ν1, ν2) and τ = (−ν2, ν1)
denote the normal and tangential directions on ∂D, respectively. Set uj = (u(1)

j , u(2)
j )� for j = 1, 2. Using 

the formula

∂1w = ν1∂νw − ν2∂τw, ∂2w = ν2∂νw + ν1∂τw,

we separate the normal and tangential derivatives involved in the stress operator. Consequently, the stress 
operator Tuj on ∂D can be rewritten as

Tuj =
(
μ + (λ + μ)ν2

1 (λ + μ)ν1ν2
(λ + μ)ν1ν2 μ + (λ + μ)ν2

2

)(
∂νu

(1)
j

∂νu
(2)
j

)
+

(
−(λ + μ)ν1ν2 λν2

1 − μν2
2

−λν2
2 + μν2

1 (λ + μ)ν1ν2

)(
∂τu

(1)
j

∂τu
(2)
j

)
=: A(λ, μ, ν) ∂νuj + B(λ, μ, ν) ∂τuj . (35)

Set U = u1 − u2. From (35) and the assumptions Tu1 = Tu2, u1 = u2 on ∂D we see

0 = TU = A(λ, μ, ν) ∂νU on ∂D. (36)

Direct calculations yield that the determinant of A(λ, μ, ν) is given by

det(A) = μ(λ + 2μ) > 0.

Hence, by (36) we obtain ∂νu1 = ∂νu2 on ∂D.
The proof is complete. �

5. Nearly cloaking the elastic waves

5.1. Our near-cloaking scheme

Through the discussion in Section 4, we see that the regularized blow-up-a-small-ball construction fails 
due to the existence of resonant inclusions, namely the cloak-busting inclusions. We would like to mention 
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that similar phenomena have been observed in regularized optical cloaks; see [10,11,37,43]. In order to defeat 
the resonance, a natural idea is to introduce a certain damping mechanism. This motivates us to develop a 
near-cloaking scheme by incorporating a suitable lossy layer right between the cloaked region and cloaking 
layer.

We are in a position to present the proposed near-cloaking scheme. Let Ω and D be as described in 
Section 3. Let h ∈ R+ be a small regularization parameter and let Fh be a bi-Lipschitz and orientation-
preserving mapping such that

Fh : Ω\Dh → Ω\D, Fh(∂Ω) = ∂Ω.

Introduce the mapping

F (x) =
{
Fh(x) for x ∈ Ω\Dh,

x/h for x ∈ Dh.

Clearly, F : Ω → Ω is bi-Lipschitz and orientation-preserving and F (∂Ω) = ∂Ω.
Our proposed regularized near-cloaking construction takes the following general form:

{Ω; C, ρ} =
{
{Ω\D1/2; C(c), ρ(c)} in Ω\D1/2,

{D1/2; C(a), ρ(a)} in D1/2,
(37)

where

{Ω\D1/2; C(c), ρ(c)} =
{
{Ω\D; C(1), ρ(1)} in Ω\D,

{D\D1/2; C(2), ρ(2)} in D\D1/2,
(38)

with

{Ω\D; C(1), ρ(1)} = (Fh)∗{Ω\Dh; C(0), 1},
{D\D1/2; C(2), ρ(2)} = (Fh)∗{Dh\Dh/2; C̃(2), ρ̃(2)}. (39)

In (39), the elastic medium in Dh\Dh/2 is given by

{Dh\Dh/2; C̃(2), ρ̃(2)}, C̃(2) = γ h2+δ C(0), ρ̃(2) = α + iβ, (40)

where α, β, γ and δ are fixed positive constants. Here, we note that in (40), we introduce a critical lossy 
layer {Dh\Dh/2; C̃(2), ρ̃(2)}, wherein β is the damping parameter of the elastic medium. We next present the 
main theorem in assessing the near-cloaking performance of the above proposed construction. Henceforth, 
for two Banach spaces X and Y , we let L (X , Y ) denote the Banach space of the linear functionals from 
X to Y . Moreover, we let C denote a generic positive constant, which may change in different estimates, 
but should be clear in the context. Then, we have:

Theorem 5.1. Assume −ω2 is not an eigenvalue of the elliptic operator L on Ω with the traction-free boundary 
condition. Let ΛC,ρ be the NtD map corresponding to the elastic configuration (37)–(40), and let Λ0 be the 
free NtD map for the Lamé system. Then there exists a constant h0 ∈ R+ such that when h < h0,

||ΛC,ρ − Λ0||L (H−1/2(∂Ω)N ,H1/2(∂Ω)N ) ≤ C hN , (41)

where C is a positive constant independent of h, C(a), ρ(a) and δ.
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By Theorem 5.1, we see the construction (37)-(40) produces a near-cloak within hN -accuracy of the 
ideal cloak in RN . Moreover, since the estimate (41) is independent of the content being cloak, namely 
{D1/2; C(a), ρ(a)}, it is capable of nearly cloaking an arbitrary target elastic medium. We would like to 
remark that δ ≥ 0 in (40) is a free parameter and one may simply choose it to be 0.

