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Abstract
The factorization method provides a necessary and sufficient condition for char-
acterizing the shape and position of an unknown scatterer by using far-field
patterns of infinitely many time-harmonic plane waves at a fixed frequency
(which are also called the multistatic data response matrix). This paper is con-
cerned with the factorization method with a single far-field pattern to recover an
arbitrary convex polygonal scatterer/source. Its one-wave version relies on the
absence of analytical continuation of the scattered/radiated wave-fields in cor-
ner domains. It can be regarded as a domain-defined sampling method and does
not require forward solvers. In this paper we provide a rigorous mathematical
justification of the one-wave factorization method and present some prelimi-
nary numerical examples. In particular, the proposed method can be interpreted
as a model-driven and data-driven imaging scheme, and it shows how to incor-
porate a priori knowledge about the unknown target into the test scatterers for
the purpose of detecting obstacles/sources with specific features.

Keywords: factorization method, inverse scattering, inverse source problem,
single far-field pattern, polygonal scatterers, corner scattering

(Some figures may appear in colour only in the online journal)

∗Author to whom any correspondence should be addressed.

1361-6420/21/015003+26$33.00 © 2021 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6420/ac38b5
https://orcid.org/0000-0001-5159-0715
https://orcid.org/0000-0002-8485-9896
mailto:guanqium@csrc.ac.cn
mailto:ghhu@nankai.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ac38b5&domain=pdf&date_stamp=2021-12-1


Inverse Problems 38 (2022) 015003 G Ma and G Hu

1. Introduction

The primary goal of inverse scattering theory is to extract information about unknown objects
from the wave-fields measured far way from the target. The problems of shape identifica-
tion using time-harmonic excitations arise frequently from non-destructive test, radar imaging,
geological exploration, medical imaging and other fields. Consequently, shape reconstruction
from measured far-field patterns turns out to be a highly non-linear inverse problem in the res-
onance case where the wavelength is comparable with the radius of the target. In this paper we
consider such imaging problems with a single far-field pattern in a deterministic setting, based
on the idea of using the sample data of a priori known scatterers.

To describe the two-dimensional model for inverse obstacle scattering problems, we con-
sider the propagation of a time-harmonic incident field ui in a homogeneous and isotropic
background medium governed by the Helmholtz equation

Δui + k2ui = 0 in R2, (1.1)

where k > 0 is the wavenumber. Assume that a plane wave ui = eikx·d with the direction
d = (cos θ, sin θ)(θ ∈ [0, 2π)) is incident onto a sound-soft scatterer D ⊂ R2; see figure 1
(left). The object D is supposed to occupy a bounded Lipschitz domain such that its exterior
R2\D is connected. The scattered field us is also governed by the Helmholtz equation

Δus + k2us = 0 in R2\D, (1.2)

and satisfies the Dirichlet boundary condition

us = −ui on ∂D (1.3)

together with the outgoing Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x|, (1.4)

uniformly in all directions x̂ = x/|x| ∈ S := {x : |x| = 1}, x ∈ R2\D. The Sommerfeld radia-
tion condition leads to an asymptotic behavior of us in the form

us(x) =
eik|x|√
|x|

{
u∞(x̂) +O

(
1√
|x|

)}
, |x| →∞, (1.5)

where u∞(x̂) = u∞(x̂, k, d) is called the far-field pattern at the observation direction x̂ ∈ S. The
total field u is defined as u := ui + us in R2\D. Using variational or integral equation method,
it is well known that the system (1.2)–(1.5) always admits a unique solution us ∈ H1

loc(R2\D);
see e.g. [5, 9, 28, 38, 40]. The goal of inverse obstacle scattering is to recover D from far-field
patterns incited by one or many incoming waves.

For the model of inverse source problems, we consider the radiated field v governed by the
inhomogeneous Helmholtz equation (see figure 1 (right))

Δv + k2v = f in R2, (1.6)

where the source term f ∈ L2
loc(R2) is supposed to be compactly supported on D (that is,

D = supp( f )). Here v is required to fulfill the Sommerfeld radiation condition (1.4). The
inverse source problem is to recover f or its support D from the far-field pattern v∞ of v.
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Figure 1. Illustration of an obstacle scattering problem (left) and a source radiating
problem (right).

In this paper we are interested in non-iterative approaches for recovering ∂D from a sin-
gle far-field pattern. Such inverse problems are well-known to be nonlinear and ill-posed.
In comparison with the optimization-based iterative schemes, sampling methods (which are
also called qualitative methods in literature [5]) have attracted much attention over the last
twenty years, since they do not need any forward solver and initial approximation of the target.
Basically there exist two kinds of sampling methods: multi-wave and one-wave sampling
methods. The multi-wave sampling methods do not need a priori information on physical
and geometrical properties of the scatterer, but usually require the knowledge of far-field pat-
terns for a large number of incident waves. They consists of both point-wisely defined and
domain-defined inversion schemes. The first ones are usually based on designing an appro-
priate point-wisely defined indicator function which decides on whether a sampling point lies
inside or outside of the target. Here we give an incomplete list of such methods: linear sampling
method [5, 8], factorization method [28, 29], singular source method [40], orthogonal/direct
sampling method [15, 25, 26, 41], the frequency-domain reverse time migration method [6].
In particular, the factorization method by Kirsch (1998), which has been used in a variety of
inverse problems, provides a necessary and sufficient condition for characterizing the shape
and position of an unknown scatterer by using multi-static far-field patterns. The generalized
linear sampling method [2] also provides an exact characterization of a scatterer and the works
[15–17] are devoted to point-wisely defined sampling methods using multi-frequency data.
The domain sampling methods are based on choosing an indicator functional which decides
on whether a test domain (or a curve) lies inside or outside of the target. Examples of the
multi-wave domain sampling methods include, for example, range and no-response test [42]
and Ikehata’s probe method [22].

If a single far-field pattern is available only, the inverse scattering problems become severely
ill-posed and thus more challenging. The one-wave sampling methods are usually designed to
test the analytic extensibility of the scattered field; see the monograph [38, chapter 15] for
detailed discussions. They require only a single far-field pattern or one-pair Cauchy data, but
one must pre-assume the absence of an analytical continuation across a general target interface.
They are mostly domain-defined sampling methods, for example, range test [33], no response
test [37], enclosure method [23, 24] and extended linear sampling method [35]. The one-wave
range test and no-response test are proven to be dual for both inverse scattering and inverse
boundary value problems [36, 38].
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The aim of this paper is to address a framework of the one-wave factorization method, which
was earlier discussed in [13] for inverse elastic scattering from rigid polygonal bodies and also
in [18] for inverse acoustic source problems in an inhomogeneous medium but without numer-
ical verifications. Our arguments are motivated by the existing one-wave sampling methods
mentioned above and the recently developed corner scattering theory for justifying the absence
of non-scattering energies and non-radiating sources (see [3, 4, 11, 12, 19, 20, 32, 34, 39]).
The corner scattering theory is closely connected to the concept of ‘scattering support’
explored by [32]. It implies that the wave field cannot be analytically continued across a
strongly or weakly singular point lying on the scattering interface. The one-wave factoriza-
tion method leads to a sufficient and necessary condition for imaging an arbitrary convex
penetrable/impenetrable scatterer of polygonal type; see remark 3.10. In this sense, it inherits
merits of the classical factorization method for precisely characterizing targets but restricted
to convex polygonal scatterers/sources. Without interface singularities (for example, analytic
boundaries), this paper explains why partial information on the scatterer can be recovered only,
as illustrated by the extended linear sampling method [35]. Compared with other one-wave
sampling methods, we conclude promising features of the one-wave factorization method as
follows. (i) The computational criterion involves only inner product calculations and thus looks
more straightforward. Two domain sampling schemes were proposed in this paper by using
test disks with a large radius in two dimensions. Since the number of sampling variables is
comparable with the classical linear sampling and factorization methods, the computational
cost is not heavier than these multi-wave methods. (ii) It is a model-driven and data-driven
approach. The one-wave factorization method relies on both the physically scattering model
(that is, Helmholtz equation) and the a priori data of some properly chosen test scatterers. In
the terminology of learning theory and data sciences, these test scatterers and the associated
data are called respectively samples and sample data. They are usually given in advance and
the sample data can be calculated off-line before the inversion process. In this paper, we choose
sound-soft and impedance disks as test scatterers, because the spectra of the resulting far-field
operator take explicit forms. However, there is a variety of choices on the shape and physi-
cal properties of test scatterers and also on the type of sample data. Our schemes show how
to incorporate a priori knowledge about the unknown scatterer into the sample data for the
purpose of detecting obstacles/sources with specific features.

