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Abstract
We consider the acoustic source imaging problems in Rn using multiple 
frequency data at sparse directions/points. Using at most n observation 
directions/points, we show that the size and location of the source can be 
recovered. A non-iterative method is then proposed to image the source. The 
method is simple to implement and extremely fast since it only computes an 
indicator function on the domain of interest using matrix vector multiplications. 
Numerical examples are presented to validate the effectiveness of the method.

Keywords: acoustic source imaging, multi-frequency data, sampling method, 
uniqueness

(Some figures may appear in colour only in the online journal)

1. Introduction

Acoustic source imaging problems have attracted the attention of many researchers due to 
applications such as the pollution identification [7, 8], the localization [14] and determination 
of source current distribution in the brain [4].

In this paper, we consider the acoustic source imaging problem in a homogeneous back-
ground medium. Let k = ω/c > 0 be the wave number of a time harmonic wave, where ω > 0 
and c  >  0 denote the frequency and sound speed, respectively. Fixing a number kmax > 0, we 
consider the reduced time-harmonic wave equation where the wave number is in an interval
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k ∈ (0, kmax). (1.1)

Let

D :=
M⋃

m=1

Dm ⊆ Rn

be an ensemble of finitely many bounded domains in Rn, n = 2, 3, such that Dj ∩ Dl = ∅ for 
j �= l. Here D  denotes the closure of D. In addition, we assume that Rn\D is connected. Let 
F(·, k) ∈ L2(D), k ∈ (0, kmax) represent the acoustic source. It is usually obtained from the 
Fourier transform of a time-varying source. Denote by H1

loc(Rn) the local Sobolev space of H1 
functions with compact support.

The time-harmonic wave u ∈ H1
loc(Rn) radiated by F satisfies the inhomogeneous 

Helmholtz equation

∆u(x, k) + k2u(x, k) = F(x, k) in Rn (1.2)

and the Sommerfeld radiation condition

lim
r−→∞

r
n−1

2

(∂u
∂r

− iku
)
= 0, r = |x|. (1.3)

From the Sommerfeld radiation condition (1.3), it is well known that the radiating field u 
has the following asymptotic behavior (see e.g. [3])

u(x, k) = C(k, n)
eik|x|

|x| n−1
2

u∞(θx, k) +O(|x|−
n+1

2 ), θx =
x
|x|

∈ Sn−1,

as r = |x| −→ ∞, where Sn−1 denotes the unit sphere in Rn−1, C(k, n) = eiπ/4/
√

8πk if n  =  2 
and C(k, n) = 1/4π if n  =  3. The complex valued function u∞ = u∞(θx, k) is known as the 
far field pattern, where θx ∈ Sn−1 is the observation direction.

The solution u to (1.2) and (1.3) has the form

u(x, k) =
∫

D
Φk(x, y)F(y, k)ds(y), x ∈ Rn, (1.4)

with

Φk(x, y) :=

{
i
4 H(1)

0 (k|x − y|), n = 2;
ik
4πh(1)

0 (k|x − y|) = eik|x−y|

4π|x−y| , n = 3,

being the fundamental solution of the Helmholtz equation. Here, H(1)
0  and h(1)

0  are Hankel 
function and spherical Hankel function of the first kind and order zero, respectively. From the 
asymptotic behavior of Hankel functions, we have that

u∞(θx, k) =
∫

D
e−ikθx· yF(y, k)dy, θx ∈ Sn−1. (1.5)

The multi-frequency inverse source problem (ISP) is to determine the source F from

 •  the radiating fields u(x, k), x ∈ Γ, k ∈ (0, kmax), where Γ is the measurement surface that 
contains D in its interior; or

 •  the far field patterns u∞(θx, k), θx ∈ Sn−1, k ∈ (0, kmax).
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Most works in literature are devoted to recover the spatially-dependent source terms and 
assume that the data are measured at all observation spots, i.e. all x ∈ Γ for the near field data 
or all θx ∈ Sn−1 for the far field data. It is well known that a source with an extended support 
cannot be uniquely determined from measurements at a fixed frequency [5, 6]. Additional 
information on the source or the measurements are needed for the uniqueness [11, 12]. The 
use of the multiple frequency data for the ISPs provides an approach to obtain a unique solu-
tion to the inverse problems [1, 9]. In fact, it can be shown that the inverse problem is uniquely 
solvable and is even Lipschitz stable when kmax is larger than a certain real number [1]. 
Throughout this paper, we assume that the data are available for all k ∈ (0, kmax).

