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Abstract. Consider the two-dimensional inverse elastic scattering problem of

recovering a piecewise linear rigid rough or periodic surface of rectangular type

for which the neighboring line segments are always perpendicular. We prove
the global uniqueness with at most two incident elastic plane waves by using

near-field data. If the Lamé constants satisfy a certain condition, then the data

of a single plane wave is sufficient to imply the uniqueness. Our proof is based
on a transcendental equation for the Navier equation, which is derived from

the expansion of analytic solutions to the Helmholtz equation. The uniqueness

results apply also to an inverse scattering problem for non-convex bounded
rigid bodies of rectangular type.

1. Introduction. This paper is concerned with the inverse scattering of time-
harmonic elastic waves from rigid unbounded periodic and rough surfaces of rect-
angular type (see Sections 2.1 and 3 for a precise description), which has a wide
field of applications, particularly in geophysics, seismology and nondestructive test-
ing. For instance, identifying fractures in sedimentary rocks has significant impact
on the production of underground gas and liquids by employing controlled explo-
sions. The sedimentary rock under consideration can be regarded as a homogeneous
transversely isotropic elastic medium with periodic vertical fractures which can be
extended to infinity in one of the horizontal directions. Using an elastic plane wave
as an incoming source, we thus obtain a two-dimensional inverse problem of re-
covering a rectangular interface from the knowledge of near-field data measured
above the periodic structure (diffraction grating); see [17]. The associated direct
scattering problem is formulated as a Dirichlet boundary value problem for the
time-harmonic Navier equation in the unbounded domain above the surface, which
can be considered as a simple model problem in linear elasticity.

We refer to [2] for the first uniqueness result in inverse elastic scattering from
rigid periodic surfaces. It was proved that a smooth (C2) surface can be uniquely
determined from incident pressure waves for one incident angle and an interval of
wave numbers. Furthermore, a finite set of wave numbers is enough if a priori
information about the height of the grating curve is known. This extends the pe-
riodic version of Schiffer’s theorem by Hettlich and Kirsch (see [11]) to the case
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of inverse elastic diffraction problems. The application of the Kirsch-Kress opti-
mization scheme with one or several incident elastic plane waves can be found in
[8], where the reconstruction of rectangular rigid surfaces was also treated. The
factorization method established in [13] gives rise to uniqueness results by utilizing
only the compressional or shear components of the scattered field corresponding to
all quasi-periodic incident plane waves with a common phase-shift.

Other studies on the uniqueness have been carried out within the class of piece-
wise linear periodic and rough surfaces using a single plane or point source wave.
Global uniqueness results for the Helmholtz equation were first shown in [10] within
the rectangular periodic structures under the Dirichlet or Neumann condition. Re-
lying on the reflection principles for the Helmholtz, Navier and Maxwell equations,
one can find out and classify several extremely rare sets of unidentifiable polygo-
nal or polyhedral periodic structures by one incident plane wave. Thus, the global
uniqueness with one incoming wave holds within the piecewise linear periodic struc-
tures excluding all unidentifiable sets; see [6, 1, 7]. In particular, sending a single
incident point source wave always leads to the uniqueness of the inverse problem
within polygonal periodic or rough surfaces; see [12] for the Helmholtz equation.
However, such an argument applies so far only to the third or fourth kind boundary
value problems of the Navier equation, and it still remains a challenging problem to
prove the uniqueness under the more practical Dirichlet or Neumann-type boundary
conditions, due to the lack of corresponding reflection principles.

In this paper, we restrict our discussions to the unbounded rigid periodic and
rough surfaces of rectangular type in R2. Instead of using reflection principles, our
approach to the uniqueness in the inverse scattering problem is based on the ex-
pansion of analytic solutions to the Navier equation with zero Dirichlet data on two
perpendicular lines. The main ingredient in the uniqueness proof is the study of
a transcendental equation for the Navier equation, which has been already used in
[3, 14, 18] to analyze corner singularities of the Lamé equation (i.e., Navier equation
without the zeroth order term) in a sector. We show the uniqueness with a single
incident plane wave in the case of no integer roots to the resulting transcendental
equation. If an integer root exists, then we further verify that the dimension of the
solution space to the Navier equation is at most one, giving rise to a uniqueness
result with at most two incident angles for both periodic and non-periodic scatter-
ing surfaces. We conjecture that non-rectangular piecewise linear surfaces can be
uniquely determined by sending a finite number of incident plane waves, provided
some a priori information on the angles of the interface is available. Moreover, our
uniqueness results are extended to non-convex bounded rigid bodies of rectangular
type by using far-field measurements of at most two incident directions.