In order to prove Theorem 5.1, we first note that by using Lemma 2.1

ΛC,ρ = ΛC̃,ρ̃, (42)

where

{Ω; C̃, ρ̃} = (F−1)∗{Ω;C, ρ} =

⎧⎪⎨⎪⎩
C(0) in Ω\Dh,

C̃(2), ρ̃(2) in Dh\Dh/2,

C̃(a), ρ̃(a) in Dh/2,

(43)

with

{Dh/2; C̃(a), ρ̃(a)} = (F−1)∗{D1/2; C(a), ρ(a)}.

Let u ∈ H1(Ω)N be the solution to the Lamé system associated with the elastic configuration {Ω; C, ρ}; 
that is

∇ · (C : ∇u) + ω2ρu = 0 in Ω, NC u = ψ ∈ H−1/2(∂Ω)N on ∂Ω.

Let ũ := u ◦ F−1. Then by Lemma 2.1, ũ solves the boundary value problem

∇ · (C̃ : ∇ũ) + ω2ρ̃ũ = 0 in Ω, NC̃ ũ = ψ on ∂Ω, (44)

and let u0 ∈ H1(Ω)N be the solution in the free space; see (15). By (42), we see that Theorem 5.1 immediately 
follows from:

Theorem 5.2. Assume −ω2 is not an eigenvalue of the elliptic operator L on Ω with the traction-free boundary 
condition. Let ũ and u0 be solutions to (44) and (15), respectively. Then there exists a constant h0 ∈ R+
such that when h < h0,

||ũ− u0||H1/2(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N , (45)

where C is a positive constant independent of h, ψ, C̃, ρ̃ and δ.

5.2. Proof of Theorem 5.2

Before giving the proof of Theorem 5.2, we sketch the general structure of our argument. First, by using 
a variational argument together with the use of the lossy layer {Dh\Dh/2; C̃(2), ρ̃(2)}, one can control the 
energy of the elastic wave field in Dh\Dh/2. Next, by a duality argument, we control the trace of the 
traction of the elastic wave field on ∂Dh. In this step, we need derive a critical Sobolev extension result. 
Then, the study is reduced to estimating the boundary effect on ∂Ω due to a small elastic inclusion Dh

with a prescribed traction trace on ∂Dh. We shall make use of a variety of layer potential techniques in 
this step. Finally, the sharpness of our estimate has been numerically verified and shall be reported in a 
forthcoming work.
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Lemma 5.1. The solutions to (44) and (15) satisfy the estimate

β ω2 ||ũ||2
L2(Dh\Dh/2)

≤ C ||ψ||H−1/2(∂Ω)N ||ũ− u0||H1/2(∂Ω)N ,

where C is a positive constant depending only on Ω.

Proof. Multiplying ũ to (44) and integrating by parts yield

−
∫
Ω

(C̃ : ∇ũ) : ∇ũ dx + ω2
∫
Ω

ρ̃|ũ|2 dx = −
∫
∂Ω

[(C̃ : ∇ũ) · ν] · ũ ds

= −
∫
∂Ω

ψ · ũ ds.

Similarly,

−
∫
Ω

(C(0) : ∇u0) : ∇u0 dx + ω2
∫
Ω

|u0|2 dx = −
∫
∂Ω

ψ · u0 ds.

Taking the imaginary parts of the above two identities and making use of the definition of ρ̃(2) in (40), we 
arrive at ∫

Dh/2

Im(ρ̃(a))|ũ|2dx + βω2
∫

Dh\Dh/2

|ũ|2dx = − Im
∫
∂Ω

ψ · (ũ− u0) ds. (46)

Since Im(ρ̃(a)) ≥ 0, Lemma 5.1 follows easily from (46).
The proof is complete. �
In what follows, we employ the notation T±ũ to denote the traction operators on ∂Dh when limits are 

taken from the outside and inside of Dh, respectively. For simplicity we write Ψ±(x) = T±ũ(hx) for x ∈ ∂D.

Lemma 5.2. Let ũ and u0 be solutions to (44) and (15), respectively. We have the estimates

||Ψ−||2H−3/2(∂D)N ≤ C
(γ +

√
α2 + β2h−δω2)2

βγ2ω2 h−N−2 ||ũ− u0||H1/2(∂Ω)N ||ψ||H−1/2(∂Ω)N ,

||Ψ+||2H−3/2(∂D)N ≤ C
(γ +

√
α2 + β2h−δω2)2

βω2 h2(1+δ)−N ||ũ− u0||H1/2(∂Ω)N ||ψ||H−1/2(∂Ω)N ,

where C is a positive constant depending only on D and Ω but independent of h and ψ.

Proof. By the definition of the norm || · ||H−3/2(∂D),

||Ψ||H−3/2(∂D)N = sup
||φ||

H3/2(∂D)N =1

∣∣ ∫
∂D

Ψ(x) · φ(x) ds
∣∣.