This paper is organized as follows. In section 2, we review the multi-wave factorization
method for recovering sound-soft and impedance scatterers. In section 3, we give a rigorous
justification of the one-wave version by combining the classical factorization method and the
corner scattering theory. In section 4, we compare the one-wave factorization method and some
other one-wave sampling methods. Preliminary numerical tests will be performed in section 5
and concluding remarks will be presented in the final section 6.

2. Review of the factorization method with infinite plane waves: a
model-driven approach

In this section we will briefly review the classical Factorization method [28, 29] using the
spectra of the far-field operator, which requires measurement data of infinite number of plane
waves with distinct directions. It is a typical model-driven scheme, since it depends heavily
on the physically scattering model. The resulting computational criterion provides a sufficient
and necessary condition for imaging an impenetrable obstacle of sound-soft or impedance type.
Below we only review the two-dimensional case.

4



Inverse Problems 38 (2022) 015003 G Ma and G Hu

Let D ⊂ R2 be the domain occupied by the scatterer. Recall the single potential operator,

(SDψ)(x) :=
∫
∂D
ψ(y)Φ(x, y)ds(y), x ∈ ∂D, (2.1)

where Φ(x, y) := i
4 H(1)

0 (k|x − y|), x �= y is the fundamental solution of the Helmholtz equation
(Δ+ k2)u = 0 in R2. Here, H(1)

n denotes the Hankel functions of the first kind of order n.
Throughout the paper, the adjoint of an operator will be denoted by (·)∗ and the inner product
over L2(S) by 〈·, ·〉S. We denote by u∞

D (x̂, d) the far-field pattern of us to indicate the depen-
dance on the scatterer D, which corresponds to the boundary value problems (1.2)–(1.4) with
ui = eikx·d. Below we state the definition of far-field operator in scattering theory.

Definition 2.1. The far-field operator FD : L2 (S) → L2 (S) corresponding to D is defined by

(FDg)(x̂) =
∫
S

u∞
D (x̂, d)g(d)ds(d) for all x̂ ∈ S.

If D is a sound-soft obstacle, it is well known that FD is a normal operator. It was proved in
[28, theorem 1.15] that the far-field operator FD can be decomposed into the form

FD = −GDS∗
DG∗

D. (2.2)

Here the data-to-pattern operator GD: H1/2(∂D) → L2(S) is defined by GD( f ) = v∞, where
v∞ ∈ L2(S) is the far-field pattern of the radiation solution vs to the exterior scattering
problem (1.2) with the boundary data vs|∂D = f ∈ H1/2(∂D). By the factorization method,
the far-field pattern φz(x̂) := eikx̂·z of the point source wave x → Φ(x, z) belongs to the range
of GD if and only if z ∈ D (see (see [28, theorem 1.12])). Moreover, the (F∗F)1/4-method
(see [28, theorem 1.24]) yields the relation Range(GD) = Range((F∗

DFD)1/4) if k2 is not a
Dirichlet eigenvalue of −� over D. Hence, by the Picard theorem, the scatterer D can be
characterized by the spectra of FD as follows.

Theorem 2.2 ([28, theorem 1.25]). Assume that k2 is not a Dirichlet eigenvalue
of −� over D. Denote by (λ( j)

D ,ϕ( j)
D ) a spectrum system of the far-field operator FD : L2 (S) →

L2 (S). Then,

z ∈ D ⇐⇒ I(z) :=

⎡⎢⎣∑
j

∣∣∣〈φz,ϕ
( j)
D

〉
S

∣∣∣2∣∣∣λ( j)
D

∣∣∣
⎤⎥⎦
−1

> 0. (2.3)

By theorem 2.2, the sign of the indicator function z → I(z) can be regarded as the charac-
teristic function of D. We note that in (2.3), z ∈ R2 are the sampling variables/points and the
spectral data (λ( j)

D ,ϕ( j)
D ) are determined by the far-field patterns u∞

D (x̂, d) over all observation
and incident directions x̂, d ∈ S. Now, we turn to impenetrable obstacles of impedance type,
that is,

∂νu + ηu = 0 on ∂D, (2.4)

where η ∈ L∞(∂D) is an impedance function satisfying Im(η) � 0. Denote by FD,imp : L2 (S) →
L2 (S) the corresponding far-field operator, and by GD,imp : H−1/2(∂D) → L2(S) the data-to-
pattern operator, that is,

GD,imp( f ) = v∞, (2.5)
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where v∞ ∈ L2(S) is the far-field pattern of the radiation solution vs ∈ H1
loc(R2\D), which

solves

�vs + k2vs = 0 in R2\D, ∂νv
s + ηvs = f on ∂D. (2.6)

In the impedance case, the operator FD,imp fails to be normal but can still be factorized into
the form

FD,imp = −GD,impT∗
D,impG∗

D,imp, (2.7)

where TD,imp : H1/2(∂D) → H−1/2(∂D) is a Fredholm operator of index zero; see [28, (2.39)].
Instead of the (F∗F)1/4-method for sound-soft obstacles, the F#-method [28, chapter 2.5] gives
an analogous characterization of the impedance obstacle D to the sound-soft case:

Theorem 2.3 ([28, corollary 2.16]). Assume that k > 0 is not an eigenvalue of −Δ over
D with respect to the impedance boundary condition with impedance λ. Then, for any z ∈ R2

we have

z ∈ D ⇐⇒ Iimp(z) :=

⎡⎢⎣∑
j

∣∣∣〈φz,ϕ
( j)
D

〉
S

∣∣∣2

λ( j)
D

⎤⎥⎦
−1

> 0, (2.8)

where (λ( j)
D ,ϕ( j)

D ) is a spectral system of the positive operator FD,# := |Re(FD,imp)|+
|Im(FD,imp)| : L2 (S) → L2 (S).

In (2.8), the denominator λ( j )
D can be equivalently replaced by |λ̃( j )

D | where λ̃( j )
D denote the

eigenvalues of FD,imp, because of the estimate

1√
2

(
|Reλ̃( j )

D |+ |Imλ̃( j )
D |

)
� |λ̃( j )

D | � |Reλ̃( j )
D |+ |Imλ̃( j )

D |.

Below we give an explicit example of theorem 2.3 for imaging an impedance disk
BR := {x : |x| < R} centered at the origin with radius R > 0 and with the constant impedance
coefficient η = iη̃ for some η̃ > 0. Let x̂ = (cos θ̂, sin θ̂) and d = (cos θd, sin θd) be the obser-
vation and incident directions, respectively. Using the impedance boundary condition (2.4), we
can get the scattered field us = us(x; BR, d, k, η) by

us(x; BR, d, k, η) = −
∑
n∈Z

in
kJ′

n(kR) + ηJn(kR)

kH(1)′
n (kR) + ηH(1)

n (kR)
H(1)

n (k|x|)einθ. (2.9)

Where θ = θ̂ − θd denotes the angle between x̂ and d. This leads to the far-field pattern
u∞(x̂; BR, d, k, η) of the disk BR:

u∞(x̂; BR, d, k, η) = −C
∑
n∈Z

kJ′
n(kR) + ηJn(kR)

kH(1)′
n (kR) + ηH(1)

n (kR)
einθ, (2.10)

where C =
√

2
kπ e−i π4 . Then, an eigen system (λ(n)

BR
,ϕ(n)

BR
) of the far-field operator FBR ,imp is given

by

λ(n)
BR

= −2πC
kJ′

n(kR) + ηJn(kR)

kH(1)′
n (kR) + ηH(1)

n (kR)
, ϕ(n)

BR
(x̂) = einθ̂. (2.11)

6
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By the asymptotic behavior of Bessel functions (see [9]), we have

|λ(n)
BR
| =

√
2

kπ
π2(kR)2n

22n−1n!(n − 1)!