In recent years, several reconstruction methods have been proposed to solve the multi-fre-
quency ISPs. An iterative method with respect to frequencies is developed in [2]. In [16], the 
authors proposed a simple method based on the fact that the Fourier coefficients of the source 
can be obtained directly from the far field data. A factorization method in [10] reconstructs the 
support of the source with a limited set of far field data. In [15], Sylvester and Kelly produced 
a convex polygon containing the source. Note that the methods in [10, 15, 16] require that the 
source is independent of the frequency.

In this work, we consider a frequency dependent source F, which corresponds to the time 
dependent source in the time domain problems. For the case of near field measurements, we 
assume that u is measured at finitely many points,

{x1, x2, · · · , xM} =: ΓM ⊂ Γ.

Accordingly, we obtain the following broadband sparse near field measurements

{u(xm, k) | xm ∈ ΓM , k ∈ (0, kmax)}. (1.6)

For the case of far field measurements, we suppose that the far field data is measured in finitely 
many observation directions,

{θ1, θ2, · · · , θM} =: ΘM ⊂ Sn−1.

Consequently, we obtain the following broadband sparse far field measurements

{u∞(θm, k) | θm ∈ ΘM , k ∈ (0, kmax)}. (1.7)

The inverse problem we are interested is to reconstruct the support of the source F from the 
data defined in (1.6) or (1.7). It is impossible to uniquely determine the source (see the counter 
example (2.11) and (2.12) in section 2.1). Nevertheless, we will show that partial information 
of the source, e.g. the location and the support, can be obtained. The first contribution of this 
paper is the analysis of the inverse problem when the source depends on the wave number. The 
second contribution of this paper is a novel sampling method. If the far field data are available 
in a single observation direction, we construct an indicator function which provides a strip 
containing the source. Far field data of two linearly independent observation directions give 
a rough reconstruction for the support of the source. The method is simple to implement and 
very fast since main task is to evaluate some integrals numerically.

The rest of this paper is arranged as follows. Some uniqueness results will be established in 
section 2 using multi-frequency data at a single measurement point. Section 3 is devoted to a 
novel indicator function using complete far field data. It is shown that the indicator decays as 
Bessel functions from the source. In section 4, we consider the case when the far field data can 
be measured at finitely many observation directions. In particular, the behavior of the indicator 
for a single observation direction is studied. Section 5 contains several numerical examples in 
two dimensions to demonstrate the performance of the proposed method.

A Alzaalig et alInverse Problems 36 (2020) 025009
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2. Uniqueness results from multi-frequency data at a single measurement 
point

This section is devoted to the study of what information can be obtained using multi-frequency 
data at a single measurement point. Specifically, the measurements are either the broadband 
near field data u(x, k), k ∈ (0, kmax) at a fixed measurement point x ∈ ΓM, or the broadband 
far field data u∞(θ, k), k ∈ (0, kmax) for a single observation direction θ ∈ ΘM. For a bounded 
domain D, the x-annular hull for x ∈ ΓM is defined by

AD(x) := {y ∈ Rn | inf
z∈D

|x − z| � |x − y| � sup
z∈D

|x − z|}

and the θ-strip hull of D for θ ∈ ΘM is defined by

SD(θ) := {y ∈ Rn | inf
z∈D

z · θ � y · θ � sup
z∈D

z · θ}.

See figure 1 for these two hulls in two dimensions.
We assume that the source F(x, k) takes one of the following forms:

 •  F(x, k) = f (x)g(k), where g ∈ C(0, kmax), a continuous function on (0, kmax); 

 •  F(x, k) = f (x) eik|x−z|

4π|x−z|, z ∈ R3\D; 
 •  F(x, k) = f (x)eikx·d, d ∈ Sn−1.

The last two cases also arise in the Born approximation for scattering problems of an inho-
mogeneous medium. The mathematical model is

∆ut + k2qut = 0.

The total field ut is of the form ut = ui + us, where the incident wave ui is a solution to the 
homogeneous Helmholtz equation and the scattered wave us is the radiating solution to

∆us + k2us = k2(1 − q)(ui + us). (2.1)

The incident wave ui is either a plane wave eikx·θ, θ ∈ Sn−1, or a point source eik|x−z|

4π|x−z| , x �= z. 