For any φ ∈ H3/2(∂D)N , there exists w ∈ H2(D)N such that (see Lemma A.1 in Appendix A)

(i) w = φ on ∂D and Tw = 0 on ∂D;
(ii) ||w||H2(D)N ≤ C ||φ||H3/2(∂D)N ;
(iii) w = 0 in D1/2.
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Then we have ∫
∂D

Ψ−(x) · φ(x) ds =
∫
∂D

T−ũ(hx) · φ(x) ds =
∫
∂D

T−ũ(hx) · w(x) ds. (47)

For y ∈ Dh, write x = y/h ∈ D. Set v(x) := ũ(hx) = ũ(y) for x ∈ D. By the definitions of C̃(2) and ρ̃(2)

(see (40)), we know

γ h2+δ Lũ(y) + ω2(α + iβ)ũ(y) = 0 in Dh\Dh/2. (48)

Direct calculations show that

γ hδ Lv(x) + ω2(α + iβ)v(x) = 0 in D\D1/2. (49)

Using the fact Tw = 0 on ∂D, it is seen from (47) that∫
∂D

Ψ−(x) · φ(x) ds = h−1
∫
∂D

T−v(x) · w(x) ds

= h−1
∫
∂D

T−v(x) · w(x) − v(x) · T−w(x) ds

= h−1
∫

D\D1/2

Lv · w − Lw · v dx,

where the third equality follows from Betti’s formula and the fact that w = 0 in D1/2. Recalling (49) and 
applying the Cauchy–Schwarz inequality yield

∣∣ ∫
∂D

Ψ−(x) · φ(x) ds
∣∣ ≤ h−1−δ

√
α2 + β2 ω2γ−1 ||v||L2(D\D1/2)N ||w||L2(D)N

+ h−1||v||L2(D\D1/2)N ||Lw||L2(D)N . (50)

In view of the relations

||v||L2(D\D1/2)N = ||ũ(h · )||L2(D\D1/2)N = h−N/2||ũ||L2(Dh\Dh/2)N ,

||Lw||L2(D)N + ||w||L2(D)N ≤ C ||φ||H3/2(∂D)N ,

we derive from (50) that

∣∣ ∫
∂D

Ψ−(x) · φ(x) ds
∣∣ ≤ C h−N/2−1

(
1 +

√
α2 + β2 ω2γ−1 h−δ

)
||ũ||L2(Dh\Dh/2)N ||φ||H3/2(∂D)N .

This implies that

||Ψ−||H−3/2(∂D)N ≤ C h−N/2−1
(
1 +

√
α2 + β2 ω2γ−1 h−δ

)
||ũ||L2(Dh\Dh/2)N , (51)

which together with Lemma 5.1 leads to the first assertion of Lemma 5.2. By (48) and the transmission 
conditions on ∂Dh, we have
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T+ũ = γ h2+δT−ũ on ∂Dh.

Hence, Ψ+ = γ h2+δΨ− on ∂D. Combining this with the estimate of ||Ψ−||H−3/2(∂D)N in (51) proves the 
second assertion of Lemma 5.2.

The proof is complete. �
Lemma 5.3. Assume that −ω2 is not an eigenvalue of the elliptic operator L on Ω with the traction-free 
boundary condition. Let u0 ∈ H1(Ω)N be the solution of (15) with ψ ∈ H−1/2(∂Ω)N . For h > 0 and 
ϕ ∈ H−1/2(∂Dh)N , consider the elliptic boundary value problem⎧⎪⎨⎪⎩

Lv + ω2v = 0 in Ω\Dh,

T v = ϕ on ∂Dh,

T v = ψ on ∂Ω.

Then there exists h0 ∈ R+ such that when h < h0,

||v − u0||H1/2(∂Ω)N ≤ C
(
hN ||ψ||H−1/2(∂Ω)N + hN−1 ||ϕ(h · )||H−3/2(∂D)N

)
, (52)

where C is a positive constant independent of h, ϕ and ψ.

Proof. Set w = v − u0 in Ω\Dh. Then w ∈ H1(Ω\Dh)N satisfies

⎧⎨⎩
Lw + ω2w = 0 in Ω\Dh,

Tw = ϕ− Tu0 on ∂Dh,

Tw = 0 on ∂Ω.

Let w1 ∈ H1(Ω\Dh)N be the unique solution of⎧⎪⎨⎪⎩
Lw1 + ω2w1 = 0 in Ω\Dh,

Tw1 = ϕ on ∂Dh,

Tw1 = 0 on ∂Ω.

Then w2 := w − w1 ∈ H1(Ω\Dh)N satisfies⎧⎪⎨⎪⎩
Lw2 + ω2w2 = 0 in Ω\Dh,

Tw2 = Tu0 on ∂Dh,

Tw2 = 0 on ∂Ω.

By Lemma 5.4 in Section 5.3, we know

||w2||H1/2(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N .

Hence, in order to prove (52) we only need to verify

||w1||H1/2(∂Ω)N ≤ C hN−1 ||ϕ(h · )||H−3/2(∂D)N . (53)

To that end, we consider the following elastic scattering problem in an unbounded domain:

LW + ω2W = 0 in R
N\Dh, T W = ϕ on ∂Dh,
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where W ∈ H1
loc(RN\Dh) is additionally required to satisfy the Kupradze radiation condition (see (83)

below) when |x| → ∞. We shall show in Section 5.3 that (see Lemma 5.5)

||W ||H1/2(∂Ω)N + ||TW |∂Ω||C(∂Ω) ≤ C hN−1 ||ϕ(h · )||H−3/2(∂D)N . (54)

Obviously, the difference P := w1 −W ∈ H1(Ω\Dh) is the unique solution to⎧⎪⎨⎪⎩
LP + ω2P = 0 in Ω\Dh,

TP = 0 on ∂Dh,

TP = −TW on ∂Ω.

