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Inverse Elastic Scattering for Multiscale Rigid Bodies with a Single Far-Field
Pattern∗
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Abstract. We develop three inverse elastic scattering schemes for locating multiple small, extended, and mul-
tiscale rigid bodies, respectively. There are some salient and promising features of the proposed
methods. The cores of these schemes are certain indicator functions, which are obtained by using
only a single far-field pattern of the pressure (longitudinal) wave, or the shear (transversal) wave, or
the total wave field. Though the inverse scattering problem is known to be nonlinear and ill-posed,
the proposed reconstruction methods are totally “direct,” and there are no inversions involved.
Hence, the methods are very efficient and robust against noisy data. Both rigorous mathematical
justifications and numerical simulations are presented in our study.
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1. Introduction. The elastic wave propagation problems have a wide range of applica-
tions, particularly in geophysics, nondestructive testing, and seismology. The associated in-
verse problems arise from the use of transient elastic waves to identify the elastic properties as
well as to detect flaws and cracks of solid specimens, especially in the nondestructive evaluation
of concrete structures (see, e.g., [42, 45]). Moreover, the problem of elastic pulse transmission
and reflection through the earth is fundamental to both the investigation of earthquakes and
the utility of seismic waves in searching for oil and ore bodies (see, e.g., [1, 19, 20, 29, 44]
and the references therein). The scattering of elastic waves is very complicated due to the
coexistence of compressional and shear waves propagating at different speeds. For a rigid
elastic body, these two waves are coupled at the scattering surface, and the total displacement
field vanishes there. In this paper, we are concerned with the inverse problem of identifying
a collection of unknown rigid elastic scatterers by using the corresponding far-field measure-
ment. In what follows, we first present the mathematical formulations of the direct and inverse
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elastic scattering problems for our study.
Consider a time-harmonic elastic plane wave uin(x), x ∈ R

3 (with the time variation of the
form e−iωt being factorized out, where ω ∈ R+ denotes the angular frequency), impinged on
a rigid scatterer D ⊂ R

3 embedded in an infinite isotropic and homogeneous elastic medium
in R

3. The elastic scattering is governed by the reduced Navier equation (or Lamé system)

(Δ∗ + ω2)u = 0 in R
3\D, Δ∗ := μΔ+ (λ+ μ) grad div,(1.1)

where u(x) ∈ C
3 denotes the total displacement field and λ, μ are the Lamé constants satisfy-

ing μ > 0 and 3λ+2μ > 0. Here, we note that the density of the background elastic medium
has been normalized to be unitary. Henceforth, we suppose that D ⊂ R

3 is an open bounded
domain such that R3\D is connected. It is emphasized that D may consist of (finitely many)
multiple simply connected components. The incident elastic plane wave is of the general form

uin(x) = uin(x; d, d⊥, α, β, ω) = αdeikpx·d + βd⊥eiksx·d, α, β ∈ C,(1.2)

where d ∈ S
2 := {x ∈ R

3 : |x| = 1} is the impinging direction, d⊥ ∈ S
2 satisfying d⊥ · d =

0 is the polarization direction, and ks := ω/
√
μ, kp := ω/

√
λ+ 2μ denote the shear and

compressional wave numbers, respectively. If α = 1, β = 0 for uin in (1.2), then uin = uinp :=

deikpx·d is the (normalized) plane pressure wave, whereas if α = 0, β = 1 for uin in (1.2), then
uin = uins := d⊥eiksx·d is the (normalized) plane shear wave. The obstacle D is a rigid body,
and u satisfies the first kind (Dirichlet) boundary condition

u = 0 on ∂D.(1.3)

Define usc := u−uin to be the scattered wave, which can be easily verified to satisfy the Navier
equation (1.1) as well. usc can be decomposed into the sum

usc := uscp + uscs , uscp := − 1

k2p
grad divusc, uscs :=

1

k2s
curl curlusc,

where the vector functions uscp and uscs are referred to as the pressure (longitudinal) and shear
(transversal) parts of usc, respectively, satisfying

(Δ + k2p)u
sc
p = 0, curluscp = 0 in R

3\D,
(Δ + k2s)u

sc
s = 0, divuscs = 0 in R

3\D.

Moreover, the scattered field usc is required to satisfy Kupradze’s radiation condition

lim
r→∞

(
∂uscp
∂r

− ikpu
sc
p

)
= 0, lim

r→∞

(
∂uscs
∂r

− iksu
sc
s

)
= 0, r = |x|,(1.4)

uniformly in all directions x̂ = x/|x| ∈ S
2 (see, e.g., [3]). The radiation conditions in (1.4)

lead to the P-part (longitudinal part) u∞p and the S-part (transversal part) u∞s of the far-field
pattern of usc, read off from the large |x| asymptotics (after normalization)

usc(x) =
exp(ikp|x|)
4π(λ+ μ)|x| u

∞
p (x̂) +

exp(iks|x|)
4πμ|x| u∞s (x̂) +O

(
1

|x|2

)
, |x| → +∞.(1.5)
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Note that u∞p (x̂) and u∞s (x̂) are also known as the far-field patterns of uscp and uscs , respectively.
Since u∞p (x̂) is normal to S

2 and u∞s (x̂) is tangential to S
2, there holds

(usc(x) · x̂)x̂ =
exp(ikp|x|)
4π(λ+ μ)|x| u

∞
p (x̂) +O

(
1

|x|2

)
, |x| → +∞.(1.6)

By (1.6), one can easily extract the P-part far-field pattern u∞p from the far-field measurement
of the scattered elastic wave field usc, and then the extraction of the S-part far-field pattern
u∞s readily follows by simple subtraction. In this paper, we define the full far-field pattern
u∞ of the scattered field usc as the sum of u∞p and u∞s , i.e.,

u∞(x̂) := u∞p (x̂) + u∞s (x̂).(1.7)

The direct elastic scattering problem (DP) is stated as follows.

(DP): Given a rigid scatterer D ⊂ R
3 and an incident plane wave uin of the form (1.2),

find the total field u = uin + usc in R
3\D such that the Dirichlet boundary condition

(1.3) holds on ∂D and such that the scattered field usc satisfies Kupradze’s radiation
condition (1.4).

We refer to the monograph [28] for a comprehensive treatment of the boundary value problems
of elasticity. It is well known that the direct scattering problem admits a unique solution
u ∈ C2(R3\D)3 ∩ C1(R3\D)3 if ∂D is C2-smooth (see [28]), whereas u ∈ H1

loc(R
3\D)3 if ∂D

is Lipschitz (see [13]).
Throughout the rest of the paper, u∞τ (x̂) with τ = ∅ signifies the full far-field pattern

defined in (1.7). In this paper, we are interested in the following inverse problem (IP).

(IP): Recover the rigid scatterer D from knowledge (i.e., the measurement) of the far-field
pattern u∞τ (x̂; d, d⊥, α, β, ω) (τ = p, s or ∅).

Note that in (IP), the measurement data can be the P-part far-field pattern u∞p , the S-part
far-field pattern u∞s , or the full far-field pattern u∞. If one introduces an abstract operator
F (defined by the elastic scattering system described earlier) which sends the scatterer D to
the corresponding far-field pattern u∞τ , then (IP) can be formulated as the following operator
equation:

(1.8) F(D) = u∞τ (x̂; d, d⊥, α, β, ω).

Due to the multiple scattering interaction, if more than one scatterer is presented, it is easily
seen that (1.8) is nonlinear, and moreover, it is widely known to be ill-posed in the Hadamard
sense. For the measurement data u∞τ (x̂; d, d⊥, α, β, ω) in (1.8), we always assume that they
are collected for all x̂ ∈ S

2. On the other hand, it is noted that uτ is a real-analytic function
on S

2, and hence if it is known on any open portion of S2, then it is known on the whole
sphere by analytic continuation. Moreover, if the data set is given for a single quintuplet
of (d, d⊥, α, β, ω), then it is called a single far-field pattern; otherwise it is considered to be
multiple far-field patterns. Physically, a single far-field pattern can be obtained by sending
a single incident plane wave and then measuring the scattered wave field far away in every
possible observation direction.

There is a vast literature on the inverse elastic scattering problem as described above. We
refer the reader to the theoretical uniqueness results proved in [22, 34, 36, 37, 38, 39, 40, 41] and
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1802 GUANGHUI HU, JINGZHI LI, HONGYU LIU, AND HONGPENG SUN

the sampling-type reconstruction methods for impenetrable elastic bodies developed in [3, 12]
and those for penetrable ones in [16, 43]. Note that, in the above works, both u∞p and u∞s are
needed for infinitely many incident plane waves; namely, infinitely many far-field patterns are
needed. In recent studies in [2, 4, 5, 8, 9, 10, 11] for reconstructing small elastic inclusions
and in [6, 7, 21, 24] for reconstructing extended scatterers, one may implement one type of
elastic waves, but still with multiple or even infinitely many far-field patterns. Based on the
reflection principle for the Navier system under the third or fourth kind boundary conditions,
a global uniqueness with a single far-field pattern was shown in [18] for bounded impenetrable
elastic bodies of polyhedral type. However, the uniqueness proof there does not apply to the
more practical case of rigid bodies and cavities. Some further discussions on the uniqueness
with one or several incident plane waves are mentioned in section 3.1 and Lemma 3.7. Using
a single set of boundary data, an extraction formula of an unknown linear crack or the convex
hull of an unknown polygonal cavity in R

2 was established in [26, 27] by means of the enclosure
method introduced by Ikehata [25].