When us is small enough to be ignored on the right hand side of (2.1), the Born approximation 
uB to us is such that

Figure 1. One object in R2. Left: the smallest annular AD(x) with center at the 
measurement point x; Right: the smallest strip SD(θ) with normal in the observation 
direction θ.

A Alzaalig et alInverse Problems 36 (2020) 025009



5

∆uB + k2uB = k2(1 − q)ui. (2.2)

Dividing (2.2) by k2, the right hand side of (2.2) reduces to the last two cases of F(x, k) for 
different incident waves.

2.1. F (x , k) = f (x)g(k), g ∈ C(0, kmax)

First, consider the case when the source F(x, k) is a product of a spatial function f  and a fre-
quency function g. Here, g ∈ C(0, kmax) is a given nontrivial function of k. Then there exists 
an interval I := (a, b) ⊂ (0, kmax) such that

g(k) �= 0, k ∈ I ⊂ (0, kmax). (2.3)

For the near field case in R3, we assume that u(x, k) is measured for all k ∈ I  at a fixed point 
x ∈ R3\D . Let Sr(x) be the sphere centered at x with radius r. Using (1.4), we obtain that

v(x, k) :=
u(x, k)
g(k)

=

∫

R3
f (y)

eik|x−y|

4π|x − y|
dy =

∫ ∞

−∞
f̃ (r)eikrdr, k ∈ I, (2.4)

where

f̃ (r) :=

{
1

4πr

∫
Sr(x) f (y)ds(y), r > 0;

0, r � 0.
 (2.5)

The following theorem shows that multi-frequency data determine a unique annular con-
taining the support of the target.

Theorem 2.1. Assume that F(x, k) = f (x)g(k), where g is a given continuous function sat-
isfying (2.3), and that the set

{r ∈ (0,∞)| Sr(x) ⊂ AD(x), f̃ (r) = 0} (2.6)

has Lebesgue measure zero. Then, the annular AD(x) can be uniquely determined by the scat-
tered field u(x, k) for all k ∈ I  at a fixed point x ∈ R3\D .

Proof. Due to (2.4), v(x, k) is an analytic function of the wave number k. It is clear from 
(2.4) that v(x, k) is the inverse Fourier transform of f̃ . Thus f̃  is uniquely determined by 
the measurements u(x, k) for all k ∈ I  at a fixed point x ∈ R3\D . Since the set in (2.6) has 
Legesgue measure zero, we have

AD(x) =
⋃

r∈(0,∞)

{Sr(x)|̃f (r) �= 0},

which implies that the annular AD(x) is uniquely determined by f̃ , and also by u(x, k) for all 
k ∈ I , at a fixed point x ∈ R3\D . The proof is complete. □ 

The equality (2.4) takes the form of Fourier transform, and therefore plays an important 
role in the proof. However, this does not hold in R2 due to the fundamental solution of the 
Helmholtz equation.

Now we turn to the far field measurements u∞(θ, k) for all k ∈ (0, kmax), at a fixed observa-
tion direction θ ∈ Sn−1. Let

Πτ := {y ∈ Rn|y · θ + τ = 0}

A Alzaalig et alInverse Problems 36 (2020) 025009
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be a hyperplane with normal direction θ. From (1.5), by noting again that g(k) �= 0 for k ∈ I , 
we have

v∞(θ, k) :=
u∞(θ, k)

g(k)
=

∫

Rn
e−ikθ· yf (y)dy =

∫

R
f̂ (τ)eikτdτ , θ ∈ Sn−1, (2.7)

where

f̂ (τ) :=
∫

Πτ

f (y)ds(y). (2.8)

The analogous result of Theorem 2.1 for the far field measurements is formulated in the fol-
lowing theorem.

Theorem 2.2. Assume F(x, k) = f (x)g(k) with a given continuous function g satisfying 
(2.3). If the set

{τ ∈ R|Πτ ⊂ SD(θ), f̂ (τ) = 0} (2.9)

has Lebesgue measure zero, then the strip SD(θ) can be uniquely determined by the far field 
measurements u∞(θ, k) for all k ∈ I , at a fixed observation direction θ ∈ Sn−1.

The proof of theorem 2.2 is similar to that of theorem 2.1. However, the uniqueness result 
using far field measurements holds both in two and three dimensions.

Finally, we give some remarks on the assumptions on the sets in (2.6) and (2.9).