(
1 + O

(
1
n

))
(2.12)

and ∣∣∣〈e−ikx̂·z,ϕ(n)
BR

(x̂)
〉
S

∣∣∣2
= |Jn(k|z|)|2 =

(k|z|)2n

22nn!n!

(
1 + O

(
1
n

))
. (2.13)

Then we get

Iimp(z) =

⎡⎣+∞∑
j=1

√
k

2π3

1
j

(
|z|
R

)2 j (
1 + O

(
1
j

))⎤⎦−1

. (2.14)

Obviously, the indicator function Iimp(z) > 0 if and only if |z| < R, i.e., z lies inside BR. More-
over, recalling the series expansion − ln (1 − t) =

∑+∞
n=1

tn

n for |t| < 1, the principle part of
Iimp(z) for |z| < R can be written as

∑
j

√
k

2π3

(
|z|2
R2

) j

j
= −

√
k

2π3
ln

(
1 − |z|2

R2

)
= −

√
k

2π3
(ln(R − |z|) + ln 2 − ln R).

(2.15)

This implies that I−1
imp(z) ∼ − ln(R − |z|) as |z| → R, |z| < R.

3. Factorization method with one plane wave: a model-driven and data-driven
approach

3.1. Further discussions on Kirch’s factorization method

Before stating the one-wave version of the factorization method, we first present a corollary
of theorems 2.2 and 2.3. Denote by Ω ⊂ R2 a convex Lipschitz domain which may represent
a sound-soft or impedance scatterer. From numerical point of view, Ω will play the role of
test domains for imaging the unknown scatterer D. Here we use the notation Ω in order to
distinguish from our target scatterer D. The far-field operator corresponding to Ω is therefore
given by

(FΩg)(x̂) =
∫
S

u∞
Ω (x̂, d)g(d)ds(d), FΩ : L2(S) → L2(S), (3.1)

where u∞
Ω (x̂, d) is the far-field pattern corresponding to the plane wave eikx·d incident onto Ω.

The eigenvalues and eigenfunctions of FΩ will be denoted by (λ( j)
Ω ,ϕ( j)

Ω ).

Corollary 3.1. Let v∞ ∈ L2(S) and assume that k2 is not an eigenvalue of −Δ over Ω with
respect to the boundary condition under consideration. Then

I(Ω) =
∑
j∈Z

∣∣∣〈v∞,ϕ( j)
Ω

〉
S

∣∣∣2∣∣∣λ( j)
Ω

∣∣∣ < +∞ (3.2)

7
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if and only if v∞ is the far-field pattern of some radiating solution vs, where vs satisfies the
Helmholtz equation

�vs + k2vs = 0 in R2\Ω, (3.3)

with the boundary data vs|∂Ω ∈ H1/2(∂Ω).

Remark 3.2. If v∞(x̂) = e−ikx̂·z, then by theorems 2.2 and 2.3 it holds that I(Ω) < ∞ if and
only if z ∈ Ω. This implies that the scattered field vs(x) = Φ(x, y) is a well-defined analytic
function inR2\Ω and vs|∂Ω ∈ H1/2(∂Ω) if and only if I(Ω) < ∞. Hence, the results in corollary
3.1 follow directly from theorems 2.2 and 2.3 in this special case.

Proof. In Ω is sound-soft, by (2.2) we have FΩ = −GΩS∗
ΩG∗

Ω, where GΩ : H1/2(∂Ω) → L2(S)
is the data-to-pattern operator corresponding to Ω. Obviously, I(Ω) < +∞ if and only if
v∞ ∈ Range((F∗

ΩFΩ)1/4). Since Range((F∗
ΩFΩ)1/4) = Range(GΩ), we get v∞ ∈ Range(GΩ)

if and only if I(Ω) < +∞. Recalling the definition of GΩ, it follows that vs satisfies the
Helmholtz equation (3.3) and the Sommerfeld radiation condition (1.4) with the bound-
ary data vs|∂Ω ∈ H1/2(∂Ω). The impedance case can be proved in an analogous manner
by applying the factorization FΩ = −GΩ,impT∗

Ω,impG∗
Ω,imp (see (2.7)) and the range identity

Range(FΩ,#) = Range(GΩ).

3.2. Explicit examples when Ω is a disk

Corollary 3.1 relies essentially on the factorization form (see e.g., (2.2), (2.7)) of the far-
field operator and is applicable to both penetrable and impenetrable scatterers Ω. However,
establishing the abstract framework of the factorization method turns out to be nontrivial in
some cases, for instance, time-harmonic acoustic scattering from mixed obstacles and elec-
tromagnetic scattering from perfectly conducting obstacles. In this subsection we show that
corollary 3.1 can be justified independently of the factorization form, if the test domain Ω
is chosen to be a disk of acoustically Dirichlet or impedance type. This is mainly due to the
explicit form of far-field patterns for Dirichlet and impedance disks.

Let Bh(z) be the disk centered at z ∈ R2 with radius h > 0. The boundary of Bh(z) is denoted
byΓz,h := {x : |x − z| = h}. It is supposed that Bh(z) is either a sound-soft disk in which k2 is not
the Dirichlet eigenvalue of −Δ, or an impedance disk with the constant impedance coefficient
η ∈ C such that Im(η) > 0. Denote by u∞

z,h(x̂, d) = u∞(x̂; Bh(z), d, k) the far-field pattern incited
by the plane wave eikx·d incident onto Bh(z) and by Fz,h the associated far-field operator, that is,

(Fz,hg)(x̂) =
∫
S

u∞
z,h(x̂, d)g(d)ds(d) for x̂ ∈ S, g ∈ L2(S). (3.4)

Using the translation formula

u∞(x̂; Bh(z), d, k) = eikz·(d−x̂)u∞(x̂; Bh(O), d, k), (3.5)

together with the spectral system for Bh(O), we can get the spectral system (λ(n)
z,h ,ϕ(n)

z,h) of Fz,h

under the Dirichlet or impedance boundary condition:

• If Bh(z) is a sound-soft disk, then

λ(n)
z,h = −2πC

Jn(kh)

H(1)
n (kh)

, ϕ(n)
z,h(x̂) = einθ̂−ikz·(cos θ̂,sin θ̂). (3.6)

In particular, λ(n)
z,h �= 0 if k2 is not the Dirichlet eigenvalue of −Δ in Bh(z).

8
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• If Bh(z) is an impedance disk with the impedance constant η ∈ C, then (see e.g., (2.11))

λ(n)
z,h = −2πC

kJ′
n(kh) + ηJn(kh)

kH(1)′
n (kh) + ηH(1)

n (kh)
, ϕ(n)

z,h(x̂) = einθ̂−ikz·(cos θ̂,sin θ̂). (3.7)

In particular, we have λ(n)
z,h �= 0.

Note that the above eigenvalues are independent of z and the eigenfunctions are independent
of h. Taking Ω = Bh(z), we can rewrite corollary 3.1 as

Corollary 3.3. Let v∞ ∈ L2(S). Then

I(z, h) :=
∑
j∈Z

∣∣∣〈v∞,ϕ( j)
z,h

〉
S

∣∣∣2∣∣∣λ( j)
z,h

∣∣∣ < +∞ (3.8)

if and only if v∞ is the far-field pattern of the radiating solution vs, where vs satisfies Helmholtz
equation Δvs + k2vs = 0 in |x − z| > h with the boundary data f := vs|Γz,h ∈ H1/2(Γz,h).