In this work, we shall consider the inverse problem (1.8) with a single measurement of the
P-part far-field pattern u∞p , or the S-part far-field pattern u∞s , or the full far-field pattern u∞.
According to our earlier discussion, this is an extremely challenging problem with very little
theoretical and computational progress in the literature. Moreover, we shall consider our study
in a very general but practical setting. There might be multiple target scatterers presented,
and the number of the scatters is not required to be known in advance. Furthermore, the
scatterers might be of multiple size-scales (in terms of the detecting wavelength); that is, there
might be both small-size and regular-size (extended) scatterers presented simultaneously. We
develop inverse scattering schemes to locate all the scatterers in a very effective and efficient
manner. Specifically, there are three schemes, named Schemes S, R, and M, respectively,
proposed for locating multiple small, extended, and multiscale rigid scatterers. The core of
these schemes is a series of indicator functions, which are directly computed with a single set
of far-field data. For Scheme S of locating small scatterers, the inverse problem (1.8) can be
linearized by taking the leading term of the relevant far-field expansion with respect to the
small size-parameter. For Scheme R of locating extended scatterers, we need to impose a
certain a priori knowledge by requiring the shapes of the underlying scatterers to be from a
certain admissible class that is known in advance. The indicator functions for Scheme R are
given by projecting the measured far-field pattern onto the space of the far-field patterns from
the admissible scatterers. Finally, a local tuning technique is implemented to concatenate
Schemes S and R to yield Scheme M of locating multiscale scatterers. We would like to
remark in passing that our current study is similar in spirit to the locating methods that
were recently proposed in [30, 31, 32] for inverse electromagnetic and acoustic scattering
problems in the frequency domain. However, due to the more complicated behaviors of the
elastic wave scattering, particularly the coupling of the compressional and shear waves, the
current study is carried out in a subtler and more technical manner. Particularly, we design
completely different imaging functionals from those developed [30, 31, 32] for electromagnetic
and acoustic problems.

The rest of the paper is organized as follows. In section 2, we first describe Scheme
S of locating multiple small scatterers, and then present the theoretical justification. In
section 3, we present Scheme R of locating multiple extended scatterers with the corresponding
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theoretical justification. Section 4 is devoted to Scheme M of locating multiple multiscale
scatterers. In section 5, numerical experiments are given to demonstrate the effectiveness and
the promising features of the proposed inverse scattering schemes. We conclude our study in
section 6 with several remarks.

2. Locating multiple small scatterers. Throughout the rest of the paper, we assume the
angular frequency of incidence is ω = 1. Then, the wavelength of the pressure wave is 2π/kp =
2π

√
λ+ 2μ/ω = O(1), whereas the wavelength of the shear wave is 2π/ks = 2π

√
μ/ω = O(1).

Hence, the size of a scatterer can be expressed in terms of its Euclidean diameter. In what
follows, we write u∞τ (x̂;D, d, d⊥, ω) (τ = p, s or ∅) to signify the dependence of far-field
pattern on the rigid scatterer D, incident direction d, polarization direction d⊥, and incidence
frequency ω. In certain situations we only indicate the dependence of the far-field pattern on
D or ω, but the notation shall be clear from the context. Unless otherwise stated, the space
L2 always signifies L2(S2)3.

Next, we describe Scheme S of locating multiple small rigid elastic scatterers and then
present the corresponding theoretical justifications.

2.1. Description of Scheme S. We first introduce the class of small elastic rigid scatterers.
For ls ∈ N, let Mj , 1 ≤ j ≤ ls, be bounded Lipschitz simply connected domains in R

3. It
is supposed that all Mj ’s contain the origin and their diameters are comparable with the
S-wavelength or P-wavelength, i.e., diam(Mj) ∼ O(1) for all j = 1, 2, . . . , ls. For ρ ∈ R+, we
introduce a scaling/dilation operator Λρ by

ΛρMj := {ρx : x ∈Mj}(2.1)

and set Dj := zj + ΛρMj, zj ∈ R
3, 1 ≤ j ≤ ls. Each Dj is referred to as a scatterer

component located at zj with the shape Mj . The number ρ represents the relative size/scale
of each component. In what follows, we shall reserve the letter ls to denote the number of
components of a small scatterer given by

D =
ls⋃

j=1

Dj .(2.2)

For technical purpose, we next make the qualitative assumption that ρ� 1 and

Ls = min
j �=j′,1≤j,j′≤ls

dist(zj , zj′) � 1.(2.3)

The above assumption means that the size of each scatterer component is small compared to
the detecting wavelength, and if there are multiple components, they are sparsely distributed.
In our numerical experiments in section 5, we could speak a bit more about the qualitative
assumption (2.3). Indeed, it is shown that as long as the size of the target scatterer is smaller
than half a wavelength and if there are multiple components presented and the distance
between different components is bigger than half a wavelength, then the proposed Scheme S
works in an effective manner. Nevertheless, in the extreme situation where the distance
between two scatterer components is smaller than half of the detecting wavelength, Scheme S
can still produce some qualitative reconstruction of the profile of the two scatterers, but
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it may not be able to clearly separate them; we refer the reader to Figure 4.4 in [30] for
reconstructing two nearby electromagnetic scatterers, and note that Scheme S produces similar
reconstructions for the current elastic case.

In order to present Scheme S of locating the multiple components of D in (2.2), we
introduce the three indicator functions Im(z), z ∈ R

3, m = 1, 2, 3, relying on the availability
of different types of far-field patterns. Define

I1(z) =
1

‖u∞p (x̂;D)‖2
L2

3∑
j=1

∣∣∣〈u∞p (x̂;D), (x̂ ⊗ x̂)ej e
−ikpx̂·z

〉∣∣∣2 ,
I2(z) =

1

‖u∞s (x̂;D)‖2
L2

3∑
j=1

∣∣∣〈u∞s (x̂;D), (I − x̂⊗ x̂)ej e
−iksx̂·z

〉∣∣∣2 ,
I3(z) =

1

‖u∞(x̂;D)‖2
L2

3∑
j=1

∣∣∣〈u∞(x̂;D), (x̂ ⊗ x̂)ej e
−ikpx̂·z + (I− x̂⊗ x̂)ej e

−iksx̂·z
〉∣∣∣2 ,

where, here and in the following, the notation 〈·, ·〉 denotes the inner product in L2 = L2(S2)3

with respect to the variable x̂ ∈ S
2; the symbol x̂ ⊗ x̂ := x̂	 x̂ ∈ R

3×3 stands for the tensor
product; I denotes the 3× 3 identity matrix; and

e1 = (1, 0, 0)	, e2 = (0, 1, 0)	, e3 = (0, 0, 1)	

are the three Euclidean base vectors in R
3. Obviously, Im (m = 1, 2, 3) are all nonnegative

functions, and they can be obtained, respectively, by using a single P-part far-field pattern
(m = 1), an S-part far-field pattern (m = 2), or the full far-field pattern (m = 3). The func-
tions introduced above possess certain indicating behavior, which lies in the core of Scheme S.
Before stating the theorem of the indicating behavior for those imaging functions, we introduce
the real numbers

Kj
1 :=

‖u∞p (x̂;Dj)‖2L2

‖u∞p (x̂;D)‖2
L2

, Kj
2 :=

‖u∞s (x̂;Dj)‖2L2

‖u∞s (x̂;D)‖2
L2

, Kj
3 :=

‖u∞(x̂;Dj)‖2L2

‖u∞(x̂;D)‖2
L2

(2.4)

for 1 ≤ j ≤ ls.
Theorem 2.1. For a rigid elastic scatterer D described in (2.1)–(2.3) and Kj

m, m = 1, 2, 3,
defined in (2.4), we have

Kj
m = K̃j +O(L−1

s + ρ), 1 ≤ j ≤ ls, m = 1, 2, 3,(2.5)

where K̃j’s are positive numbers independent of Ls, ρ, and m. Moreover, there exists an open
neighborhood of zj, neigh(zj), such that

Im(z) ≤ K̃j +O(L−1
s + ρ) ∀z ∈ neigh(zj),(2.6)

and Im(z) achieves its maximum at zj in neigh(zj), i.e.,

Im(zj) = K̃j +O(L−1
s + ρ).(2.7)
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Remark 2.2. The local maximizing behavior of Im(z) clearly can be used to locate the
positions of the scatterer components D, namely zj , 1 ≤ j ≤ ls. Such indicating behavior is
more evident if one considers the case that D has only one component, i.e., ls = 1. In the
one-component case, one has that

K̃j = 1, Im(z) < 1 +O(ρ) ∀m = 1, 2, 3, z �= z1,

but Im(z1) = 1 +O(ρ), m = 1, 2, 3. That is, z1 is a global maximizer for Im(z).