Making use of layer potential techniques, one can show that

||P ||H1/2(∂Ω)N ≤ C ||TW |∂Ω||C(∂Ω). (55)

(55) can be proved in a completely similar manner to that of Lemma 5.4 in what follows. Finally, combining 
(54) and (55) yields the estimate (53), which completes the proof. �
Proof of Theorem 5.2. We set ϕ = T+ũ|∂Dh

in Lemma 5.2, so that v = ũ and Ψ+ = ϕ(h · ). By Lemma 5.2, 
it holds that

||ũ− u0||H1/2(∂Ω)N ≤ C1
(
hN ||ψ||H−1/2(∂Ω)N + hN−1 ||Ψ+||H−3/2(∂D)N

)
. (56)

Recalling from the second assertion of Lemma 5.2 that, for sufficiently small h,

||Ψ+||H−3/2(∂D)N ≤ C2 h
(2−N)/2 ||ũ− u0||1/2H1/2(∂Ω)N ||ψ||1/2

H−1/2(∂Ω)N . (57)

Combining (56) and (57) and applying Young’s inequality yield the desired estimate in (45).
The proof is complete. �

5.3. Estimates on small inclusions

5.3.1. Layer potentials for the Lamé system
We first recall the fundamental solution Π(x, y) (Green’s tensor) to the Navier equation (15) in RN . Let 

Gk(x, y) denote the free-space fundamental solution to the scalar Helmholtz equation (Δ +k2)u = 0 in RN . 
In three dimensions, it takes the form

Gk(x, y) = exp(ik|x− y|)
4π |x− y| , x �= y, x, y ∈ R

3,

while in two dimensions,

Gk(x, y) = i

4 H
(1)
0 (k|x− y|), x �= y, x, y ∈ R

2,

where H(1)
0 (·) is the Hankel function of the first kind of order zero. Then the Green’s tensor Π(x, y) for the 

Lamé system can be represented as

Π(ω)(x, y) = 1
Gks

(x, y) I + 1
2 gradx grad�

x

[
Gks

(x, y) −Gkp
(x, y)

]
(58)
μ ω
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for x, y ∈ R
N , x �= y, where the compressional and shear wave numbers kp and ks are given respectively in 

(16) and (17), and I stands for the N ×N identity matrix.
Let Q be a bounded simply connected domain in RN with the smooth boundary ∂Q. In our subsequent 

applications, Q = Dh or Q = Ω. For surface densities ϕ(x) with x ∈ ∂Q, define the single and double layer 
potential operators for the Navier equation by

(SLQϕ)(x) :=
∫
∂Q

Π(x, y)ϕ(y)ds(y), x ∈ R
N\∂Q, (59)

(DLQϕ)(x) :=
∫
∂Q

Ξ(x, y)ϕ(y)ds(y), x ∈ R
N\∂Q, (60)

where Ξ(x, y) is a matrix function whose l-th column vector is defined as

[Ξ(x, y)]� el := Tν(y) [Π(x, y)el] = ν(y) · [σ(Π(x, y) el)] on ∂Q,

for x �= y, l = 1, 2, N . Here, el, 1 ≤ l ≤ N are the standard Euclidean base vectors in RN , and Tν(y) is the 
stress operator defined in (7) and (8). We also let

(SQϕ)(x) :=
∫
∂Q

Π(x, y)ϕ(y)ds(y), x ∈ ∂Q, (61)

(KQϕ)(x) :=
∫
∂Q

Ξ(x, y)ϕ(y)ds(y), x ∈ ∂Q. (62)

Using Taylor series expansion for exponential functions, one can rewrite the matrix Π(ω)(x, y) in 3D as the 
series (see, e.g., [5])

Π(ω)(x, y) = 1
4π

∞∑
n=0

(n + 1)(λ + 2μ) + μ

μ(λ + 2μ)
(iω)n

(n + 2)n! |x− y|n−1 I

− 1
4π

∞∑
n=0

λ + μ

μ(λ + 2μ)
(iω)n(n− 1)

(n + 2)n! |x− y|n−3 (x− y) ⊗ (x− y), (63)

where x ⊗ x := x�x ∈ R
N×N for x = (x1, · · · , xN ) ∈ R

N . Letting x → y, we get

Π(ω)(x, y) = λ + 3μ
8πμ(λ + 2μ)

1
|x− y| I + iω

2λ + 5μ
12πμ(λ + 2μ) I

+ λ + μ

8πμ(λ + 2μ)
1

|x− y|3 (x− y) ⊗ (x− y) + o(1)ω2. (64)

Taking ω → +0 in (64), we obtain the fundamental tensor of the Lamé system with ω = 0 in R3:

Π(0)(x, y) = λ + 3μ
8πμ(λ + 2μ)

1
|x− y| I + λ + μ

8πμ(λ + 2μ)
1

|x− y|3 (x− y) ⊗ (x− y). (65)

Analogously, in two dimensions we have the expression (see [34, Chapter 2.2])

Π(0)(x, y) = 1
[
− 3μ + λ ln |x− y| I + μ + λ

2 (x− y) ⊗ (x− y)
]
. (66)
4π μ(2μ + λ) μ(2μ + λ) |x|
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Similar to the definitions of SLQ, DLQ, SQ, DQ, we define the operators SL(0)
Q , DL

(0)
Q , S(0)

Q , D(0)
Q in the 

same way as (59), (60), (61) and (62), but with the tensor Π(ω)(x, y) replaced by Π(0)(x, y). It is well known 
that these operators all have weakly singular kernels; see, e.g., [34] and [39].