Proof. Without loss of generality, we assume that the center z coincides with the origin,
i.e., Bh(z) = Bh(O). By the Jacobi–Anger expansion (see e.g., [9]), vs can be expanded into
the series

vs(x) =
∑
n∈Z

AnH(1)
n (k|x|)einθ̂, |x| > R, x = (|x|, θ̂), (3.9)

for some sufficiently large R > 0, with the far-field pattern given by (see [9, (3.82)])

v∞(x̂) =
∑
n∈Z

AnCneinθ̂, Cn :=

√
2

kπ
e−i( nπ

2 + π
4 ). (3.10)

By the asymptotic behavior of Bessel functions (see [9]), the function I(z, h) with z = O can
be written as

I(z, h) =
∑
j∈Z

∣∣∣〈∑AnCneinθ̂,ϕ( j)
z,h

〉
S

∣∣∣2∣∣∣λ( j)
z,h

∣∣∣ =
∑
j∈Z

∣∣∣λ( j)
z,h

∣∣∣−1
|2πA jCj|2

=
∑
j∈Z

√
8
πk

|A j|2
22 j j!( j − 1)!

(kh)2 j

(
1 + O

(
1
j

))
.

(3.11)

On the other hand, by (3.9) and the definition of the norm ‖ · ‖H1/2(Γz,h), it is easy to see when
z = O that

‖vs‖2
H1/2(Γz,h)

=
∑
j∈Z

(1 + j,2)1/2|A jH
(1)
j (kh)|2

=
∑
j∈Z

|A j|2
22 j j!( j − 1)!
π2(kh)2 j

(
1 + O

(
1
j

))
.

(3.12)

Obviously, the series (3.11) and (3.12) have the same convergence. On the other hand, by
[9, theorem 2.15], the boundedness of ‖vs‖L2(Γz,h) means that vs is a radiating solution in
|x − z| > h with the far-field pattern v∞. This proves that I(z, h) < ∞ if and only if vs is a

9
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radiating solution in |x − z| > h with the far-field pattern v∞ and with the H1/2-boundary data
on Γz,h. �

In our applications of corollaries 3.1 and 3.3, we will take v∞ to be the measurement
data u∞

D (x̂; d0) := u∞(x̂; d0, D) that corresponds to our target scatterer D and the incident
plane wave eikx·d0 for some fixed d0 ∈ S. We shall omit the dependance on d0 if it is always
clear from the context. Our purpose is to extract the geometrical information on D from the
domain-defined indicator function I(Ω) or I(z, h). By corollary 3.1, I(Ω) < ∞ if the scattered
field us

D(x) = us(x; d0, D) can be extended to the domain R2\Ω as a solution to the Helmholtz
equation. This implies that us

D admits an analytical extension across the boundary ∂D when the
inclusion relation D ⊂ Ω does not hold. Therefore, the one-wave factorization method requires
us to exclude the possibility of analytical extension, which however is possible only if ∂D is
not everywhere analytic. If ∂D is analytic, it follows from the Cauchy–Kovalevski theorem
(see e.g. [27, chapter 3.3]) that us

D can be locally extended into the inside of D across the
boundary ∂D. In the special case that D = Bh(O), by the Schwartz reflection principle the
scattered field us

D can be globally continued into R2\{O}. Below we shall discuss the absence
of the analytic extension of us

D in corner domains, which is an import ingredient in establishing
the one-wave factorization method. The results in the subsequent section have been used in the
literature but without proofs. We intend to present their proofs for the readers’ convenience.

3.3. Absence of analytical extension in corner domains

We first consider time-harmonic acoustic scattering from a convex polygon of sound-soft,
sound-hard or impedance type. In the impedance case, the impedance function is supposed
to be a constant.

Lemma 3.4. Assume that D is either a sound-soft, sound-hard or impedance obstacle occu-
pying a convex polygon. Then the scattered field us

D(x, d0) for a fixed d0 ∈ S cannot be
analytically extended from R2\D into D across any corner of D.

As one can imagine, the proof of lemma 3.4 is closely related to uniqueness in determining
a convex polygonal obstacle with a single incoming wave (see e.g., [7], [9, theorem 5.5] and
[20]). In fact, the result of lemma 3.4 implies that a convex polygonal obstacle of sound-soft,
sound-hard or impedance type can be uniquely determined by one far-field pattern. There are
several approaches to prove lemma 3.4. Below we present a unified method valid for any kind
boundary condition under consideration. The original version of this approach was presented
in [14] for proving uniqueness in inverse conductivity problems.

Proof. Assume on the contrary that us
D can be analytically continued across a corner of ∂D. By

coordinate translation and rotation, we may suppose that this corner coincides with the origin,
so that us

D and also the total field uD = us
D + ui satisfy the Helmholtz equation in Bε(O) for

some ε > 0. Since uD is real analytic in (R2\D) ∪ Bε(O) and D is a convex polygon, uD satisfies
the Helmholtz equation in a neighborhood of an infinite sector Σ ⊂ R2\D which extends the
finite sector Bε(O) ∩ D to R2\D. On the other hand, uD fulfills the boundary condition on the
two half lines ∂Σ starting from the corner point O. By the Schwartz reflection principle of
the Helmholtz equation, uD can be extended onto R2 (see also [14] for discussions on the
conductivity equation). We remark that uD ≡ 0 when the angle of Σ is irrational and that the
impedance case follows from the arguments in [20]. This implies that the scattered field us

D is
an entire radiating solution. Hence, us

D must vanish identically in R2 and uD = ui must fulfill
the boundary condition on ∂D. However, this is impossible for a plane wave incidence under
either of the Dirichlet, Neumann or Robin condition. �

10
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Next we consider the source radiating problem where D is a polygonal source term. The
absence of analytical extension in this case implies that a polygonal source term cannot be a
non-radiating source (that is, the resulting far-field pattern vanishes identically). This can be
proved based on the idea of constructing CGO solutions [3, 4, 19] or analyzing corner singular-
ities for solutions of the inhomogeneous Laplace equation [12, 18]. Below we consider the case
of a special analytic source function, which will significantly simplify the arguments employed
in [11, 12] for inverse medium scattering problems and those in [3, 18] for inverse source
problems. It is worthy mentioning that the results of the following lemma also appear in [32]
but with insufficient regularity assumption on the source term. Here we intend to present an ele-
mentary and simple proof, which together with lemma 3.4 can be considered as supplementary
arguments to [32] for planar corners.

Lemma 3.5. Assume that D is a convex polygon and let χD be the characteristic function for
D. If u ∈ H2

loc(R2) is a radiating solution to

Δu(x) + k2u(x) = χD(x) f (x) in R2, (3.13)

where f(x) is real-analytic and non-vanishing near the corner point O of D and the lowest
order Taylor expansion of f at O is harmonic. Then u cannot be analytically extended from
R2\D to D across the corner O.