Based on Theorem 2.1 we can formulate Scheme S to locate the multiple small scatterer
components of D in (2.2) as follows.
Scheme S: Locating small scatterers of D in (2.2).

Step 1. For an unknown rigid scattererD in (2.2), collect the P-part (m = 1), S-part (m = 2),
or the full far-field data (m = 3) by sending a single detecting plane wave (1.2).

Step 2. Select a sampling region with a mesh Th containing D.
Step 3. For each sampling point z ∈ Th, calculate Im(z) (m = 1, 2, 3) according to the

measurement data.
Step 4. Locate all the local maximizers of Im(z) on Th, which represent the locations of the

scatterer components.
Remark 2.3. In practice, the compressional wave number kp = ω/

√
λ+ 2μ is smaller than

the shear wave number ks = ω/
√
μ. Hence, the P-wavelength 2π/kp is usually larger than the

S-wavelength 2π/ks. This suggests that using the shear wave measurement would yield better
reconstruction than using the compressional wave measurement for locating the multiple small
scatterers. That is, the indicator function I2 would work better than I1 for reconstruction
purposes, especially when the Láme constant λ is very large compared to μ. This also suggests
that the reconstruction using the indicator function I3 with the full far-field pattern will be
more stable (with respect to noise) and reliable than the other two; see also section 5.

2.2. Proof of Theorem 2.1. In this section, we provide the proof for Theorem 2.1. First,
we recall the fundamental solution (Green’s tensor) to the Navier equation (1.1) given by

Π(x, y) = Π(ω)(x, y) =
k2s

4πω2

eiks|x−y|

|x− y| I+
1

4πω2
gradx grad

	
x

[
eiks|x−y|

|x− y| − eikp|x−y|

|x− y|

]
(2.8)

for x, y ∈ R
3, x �= y. To prove Theorem 2.1 we need the following critical lemma on the

asymptotic behavior of the elastic far-field patterns due to small scatterers.

Lemma 2.4. Let the incident plane wave be given in (1.2) and D be given in (2.1)–(2.3).
The P-part and S-part far-field patterns have the following asymptotic expressions as ρ/Ls →
+0:

u∞p (x̂;D) =
ρ

4π(λ + 2μ)
(x̂⊗ x̂)

⎡⎣ ls∑
j=1

e−ikpx̂·zj (Cp,j α e
ikpzj ·d + Cs,j β e

ikszj ·d)

⎤⎦+O
(
ρ2 ls(1 + L−1

s )
)
,

u∞s (x̂;D) =
ρ

4πμ
(I− x̂⊗ x̂)

⎡⎣ ls∑
j=1

e−iksx̂·zj (Cp,j α e
ikpzj ·d + Cs,jβ e

ikszj ·d)

⎤⎦+O
(
ρ2 ls(1 + L−1

s )
)
,
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1806 GUANGHUI HU, JINGZHI LI, HONGYU LIU, AND HONGPENG SUN

where Cp,j, Cs,j ∈ C
3 are constant vectors independent of ρ, ls, Ls, and zj .

The proof of Lemma 2.4 relies essentially on the asymptotic expansions of u∞p and u∞s
in the recent work [15], where the Foldy–Lax formulation for the Lamé system was justified
without the condition (2.3). The other references on the asymptotic expansions associated
with small inclusions can be found in a series of works by Ammari and Kang and their
collaborators using integral equation methods; see, e.g., [4, 5, 8, 9, 10, 11]. We also mention
the monographs [33] by Martin, where the multiple scattering issues are well treated, and [17]
for analysis of acoustic, electromagnetic, and elastic scattering problems at low frequencies.
For the reader’s convenience, we present a proof of Lemma 2.4 under the sparsity assumption
(2.3).

Proof of Lemma 2.4. By [15, Remark 1.3], there exists a small number ε > 0 such that for
(ls − 1)ρ/Ls < ε

u∞p (x̂;D) =
1

4π(λ+ 2μ)
(x̂⊗ x̂)

⎡⎣ ls∑
j=1

cje
−ikpx̂·zj Qj

⎤⎦+O
(
ρ2 ls(1 + L−1

s )
)
,

u∞s (x̂;D) =
1

4πμ
(I − x̂⊗ x̂)

⎡⎣ ls∑
j=1

cje
−iksx̂·zj Qj

⎤⎦+O
(
ρ2 ls(1 + L−1

s )
)
,

(2.9)

where the vector coefficients Qj ∈ C
3, j = 1, 2, . . . , ls, are the unique solutions to the linear

algebraic system

C−1
j Qj = −uin(zj)−

ls∑
m=1,m�=j

Π(ω)(zj , zm)Qm,(2.10)

with Π(ω)(zj , zm) denoting the Kupradze matrix (2.8) and Cj :=
∫
∂Dj

Θj(y)ds(y) ∈ C
3×3.

Here, Θj is the solution matrix of the first kind integral equation∫
∂Dj

Π(0)(x, y)Θj(y)ds(y) = I, x ∈ ∂Dj ,(2.11)

where the matrix Π(0)(x, y), which denotes the Kelvin matrix of the fundamental solution of
the Lamé system with ω = 0, takes the form (see, e.g., [28, Chapter 2] or [23, Chapter 2.2])

Π(0)(x, y) :=
λ+ 3μ

8πμ(λ+ 2μ)

1

|x− y| I+
λ+ μ

8πμ(λ+ 2μ)

1

|x− y|3
(
(x− y)⊗ (x− y)

)
.(2.12)

Since Π(0)(x, y) ∼ |x − y|−1 as x → y, it follows from (2.11) that Θj(y) ∼ ρ−3 for y ∈ ∂Dj ,
from which we get Cj ∼ ρ−1 for j = 1, 2, . . . , ls as ρ→ +0. Now, inserting the estimate of Cj

into (2.10) and taking into account the fact that

Π(ω)(zj , zm) = O(L−1
s ) for j �= m,

we obtain

Qj = ρHj u
in(zj) +O(L−1

s + ρ2) as ρ/Ls → +0, j = 1, 2, . . . , ls,D
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LOCATING MULTIPLE MULTISCALE ELASTIC SCATTERERS 1807

where Hj ∈ C
3×3 are some constant matrices independent of ρ and L. Therefore, Lemma 2.4

is proved by taking Cp,j = Hj d, Cs,j = Hj d
⊥.

We are now in a position to present the proof of Theorem 2.1.
Proof of Theorem 2.1. We first consider the indicating function I1(z), z ∈ R

3. For nota-
tional convenience we write

Aj = Aj(zj , α, β) := Cp,j α e
ikpzj ·d + Cs,j β e

ikszj ·d ∈ C
3, j = 1, 2, . . . , ls,

with Cp,j, Cs,j given as in Lemma 2.4. Then, it is seen from Lemma 2.4 that

‖u∞p (x̂;D)‖2L2 =
ρ2

4(λ+ 2μ)2

ls∑
j=1

|Aj |2 +O
(
ρ3 + ρ2L−1

)
,

‖u∞p (x̂;Dj)‖2L2 =
ρ2

4(λ+ 2μ)2
|Aj |2 +O

(
ρ3 + ρ2L−1

s

)
.

Hence,

Kj
1 =

‖u∞p (x̂;Dj)‖2L2

‖u∞p (x̂;D)‖2
L2

= K̃j +O(ρ+ L−1
s ), K̃j :=

A2
j∑ls

j=1 |Aj |2
.(2.13)

This proves (2.5) for m = 1. The case of using the S-part of the far-field pattern (i.e., m = 2)
can be treated in an analogous way.

For the full-wave scenario, namely when m = 3, the orthogonality of u∞p and u∞s should
be used in the treatment. Since 〈I − x̂ ⊗ x̂, x̂ ⊗ x̂〉 = 0, by applying Lemma 2.4 again to D
and Dj , we have

‖u∞(x̂;D)‖2L2 =
ρ2

4

(
1

(λ+ 2μ)2
+

1

μ2

) ls∑
j=1

|Aj |2 +O
(
ρ3 + ρ2L−1

s

)
,

‖u∞(x̂;Dj)‖2L2 =
ρ2

4

(
1

(λ+ 2μ)2
+

1

μ2

)
|Aj |2 +O

(
ρ3 + ρ2L−1

s

)
.

Hence, the equality (2.5) with m = 3 is proved with the same K̃j given in (2.13).
To verify (2.6) and (2.7), without loss of generality we only consider the indicating behavior

of I1(z) in a small neighborhood of zj for some fixed 1 ≤ j ≤ ls, i.e., z ∈ neigh(zj). Clearly,
under the assumption (2.3) we have

ω|zj′ − z| ∼ ω Ls � 1 ∀z ∈ neigh(zj), j′ �= j.