Using the asymptotic behavior of Bessel functions, it has been shown in two dimensions (see, e.g., 
[33, Lemma 2.1])

Π(ω)(x, y) = Π(0)(x, y) + η I + O(|x− y|2 ln |x− y|) (67)

as x → y, where η is a constant given by

η = − 1
4π

[
λ + 3μ

μ(λ + 2μ) (ln ω

2 + E − iπ

2 ) + λ + μ

μ(λ + 2μ) − 1
2( lnμ

μ
+ ln(λ + 2μ)

λ + 2μ )
]
,

with E = 0.57721 · · · being Euler’s constant. From the asymptotic behavior (67), it follows that for x ∈ Dh,∫
Dh

||Π(ω)(x, y)||max dy = O(h2 ln h),
∫
Dh

||∂xj
Π(ω)(x, y)||max dy = O(h), (68)

for j = 1, 2, 3 as h → +0, where || · ||max denotes the maximum norm of a matrix. Analogously, we can 
deduce from (64) that in 3D,∫

Dh

||Π(ω)(x, y)||max dy = O(h2),
∫
Dh

||∂xj
Π(ω)(x, y)||max dy = O(h), j = 1, 2, 3, (69)

as h → +0. The relations in (68) and (69) remain valid for all ω ≥ 0. The difference Π(ω)(x, y) − Π(0)(x, y)
is a continuous function in RN × R

N .

5.3.2. Estimates on small inclusions
Lemma 5.4. Assume that −ω2 is not an eigenvalue of the elliptic operator L on Ω with the traction-free 
boundary condition. Let u0 ∈ H1(Ω)N be the unique solution of (15) with ψ ∈ H−1/2(∂Ω)N . Consider the 
Lamé system ⎧⎨⎩

Lw + ω2w = 0 in Ω\Dh,

Tw = Tu0 on ∂Dh,

Tw = 0 on ∂Ω.

(70)

Then there exists a constant h0 ∈ R+ such that for all h < h0, the above Lamé system admits a unique 
solution w ∈ H1(Ω\Dh)N . Moreover, there holds the estimate

||w||H1/2(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N , (71)

where C is a positive constant independent of h and ψ.

Proof. For clarity we divide our proof into three steps.

Step 1. Show that the function

V (x) :=
∫

Π(x, y)Tu0(y) ds(y), x ∈ Ω\Dh,
∂Dh
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satisfies the estimates

||V (h · )||C(∂D) ≤ C h||ψ||H−1/2(∂Ω)N , ||V ||C(∂Ω) ≤ C hN ||ψ||H−1/2(∂Ω)N . (72)

We first estimate V (x) for x ∈ ∂Ω. From Betti’s formula, we rewrite the j-th component Vj of V as

Vj(x) =
∫

∂Dh

[Π�(x, y)ej ] · Tu0(y) ds(y)

=
∫
Dh

Lu0(y) · [Π�(x, y)ej ]dy +
∫
Dh

[C(0) : ∇y(Π�(x, y)ej)] : ∇yu0 dy

= −ω2
∫
Dh

u0(y) · [Π�(x, y)ej ]dy +
∫
Dh

[C(0) : ∇y(Π�(x, y)ej)] : ∇yu0 dy. (73)

Since ||Π(x, y)||max and ||∂yj
Π(x, y)||max are uniformly bounded for all x ∈ ∂Ω, y ∈ ∂Dh and for all 

j = 1, 2, 3, we readily derive from (73) that

|Vj(x)| ≤ C hN
(
ω2||u0||L∞(Dh)N + ||∇u0||L∞(Dh)N×N

)
≤ C hN ||ψ||H−1/2(∂Ω)N ,

for all j = 1, 2, 3, where the last inequality follows from the stability of the boundary value problem (44). This 
proves the second estimate in (72). The first estimate when x ∈ ∂Dh follows straightforwardly from (73), 
the relations in (68) and (69), together with the fact that both ||u0||L∞(D)N and ||∇u0||L∞(D)N×N are 
bounded by ||ψ||H−1/2(∂Ω)N .

Step 2. Set φ1 = w|∂Dh
, φ2 = w|∂Ω. In this step, we shall verify

||φ1||L2(∂Dh)N ≤ C h(N+1)/2 ||ψ||H−1/2(∂Ω)N , ||φ2||L2(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N . (74)

Again using Betti’s formula, we represent the solution w to (70) as

w(x) =
∫

∂Ω∪∂Dh

{Π(x, y)Tw(y) − Ξ(x, y)w(y)} ds(y)

= −
∫
∂Ω

Ξ(x, y)w(y) ds(y) −
∫

∂Dh

{Π(x, y)Tu0(y) − Ξ(x, y)w(y)} ds(y)

= −DL∂Ω(φ2)(x) + DL∂Dh
(φ1)(x) − V (x),

where the function V is defined in Step 1. Since Tu0 is smooth on ∂Dh and the boundaries of Ω and Dh

are both smooth, by the elliptic regularity w is smooth up to the boundary of Ω\Dh. Hence φ1 and φ2 are 
both smooth functions. Letting x tend to ∂Ω and ∂Dh, and applying the jump relations for double layer 
potentials, we have for φ1 ∈ C(∂Dh), φ2 ∈ C(∂Ω) that{