Proof. Assume that u can be analytically extended from R2\D to Bδ(O) for some δ > 0
(see figure 2), as a solution of the Helmholtz equation. Without loss of generality, the corner
point O is supposed to coincide with the origin. Set v± = u|D± where D+ :=Bδ(O) ∩ (R2\D)
and D− :=Bδ(O) ∩ D. This implies that Δv+ + k2v+ = 0 in Bδ(O) and thus the Cauchy data
v− = v+, ∂νv− = ∂νv

+ on Γ := ∂D ∩ Bδ(O) are analytic. Since f is also analytic in Bδ(O),
by the Cauchy–Kovalevskaya theorem (see e.g. [27, chapter 3.3]) the function v− can also
be analytically continued into Bδ(O) as a solution of Δv− + k2v− = f in Bδ(O). Setting
w = v− − v+ in Bδ(O), we have

Δw + k2w = f in Bδ(O), w = ∂νw = 0 on Γ. (3.14)

Using [10, lemma 2.2], the analytic functions w and f can be expanded in polar coordinates
into the series

w(x) =
∑

n+2m�0

rn+2m(an,m cos nθ + bn,m sin nθ),

f (x) = rN(ãN cos Nθ + b̃N sin Nθ) +
∑

n+2m�N+1

rn+2m(ãn,m cos nθ + b̃n,m sin nθ),
(3.15)

in Bδ(O), where (r, θ) denote the polar coordinates of x ∈ R2 and N ∈ N0. Since f does not
vanish identically, we may suppose that |ãN|+ |b̃N| > 0. Recalling the Laplace operator in
polar coordinates, Δ = ∂2

∂r2 + 1
r
∂
∂r +

1
r2

∂2

∂θ2 , we have

f (x) = Δw(x) + k2w(x)

=
∑

n+2m�0

[4(n + m + 1)(m + 1)rn+2m(an,m+1 cos nθ + bn,m+1 sin nθ)]

+
∑

n+2m�0

k2rn+2m(an,m cos nθ + bn,m sin nθ).

11



Inverse Problems 38 (2022) 015003 G Ma and G Hu

Inserting the expansion of f (x) in (3.15) and comparing the coefficients of rl, l ∈ N0, we
can get the recurrence relations for an,m,

4(N + 1)aN, 1 + k2aN, 0 = ãN ,

4(n + m + 1)(m + 1)an,m+1 + k2an,m = 0, n + 2m < N

4(n + m + 1)(m + 1)an,m+1 + k2an,m = 0, n + 2m = N, m > 0.

(3.16)

The same relations hold for bn,m. Now, we suppose without loss of generality that
Γ = {(r,±θ0) : |r| < δ} for some θ0 ∈ (0, π/2). From the boundary conditions w = ∂θw = 0
on Γ, we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
n,m∈N0,n+2m=l

an,m cos nθ0 = 0,∑
n,m∈N0,n+2m=l

nan,m sin nθ0 = 0,∑
n,m∈N0,n+2m=l

nbn,m cos nθ0 = 0,∑
n,m∈N0,n+2m=l

bn,m sin nθ0 = 0,

(3.17)

for any l ∈ N0. From the second formula in (3.16) and the first two formulas in (3.17), we can
easily obtain an,m = 0 if n + 2m < N.

Now we prove that an,m = 0 if l = n + 2m = N. In fact, for m � 1, setting m′ = m − 1 � 0
we derive from the second formula in (3.16) that

an,m = an,m′+1 = − k2

4(n + m)m
an,m′ = 0,

since n + 2m′ < N. The above relations together with the first two formulas in (3.17) with
l = N lead to

aN,0 cos Nθ0 = 0, NaN,0 sin Nθ0 = 0,

which imply that aN,0 = 0.
When l = n + 2m = N + 2, we observe that n + 2m′ = N, where m′ = m − 1. Hence one

can get an,m = 0 if m > 1 and l = N + 2, by using the third formula in (3.16) and the fact
that an,m′ = 0 for all n + 2m′ = N. Then it follows from the first two formulas in (3.17) with
l = N + 2 that {

aN+2,0 cos(N + 2)θ0 + aN,1 cos Nθ0 = 0,

(N + 2)aN+2,0 sin(N + 2)θ0 + NaN,1 sin Nθ0 = 0.
(3.18)

Since 0 < θ0 < π
2 , we have (see [11])∣∣∣∣∣ cos(N + 2)θ0 cos Nθ0

(N + 2) sin(N + 2)θ0 N sin Nθ0

∣∣∣∣∣ = (N + 1) sin 2 θ0 − sin(N + 1)θ0 �= 0. (3.19)

Then we have aN+2,0 = aN,1 = 0. By the first relation in (3.16) we get ãN = 0. Analogously
one can prove b̃N = 0. This implies that f ≡ 0, which is a contradiction. �

12
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Figure 2. Illustration of a convex polygonal source term where O is corner point of D.

Remark 3.6.

(a) If f satisfies the elliptic equation

Δ f (x) + A(x) · ∇ f (x) + b(x) f (x) = 0,

where A(x) = (a1(x), a2(x)) and b(x) are both real-analytic, then the lowest Taylor
expansion of f at any point must be harmonic (see [18]). Therefore, the class of source
functions f specified in lemma 3.5 covers at least harmonic functions, including constant
functions.

(b) The analyticity of f in lemma 3.5 can be weakened to be Hölder continuous near O with
the asymptotic behavior (see [18, 32])

f (x) = rN(An cos Nθ + BN sin Nθ) + o(rN), |x| → 0, (3.20)

for some N ∈ N0 and AN , BN ∈ C with |AN |+ |BN | > 0. Moreover, the corner O ∈ ∂D
can be weakened to be a weakly singular point of arbitrary order such that ∂D is not of
C∞-smooth at O; see [34].

3.4. One-wave version of the factorization method

To state the one-wave factorization method, we shall restrict our discussions to convex polyg-
onal impenetrable scatterers of sound-soft, sound-hard or impedance type and to convex
polygonal source terms where the source function satisfies the condition of lemma 3.5. In the
former case, u∞

D represents the far-field pattern of the scattered field caused by some plane wave
incident onto D; in the latter case, u∞

D denotes the far-field pattern of the radiating solution to
(3.13). Recall from subsection 3.1 that Ω is a convex sound-soft or impedance scatterer such
that k2 is not the eigenvalue of −Δ in Ω. Denote by (λ( j)

Ω ,ϕ( j)
Ω ) the eigenvalues and eigenfunc-

tions of the far-field operator FΩ. Below we characterize the inclusion relationship between
our target scatterer D and the test domain Ω through the interaction of the measurement data
u∞

D and the spectra of FΩ.

13
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Figure 3. Three cases when D ⊆ Ω does not hold. Here the test domain Ω is chosen as
a disk in 2D.

Theorem 3.7. Define

W(Ω) :=
∑
j∈Z

∣∣∣〈u∞
D ,ϕ( j)

Ω

〉
S

∣∣∣2∣∣∣λ( j)
Ω

∣∣∣ .

Then W(Ω) < ∞ if and only if D ⊆ Ω.

Proof. =⇒: By corollary 3.1, W(Ω) < +∞ implies that u is analytic in R2\Ω. If D � Ω and
D is a convex polygon, three cases might happen (see figure 3): (i) Ω ⊂ D; (ii) Ω ∩ D = ∅;
(iii) Ω ∩ D �= ∅ and Ω ∩ (R2\D) �= ∅. In either of these cases, we observe that u can be ana-
lytically continued from R2\D to D across a corner of ∂D, which however is impossible by
lemmas 3.4 and 3.5. This proves the relationship D ⊆ Ω.

⇐=: We only consider the case where D is an impenetrable scatterer. The source problem
can be proved analogously. Assume D ⊆ Ω. Then the scattered field us satisfies the Helmholtz
equation Δus + k2us = 0 in R2\Ω with the boundary data us|∂Ω ∈ H1/2(∂Ω). Then we can get
W(Ω) < +∞ by applying corollary 3.1. �

Taking the test domain Ω as the disk Bh(z), we can immediately get

Corollary 3.8. Let (λ( j)
z,h,ϕ( j)

z,h) be an eigensystem of the far-field operator Fz,h. Define

W(z, h) :=
∑
j∈Z

∣∣∣〈u∞
D ,ϕ( j)

z,h

〉
S

∣∣∣2∣∣∣λ( j)
z,h

∣∣∣ . (3.21)

Then we have W(z, h) < ∞ if h � maxy∈∂D|y − z| and W(z, h) = ∞ if h < maxy∈∂D|y − z|.