 •  The sets in (2.6) and (2.9) have Lebesgue measure zero if the real part of a complex 
multiple of the spatial function f  is bounded away from zero on their support, i.e. we 
assume that f ∈ L∞(D) is such that there exist α ∈ R and c0  >  0 such that

�(eiαf (x)) � c0, a.e. in D. (2.10)

 •  Theorems 2.1 and 2.2 are not true in general if the sets in (2.6) and (2.9), respectively, 
have positive Lebesgue measure. For example, for x = (x1, x2) ∈ R2, consider

f1(x) =





1, x1 ∈ (−1, 1), x2 ∈ [1, 2);
x1, x1 ∈ (−1, 1), x2 ∈ (−1, 1);
1, x1 ∈ (−1, 1), x2 ∈ (−2,−1];
0, otherwise,

 (2.11)

  and

f2(x) =




1, x1 ∈ (−1, 1), x2 ∈ [1, 2);
1, x1 ∈ (−1, 1), x2 ∈ (−2,−1];
0, otherwise.

 (2.12)

  Then f1 ∈ L2(R2) with compact support in D1 = [−1, 1]× [−2, 2], and f2 ∈ L2(R2) 

with compact support in D2 := D(1)
2 ∪ D(2)

2 , where D(1)
2 = [−1, 1]× [−2,−1] and 

D(2)
2 = [−1, 1]× [1, 2]. A straightforward calculation shows that the far field patterns 

corresponding to these two different sources coincide for all wave numbers at the fixed 
observation direction θ = (0, 1). We also refer to figure 9 for the numerical result.

A Alzaalig et alInverse Problems 36 (2020) 025009
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2.2. F (x , k) = f (x) eik|x−z|

4π|x−z| , z ∈ R3\D

We consider the second case, i.e. the source F takes the form

F(x, k) = f (x)
eik|x−z|

4π|x − z|
, x ∈ R3\{z}, z ∈ R3\D.

Let S′
r(x, z) := {y ∈ R3| |x − y|+ |y − z| = r} be an ellipsoid and A′

D(x, z) be the smallest 
annular-like domain (the difference of two ellipsoids) containing D. Recalling (1.4), we have 
that

u(x, k) =
∫

R3
f (y)

eik(|x−y|+|y−z|)

(4π)2|x − y| |z − y|
dy =

∫

R
f̃ ′(r)eikrdr, k ∈ I, (2.13)

where

f̃ ′(r) :=

{∫
S′r(x,z)

f (y)
(4π)2|x−y||z−y|ds(y), r > |x − z|;

0, r � |x − z|.
 (2.14)

Similar to the case considered in theorem 2.1, we have the following uniqueness result.

Theorem 2.3. Assume F(x, k) = f (x) eik|x−z|

4π|x−z| for a given point z ∈ R3\D. If the set

{r ∈ (0,∞)| S′
r(x, z) ⊂ A′

D(x, z), f̃ ′(r) = 0} (2.15)

has Lebesgue measure zero. Then the annular-like domain A′
D(x, z) can be uniquely deter-

mined by u(x, k) for all k ∈ (0, kmax) at a fixed point x ∈ R3\D, x �= z.

2.3. F (x , k) = f (x)eikx·d , d ∈ Sn−1

Consider now the case when F(x, k) = f (x)eikx·d with a given direction d ∈ Sn−1. Using (1.5) 
again, we have that, for θ �= d,

u∞(θ, k) =
∫

Rn
e−ik(θ−d)· yf (y)dy, d, θ ∈ Sn−1, k ∈ (0, kmax). (2.16)

Define θd := (θ − d)/|θ − d| ∈ Sn−1. The inverse problem is equivalent to seek F(x, k) = f (x) 
from the far field measurements u∞(θd, k) for all k ∈ (0, kmax|θ − d|). From theorem 2.2, we 
have the following uniqueness result.

Theorem 2.4. Assume F(x, k) = f (x)eikx·d with a given direction d ∈ Sn−1. If the set

{τ ∈ R|Πτ ⊂ SD(θd), f̂ (τ) = 0} (2.17)

has Lebesgue measure zero, then the strip SD(θd) can be uniquely determined by the far field 
measurements u∞(θ, k) for all k ∈ (0, kmax) at a fixed observation direction θ ∈ Sn−1.