The rest of the paper is organized as follows. In Section 2, we state and prove
the uniqueness results for diffraction gratings. The transcendental equation with
a general angle is studied in Section 2.2, and the equation in the case of the right
angle is utilized for justifying our uniqueness with at most two incident directions in
Section 2.1. Finally in Section 3, the proof of the uniqueness in periodic structures
is carried over to the case of rough surfaces.

2. Uniqueness in periodic structures.

2.1. Mathematical formulation and main result. Consider the elastic scat-
tering problem from a rigid diffraction grating Λ in R2. It is supposed that Λ is
of rectangular type, i.e., the neighboring line segments are always perpendicular.
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More precisely, we assume that for some b > 0 the scattering surface Λ belongs to
the following admissible class:

A =

{
Λ :

Λ is a piecewise linear curve in |x2| < b which is 2π-periodic in x1.
The angle between any two neighboring line segments is π/2.

}
.

We emphasize that Λ is allowed to be a non-graph profile, and the line segments of
Λ are not necessarily parallel or perpendicular to the coordinate axes; see Figure 1
(right). We formulate the direct scattering problem following the lines in [15] for the

Figure 1. Examples of rectangular diffraction gratings.

Helmholtz equation and [5] for the Navier equation. Denote by ΩΛ the unbounded
periodic region above Λ and assume, for simplicity, that ΩΛ is occupied by a linear
isotropic and homogeneous elastic material with mass density one. Suppose an
incident pressure wave (with the incident angle θ ∈ (−π/2, π/2)) given by

(1) uinp = uinp (θ) = θ̂ exp(ikpx · θ̂), θ̂ := (sin θ,− cos θ)T , x = (x1, x2) ∈ R2,

is incident on Λ from the region above. Here, kp := ω/
√

2µ+ λ is the compressional
wave number, λ and µ denote the Lamé constants satisfying µ > 0 and λ+ µ > 0,
ω > 0 is the angular frequency of the harmonic motion, and the symbol (·)T stands
for the transpose of a vector in R2. The shear wave number is defined as ks := ω/

√
µ.

Recall that a function v is called quasi-periodic with phase-shift α (or α-quasi-
periodic) in ΩΛ, if exp(−iαx1) v(x1, x2) is 2π-periodic with respect to x1, or equiv-
alently,

v(x1 + 2π, x2) = exp(2iαπ) v(x1, x2) , (x1, x2) ∈ ΩΛ.(2)

Obviously, the incident pressure wave uinp is α-quasi-periodic with α = kp sin θ in
ΩΛ. If the scattered field usc is supposed to be quasi-periodic with the same phase-
shift as that of uin, then the direct scattering problem, due to the incident pressure
wave (1), aims to find the quasi-periodic scattered field usc ∈ H1

loc(ΩΛ)2 such that

(∆∗ + ω2)usc = 0 in ΩΛ, ∆∗ := µ∆ + (λ+ µ) grad div ,(3)

usc = −uinp on Λ,(4)

and that satisfies the Rayleigh expansion ([5])

usc(x; θ) =
∑
n∈Z

{
Ap,n

(
αn
βn

)
eiαnx1+iβnx2 +As,n

(
γn
−αn

)
eiαnx1+iγnx2

}
(5)
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for all x2 ≥ Λ+ := max(x1,x2)∈Λ x2. Here, the constants Ap,n, As,n ∈ C are called
the Rayleigh coefficients, αn := α+ n and

βn :=


√
k2
p − α2

n if |αn| ≤ kp ,

i
√
α2
n − k2

p if |αn| > kp,

γn :=

{ √
k2
s − α2

n if |αn| ≤ ks ,
i
√
α2
n − k2

s if |αn| > ks.