1
2φ1(x) = (K∂Dh

φ1) (x) − (DL∂Ωφ2) (x) + V (x), x ∈ ∂Dh,
1
2φ2(x) = (DL∂Dh

φ1) (x) − (K∂Ωφ2) (x) + V (x), x ∈ ∂Ω.
(75)

Since −ω2 is not an eigenvalue of the operator L on Ω with the traction-free boundary condition, the 
operator 1I +K∂Ω : C(∂Ω)N → C(∂Ω)N is continuously invertible. Thus it follows from (75) and (72) that
2
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||φ2||C(∂Ω)N ≤ C
(
||DL∂Dh

φ1||C(∂Ω)N + ||V ||C(∂Ω)N
)

≤ C
(
h(N−1)/2 ||φ1||L2(∂Dh)N + hN ||ψ||H−1/2(∂Ω)N

)
. (76)

Since the L2-norm of φ2 can also be bounded by the left hand side of (76), we only need to verify the first 
estimate in (74). To that end, we rewrite the first equation in (75) as[(

1
2I + K

(0)
∂D −R

)
φ1(h · )

]
(hx) + (DL∂Ωφ2(·)) (hx) = V (hx), x ∈ D, (77)

where the kernel of the operator R : L2(∂D)N → L2(∂D)N is given by the continuous matrix Π(0) − Π(ω). 
Further, it can be straightforwardly checked that

||R||L(L2(∂D)N ,L2(∂D)N ) ≤ C hN−1.

On the other hand, the L2-norm of DL∂Ωφ2(h · ) over ∂D can be bounded by the left hand side of 
(76) and that of V (h · ) can be estimated as in the first relation of (72). Hence, by the boundedness of
(1
2I −K

(0)
∂D)−1 : L2(∂D)N → L2(∂D)N , we deduce from (77) that

||φ1(h · )||L2(∂D)N ≤ C h ||ψ||H−1/2(∂Ω)N ,

leading to the first relation of (74) on ∂Dh.

Step 3. By the second equality in (75) and the definition of φ2 in Step 2, one has

w(x) = 2 [(DL∂Dh
φ1) (x) − (K∂Ωφ2) (x) + V (x)] , x ∈ ∂Ω. (78)

By a similar argument to that for the proof of the second relation in (72), one can show that

||V ||H1/2(∂Ω)N ≤ C ||V ||C1(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N . (79)

Further, using the first estimate in (74) yields

||DL∂Dh
ϕ1||H1/2(∂Ω)N ≤ C ||DL∂Dh

ϕ1||C1(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N . (80)

Since K∂Ω : L2(Ω)N → H1(Ω)N is bounded, by the second estimate of (74) we find

||K∂Ωφ2||H1/2(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N . (81)

Combining (78)–(81) yields (71).
The proof is completed. �
Consider the time-harmonic elastic scattering problem from a small cavity Dh ⊂ Ω. This can be modeled 

by the following boundary value problem in the exterior of Dh: find W ∈ H1
loc(RN\Dh)N such that

LW + ω2W = 0 in R
N\Dh, T W = ϕ on ∂Dh. (82)

Since RN\Dh is unbounded, W is required to satisfy the Kupradze radiation condition when |x| → ∞
(see, e.g., [1]):
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lim
r→∞

(
∂Wp

∂r
− ikpWp

)
= 0, lim

r→∞

(
∂Ws

∂r
− iksWs

)
= 0, r = |x|, (83)

which holds uniformly in all directions x̂ = x/|x| ∈ S
N−1. The functions Wp and Ws denote the compres-

sional and shear parts of W , respectively; see (16) and (17). It is well known that the above boundary value 
problem is well-posed for any ϕ ∈ H−1/2(∂Dh)N .

Lemma 5.5. Let W ∈ H1
loc(RN\Dh)N be the unique solution of the system (82)–(83). Then, there exists 

h0 ∈ R+ such that when h < h0,

||W ||H1/2(∂Ω)N + ||TW |∂Ω||C(∂Ω)N ≤ C hN−1 ||ϕ(h · )||H−3/2(∂D)N , (84)

where C is a positive constant independent of h and ϕ.

Proof. From Betti’s formula, we have the expression

W (x) = (DL∂Dh
φ)(x) − (SL∂Dh

ϕ)(x), x ∈ R
N\Dh, (85)

with φ = W |∂Dh
∈ H1/2(∂Dh)N . Letting x → ∂Dh and applying the jump relations of layer potential 

operators, we obtain

1
2φ(x) = (K∂Dh

φ)(x) − (S∂Dh
ϕ)(x), x ∈ ∂Dh. (86)

Similar to (77), (86) can be equivalently formulated as[(
1
2I −K

(0)
∂D −R

)
φ(h · )

]
(hx) = −(S∂Dh

ϕ)(hx), x ∈ ∂D, (87)

where the kernel of the operator R : H−1/2(∂D)N → H−1/2(∂D)N is given by the continuous matrix 
Π(0) − Π(ω), satisfying the estimate (see [52, Chapter 4.3])

||R||L(H−1/2(∂D)N ,H−1/2(∂D)N ) ≤ C hN−1. (88)

Since 1
2I −K

(0)
∂D is an isomorphism from H−1/2(∂D)N to H−1/2(∂D)N , it follows from (87) and (88) that 

for h ∈ R+ sufficiently small

||φ(h · )||H−1/2(∂D)N ≤ C ||(S∂Dh
ϕ)(h · )||H−1/2(∂D)N . (89)

In order to estimate the left hand side of (89), we decompose (S∂Dh
ϕ)(hx) into

(S∂Dh
ϕ)(hx) = hN−1(S∂Dϕ(h · ))(hx)

= hN−1 (S(0)
∂Dϕ(h · ))(hx) + (G∂Dϕ(h · ))(hx), (90)

where the integral kernel of the integral operator G∂D is given by

Π′(x, y) = hN−1Π(ω)(hx, hy) − hN−1Π(0)(x, y).