3. A novel source indicator function

We begin with the ISP using the far field patterns u∞(θx, k) for all observation directions 
θx ∈ Sn−1 and all wave numbers k ∈ (0, kmax). To reconstruct the support of a general source 
F(x, k), we introduce the function

A Alzaalig et alInverse Problems 36 (2020) 025009



8

I(z) =

∣∣∣∣∣
∫ kmax

0

∫

Sn−1
u∞(θx, k) eikθx· zds(θx) dk

∣∣∣∣∣, (3.1)

where z ∈ Rn is called the sampling point. As will be seen later, the above function gives par-
tial information (size and location) of the source and is thus referred to as the source indicator 
function. Note that no a priori information on the source is required and the source indicator 
function is simple to compute since only integral evaluations are needed. Furthermore, we will 
show later that the source indicator function continuously depends on the noise in the data.

Inserting (1.5) into (3.1), changing the order of the integration, and using the Funk–Hecke 
formula [13], we deduce that

I(z) =

∣∣∣∣∣
∫ kmax

0

∫

Sn−1
u∞(θx, k) eikθx· zds(θx) dk

∣∣∣∣∣

=

∣∣∣∣∣
∫ kmax

0

∫

Sn−1

∫

D
e−ikθx· yF(y, k)dy eikθx· zds(θx) dk

∣∣∣∣∣

=

∣∣∣∣∣
∫ kmax

0

∫

D

∫

Sn−1
e−ikθx· y eikθx· zds(θx) F(y, k)dy dk

∣∣∣∣∣

=

∣∣∣∣∣
∫ kmax

0
µ

∫

D
g(k|y − z|)F(y, k)dy dk

∣∣∣∣∣,

 

(3.2)

where

µ =

{
2π, n = 2;
4π, n = 3,

and g(t) =
{

J0(t), n = 2;
j0(t), n = 3. (3.3)

Here, J0 and j 0 are the Bessel function and spherical Bessel function of order zero, respec-
tively. This implies that the source indicator function I(z) is a superposition of the Bessel 
functions in 2D or spherical Bessel functions in 3D. We have the following asymptotic form-
ulas for the Bessel and spherical Bessel functions (see figure 2)

J0(t) =
sin t + cos t√

πt

{
1 + O

(1
t

)}
, as t → ∞,

j0(t) =
sin t

t

{
1 + O

(1
t

)}
, as t → ∞.

Thus, we expect that the source indicator function Iz decays as the Bessel functions when the 
sampling point z moves away from the support D.

We end this section by a stability statement, which states that the indicator depends on the 
noise continuously.

Theorem 3.1 (Stability). Let u∞
δ  be the measured far field pattern with noises. Then

|I(z)− Iδ(z)| � µ

∫ kmax

0

∥∥∥u∞(·, k)− u∞δ (·, k)
∥∥∥

L2(Sn−1)
dk, (3.4)

where Iδ(z) is the source indicator function with u∞ replaced by u∞
δ , µ is a constant given 

by (3.3).

A Alzaalig et alInverse Problems 36 (2020) 025009
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Proof. 

I(z)− Iδ(z)

:=
∣∣∣
∫ kmax

0

∫

Sn−1
u∞(θx, k)eikθx·zds(θx)dk

∣∣∣

−
∣∣∣
∫ kmax

0

∫

Sn−1
u∞δ (θx, k)eikθx·zds(θx)dk

∣∣∣

�
∫ kmax

0

∫

Sn−1

∣∣∣[u∞(θx, k)− u∞δ (θx, k)]eikθx·z
∣∣∣ds(θx)dk

� µ

∫ kmax

0

∥∥∥u∞(·, k)− u∞
δ (·, k)

∥∥∥
L2(Sn−1)

dk,

where we have used the triangle inequality and the Cauchy–Schwarz inequality. □ 

4. Multi-frequency ISPs

This section is devoted to an inversion scheme that utilizes multi-frequency sparse measure-
ments to reduce the full-aperture data required in the previous section. Our aim is to image the 
position and support of some frequency-dependent sources.

For a single observation direction θm ∈ ΘM , we introduce the following source indicator 
function

Iθm(z) =
∣∣∣
∫ kmax

0
u∞(θm, k)eikθm· zdk

∣∣∣. (4.1)

For all the available observation directions in ΘM, we define

IΘM (z) :=
∑

θm∈ΘM

Iθm(z). (4.2)

We begin with the behavior of the source indicator function Iθm , which uses the multi-
frequency far field patterns u∞(θm, k) with a single observation direction θm ∈ Sn−1. Let θ⊥m  
be a direction perpendicular to θm and we have

Figure 2. Decay behavior of the Bessel function J0 (Left) and the spherical Bessel 
function j 0 (Right) .
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Iθm(z + αθ⊥m ) = Iθm(z), ∀z ∈ Rn, α � 0, (4.3)

since θ⊥m · θm = 0. This implies that the source indicator function Iθm  has the same value for 
sampling points in the hyperplane with normal direction θm.