By using the Riemann–Lebesgue lemma about oscillating integrals and Lemma 2.4, we obtain∣∣∣∣∣∣
〈
u∞p (x̂;D),

3∑
j=1

(x̂⊗ x̂)eje
−ikpx̂·z

〉∣∣∣∣∣∣
2

=
ρ2 |Aj|2

16π2(λ+ 2μ)2

〈
e−ikpx̂·zj , e−ikpx̂·z

〉
+O(ρ3 + ρ2L−1

s )

≤ ρ2 |Aj|2
4(λ+ 2μ)2

+O(ρ3 + ρ2L−1
s ),(2.14)
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1808 GUANGHUI HU, JINGZHI LI, HONGYU LIU, AND HONGPENG SUN

where the last inequality follows from the Cauchy–Schwarz inequality. Moreover, the strict
inequality in (2.14) holds if z �= zj , and the equal sign holds only when z = zj. Therefore, by
the definition of I1,

I1(z) ≤ K̃j +O(ρ+ L−1
s ),

and the equality holds only when z = zj . This proves (2.6) and (2.7). The indicating behavior
of I2 and I3 can be treated in the same manner.

The proof is complete.

3. Locating multiple extended scatterers. In this section we consider the locating of
multiple rigid scatterers of regular size by using a single incident plane wave. As discussed
earlier in the introduction, it is extremely challenging to recover a generic rigid elastic scatterer
by using a single far-field pattern. The scheme that we shall propose for locating multiple
extended (namely, regular-size) scatterers requires a certain a priori knowledge of the un-
derlying target objects; that is, their shapes must be from a certain known class. In what
follows, we first describe the multiple extended scatterers for our study and then present the
corresponding locating Scheme R.

For j = 1, 2, . . . , le, set rj ∈ R+ such that

rj ∈ [R0, R1], 0 < R0 < R1 < +∞, R0 ∼ O(1).

Let Ej ⊂ R
3, 1 ≤ j ≤ le, denote a bounded simply connected Lipschitz domain containing the

origin. Throughout, we assume that diam(Ej) ∼ 1, 1 ≤ j ≤ le. Define the scaling operator
ΛrEj with r ∈ R+ to be the same as that given in (2.1). Denote by Rj := R(θj, φj , ψj) ∈
SO(3), 1 ≤ j ≤ le, the three-dimensional (3D) rotation matrix around the origin whose Euler
angles are θj ∈ [0, 2π], φj ∈ [0, 2π], and ψj ∈ [0, π], and define RjE := {Rjx : x ∈ E}. For
zj ∈ R

3, we let

Ω =

le⋃
j=1

Ωj, Ωj := zj +Rj Λrj Ej,(3.1)

denote the extended target scatterer for our current study. Obviously, Ω is a collection of
scatterer components Ωj that is obtained by scaling, rotating, and translating Ej with the
parameters rj, (θj , φj , ψj), and zj, respectively. In what follows, the parameter zj , Euler angles
(θj, φj , ψj), the number rj , and the reference scatterer Ej will be referred to, respectively, as
the position, orientation, size, and shape of the scatterer component Ωj in Ω. For technical
purposes, we impose the following sparsity assumption on the extended scatterer Ω introduced
in (3.1):

(3.2) Le = min
j �=j′,1≤j,j′≤le

dist(Ωj,Ωj′) � 1.

Furthermore, it is assumed that there exists an admissible reference scatterer space

A := {Σj}l
′
j=1,(3.3)
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LOCATING MULTIPLE MULTISCALE ELASTIC SCATTERERS 1809

where each Σj ⊂ R
3 is a bounded simply connected Lipschitz domain containing the origin

such that, for Ω in (3.1),

(3.4) Ej ∈ A .

For the admissible reference space A introduced in (3.3), we require that

Σj �= Σj′ for j �= j′, 1 ≤ j, j′ ≤ l′,(3.5)

and that it be known in advance. The number l′ ∈ N in (3.3) is not necessarily equal to le in
(3.1). Condition (3.4) implies that the shapes of target scatterer components must be known
in advance. Nevertheless, it may happen that more than one scatterer component possesses
the same shape, or some shapes from the admissible class A may not appear in the target
scatterer components.

In the following, we shall develop Scheme R by using a single far-field pattern to locate
the multiple components of the scatterer Ω described above. The inverse problem could find
important practical applications in the real world. For instance, in locating an unknown
group of plastic-cased land mines or pipelines buried in dry soils, one would have the a priori
knowledge on the possible shapes of the target objects.

3.1. Description of Scheme R. For h ∈ R+, h � 1, let N1 be a suitably chosen finite
index set such that {Rj}j∈N1 = {R(θj , φj , ψj)}j∈N1 is an h-net of SO(3). That is, for any
rotation matrix R ∈ SO(3), there exists j ∈ N1 such that ‖Rj − R‖ ≤ h. For a simply
connected domain Σ containing the origin, we define RhΣ := {RjΣ}j∈N1

. In an analogous
manner, for Λr with r ∈ [R0, R1], we let N2 be a suitably chosen finite index set such that
{rj}j∈N2 is an h-net of [R0, R1]. Define ΛhΣ := {ΛrjΣ}j∈N2 . Next, we augment the admissible
reference space A to be

(3.6) Ah = RhΛhA =
l′⋃

j=1

{RhΛhΣj} := {Σ̃j}l
′′
j=1,

where l′′ denotes the cardinality of the discrete set Ah. Indeed, Ah can be taken as an h-net of

A in the sense that for any Σ ∈ A , there exists Σ̃ ∈ Ah such that dH(Σ, Σ̃) ≤ Ch, where dH
denotes the Hausdorff distance and C is a positive constant depending only on A . We shall
make the following two assumptions about the augmented admissible reference space Ah:

(i) u∞τ (x̂; Σ̃j) �= u∞τ (x̂; Σ̃j′) for τ = s, p, or ∅, and j �= j′, 1 ≤ j, j′ ≤ l′′.
(ii) ‖u∞τ (x̂; Σ̃j)‖L2 ≥ ‖u∞τ (x̂; Σ̃j′)‖L2 for τ = s, p, or ∅, and j < j′, 1 ≤ j, j′ ≤ l′′.

Assumption (ii) can be fulfilled by reordering the elements in Ah if necessary. For assumption
(i), we recall the following well-known conjecture in the inverse elastic scattering theory:

u∞τ (x̂;D1) = u∞τ (x̂;D2) ∀x̂ ∈ S
2 if and only if D1 = D2,(3.7)

where D1 and D2 are two rigid elastic scatterers. Equation (3.7) states that one can uniquely
determine an elastic rigid scatterer by using a single far-field pattern. There is a widespread
belief that (3.7) holds true, but there has been very limited progress in the literature, and
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1810 GUANGHUI HU, JINGZHI LI, HONGYU LIU, AND HONGPENG SUN

this question still largely remains open. We refer the reader to [21, 22, 34] for uniqueness
results established by using infinitely many far-field measurements, and [24] for uniqueness in
determining spherical or convex polyhedral rigid scatterers by using a single S-part far-field
pattern. Nevertheless, since Ah is known, assumption (i) can be verified in advance.

In order to identify the multiple extended scatterers of Ω in (3.1), we introduce the fol-
lowing l′′ × 3 indicator functions:

W j
1 (z) =

1

‖u∞p (x̂; Σ̃j)‖2L2

∣∣∣〈u∞p (x̂; Ω), e−ikpx̂·z u∞p (x̂; Σ̃j)
〉∣∣∣2 ,

W j
2 (z) =

1

‖u∞s (x̂; Σ̃j)‖2L2

∣∣∣〈u∞s (x̂; Ω), e−iksx̂·z u∞s (x̂; Σ̃j)
〉∣∣∣2 ,(3.8)

W j
3 (z) =

1

‖u∞(x̂; Σ̃j)‖2L2

∣∣∣〈u∞(x̂; Ω), e−ikpx̂·z u∞p (x̂; Σ̃j) + e−iksx̂·z u∞s (x̂; Σ̃j)
〉∣∣∣2 ,

where z ∈ R
3 and Σ̃j ∈ Ah for j = 1, 2, . . . , l′′.

Next, we present a key theorem on the indicating behavior of these indicator functions,
which forms the basis of our Scheme R. Recall that α, β are the coefficients attached to uinp
and uins , respectively, in the expression of uin given in (1.2).

Theorem 3.1. Suppose that αβ = 0 and that Σ̃1 ∈ Ah is of the following form:

(3.9) Σ̃1 = RjσΛrjτ Σj0 , Σj0 ∈ A , jσ ∈ N1, jτ ∈ N2.

Suppose that in Ω given by (3.1), there exists J0 ⊂ {1, 2, . . . , le} such that for j ∈ J0, the
component Ωj = RjΛrjEj satisfies

(3.10) (i) Ej = Σj0 , (ii) ‖Rj −Rjσ‖ ≤ h, (iii) ‖rj − rjτ‖ ≤ h,

whereas for j ∈ {1, 2, . . . , le}\J0, at least one of the conditions in (3.10) is not fulfilled by the
scatterer component Ωj. Then for each zj , 1 ≤ j ≤ le, there exists an open neighborhood of
zj, neigh(zj), such that

(i) If j ∈ J0, then

(3.11) W 1
m(z) ≤ 1 +O

(
1

L e
+ h

)
∀z ∈ neigh(zj), m = 1, 2, 3.