Remark 3.9. Theorem 3.7 and corollary 3.8 explain how do the a priori data u∞
Ω (x̂, d) for all

x̂, d ∈ S encode the information of the unknown target D. Evidently, their proofs rely essen-
tially on mathematical properties of the scattering model. On the other hand, in the terminology
of learning theory and data sciences, the test domains Ω can be regarded as samples and the a
priori data u∞

Ω (x̂, d) as the associated sample data, which are usually calculated off-line. In this
sense, the one-wave factorization method is a both model-driven and data-driven approach.

Corollary 3.8 says that the maximum distance between a sampling point z ∈ R2 and our
target D is coded in the function h �→ W(z, h). Hence, changing the sampling points z on a
large circle |z| = R such that D ⊆ BR(O) and computing maxy∈∂D|z − y| for each z would give

14



Inverse Problems 38 (2022) 015003 G Ma and G Hu

Figure 4. For k = 6 and h = 1, ln(|λ( j)
z,h|) decays almost linearly as j →∞.

an approximation of D as follows:

D ≈
W(h,z)<∞⋂

|z|=R,h∈(0,2R)

Bh(z). (3.22)

Remark 3.10. In (3.22), it is supposed that R > 0 is a fixed large number. A precise
characterization of the convex polygon D is given by taking the limit R →∞, that is,

D = lim
R→+∞

W(h,z)<∞⋂
|z|=R,h∈(0,2R)

Bh(z).

In fact, this can be easily proved using corollary 3.8.

We remark that a proper regularization scheme should be employed in computing the trun-
cated indicator (3.21), because the far-field operator Fz,h is compact and the eigenvalues λ( j)

z,h
decay almost exponentially as j →∞; see figure 4.

If Ω = Bh(z) is a sound-soft test disk, the (F∗F)1/4-method yields the relation
W(z, h) = ‖gz,h‖2

L2(S)
, where g = gz,h ∈ L2(S) solves the operator equation

(F∗
z,hFz,h)1/4g = u∞

D . (3.23)

15
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The solution of the equation (3.23) is

g =
∑

j

〈u∞
D ,ϕ j〉S√
λ( j)

z,h

ϕ( j)
z,h if u∞

D ∈ Range((F∗
z,hFz,h)1/4).

Using the Tikhonov regularization we aim to solve the equation

αI + (F∗
z,hFz,h)1/2gα = (F∗

z,hFz,h)1/4u∞
D (3.24)

with the solution given by

gα =
∑

j

√
λ( j)

z,h

|α+ λ( j)
z,h|

〈
u∞

D ,ϕ( j)
z,h

〉
S

ϕ( j)
z,h, (3.25)

where α > 0 is the regularization parameter. This implies that

‖gα‖2
L2(S) =

∑
j

|λ( j)
z,h|

(|λ( j)
z,h + α|)2

∣∣∣〈u∞
D ,ϕ( j)

z,h

〉∣∣∣2.
Hence, numerically one should use the modified indicator

W̃(z, h) =

⎡⎢⎣∑
j�N

|λ( j)
z,h|

∣∣∣〈u∞
D ,ϕ( j)

z,h

〉
S

∣∣∣2

∣∣∣λ( j)
z,h + α

∣∣∣2

⎤⎥⎦
−1

= 1/‖gα‖2
L2(S). (3.26)

Our imaging scheme I is described as follows (see figure 5):

• Suppose that D ⊆ BR(O) for some R > 0 and collect the measurement data u∞
D (x̂) for all

x̂ ∈ S;
• Choose sampling points zn ∈ ΓR := {x : |x| = R} for n = 1, . . . , Nz;
• Choose hm ∈ (0, 2R) to get different spectral systems (λ( j)

zn,hm
,ϕ( j)

zn,hm
) (see (3.6) or (3.7));

• For each zn ∈ ΓR, calculate the maximum distance between zn and D by hzn := inf{hm ∈
(0, 2R) : W̃(zn, hm) � δ} where δ > 0 is a threshold.

• Take D ≈
⋂

1�n�Nz
Bhzn

(zn).

In the above numerical scheme, we take the test domain Ω as sound-soft or impedance
disks Bh(z), because the spectral systems (λ( j)

z,h,ϕ( j)
z,h) are given explicitly. For a general test

domain, the spectral systems (λ( j)
Ω ,ϕ( j)

Ω ) should be calculated off-line, so that they are available
before inversion. The sample variables (disks) in the above one-wave factorization method
consist of the centers z ∈ ∂BR and radii h ∈ (0, 2R). Obviously, the number of these variables
is comparable with that of the original factorization method with infinitely many plane waves.

4. Connections with other domain-defined sampling methods

There exist some other domain-defined sampling methods in recovering impenetrable scatter-
ers with a single far-field pattern such as range test [33], no-response test [37] and extended
sampling method [35]. It was shown in [38, chapter 15] and [36] that range test and no-response
test are dual and equivalent for inverse scattering and inverse boundary value problems.
To compare our methods with the extended sampling method and range test, we suppose in this
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Figure 5. Given z1, z2 ∈ ΓR, we have ˜W(zm, hj) = 0 for m, j = 1, 2, since the underly-
ing obstacle D is not covered by the sampling disks Bh j(zm) (see the left and middle
figures). However, ˜W(zm, h3) < ∞ for m = 1, 2, because D ⊆ Bh3 (z1) ∩ Bh3 (z2) (see the
right figure).

section that D is a convex sound-soft polygon and the test obstacle Ω = Bh(z) is a sound-soft
disk centered at z with radius h > 0.

The extended sampling method [35] suggests solving the first kind linear integral equation

(Fz,hg̃)(x̂) = u∞
D (x̂), (4.1)

with regularization schemes. If D ⊆ Bh(z), the solution g̃ to the previous far-field equation takes
the form

g̃(x̂) =
1

2π

∑
j∈Z

〈uD,φ( j)
z,h〉

λ( j)
z,h

φ( j)
z,h(x̂),

with the norm

‖g̃‖2
L2(S) =

∑
j∈Z

|〈uD,φ( j)
z,h〉|2

|λ( j)
z,h|2

< ∞.

Here, we recall that (λ( j)
z,h,φ( j)

z,h) denotes an eigensystem of the far-field operator Fz,h given
explicitly by (3.6). In the special case z = O = (0, 0),

‖g̃‖2
L2(S) =

1
4π2C2

∑
n∈Z

|〈uD(x̂), einθ〉|2

|Jn(kh)/H(1)
n (kh)|2

, x̂ = (cos θ, sin θ). (4.2)

It was mentioned in [35] that the regularized solution ‖g̃α‖2
L2(S)

= ∞ if uD cannot be analyti-
cally extended into the domain |x − z| > h, where α > 0 is a regularization parameter.

The one-wave version of range test considers the first kind integral equation

H∗
Ω(ϕ)(x̂) := (H∗ϕ)(x̂) = u∞

D (x̂), ϕ ∈ L2(∂Ω). (4.3)

Note that H∗ = H∗
Ω is the adjoint operator of the Herglotz operator H = HΩ with respect to

the L2 inner product, given by(
H∗ϕ

)
(x̂) :=

∫
|y−z|=h

e−ikx̂·yϕ(y)ds(y), x̂ ∈ S, (4.4)
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when Ω = Bh(z). Using the Jacobi–Anger expansion, it is easy to obtain an eigensystem of the
operator H∗ over L2(∂Bh(z)) with z = O:

ψn(hx̂) := einθ, ηn := (−i)nJn(kh), n ∈ Z.

This implies that, when D ⊆ Bh(z), the solutionϕ to (4.3) is given by in the polar coordinates

ϕ(hx̂) = ϕ(h, θ) =
1

2π

∑
n∈Z

〈u∞
D (x̂),ψn〉
ηn

ψn(θ), x̂ = (cos θ, sin θ).

Hence,

‖ϕ‖2
L2(Bh(O)) =

∑
n∈Z

|〈u∞
D (x̂),ψn〉|2
|ηn|2

=
∑
n∈Z

|〈u∞
D (x̂), einθ〉|2
|Jn(kh)|2 . (4.5)

In view of the asymptotic behavior of Jn and H(1)
n , we have

|Jn(kh)|2 ∼ 1
|n|

|Jn(kh)|
|H(1)

n (kh)|
as n →∞.