In the following, we assume that the source F depends smoothly on the wave number k, say 
C1. Recall from (1.5) that the far field pattern has the following representation

u∞(θm, k) =
∫

D
e−ikθm· yf (y, k)dy, θm ∈ ΘM , k ∈ (0, kmax).

Inserting it into the source indicator function Iθm  defined in (4.1), changing the order of inte-
gration, and integrating by parts, we have

Iθm(z) =

∣∣∣∣∣
∫

D

∫ kmax

0
eikθm· (z−y)F(y, k)dkdy

∣∣∣∣∣

=

∣∣∣∣
∫

D

Fz(y)
θm · (z − y)

dy
∣∣∣∣ ,

 

(4.4)

where the numerator Fz(y) ∈ L∞(D) is given by

Fz(y) := eikmaxθm· (z−y)F(y, kmax)− F(y, 0)−
∫ kmax

0
eikθm· (z−y) ∂F

∂k
(y, k)dk, y ∈ D.

It is clear that the source indicator function Iθm  is a superposition of functions that decay as 
1/|θm · (z − y)| as the sampling point z goes away from the strip SD(θm).

In conclusion, the values of the source indicator function Iθm  remain invariant on the hyper-
plane with the normal direction θm, and decay as the sampling point z moves away from the 
strip SD(θm). Therefore, a strip SD(θm) can be reconstructed using Iθm . A natural idea is to use 
the source indicator function IΘM  given in (4.2) to construct the so called ΘM-convex hull of 
D [15]

SD(ΘM) :=
⋂

θm∈ΘM

SD(θm).

5. Numerical examples

Now we present some examples to demonstrate the indicators proposed in the previous sec-
tion in two dimensions using multiple frequency far field data. The synthetic data of the for-
ward problems are computed using (1.5). Let D be the compact support of F. We generate a 
triangular mesh T  for D with mesh size h ≈ 0.01. For the direction

θ := (cosϕ, sinϕ)

and fixed k, the far-field pattern is approximated by

u∞(θ; k) ≈
∑
T∈T

e−ikθ·yT f (yT)|T|, (5.1)

where T ∈ T  is a triangle, y T is the center of T, and |T| denotes the area of T. The simulated 
far-field data contain less than 2% numerical error.

In all examples, for θm ∈ ΘM , one has the far field data

u∞(θm; kj), j = 1, . . . N,
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where N  =  20, kmin = 0.5, kmax = 20 such that

kj := ( j − 0.5)∆k, ∆k :=
kmax

N
.

Assume that the sampling domain is S := [−4, 4]× [−4, 4]. The interval [−4, 4] is uni-
formly divided into 80 intervals and we end up with 81 × 81 sampling points uniformly dis-
tributed in S. We denote by Z the set of all sampling points. We normalize the source indicator 
function, i.e. the plot is for J/M(J) where M(J) is the largest element of J(z), z ∈ Z, where 
J = Iθ or I. The normalized source indicator function takes the value between 0 and 1, and 
further can be thresholded to localize the source in practice. Since the source indicator func-
tion only involves the evaluation of a simple integral, the method is very fast in general. The 
Matlab code takes a few seconds for the following examples on a laptop (MacBook Pro with 
a 3.3 GHz Intel Core i7 processor and 16 GB memory).
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Figure 3. Reconstructions using a single observation direction for one object when 
F  =  5. Top left: ϕ = −π/4. Top right: ϕ = 0. Bottom left: ϕ = π/8. Bottom right: 
ϕ = π/2.
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Figure 4. Reconstructions using a single observation direction for two objects when 
F  =  5. Top left: ϕ = −π/4. Top right: ϕ = 0. Bottom left: ϕ = π/8. Bottom right: 
ϕ = π/2.
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Figure 5. Reconstructions using two observation angles ϕ = π/2 and ϕ = 0 when 
F  =  5. Left: single object; Right: two objects.
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5.1. One observation direction

We first consider the case of one observation direction θ ∈ ΘM. Let F  =  5 and the support of 
F is a rectangle given by (1, 2)× (1, 1.6). In figure 3, we plot the indicators for four different 
observation angles ϕ = −π/4, 0,π/8 and π/2. The picture clearly shows that the source lies 
in a strip perpendicular to the observation direction.