Using (64) and (65), together with straightforward calculations, one can show that when N = 3
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Π′(x, y) = h2 1
4π

∞∑
n≥2

(n + 1)(λ + 2μ) + μ

μ(λ + 2μ)
(iω)n

(n + 2)n! |hx− hy|n−1 I

− h2 1
4π

∞∑
n≥2

λ + μ

μ(λ + 2μ)
(iω)n(n− 1)

(n + 2)n!
|hx− hy|n−3 (hx− hy) ⊗ (hx− hy)

= h2 iω
2λ + 5μ

12πμ(λ + 2μ) I + h2ω2 A(h|x− y|),

where A is a real-analytic function satisfying A(t) → 0 as t → 0. In two dimensions, it follows from
(66) and (67) that

Π′(x, y) = h[Π(ω)(hx, hy) − Π(0)(x, y)]

= h
[
Π(0)(hx, hy) − Π(0)(x, y) + η I + h2 ln hO(|x− y|2 ln |x− y|)

]
= − 3μ + λ

4πμ(2μ + λ)h lnh + η Ih + h3 ln hO(|x− y|2 ln |x− y|)

= O(h ln h)

as h → +0. Hence, by the mapping properties presented in [52, Chapter 4.3],

|| (G∂Dϕ(hx)) (h · )||H−1/2(∂D)N ≤ C e(h) ||ϕ(h · )||H−3/2(∂D)N , (91)

with the dimensional constant

e(h) :=
{
h2 if N = 3,
h lnh if N = 2.

Recalling the boundedness of the operator S(0)
∂D : H−3/2(∂D)N → H−1/2(∂D)N , we see from (90)

the estimate

|| (S∂Dh
ϕ) (h · )||H−1/2(∂D)N ≤ C ẽ(h) ||ϕ(h · )||H−3/2(∂D)N

with

ẽ(h) :=
{
h if N = 3,
h lnh if N = 2.

Hence, by (89),

||φ(h · )||H−1/2(∂D)N ≤ C ẽ(h) ||ϕ(h · )||H−3/2(∂D)N . (92)

Let Ω1 be a compact set of RN\D containing ∂Ω. For x ∈ Ω1, we see from (85) and (92) that

||W ||L2(Ω1)N ≤ C hN−1{||φ(h · )||H−1/2(∂D)N + ||ϕ(h · )||H−3/2(∂D)N }

≤ C hN−1 ||ϕ(h · )||H−3/2(∂D)N . (93)

Finally, the estimate in (84) is a consequence of (93) and the interior estimate for elliptic boundary
value problems.

The proof is complete. �
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5.4. Finite realization of the traction-free lining

Finally, we present an interesting observation on the physical nature of the proposed lossy layer 
{D\D1/2; C(2), ρ(2)} = (Fh)∗{Dh\Dh/2; C̃(2), ρ̃(2)} in our near-cloaking construction (37)–(40). It can be 
shown to be a finite realization of the traction-free lining. Indeed, we have:

Lemma 5.6. Suppose that −ω2 is not an eigenvalue of the elliptic operator L on Ω\D with the traction-free 
boundary condition. Let U ∈ H1(Ω\D)3 be the unique solution of⎧⎪⎨⎪⎩

∇ · (C(1) : ∇U) + ω2ρ(1) U = 0 in Ω\D,

NC(1) U = ψ on ∂Ω,

NC(1) U = 0 on ∂D,

(94)

where ψ ∈ H−1/2(∂Ω)N and {Ω\D; C(1), ρ(1)} is the elastic medium in (39). Let u ∈ H1(Ω)N be the solution 
to the boundary value problem

∇ · (C : ∇u) + ω2ρ u = 0 in Ω, NC u = ψ on ∂Ω, (95)

where (Ω; C, ρ) is given in (37)–(40). Then for sufficiently small h ∈ R+, we have

||U − u||H1/2(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N ,

where C is a positive constant independent of h and ψ.

Proof. Set Ũ = F∗U , ũ = F∗u in Ω. By Lemma 2.1, we see ũ satisfies (44) and Ũ is the solution of the 
boundary value problem

LŨ + ω2 Ũ = 0 in Ω\Dh, T Ũ = ψ on ∂Ω, T Ũ = 0 on ∂Dh.

Moreover, we have U = Ũ , u = ũ on ∂Ω. Let u0 be the solution to the free-space boundary value problem 
(15). Then the difference W := u0 − Ũ satisfies

LW + ω2 W = 0 in Ω\Dh, TW = 0 on ∂Ω, TW = Tu0 on ∂Dh.