(6)

Since βn and γn are real for at most a finite number of indices n ∈ Z, only a
finite number of plane waves in (5) propagate into the far field, with the remaining
evanescent waves (or surface waves) decaying exponentially as x2 → +∞. The
above expansion (5) converges uniformly with all derivatives in the half-plane {x ∈
R2 : x2 ≥ Λ+} and the Rayleigh coefficients {Ap,n}n∈Z, {As,n}n∈Z ∈ `2.

The uniqueness and the existence of quasi-periodic solutions to (3)-(5) were ver-
ified in [5] by the variational argument for grating profiles given by step functions
(see Figure 1 (Left)) or Lipschitz functions. If the scattering surface is given by a
general Lipschitz curve, existence can always be proved at arbitrary incident fre-
quencies, although there is no uniqueness in general. The solvability results for
pressure wave incidence extend directly to the incident shear wave

uins = uins (θ) = θ̂⊥ exp(iksx · θ̂),(7)

with θ̂ := (sin θ,− cos θ)T and θ̂⊥ := (cos θ, sin θ)T , for which the phase-shift of the
scattered field is α = ks sin θ. This differs from the case of pressure wave incidence
given in (1). The incident wave in our paper is also allowed to be a general elastic
plane wave of the form

uin(θ) = cpu
in
p (θ) + csu

in
s (θ), cp, cs ∈ C,(8)

for which the unique solution belongs to the sum of a kp sin θ and a ks sin θ-quasi-
periodic Sobolev space, since the scattered field depends linearly on the incident
field.

In this paper we are interested in the inverse problem of recovering an unknown
periodic scattering surface Λ ∈ A from the knowledge of the scattered near-field
measured on Γb := {(x1, x2) : x2 = b, 0 < x1 < 2π}, where b > Λ+is given as in the
definition of the admissible class A. We state the uniqueness results with at most
two incident angles as follows:

Theorem 2.1. Let the incident elastic wave be given by (8).

(i): If the Lamé constants satisfy

λ+ µ

λ+ 3µ
6= 1

n
for all odd numbers n ∈ N,(9)

then Λ can be uniquely determined by usc(x; θ)|Γb
with a single incident angle

θ ∈ (−π/2, π/2).
(ii): If

λ+ µ

λ+ 3µ
=

1

n0
for some odd number n0 ∈ N,(10)

then Λ can be uniquely determined by usc(x; θj)|Γb
(j = 1, 2) corresponding to

two distinct incident angles θ1, θ2 ∈ (−π/2, π/2).
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We shall carry out the proof of Theorem 2.1 in Section 2.3, relying on some
lemmas to be established in Section 2.2.

2.2. Key lemmas. For x = (x1, x2), let (r, ϕ) be the polar coordinates of x in R2.
For notational convenience, we set N0 := N ∪ {0}. We first derive the power series
expansion of analytic solutions to the Helmholtz equation around the origin.

Lemma 2.2. Assume (∆ + k2)u = 0 in a neighborhood of the origin. Then we can
expand u = u(r, ϕ) into a convergent power series

u(r, ϕ) =
∑

n,m∈N0

rn+2m
(
u+
n,m cos(nϕ) + u−n,m sin(nϕ)

)
,(11)

around the origin, where u±n,m ∈ C satisfy the recurrence relations

u±n,m+1 = − k2

4(m+ 1)(n+m+ 1)
u±n,m, for all n,m ∈ N0.(12)

Remark 1. The expansion (11) is nothing else than the reformulation of the cor-
responding expansion in terms of Bessel functions (see e.g., [4, Chapter 3.4]). Note
that (11) reduces to the power series for harmonic functions if k = 0.

Proof of Lemma 2.2. We begin with the Taylor expansion of u around the origin

u(x1, x2) =
∑

n,m∈N0

An,m xn1 x
m
2 , An,m ∈ C.