In figure 4, we show the results when the support of the source has two components. One is 
a rectangle given by (1, 1.6)× (1, 1.4). The other one is a disc centered at (−0.5,−0.5) with 
radius 0.2. For different observation directions, strips containing the objects are reconstructed 
effectively.

5.2. Two observation directions

Now we consider two observation angles: ϕ1 = 0 and ϕ2 = π/2. We compute the indicators 
and superimpose them in one picture. Since the observation directions are perpendicular to 
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Figure 6. Reconstruction using multiple observation directions when F  =  5. Left: 
single object. Right: two objects.
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Figure 7. Reconstructions using multiple observation directions when F(x, y) =  
x2 − y2 + 5. Left: single object. Right: two objects.
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each other, the strips are perpendicular to each other in figure 5. For both one object and two 
objects, we see that intersection of the strips contains the support of F.

5.3. Multiple observation directions

Now we use M  =  20 observation angles ϕj, j = 1, . . . , 20 such that ϕj = −π/2 + jπ/M. Note 
that ϕj ∈ (−π/2,π/2]. We superimpose the indicators and show the results in figure 6. The 
locations and sizes of support of F are reconstructed correctly.

Next, we choose F(x, y) = x2 − y2 + 5, a function depending only on the locations. The 
reconstruction is shown in figure 7.

We also consider the case when the source F depends on k as well. Let

F1(x, y; k) = k2(x2 − y2 + 5),
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Figure 8. Reconstructions of sources depending on wave number k. Top: 
F1(x, y; k) = k2(x2 − y2 + 5). Top left: one object. Top right: two objects. Bottom: 
F2(x, y; k) = eik(x cos 3π/2+y sin 3π/2)(x2 − y2 + 5). Bottom left: one object. Bottom 
right: two objects.
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Figure 9. Reconstructions of larger object with F given in (2.11) by using a single 
observation direction. Top left: ϕ = 0. Top right: ϕ = π/2. Bottom left: ϕ = −π/4. 
Bottom right: ϕ = π/8.
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Figure 10. Reconstructions of larger objects when F(x, y) = 5. Left: triangle. Right: 
thin bar.
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and
F2(x, y; k) = eik(x cos 3π/2+y sin 3π/2)(x2 − y2 + 5).

The reconstructions are shown in figure 8. Combining the previous figures 6 and 7, we observe 
that the reconstructions change slightly for different source functions. The location and size of 
the support are always well captured.

5.4. Extended objects

The sources in the above examples are small compared with the wavelengths used. Note that 
the smallest wavelength is λmin = 2π/10 ≈ 0.628. In figures 9 and 10, we show the recon-
structions of some larger objects. Figure 9 shows that the reconstructions of the source given 
in (2.11) with a single observation direction. This example further shows that theorem 2.1 
does not hold in general if the set in (2.6) has positive Lebesgue measure. In fact, for observa-
tion direction (0, 1), a gap appears clearly in (−1, 1).
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Figure 11. Contour plots of the source indicator functions with F  =  5 and the support 
of F is the rectangle given by (1, 2)× (1, 1.6). Top row: one observation direction. 
Middle row: two observation directions. Bottom row: multiple observation directions. 
Left column: 10% noise. Middle column: 20% noise. Right column: 30% noise.
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In figure 10, we show the reconstructions of two larger objects with 20 observation direc-
tions. One is an equilateral triangle with vertices

(−2, 0), (1, 0), (−1/2, 3/2
√

3 − 1).

The second one is a thin slab given by (−2, 2)× (0, 0.1). The results indicate that shorter 
wavelength could lead to better reconstruction. Furthermore, the shape of the support can be 
reconstructed as well.

5.5. Noisy Data

Finally, we show some examples using the noisy data. For simplicity, we take F  =  5 and the 
support is the rectangle given by (1, 2)× (1, 1.6). We add 10%, 20%, and 30% normally dis-
tributed random noise to the far-field data. We show the contour plots of the source indicator 
functions in figure 11 for one, two, and multiple observation directions as in sections 5.1–5.3. 
To better see the differences, the exact rectangle is not shown. The results show that the pro-
posed method is quite robust against random noise.
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