From Lemma 5.4, we see

||Ũ − u0||H1/2(∂Ω)N = ||W ||H1/2(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N . (96)

On the other hand, it follows from Theorem 5.2 that

||ũ− u0||H1/2(∂Ω)N ≤ C hN ||ψ||H−1/2(∂Ω)N . (97)

Hence, combining the two estimates in (96) and (97), we finally have

||U − u||H1/2(∂Ω)N = ||Ũ − ũ||H1/2(∂Ω)N

≤ ||Ũ − u0||H1/2(∂Ω)N + ||ũ− u0||H1/2(∂Ω)N

≤ C hN ||ψ||H−1/2(∂Ω)N .

The proof is complete. �
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6. Concluding remarks

In this work, we develop a general mathematical framework on approximate cloaking of elastic wave fields 
via the approach of transformation elastodynamics. This opens up many new and interesting problems for 
further investigation. Based on the so-called GPT-vanishing structure (where GPT stands for generalized 
polarization tensor), schemes of significantly enhancing the accuracy of the approximate cloaks of acoustic 
and electromagnetic waves were proposed in [4,6,7]. We would like to note that similar idea may be applied to 
the regularized approximate elastic cloaks by using the generalized elastic moment tensors (EMT) proposed 
in [3,2] to devise enhancement schemes. Moreover, as described in Section 3, it is of particular interest 
to devise compressional and shear elastic cloaks; that is, cloaking devices that are used for cloaking only 
compressional or shear waves. Finally, it is of practical importance to construct cloaking devices whose 
elastic materials retain both the major and minor symmetries.
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Appendix A

We derive the following Sobolev extension result which is required in the proof of Lemma 5.2.

Lemma A.1. For any φ ∈ H3/2(∂D)N , there exists w ∈ H2(D)N such that

(i) w = φ on ∂D and Tw = 0 on ∂D;
(ii) ||w||H2(D)N ≤ C ||φ||H3/2(∂D)N ;
(iii) w = 0 in D1/2.

Proof. For ψ ∈ H1/2(∂D)N , one can clearly find w1 ∈ H2(D)N such that

w1 = 0 in D1/2, ∂νw1 = ψ on ∂D, ||w1||H2(D)N ≤ C ||ψ||H1/2(∂D)N .

By [56, Theorem 14.1], there exists w2 ∈ H2(D)N such that

(i) w2 = φ − w1 on ∂D and ∂νw2 = 0 on ∂D;
(ii) ||w2||H2(D)N ≤ C ||φ − w1||H3/2(∂D)N ;
(iii) w2 = 0 in D1/2.

Hence, the sum w := w1 + w2 satisfies

(a) w = φ on ∂D and ∂νw = ψ on ∂D;
(b) ||w||H2(D)N ≤ C(||φ||H3/2(∂D)N + ||ψ||H1/2(∂D)N );
(c) w = 0 in D1/2.

In order to conclude the proof of the lemma, it is sufficient to determine a ψ = ψ(φ) ∈ H1/2(∂D)N such that
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Tw = 0 on ∂D and ||ψ||H1/2(∂D)N ≤ C ||φ||H3/2(∂D)N . (98)

In two dimensions, we recall from (35) that the stress operator can be decomposed into

Tw = A(λ, μ, ν) ∂νw + B(λ, μ, ν) ∂τw on ∂D.

In particular, the matrix A is invertible, B is bounded and the tangential derivative ∂τw ∈ H1/2(∂D)N is 
uniquely determined by w = φ on ∂D. Hence, choosing ψ := −A−1B∂τw ∈ H1/2(∂D)N , we see that the 
relations in (98) are both fulfilled.

In the 3D case we need the following identity:

gradϕ = Gradϕ + ∂ϕ

∂ν
ν, ν = (ν1, ν2, ν3), (99)

where Grad(·) denotes the surface gradient of a scalar function on ∂D. Write w = (w1, w2, w3) and
Gradwi = ([Gradwj ]1, [Gradwj ]2, [Gradwj ]3). By (99) and the definition (8), one can represent the three 
dimensional stress operator as

Tw = A(λ, μ, ν) ∂νw + B(λ, μ, ν,Gradw),

where

B := λν
(
[Gradw1]1 + [Gradw2]2 + [Gradw3]3

)
+ μ ν ×

(
[Gradw3]2 − [Gradw2]3, [Gradw1]3 − [Gradw3]1, [Gradw2]1 − [Gradw1]2

)
,

A := 2μ + λν(ν · ) + μν × (ν× ) =

⎛⎝μ + (λ + μ)ν2
1 (λ + μ)ν1ν2 (λ + μ)ν1ν3

(λ + μ)ν1ν2 μ + (λ + μ)ν2
2 (λ + μ)ν2ν3

(λ + μ)ν1ν3 (λ + μ)ν2ν3 μ + (λ + μ)ν2
3

⎞⎠ .

It is straightforward to verify that

||B||H1/2(∂D)N ≤ C ||w||H1/2(∂D)N = C ||φ||H1/2(∂D)N ,

since only the surface gradients are involved in B. On the other hand, we have det(A) = μ2(λ + 2μ) > 0. 
Hence, similar to that in the 2D case, one can take ψ := −A−1B ∈ H1/2(∂D)N . This verifies (98) in three 
dimensions and completes the proof. �
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