Moreover, the equality relation holds in (3.11) only when z = zj. That is, zj is a local
maximum point for W 1

m(z).
(ii) If j ∈ {1, 2, . . . , l}\J0, then there exists ε0 ∈ R+ such that

(3.12) W 1
m(z) ≤ 1− ε0 +O

(
1

Le
+ h

)
∀z ∈ neigh(zj), m = 1, 2, 3.

Remark 3.2. The condition αβ = 0 implies that W j
m’s in (3.8) are valid for incident plane

pressure or shear waves only. Following the proof of Theorem 3.1, one can formulate the
indicator functions for general elastic plane waves of the form (1.2); see Remark 3.8 at the
end of this section.
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LOCATING MULTIPLE MULTISCALE ELASTIC SCATTERERS 1811

In Theorem 3.1, it may happen that J0 = ∅. In this case, there is no scatterer in Ω which is
of the shape Σj0 . Clearly, by using the indicating behavior of the functional W 1

m(z) presented
in Theorem 3.1, one can locate all the scatterer components possessing the shape Σj0. After
the locating of those scatterers of shape Σj0, one can exclude them from the searching region.
Moreover, by Lemmas 3.4 and 3.6 in the following, one can calculate the far-field pattern
generated by the remaining scatterer components. With the updated far-field pattern, one
can then use Σ̃2 as the reference and proceed as before to locate all the scatterer components
of Ω possessing the same shape as Σ̃2. Clearly, this procedure can be carried out until we find
all the scatterer components of Ω. In summary, Scheme R reads as follows.

Scheme R: Locating extended scatterers of Ω in (3.1).

Step 1. For the admissible reference scatterer class A in (3.3), formulate the augmented
admissible class Ah in (3.6).

Step 2. Collect in advance the P-part (m = 1), S-part (m = 2), or the full far-field data
(m = 3) associated with the admissible reference scatterer class Ah corresponding to
a single incident plane wave of the form (1.2). Reorder Ah if necessary to make it
satisfy assumption (ii), and also verify the generic assumption (i).

Step 3. For an unknown rigid scatterer Ω in (3.1), collect the P-part, S-part, or the full
far-field data by sending the same detecting plane wave as specified in Step 2.

Step 4. Select a sampling region with a mesh Th containing Ω.
Step 5. Set j = 1.
Step 6. For each sampling point z ∈ Th, calculate W j

m(z) (m = 1, 2, 3) according to available
far-field data for Ω.

Step 7. Locate all those significant local maximum points of W j
m(z) satisfying W j

m(z) ≈ 1
for the scatterer components of the form z + Σ̃j. Let zη, η = 1, . . . , η0 be the local
maximum points found in this step.

Step 8. Remove all those z + Σ̃j found in Step 7 from the mesh Th.
Step 9. Update the far-field patterns according to the following formulae:

u∞,new
p = u∞p (x̂; d, d⊥, α, β,Ω) − u∞p (x̂; d, d⊥, α, 0, Σ̃j)

η0∑
η=1

eikp(d−x̂)·zη

−u∞p (x̂; d, d⊥, 0, β, Σ̃j)

η0∑
η=1

ei(ksd−kpx̂)·zη ,

u∞,new
s = u∞s (x̂; d, d⊥, α, β,Ω) − u∞s (x̂; d, d⊥, α, 0, Σ̃j)

η0∑
η=1

ei(kpd−ksx̂)·zη

−u∞s (x̂; d, d⊥, 0, β, Σ̃j)

η0∑
η=1

eiks(d−x̂)·zη ,

u∞,new = u∞,new
p + u∞,new

s .

Step 10. If j = l′′, namely, the maximum number of the reference scatterers has been reached,
then stop the reconstruction; otherwise set j = j + 1, and go to Step 6.

Finally, we have the following remark about Scheme R.
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Remark 3.3. In (3.4), it is assumed that the admissible class A contains exactly the ref-
erence scatterer Ej of the unknown scatterer component Ωj in Ω. However, our Scheme R

relies on the augmented admissible class Ãh, which may contain only an approximate scatterer
configuration to the target scatterer component Ωj in Ω. Hence, if the admissible class A
contains only an approximate reference scatterer to Ej of the unknown scatterer component
Ωj in Ω, Scheme R would still work, and, in fact, it can be easily justified from the proof of
Theorem 3.1.

3.2. Proof of Theorem 3.1. Throughout this section, we let ν denote the unit normal
vector to ∂Ω pointing into R

3\Ω. Denote the linearized strain tensor by ε(u) := 1
2

(
∇u +

∇u	
)

∈ R
3×3, where ∇u ∈ R

3×3 and ∇u	 stand for the Jacobian matrix of u and its adjoint,
respectively. By Hooke’s law the strain tensor is related to the stress tensor via the identity
σ(u) = λ (div u) I + 2μ ε(u) ∈ R

3×3. The surface traction (or the stress operator) on ∂Ω
is given by

Tνu := σ(u)ν = (2μν · grad + λ ν div + μν × curl )u.(3.13)

We next present several auxiliary lemmas.
Lemma 3.4. Let Ω be a scatterer with multiple components given in (3.1). Under the

assumption (2.3), we have

(3.14) u∞(x̂; Ω) =

le∑
j=1

u∞(x̂; Ωj) +O(L−1
e ).

Proof. For simplicity we assume that le = 2. We begin with the single- and double-layer
potential operators in elasticity. For j = 1, 2, let

(Sjϕ)(x) :=2

∫
∂Ωj

Π(x, y)ϕ(y)ds(y), ϕ ∈ C(∂Ωj), x ∈ ∂Ωj ,(3.15)

(Kjϕ)(x) :=2

∫
∂Ωj

Ξ(x, y)ϕ(y)ds(y), ϕ ∈ C(∂Ωj), x ∈ ∂Ωj ,(3.16)

where Ξ(x, y) is a matrix-valued function whose jth column vector is defined by

Ξ(x, y)	 ej := Tν(y)(Π(x, y) ej) on ∂Ωj for x �= y, j = 1, 2, 3.

Recall that the superscript (·)	 denotes the transpose, ej ∈ C
3×1 the usual Cartesian unit

vectors, and Tν(y) the stress operator defined in (3.13). Under the regularity assumption
∂Ωj ∈ C2, it was proved in [22] that the scattered field usc(x; Ωj) corresponding to Ωj can be
represented as

usc(x; Ωj) =

∫
∂Ωj

Ξ(x, y)ϕj(y)ds(y) + i

∫
∂Ωj

Π(x, y)ϕj(y)ds(y), x ∈ R
3\Ωj ,

where the density function ϕj ∈ C(∂Ωj) is given by

ϕj = −2(I +Kj + iSj)
−1uin|∂Ωj

, j = 1, 2.
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LOCATING MULTIPLE MULTISCALE ELASTIC SCATTERERS 1813

To prove the lemma for the scatterer Ω = Ω1 ∪ Ω2, we make use of the ansatz

usc(x; Ω) =
∑
j=1,2

{∫
∂Ωj

Ξ(x, y)φj(y)ds(y) + i

∫
∂Ωj

Π(x, y)φj(y)ds(y)

}
, x ∈ R

3\Ω,

with φj ∈ C(∂Ωj). Using the Dirichlet boundary condition usc + uin = 0 on each ∂Ωj , we
obtain the integral equations(

I +K1 + iS1 J2
J1 I +K2 + iS2

)(
φ1
φ2

)
= −2

(
uin|∂Ω1

uin|∂Ω2

)
,(3.17)

where the operators J1 : C(∂Ω1) → C(∂Ω2), J2 : C(∂Ω2) → C(∂Ω1) are defined, respectively,
by

J1φ1 = 2

{∫
∂Ω1

Ξ(x, y)φ1(y)ds(y) + i

∫
∂Ω1

Π(x, y)φ1(y)ds(y)

}
, x ∈ ∂Ω2,

J2φ2 = 2

{∫
∂Ω2

Ξ(x, y)φ2(y)ds(y) + i

∫
∂Ω2

Π(x, y)φ2(y)ds(y)

}
, x ∈ ∂Ω1.

Since Le � 1 (cf. (3.2)), using the fundamental solution (2.8), we readily estimate

‖J1φ1‖C(∂Ω2) ≤ C1L
−1
e ‖φ1‖C(∂Ω1), ‖J2φ2‖C(∂Ω1) ≤ C2L

−1
e ‖φ2‖C(∂Ω2), C1, C2 > 0.

Hence, it follows from (3.17) and the invertibility of I +Kj + iSj : C(∂Ωj) → C(∂Ωj) that(
φ1
φ2

)
=

(
(I +K1 + iS1)

−1 0
0 (I +K2 + iS2)

−1

)(
−2uin|∂Ω1

−2uin|∂Ω2

)
+O(L−1

e )

=

(
ϕ1

ϕ2

)
+O(L−1

e ).