Comparing (4.5), (4.2) and (3.21), it is easy to see the solutions g̃, ϕ and our solution g satisfy
the relations

c−1 ‖g‖2
L2(S) � ‖ϕ‖L2(∂Bh(O))2 < c ‖g̃‖2

L2(S) < ∞ (4.6)

when D ⊆ Ω :=Bh(O).
It should be remarked that, the range of H∗

Ω : L2(Ω) → L2(S) is a subset of the range of the
data-to-pattern operator GΩ : H1/2(Ω) → L2(S), although both of them have dense ranges in
L2(S). For general smooth test scatterers, we can prove that

Lemma 4.1. Assume that ∂Ω is of C2-class and that k2 is not the Dirichlet eigenvalue
of −Δ over Ω. We have (i) range (H∗

Ω) coincides with GΩ(H1(∂Ω)), where the latter denotes
the range of GΩ : H1(∂Ω) → L2(S). (ii) If the closure of the sound-soft polygon D is contained
in Ω, then the solutions g̃, g and ϕ to the equations

FΩg̃ = u∞
D , (F∗

ΩFΩ)1/4g = u∞
D , H∗

Ωϕ = u∞
D

satisfy the relation

c−1 ‖g‖2
L2(S) � ‖ϕ‖L2(∂Ω) < c ‖g̃‖2

L2(S) < ∞, c > 0. (4.7)

Proof.

(a) First, suppose that u∞ = GΩ( f ) for some f ∈ H1(∂Ω). Since k2 is not the Dirichlet eigen-
value of −Δ over Ω, there exists a unique v ∈ H3/2(Ω) to the interior boundary value
problem

Δv + k2v = 0 in D, v = − f on ∂D.

Let us ∈ H3/2
loc (R2\Ω) be the unique radiation solution in R2\Ω with the far-field pattern

u∞. By Green’s formula, we get for x ∈ R2\Ω that
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us(x) =
∫
∂Ω

us(y)
∂Φ(x, y)
∂ν(y)

− ∂us(y)
∂ν(y)

Φ(x, y) ds(y)

=

∫
∂Ω

f (y)
∂Φ(x, y)
∂ν(y)

− ∂us(y)
∂ν(y)

Φ(x, y) ds(y),

0 =

∫
∂Ω

v(y)
∂Φ(x, y)
∂ν(y)

− ∂v(y)
∂ν(y)

Φ(x, y) ds(y).

Adding the previous two identities together yields

us(x) =
∫
∂Ω

− ∂(us + v)(y)
∂ν(y)

Φ(x, y) ds(y),

and letting |x| tend to infinity we find

u∞(x) =
∫
∂Ω

− ∂(us + v)(y)
∂ν(y)

e−ikx̂·y ds(y).

Since ϕ := − ∂ν(us + v)|∂Ω ∈ L2(∂Ω), we know u∞ = H∗
Ω(ϕ).

Secondly, if u∞ = H∗
Ωϕ for some ϕ ∈ L2(∂Ω). It is easy to see that the radiation

solution us for generating u∞ takes the form

us(x) =
∫
∂Ω

Φ(x, y)ϕ(y) ds(y), x ∈ R2\Ω.

Hence, u∞ = GΩ( f ) with f := us|∂Ω ∈ H1(∂Ω).
(b) For notational simplicity we omit the dependance on Ω of the operators FΩ, GΩ, SΩ and

H∗
Ω. We note that, when D ⊆ Ω, the far-field pattern u∞

D corresponding to D lies in the
intersection of the ranges of F, H∗ and (F∗F)1/4. Since k2 is not the Dirichlet eigenvalue
of −Δ over Ω, the operators H∗ and S are both injective.

To prove the first relation in (4.7), we observe that u∞
D = G( f ) where f = us

D|∂Ω ∈ H1(∂Ω),
since us

D is real-analytic near ∂Ω ⊆ R2\D. Further, by (a) it follows that f = H∗ϕ and thus

‖ f ‖H1/2(∂Ω) � c ‖ϕ‖H−1/2(∂Ω) � c ‖ϕ‖L2(∂Ω). (4.8)

On the other hand, it follows from [28, theorem 1.24] that

‖ f ‖H1/2(∂Ω) ∼ ‖g‖L2(S),

which together with (4.8) proves ‖g‖L2(S) � c ‖ϕ‖L2(∂Ω).
Now we shall prove the second relation. Using again the assumption on k2 and the smooth-

ness of ∂Ω, for every d ∈ S we can always find a ψ(·; d) ∈ L2(∂Ω) such that the equality

−eikx·d = [Sψ(·; d)](x), x ∈ ∂Ω,

holds in the sense of H1(∂Ω). Moreover, it holds that ‖ψ(·; d)‖L2(∂Ω) � c uniformly in all d ∈ S.
Hence,

u∞
Ω (x̂; d) =

∫
∂Ω

e−ikx̂·yψ(y; d)ds(y), x̂ ∈ S. (4.9)
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Since H∗ϕ = u∞
D = Fg̃, using (4.9) and the definition of H∗ and F we get∫
∂Ω

e−ikx̂·yϕ(y)ds(y) =
∫
S

∫
∂Ω

e−ikx̂·yψ(y; d)ds(y)g̃(d)ds(d)

=

∫
∂Ω

e−ikx̂·y
(∫

S

ψ(y; d)g̃(d)ds(d)

)
ds(y),

(4.10)

implying that ∫
∂Ω

e−ikx̂·y
(
ϕ(y) −

∫
S

ψ(y; d)g̃(d)ds(d)

)
ds(y) = 0, ∀ x̂ ∈ S. (4.11)

By the injectivity of H∗,

ϕ(y) =
∫
S

ψ(y; d)g̃(d)ds(d). (4.12)

Thus,

‖ϕ‖2
L2(∂Ω) =

∫
∂Ω

∣∣∣∣∫
S

ψ(y; d)g̃(d)ds(d)

∣∣∣∣2ds(y)

�
∫
∂Ω

‖ψ(y; ·)‖2
L2(S)ds(y) ‖g̃‖2

L2(S)

� c ‖g̃‖2
L2(S)

(4.13)

for some c > 0. �

5. Numerical tests

5.1. Reconstruction of a point-like obstacle

Assume that the obstacle (resp. source support) D has been shrank to a point located at z∗ (for
instance, if the wavelength λ = 2π/k is much bigger than the diameter of D). In this case, the
scattered (resp. radiated) wave field can be asymptotically written as c∗Φ(x, z∗), where c∗ ∈ C
depends on the incoming wave, the scattering strength of D as well as the location point z∗. For
simplicity we suppose that c∗ = 1. Then the far-field pattern u∞ = u∞

D takes the simple form

u∞(x̂) = e−ikz∗·x̂. (5.1)

To perform numerical examples, we set the wave number k = 6 and suppose that z∗ ∈ BR with
R = 4. The number of sampling centers zn lying on |x| = 4 is taken to be Nz = 8, and the
parameter for truncating the infinite series (3.21) is chosen as N = 60. The threshold speci-
fied in our imaging scheme is set as δ = 4 × 10−4. In these settings we obtain figure 6 where
z∗ = [2, 2], [−1, 2], [2,−1], [−1,−1] can be accurately located with a single far-field pattern
without polluted noise. In figure 6, the dotted curve represents the circle ΓR where the centers
of the test disks are located. The solid circles are boundaries of the test disks Bhzn

(zn), where
hzn denotes the distance between zn and z∗. In figure 7, we plot the function h → W̃(z, h) with
z = [4, 0] for locating z∗ = [−2, 0]. Obviously, we have |z − z∗| = 6. It is seen from figure 7
that the values of the function h → W̃(z, h) for h ∈ (0, 6) are much smaller than those for
h ∈ (6, 8). With our threshold the distance between z and z∗ is calculated as 5.98.
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Figure 6. Imaging scheme I: locating one point-like obstacle/source from a single far-
field pattern.