Performing the change of variables z1 = x1 + ix2 = reiϕ, z2 = x1− ix2 = re−iϕ, the
above expression can be transformed into

u(x1, x2) =
∑

n,m∈N0

An,m

(
z1 + z2

2

)n (
z1 − z2

2i

)m
=

∑
n,m∈N0

Bn,m zn1 z
m
2

=
∑

n,m∈N0

Bn,m rm+n ei(n−m)ϕ

=
∑

m∈N0,n∈Z:n+2m≥0

Bm+n,m r2m+n einϕ

for some Bn,m ∈ C. Moreover, u can be reformulated in the form (11) with some
u±n,m ∈ C. Applying the Laplace operator to u, we have

∆u =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ

)
u

=
∑

n∈N0,m∈N
4m(n+m) rn+2m−2

(
u+
n,m cos(nϕ) + u−n,m sin(nϕ)

)
=

∑
n,m∈N0

4(m+ 1)(n+m+ 1) rn+2m
(
u+
n,m+1 cos(nϕ) + u−n,m+1 sin(nϕ)

)
.

Since u is a solution of the Helmholtz equation, the coefficients u±n,m have to satisfy
the recurrence relations (12). �

In the following we study a transcendental equation for the Navier equation with
the Dirichlet boundary condition. This equation has been used to compute corner
singularities of solutions to the Lamé equation; see e.g., [3, 14, 18].
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Lemma 2.3. Suppose (∆∗ + ω2)u = 0 in R2 and u = 0 on ϕ = ϕ1, ϕ2, where
−π < ϕ2 < ϕ1 ≤ π. Suppose further that the transcendental equation in z ∈ C,

sin2(zψ)− z2 sin2 ψ

(
λ+ µ

λ+ 3µ

)2

= 0, ψ = ϕ1 − ϕ2,(13)

has no integer roots z = n ∈ N. Then it holds that u ≡ 0 in R2.

Proof. Since the Navier equation is rotationally invariant and u is analytic in a
neighborhood of the corner point, without loss of generality we may assume the
positive x1-axis coincides with the half-line {(r, ϕ) : ϕ = (ϕ2 + ϕ1)/2} and ψ =
2ϕ0 for some ϕ0 ∈ (0, π/2). This implies that ϕ1 = ϕ0 and ϕ2 = −ϕ0. For
x = r(cosϕ, sinϕ), set x̂ = x/r = (cosϕ, sinϕ), and x̂⊥ = (− sinϕ, cosϕ). We
decompose u into its compressional and shear parts by

u = ∇v +
−−→
curlw, with v = − 1

k2
p

div u, w =
1

k2
s

curlu,(14)

where the two curl operators in R2 are defined by

curlu := ∂1u2 − ∂2u1,
−−→
curlw := (∂2w,−∂1w)T ,

and the two scalar functions v and w satisfy the Helmholtz equations

(∆ + k2
p)v = 0, (∆ + k2

s)w = 0 in R2.(15)

It is easy to check that

x̂ · ∇v =
∂v

∂r
, x̂⊥ · ∇v =

1

r

∂v

∂ϕ
, x̂ ·

−−→
curlw =

1

r

∂w

∂ϕ
, x̂⊥ ·

−−→
curlw = −∂w

∂r
.

This, together with (14), enables us to define the functions

F (r, ϕ) := x̂ · u =
∂v

∂r
+

1

r

∂w

∂ϕ
, G(r, ϕ) := x̂⊥ · u =

1

r

∂v

∂ϕ
− ∂w

∂r
,(16)

with the vanishing data

F (r,±ϕ0) = G(r,±ϕ0) = 0,(17)

since u = 0 on ϕ = ±ϕ0. Observing that v and w are solutions to the homogeneous
Helmholtz equation in R2, by Lemma 2.2 we may expand them into the series

v(r, ϕ) =
∑

n,m∈N0

rn+2m
(
v+
n,m cos(nϕ) + v−n,m sin(nϕ)

)
,

w(r, ϕ) =
∑

n,m∈N0

rn+2m
(
w+
n,m cos(nϕ) + w−n,m sin(nϕ)