This implies that

usc(x; Ω) = usc(x; Ω1) + usc(x; Ω2) +O(L−1
e ) as Le → ∞,

which readily implies (3.14).

Remark 3.5. In the proof of Lemma 3.4, we require that the boundary ∂Ω be C2 continuous.
This is mainly due to the requirements of the mapping properties of the single- and double-
layer potential operators (cf. (3.15) and (3.16)) in the proof. This regularity assumption can
be relaxed to be Lipschitz continuous by using a similar argument, together with the mapping
properties of the layer potential operators defined on Lipschitz surfaces (cf. [35]).

In what follows, we shall establish the relation between far-field patterns for translated,
rotated, and scaled elastic bodies. For D ⊂ R

3 and a = (a1, a2, a3) ∈ R
3, we write Da = a+D

for simplicity. Given the incident wave uin of the form (1.2), we write u∞(x̂) = u∞(x̂;D,ω)
and usc(x) = usc(x;D,ω) to indicate the dependence on the obstacle D and the frequency of
incidence ω.
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1814 GUANGHUI HU, JINGZHI LI, HONGYU LIU, AND HONGPENG SUN

Lemma 3.6. Assume that ∂D is Lipschitz. There hold

u∞τ (x̂; ΛρD,ω) = ρ u∞τ (x̂;D, ρω), x̂ ∈ S
2, τ = p, s, or ∅,(3.18)

and

Ru∞(x̂;D, d, d⊥) = u∞(Rx̂;RD,Rd,Rd⊥) ∀x̂, d, d⊥ ∈ S
2, d · d⊥ = 0.

Moreover, if α = 1, β = 0, then

u∞p (x̂;Da) = u∞p (x̂;D) eikp(d−x̂)·a, u∞s (x̂;Da) = u∞s (x̂;D) ei(kpd−ksx̂)·a,(3.19)

and if α = 0, β = 1, then

u∞p (x̂;Da) = u∞p (x̂;D) ei(ksd−kpx̂)·a, u∞s (x̂;Da) = u∞s (x̂;D) eiks(d−x̂)·a.(3.20)

Proof. The lemma can be directly proved by using the change of variables to the elastic
system, and we refer the reader to Proposition 3.1 in [31] for similar treatments of the Maxwell
system.

As an application of the relations established in Lemma 3.6, we prove uniqueness in
locating the position of translated elastic bodies with a single plane pressure or shear wave.

Lemma 3.7. Let d, d⊥ ∈ S
2 and ω ∈ R+ be fixed. Assume αβ = 0. Then the relation

u∞τ (x̂,Da) = u∞τ (x̂,D) with τ = p or τ = s for all x̂ ∈ S
2 implies |a| = 0.

Proof. Without loss of generality we assume β = 0. This implies that the incident wave is
a plane pressure wave. If u∞p (x̂;Da) = u∞p (x̂;D) for all x̂ ∈ S

2, then it follows from the first
identity in (3.19) that (d− x̂) ·a = 0 for all x̂ ∈ S

2. Since the set {d− x̂ : x̂ ∈ S
2} contains three

linearly independent vectors of R3, it follows that |a| = 0. By arguing similarly we deduce
from u∞s (x̂;Da) = u∞s (x̂;D) and the second identity in (3.19) that (kpd − ksx̂) · a = 0 for all
x̂ ∈ S

2, which also leads to |a| = 0. The proof for the case with α = 0 can be shown in the
same way by using (3.20).

We are now in a position to present the proof of Theorem 3.1.
Proof of Theorem 3.1. Without loss of generality, we assume α = 1, β = 0. Let the

scatterer component Ωj = Ωj(zj ,Rj , rj , Ej) fulfill (3.1) and (3.10). By Lemma 3.6, we obtain

u∞p (x̂; d, ω,Ωj) = u∞p (x̂; d, ω,Rj Λrj Ej) e
ikp(d−x̂)·zj(3.21)

= Rj u
∞
p (R−1

j x̂;R−1
j d, ω, Λrj Ej) e

ikp(d−x̂)·zj

= rj Rj u
∞
p (R−1

j x̂;R−1
j d, rj ω, Ej) e

ikp(d−x̂)·zj .(3.22)

Using (3.10) and again Lemma 3.6, we have for j ∈ J0

rj Rj u
∞
p (R−1

j x̂;R−1
j d, rj ω, Ej) = rjτ Rjσ u

∞
p (R−1

jσ
x̂;R−1

jσ
d, rjτ ω, Σj0) +O(h)

= u∞p (x̂; d, ω,RjσΛrjτ Σj0, ) +O(h) = u∞p (x̂; d, ω, Σ̃1) +O(h),(3.23)

where Σ̃1 is given as in (3.9). Inserting (3.23) into (3.22), it follows from Lemma 3.4 that

u∞p (x̂; Ω) =

le∑
j=1

u∞p (x̂; Ωj) +O(L−1
e )

=
∑
j∈J0

u∞p (x̂; Σ̃1)e
ikp(d−x̂)·zj +

∑
j∈{1,...,le}\J0

u∞p (x̂; Ωj) +O(L−1
e + h).
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Hence, for z ∈ neigh(zj) with some j ∈ J0, we have

|〈u∞p (x̂; Ω), u∞p (x̂; Σ̃1)e
−ikpx̂·z〉|

= |〈u∞p (x̂; Σ̃1)e
ikp(d−x̂)·zj , u∞p (x̂; Σ̃1)e

−ikpx̂·z〉|+O(L−1
e + h)(3.24)

≤ ‖u∞p (x̂; Σ̃1)‖L2 +O(L−1
e + h).(3.25)

The equality in (3.24) follows from the Riemann–Lebesgue lemma about oscillatory integrals
by noting that |zj′−z| ∼ Le � 1 for j′ �= j, 1 ≤ j′ ≤ le, and z ∈ neigh(zj). For the inequality in
(3.25), we have applied the Cauchy–Schwarz inequality, and it is easily seen that the equality
holds only at z = zj. Therefore, from the definition of the indicator function W 1

1 ,

W 1
1 (z) ≤ 1 +O(L−1

e + h) for z ∈ neigh(zj).

On the other hand, by a similar argument, together with assumption (i) on Σ̃j and the equality
(3.21), we can directly verify that

W 1
1 (z) < 1 +O(L−1

e + h), z ∈ neigh(zj), j ∈ {1, 2, . . . , le}\J0.

This proves Theorem 3.1 with m = 1 for an incident pressure wave. In a completely similar
manner, our argument can be extended to show the indicating behavior of W 1

2 (z) (m = 2) by
using the first equality in (3.20). Regarding W 1

3 (z) (m = 3), where the full far-field pattern
data are involved, we apply the orthogonality of u∞p and u∞s to obtain

W j
3 =

∣∣∣〈u∞p (x̂; Ω), e−ikpx̂·z u∞p (x̂; Σ̃j)〉+ 〈u∞s (x̂; Ω), e−iksx̂·z u∞s (x̂; Σ̃j)〉
∣∣∣2

‖u∞p (x̂; Σ̃j)‖2L2 + ‖u∞s (x̂; Σ̃j)‖2L2

.

Thus, the behavior of W 1
3 (z) follows from that of W 1

1 (z) and W
1
2 (z).

In the case of an incident shear wave, the indicating behavior of W 1
m(z) (m = 1, 2, 3) can

be shown similarly. The proof of Theorem 3.1 is complete.
Remark 3.8. For a general incident plane wave of the form (1.2), following an argument

similar to that of the proof of Theorem 3.1, one can show that Theorem 3.1 still holds with
the indicator functions replaced, respectively, by

W j
1 (z) =

∣∣∣〈u∞p (x̂; Ω), Aj
1(x̂; z)〉

∣∣∣2
‖u∞p (x̂; Σ̃j)‖2L2

, W j
2 (z) =

∣∣∣〈u∞s (x̂; Ω), Aj
2(x̂; z)〉

∣∣∣2
‖u∞s (x̂; Σ̃j)‖2L2

,

W j
3 (z) =

∣∣∣〈u∞(x̂; Ω), Aj
1(x̂; z) +Aj

2(x̂; z)〉
∣∣∣2

‖u∞(x̂; Σ̃j)‖2L2

,

where, for j = 1, 2, . . . , l′′,

Aj
1(x̂; z) := eikp(d−x̂)·z u∞p (x̂; d, d⊥, α, 0, Σ̃j) + ei(ksd−kpx̂)·z u∞p (x̂; d, d⊥, 0, β, Σ̃j),

Aj
2(x̂; z) := ei(kpd−ksx̂)·z u∞s (x̂; d, d⊥, α, 0, Σ̃j) + eiks(d−x̂)·z u∞s (x̂; d, d⊥, 0, β, Σ̃j).
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1816 GUANGHUI HU, JINGZHI LI, HONGYU LIU, AND HONGPENG SUN

4. Locating multiple multiscale scatterers. In this section, we consider the recovery of
a scatterer consisting of multiple multiscale components given by

(4.1) G = D ∪ Ω,

where D is as described in (2.1)–(2.3) denoting the union of the small components, and Ω is as
described in (3.1)–(3.5) denoting the union of the extended components. As before, we assume
that the shapes of the extended components are from a known admissible class, as described
in (3.3)–(3.5). In addition, we require that Lm := dist(D,Ω) � 1. Next, we shall develop
Scheme M to locate the ls+ le multiscale scatterer components of G in (4.1) by using a single
far-field pattern. Our treatment shall follow the one in [32] of locating multiscale acoustic
scatterers. More specifically, we shall concatenate Schemes S and R of locating small and
extended scatterers, respectively, by a local tuning technique, to form Scheme M of locating
the multiscale scatterers.