5.2. Reconstruction of multiple point-like obstacles

Although the first scheme can be used previously to locate a point-like obstacle/source, it is
not straightforward for imaging an extended obstacle/source. Below we describe a more direct
imaging scheme II.

• Suppose that BR ⊃ D for some R > 0 and collect the measurement data u∞
D (x̂) for all

x̂ ∈ S. Let Q ⊃ D be our search/computational region for imaging D;
• Choose sampling centers zn ∈ ΓR := {x : |x| = R} for n = 1, . . . , Nz and choose sampling

radii hm ∈ (0, 2R) to get different spectral systems (λ( j)
zn,hm

,ϕ( j)
zn,hm

) (see (3.6) or (3.7));
• For each zn ∈ ΓR, define the function In(x) = W̃(zn, |x − zn|) for x ∈ Q (see (3.26));
• The imaging function for recovering D is defined as I(x) =

∑Nz
n=1In(x), x ∈ Q;

Remark 5.1. By definition, the values of the indicator function I in the interior of D are
smaller than those in the exterior. Hence, the functionI indeed indicates the position and shape
of an unknown extended scatterer. This was rigorously justified at least for convex scatterers
of polygonal type; see the blue parts in figures 8–10 for imaging multiple point-like scatterers
and extended polygonal sources.
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Figure 7. Figure of the function h → ˜W(z, h) with z = [4, 0], h ∈ (0, 8) for locating
z∗ = [−2, 0].

Figure 8. Reconstruction of one (left), two (middle) and three (right) points by applying
imaging scheme II. The yellow part in the left figure locates one point-like scatterer,
while the blue parts in the middle and right figures show respectively the line-segment
and triangle connecting two and three point-like scatterers.

Note that, by corollary 3.8, In(x) > 0 if |x − zn| > maxy∈D|zn − y| and In(x) = 0 if oth-
erwise. Hence, the values of I(x) for x ∈ Q\D should be larger than those for x ∈ D. As an
example, we apply this new scheme to image D =

⋃
j=1,2,...,M{z∗j} which consists of multiple

point-like scatterers. For simplicity we neglect the multiple scattering between them and write
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Figure 9. Image of a triangular source support from a single far-field pattern excited at
different energies. The blue parts show the position and shape of the triangular source.

Figure 10. Image of a triangular source support D (the blue part) by using the spectral
system of Fz,h for z ∈ ΓR. We fix k = 6.

the far-field pattern as

u∞(z∗) = e−ikz∗1 ·x̂ + e−ikz∗2·x̂ + · · ·+ e−ikz∗M ·x̂. (5.2)

The results for reconstructing one point z∗1 = [1, 1] (M = 1), two points z∗1 = [−2, 4],
z∗2 = [2,−3] (M = 2) and three points z∗1 = [3, 3], z∗2 = [−2, 2], z∗3 = [0,−4] (M = 3) are
shown in figure 8. As one can imagine, with a single far-field pattern our approach can only
recover the convex hull of these points. In the case of two points, the line segment connecting
z∗1 and z∗2 is shown in the middle of figure 8. The triangle formed by z∗1, z∗2 and z∗3 is shown in
the right figure.

Remark 5.2. It is important to remark that there exist other approaches for locating a finite
number of point scatterers using several incident waves, for example the MUSIC algorithm
(which can be regarded as the discrete analogue of the classical factorization method [30])
and the expansion method [1]. Our concern here is to show the capability of the one-wave
factorization method for capturing singularities of the scattered/radiated wave field. In 2D, the
singularity is of logarithmic type at the point-like scatterers.

5.3. Reconstruction of a triangular source support

Suppose that the source support D is a triangle with the three corners located at
(−2,−2), (−2, 2) and (2, –2). The source function is supposed to be a constant. For simplicity
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we assume that χD f (x) ≡ 1 on D, so that the far-field pattern takes the explicit form

u∞(x̂) =
i
4

∫
D

e−ikx̂·z dz =
i
4

∫ 2

−2
e−ikx̂1z1

∫ −z1

−2
e−ikx̂2z2 dz2 dz1, (5.3)

where x̂ = (x̂1, x̂2) ∈ S and z = (z1, z2) ∈ R2. We want to test the sensitivity of our approach
to the incident wavenumber k and to the circle ΓR = {x : |x| = R} = ∂BR. In this subsection,
the number of sampling centers zn lying on |x| = R is set to be Nz = 64 and the truncation
parameter to be N = 80.

Firstly, we fixed R = 4 and change the excited frequencies. The far-field data corresponding
to Bh(z) are supposed to be excited at the same frequency as for D. In figure 9, the recovery
of D from a single far-field pattern at different frequencies are illustrated. We observe that a
regularization parameter depending on k must be properly selected to get a satisfactory image
of D. In our numerical tests, α > 0 is chosen by the method of trial and error. Consequently,
we take α = 1e − 22, 1e − 13 and 1e − 8 corresponding to the wavenumbers k = 1.5, 6, 12,
respectively. From figure 9, one can conclude that a better image can be achieved at higher
frequencies.

Secondly, we fix k = 6 and recovery D by using sampling disks with the centers equally
distributed on ΓR with R = 4, 8, 12. The regularization parameter are chosen as α = 1e − 13,
1e − 13 and 1e − 20. Note that a smaller R gives more a priori information on D. It is seen
from figure 10 that a larger R yields a worse image of D.

6. Concluding discussions

While the classical factorization method was motivated by the uniqueness proof in inverse
scattering with infinitely many incident directions [21, 31], its one-wave version, as explored
here, originates from the unique determination of convex polygonal/polyhedral scatterers with
a single incoming wave. The proposed inversion scheme carries over to penetrable scatter-
ers, because the result of lemma 3.4 extends to such objects (see [11, 12]). Being different
from other domain-defined sampling methods, the imaging scheme proposed in this paper
can be interpreted as a model-driven and data-driven approach, because it relies on both the
Helmholtz equation and the a priori data for test scatterers. In our numerics these test scatterers
are chosen as sound-soft or impedance disks, due to the explicit spectra of the corresponding
far-field operators. We remark that the a priori information of the unknown target D can be
incorporated into the chosen test scatterers. Preliminary examples indeed show that the pro-
posed scheme can be used to roughly capture the convex hull of multiple point-like scatterers or
a convex polygonal source, due to the presence of singularities of the wave fields. The schemes
developed in this paper can serve as the initial step for finding the boundary of an unknown
target, when a single far-field pattern is available only. In the case of multi-static or multi-
frequency measurement data, one can also design new imaging functionals based on (3.21).
Below we list several questions that are deserved to be further investigated in future.

(a) Convergence of the one-wave factorization method. Obviously, it is related to the blow-up
rate of the function h → W(z, h) for |z| = R as |z − h| → maxy∈D|z − y|. Section 2 has
shown that, for D = {z∗}, we have W(z, h) ∼ −ln(|z − z∗| − h) as h → |z − z∗|. If D is
a polygonal scatterer, we conjecture that the convergence rate should rely on the singu-
lar behavior of the scattered field near corner points, and that a strongly/weakly singular
corner could lead to a fast/slow convergence in detecting the corner.
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(b) Further numerical tests for recovering extended scatterers and by using other types of
sample data u∞(x̂;Ω). The test sample/scatterer Ω can be also sound-hard obstacles, pen-
etrable scatterers and source terms, in addition to the sound-soft and impedance obstacles
considered in this paper. The far-field data u∞(x̂;Ω) are also allowed to be excited at
multi-frequencies. Hence, there is a variety of choices on the sample data u∞(x̂;Ω) and
on the shape and physical properties of Ω. We shall report these tests and compare them
with other approaches in our forthcoming papers.
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