Definition 4.1. Let Ah be the augmented admissible class in (3.6) with the two sets {Rj}j∈N1

and {rj}j∈N2 of rotations and scalings, respectively, and let Th be the sampling mesh in Scheme

R. Suppose that Ω̂j = ẑj+R̂jΛr̂jΣj , j = 1, 2, . . . , le, are the reconstructed images of Ωj = zj+

RjΛrjΣj, j = 1, 2, . . . , le. For a properly chosen δ ∈ R+, let Oj
1 ,O

j
2 , and Oj

3 be, respectively,

δ-neighborhoods of ẑj , R̂j , and r̂j , j = 1, 2, . . . , le. Then let {Th′
l
, {Rj}j∈Pl

, {rj}j∈Ql
} be a

refined mesh of {Th ∩ O l
1, {Rj}j∈N1 ∩ O l

2, {rj}j∈N2 ∩ O l
3}, l = 1, 2, . . . , le.

Define

(4.2)
̂̂
Ωl(̂̂z, ̂̂R, ̂̂r) := ̂̂z + ̂̂RΛ

̂r̂
Σl for ̂̂z ∈ Th′

l
,

̂̂R ∈ {Rj}j∈Pl
, ̂̂r ∈ {rj}j∈Ql

,

a local tuneup of Ω̂l = ẑl + R̂lΛr̂lΣl relative to {Th′
l
, {Rj}j∈Pl

, {rj}j∈Ql
}, 1 ≤ l ≤ le.

Define

(4.3)
̂̂
Ω :=

le⋃
l=1

̂̂
Ωl,

with each
̂̂
Ωl, 1 ≤ l ≤ le, a local tuneup in (4.2) relative to {Th′

l
, {Rj}j∈Pl

, {rj}j∈Ql
}, a local

tuneup of Ω̂ :=
⋃le

j=1 Ω̂j, relative to the local tuning mesh

(4.4) L :=

le⋃
l=1

{Th′
l
, {Rj}j∈Pl

, {rj}j∈Ql
}.

According to Definition 4.1, Ω̂ is the reconstructed image of the extended scatterer Ω,

whereas
̂̂
Ω is an adjustment of Ω̂ by locally adjusting the position, orientation, and size of

each component of Ω̂.
With the above preparation, we are ready to present Scheme M to locate the multiple

components of G in (4.1), which can be sketched as follows. First, by Lemmas 3.4 and 2.4,
we know that

(4.5) u∞τ (x̂;G) ≈ uτ (x̂; Ω), τ = s, p, or ∅,
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where u∞τ (x̂;G) and u∞τ (x̂; Ω) are, respectively, the far-field patterns of G and Ω corresponding
to a single incident plane wave of the form (1.2). Hence, one can use u∞τ (x̂;G) as the far-field
data for Scheme R to locate the extended scatterer components of Ω (approximately). We
suppose that the reconstruction in the above step yields Ω̂, which is an approximation to Ω.
Then, according to Lemma 3.4 again, we have

(4.6) uτ (x̂;D) ≈ u∞τ (x̂;G) − u∞τ (x̂; Ω) ≈ u∞τ (x̂;G)− u∞τ (x̂; Ω̂).

With the above calculated far-field data, one can then use Scheme S to locate the small
scatterer components of D. However, the error introduced in (4.6) might be even more
significant than the scattering data of D; hence the second-stage reconstruction cannot be
expected to yield some reasonable result. In order to tackle this problem, a local tuning

technique can be implemented by replacing Ω̂ in (4.6) by a local tuneup
̂̂
Ω. Clearly, a more

accurate recovery of the extended scatterer Ω is included in the local tuneups relative to a
properly chosen local tuning mesh. Hence, one can repeat the second-stage reconstruction
as described above by running through all the local tuneups, and then locate the “clustered”
local maximum points which denote the positions of the small scatterers. Meanwhile, one
can also achieve much more accurate reconstruction of the extended scatterers. In summary,
Scheme M can be formulated as follows.

Scheme M: Locating multiple multiscale scatterers of G in (4.1).

Step 1. For an unknown scatterer G, collect the P-part (u∞p (x̂;G)), S-part (u∞s (x̂;G)), or
the full far-field (u∞(x̂;G)) pattern by sending a single detecting plane wave of the
form (1.2).

Step 2. Select a sampling region with a mesh Th containing Ω.
Step 3. Apply Scheme M with u∞τ (x̂;G), τ = s, p, or ∅, as the far-field data to reconstruct

approximately the extended scatterer Ω, denoted by Ω̂. Clearly, Ω̂ is as described in
Definition 4.1.

Step 4. For Ω̂ obtained in Step 3, select a local tuning mesh L of the form (4.4).

Step 5. For a tuneup
̂̂
Ω relative to the local tuning mesh L in Step 4, calculate

(4.7) ũ∞τ (x̂) := u∞τ (x̂;G) − u∞τ (x̂;
̂̂
Ω).

Apply Scheme S with ũ∞τ (x̂) as the far-field data to locate the significant local maxi-
mum points on Th\L .

Step 6. Repeat Step 5 by running through all the local tuneups relative to L . Locate the
clustered local maximum points on Th\L , which correspond to the small scatterer
components of D.

Step 7. Update Ω̂ to the local tuneup
̂̂
Ω which generates the clustered local maximum points

in Step 6.

5. Numerical examples. In this section, three numerical tests are presented to verify the
applicability of the proposed new schemes (Schemes S, R, and M) in inverse elastic scattering
problems for rigid bodies in three dimensions. Either a plane pressure wave or a shear wave
can be used as the detecting field incident on the rigid scatterer, and it generates coexisting
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scattering P- and S-waves coupled by the rigid body boundary condition. However, for brevity,
we present the numerical results only where the plane shear wave is employed for the locating
schemes.

In what follows, the exact far-field data are synthesized by a forward solver using quadratic
finite elements for each displacement field component on a truncated spherical (3D) domain
centered at the origin and enclosed by a perfectly matched layer following [14]. The compu-
tation is carried out on a sequence of successively refined meshes until the relative error of
two successive finite element solutions between the two adjacent meshes is below 0.1%. The
synthetic far-field data are computed via the integral representation formulae [3, eqs. (2.12)
and (2.13)] and taken as the exact ones.

In all the experiments, we always take the Lamé constants λ = 2 and μ = 1, the incident
direction d = (0, 0, 1), the perpendicular direction d⊥ = (1, 0, 0), and the angular frequency
ω = 2. In such a way, we know that the two wave numbers kp and ks equal 1 and 2, respectively,
and the incident S-wavelength is π. For scatterers of small size or regular size, we always add
to the exact far-field data a uniform noise of 5% and use it as the measurement data in our
numerical tests, while for multiscale scatterers, a uniform noise of 3% is added to the exact
far-field data.

Five revolving bodies will be considered for the scatterer components in our numerical
tests. They are characterized by revolving the following two-dimensional parametric curves
along the x-axis. Some geometries are adjusted to their upright positions if necessary.

Ball: {(x, y) : x = cos(s), y = sin(s), 0 ≤ s ≤ 2π},
Peanut: {(x, y) : x =

√
3 cos2(s) + 1 cos(s), y =

√
3 cos2(s) + 1 sin(s), 0 ≤ s ≤ 2π},

Kite: {(x, y) : x = cos(s) + 0.65 cos(2s)− 0.65, y = 1.5 sin(s), 0 ≤ s ≤ 2π},
Acorn: {(x, y) : x = (1 + cos(πs) cos(2πs)/3) cos(πs),

y = (1 + cos(πs) cos(2πs)/3) sin(πs), 0 ≤ s ≤ 2π},
UFO: {(x, y) : x = (1 + 0.2 cos(4πs)) cos(πs),

y = (1 + 0.2 cos(4πs)) sin(πs), 0 ≤ s ≤ 2π}.
These bodies will be denoted by B, P, K, A, and U, respectively, and are shown in Fig-
ures 1(b), 1(c), and 1(d) and Figures 3(b) and 3(c).

Example 1 (scatterer of three small components). The scatterer consists of three com-
ponents B, P, and K, all of which are scaled by one-tenth so that their sizes are much
smaller than the incident wavelength. As shown in Figure 1(a), one small ball is located at
(−2, 3, −2), a small peanut at (3, −2, −2), and a small kite at (3, 3, 3). With respect to
Scheme S, the reconstruction results of the small components are shown in Figure 2 based
on the indicator functions I1(z), I2(z), and I3(z) using the P-wave, S-wave, and full-wave
far-field data, respectively. It is clearly seen from Figure 2 that all the indicator functions
Im (m = 1, 2) in Scheme S can identify the scatterer with the correct positions of its three
components. As emphasized in Remark 2.3, the resolution of the S-wave reconstruction in
Figure 2(b) is much sharper than its P-wave counterpart in Figure 2(a) due to the shorter
wavelength of the S-wave. However, the full-wave imaging result in Figure 2(c) exhibits the
most accurate and stable reconstruction compared with the other two in that I3(z), by com-
bining the highlighted ball and kite positions (lower two components in Figure 2(a)) from
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(a) (b) (c) (d)

Figure 1. True scatter and its components before scaling in Example 1.

(a) P-wave (b) S-wave (c) Full-wave

Figure 2. From left to right: Reconstruction results based on the indicator functions I1(z), I2(z), and I3(z)
using u∞

p , u∞
s , and u∞, respectively, in Example 1.

I1 and the highlighted peanut position (upper component in Figure 2(b)) from I1, yields the
best indicating behavior and at the same time retains the resolution as in the S-wave scenario.
Thus, to avoid redundancy and for better resolution, we always take the full-wave indicator
function in later examples.

Example 2 (multiple extended scatterers). The scatterer is composed of a UFO and an
acorn. Their sizes are around 3, which is comparable to that of the incident plane shear wave.
The UFO is located at (−2, 0, −2), and the acorn is located at (2, 0, 2), as shown in Figure
3(a).

The candidate data set Ah includes far-field data of both reference components U and A,
and is further lexicographically augmented by a collection of a priori known orientations and
sizes. More precisely, the augmented data set is obtained by rotating U and A in the x-z
plane every 90◦ (see, e.g., the four orientations of A in Figure 4), and by scaling U and A by
0.5, 1, and 2.

The indicator function W3(z) is adopted to locate regular-size scatterer components. By
the increasing magnitude of the far-field patterns, the UFO reference data are first employed
for locating purposes. Figure 5(a) tells us that the first unknown component is a UFO and its
position is highlighted. What’s interesting in Figure 5(a) is that it also indicates a ghost high-
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(a) (b) (c)

Figure 3. True scatter and its components in Example 2.

(a) (b) (c) (d)

Figure 4. Example 2. Basic scatterer components: A reference acorn with four orientations.

light which is close to the position of the acorn, which is due to the similarity between the UFO
and acorn geometries. In the next stage, by subtracting the UFO contribution from the total
far-field data through Step 9 in Scheme R, we calculate the indicator functionW3(z) using the
far-field data associated with the reference acorn geometry and all its possible orientations.
For example, associated with the four orientations in Figure 4, the corresponding reconstruc-
tion results are plotted in Figures 5(b)–5(e). Figure 5(c) shows the most prominent indicating
behavior, which identifies the acorn shape, its location, and upside-down configuration of the
second unknown component.

Example 3 (multiscale scatter of multiple components). In this example, we further test a
multiscale imaging problem using Scheme M. The true scatterer is composed of a small UFO
scaled by 0.2 and an acorn of unitary size. The small UFO is located at (−2, 0, −2), and the
big pear is located at (2, 0, 2), as shown in Figure 6. As for each reference component of A
and U, we rotate it every 90◦ in the x-y, y-z and z-x planes. Three different sizes of reference
components are tested, namely, scaled by 0.2, 1, and 1.5.

In the first stage, we extract the information of the regular-size component using the
indicator functionW3(z) of Scheme R by computing the inner product with a priori known far-
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(a)

(b) (c) (d) (e)

basis 2(pear)

Figure 5. Example 2. (a) Reconstruction result using the full-wave far-field data associated with the
reference UFO based on W3(z); (b)–(e): Reconstruction results using the full-wave far-field data associated with
the reference acorn and its four orientations based on W3(z).

Figure 6. True scatterer in Example 3.

field data associated with those reference scatterer components with different orientations and
sizes. We plot in Figure 7 the indicator function values of W3(z) in one-to-one correspondence
with the four orientations of the reference acorn as shown in Figure 4. It can be observed in
Figure 7(b) that the highlighted part tells us that the first regular-size unknown component
is the approximate location of an acorn with no scaling and upside-down configuration. By
testing other regular-size components, no significant maxima are found, and it is now safe to
undergo the second stage for detecting the possible remaining small-size components.
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(a) (b) (c) (d)

Figure 7. Reconstruction results in the first stage of Scheme M in Example 3. From left to right: Indicating
plots of W3(z) by testing with far-field data associated with the four orientations in Figure 4.

(a) (1.6,0,2) (b) (1.8,0,2) (c) (2,0,2)

Figure 8. Reconstruction results by locally tuning the rough location on some typical local grid points in
Example 3.

In the next stage, we adopt the local tuning technique by performing a local search over a
small cubic mesh around the rough position of the acorn determined by the highlighted local
maximum in Figure 7(b). In Figure 8, as the search grid points move gradually from (1.6, 0, 2)
to (2, 0, 2) (from left to right), the value distribution of the indicator function in Scheme S
displays a gradual change of the highlighted position. In Figure 8(c), the red dot indicates the
approximate position of the smaller UFO component, which agrees with the exact one very
well. In such a way, the small UFO component could be correctly identified and positioned,
and it helps us fine-tune the position of the acorn and update it to be (2, 0, 2).

6. Concluding remarks. In this work, three imaging schemes S, R, and M are developed
to identify respectively, multiple small, extended, and multiscale rigid elastic scatterers from
the far-field pattern corresponding to a single incident plane wave with fixed incident direction
and frequency. The incident elastic wave is allowed to be a plane pressure wave, a plane shear
wave, or a general linear combination of P- and S-waves taking the form (1.2). Relying on
the availability of the far-field data, we have developed three indicating functions in each
scheme by using the P-part, the S-part, or the full far-field pattern. Our locating schemes are
based on the local maximum behaviors of the indicating functions. Rigorous mathematical
justifications are provided, and several benchmark examples are presented to illustrate the
efficiency of the schemes.
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We remark that in Scheme R, if certain a priori information is available about the pos-
sible range of the orientations and sizes of the scatterer components, it is sufficient for the
augmented reference space Ah in (3.6) to cover that range only. In Lemma 3.7, we have
shown uniqueness in locating the position of a translated elastic body from either the P-part
or the S-part of the far-field pattern corresponding to a single plane pressure or shear wave.
However, we do not know if analogous uniqueness results hold for rotated and scaled elastic
bodies, that is, whether or not a single far-field pattern can uniquely determine a rotating or
scaling operator acting on the scatterer.

Although only the rigid scatterers are considered in the current study, the proposed
schemes can be generalized to locating multiple multiscale cavities modeled by the traction-
free boundary condition on the surface, the Robin-type impenetrable elastic scatterers, and
inhomogeneous penetrable elastic bodies with variable densities and Lamé coefficients inside.
To achieve this, one need only investigate the analogous asymptotic expansions of the far-
field pattern to Lemma 2.4, which will be used to design the locating functionals for small
scatterers. The results in section 3.2 remain valid for extended elastic scatterers of different
physical natures. Hence, the schemes of locating extended scatterers can be straightforwardly
extended to the cases mentioned above. Our approach can be also extended to the case where
only limited-view measurement data are available. In addition, the extension to the use of
time-dependent measurement data would be nontrivial and poses interesting challenges for
further investigation.

Acknowledgment. The authors would like to thank the anonymous referees for many
insightful and constructive comments, which have led to significant improvements on the
results of this paper.
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presence of small inclusions, Comm. Partial Differential Equations, 32 (2007), pp. 1715–1736.

D
ow

nl
oa

de
d 

03
/0

3/
18

 to
 1

30
.6

3.
18

0.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1824 GUANGHUI HU, JINGZHI LI, HONGYU LIU, AND HONGPENG SUN

[11] H. Ammari, H. Kang, G. Nakamura, and K. Tanuma, Complete asymptotic expansions of solutions
of the system of elastostatics in the presence of an inclusion of small diameter and detection of an
inclusion, J. Elasticity, 67 (2002), pp. 97–129.

[12] T. Arens, Linear sampling method for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001),
pp. 1445–1464.

[13] J. H. Bramble and J. E. Pasciak, A note on the existence and uniqueness of solutions of frequency
domain elastic wave problems: A priori estimates in H1, J. Math. Anal. Appl., 345 (2008), pp. 396–
404.

[14] J. H. Bramble, J. E. Pasciak, and D. Trenev, Analysis of a finite PML approximation to the three
dimensional elastic wave scattering problem, Math. Comp., 79 (2010), pp. 2079–2101.

[15] D. P. Challa and M. Sini, The Foldy-Lax Approximation of the Scattered Waves by Many Small Bodies
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