)
,

(18)

in a small neighborhood of the origin, where v±n,m, w
±
n,m ∈ C satisfy the recurrence

relations

v±n,m+1 = −
k2
p

4(m+ 1)(n+m+ 1)
v±n,m,

w±n,m+1 = − k2
s

4(m+ 1)(n+m+ 1)
w±n,m,

(19)

for all n,m ∈ N0. By unique continuation, it is now sufficient to prove v±n,m =

w±n,m = 0 for all n,m ∈ N0, if the transcendental equation (13) has no integer roots.
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Inserting (18) into the definitions of F and G in (16) yields

F (r, ϕ) =
∑

n∈N,m∈N0

rn+2m−1
(
f+
n,m cos(nϕ) + f−n,m sin(nϕ)

)
=:

∑
N∈N0

rNFN (ϕ),

G(r, ϕ) =
∑

n∈N,m∈N0

rn+2m−1
(
g+
n,m cos(nϕ) + g−n,m sin(nϕ)

)
=:

∑
N∈N0

rNGN (ϕ),

(20)

with

f+
n,m = (n+ 2m) v+

n,m + nw−n,m, f−n,m = (n+ 2m) v−n,m − nw+
n,m,

g−n,m = −n v+
n,m − (n+ 2m)w−n,m, g+

n,m = n v−n,m − (n+ 2m)w+
n,m

(21)

and

FN (ϕ) =
∑

n≥1,m≥0:n+2m−1=N

(
f+
n,m cos(nϕ) + f−n,m sin(nϕ)

)
,

GN (ϕ) =
∑

n≥1,m≥0:n+2m−1=N

(
g+
n,m cos(nϕ) + g−n,m sin(nϕ)

)
.

Obviously, f+
n,0 = −g−n,0, f−n,0 = g+

n,0 for all n ≥ 1. Taking into account the Dirichlet

condition (17), we deduce from the relations FN (±ϕ0) = GN (±ϕ0) = 0 that∑
n≥1,m≥0:n+2m−1=N

f+
n,m cos(nϕ0) =

∑
n≥1,m≥0:n+2m−1=N

f−n,m sin(nϕ0) = 0,

∑
n≥1,m≥0:n+2m−1=N

g−n,m sin(nϕ0) =
∑

n≥1,m≥0:n+2m−1=N

g+
n,m cos(nϕ0) = 0,

(22)

for all N ∈ N0.
We proceed by equating coefficients of rN in (20). If N = 0, then we have the

indexes n = 1,m = 0. Hence, it follows from (22) and (21) that

0 = f+
1,0 = −g−1,0 = v+

1,0 + w−1,0, 0 = f−1,0 = g+
1,0 = v−1,0 − w

+
1,0,

implying that v+
1,0 = −w−1,0, v−1,0 = w+

1,0.
If N = 1, then n = 2 and m = 0. By arguing as the previous case we find

0 = f+
2,0 = −g−2,0 = 2

(
v+

2,0 + w−2,0
)
, 0 = f−2,0 = g+

2,0 = 2
(
v−2,0 − w

+
2,0

)
,

leading to v+
2,0 = −w−2,0, v−2,0 = w+

2,0.
When N = 2, it holds that n = 3,m = 0 or n = 1,m = 1. Consequently, it is

seen from (22) that{
f+

3,0 cos(3ϕ0) + f+
1,1 cosϕ0 = 0,

g−3,0 sin(3ϕ0) + g−1,1 sinϕ0 = 0,

{
f−3,0 sin(3ϕ0) + f−1,1 sinϕ0 = 0,

g+
3,0 cos(3ϕ0) + g+

1,1 cosϕ0 = 0.
(23)

Making use of the recurrence relations (19), the equalities v±1,0 = ∓w∓1,0 and the

definitions of f±1,1 and g±1,1 (see (21)), we represent f±1,1 and g∓1,1 in terms of v±1,0 as

(see also (28) with j = 0 )

f±1,1 = v±1,0 (k2
s − 3k2

p)/8, g∓1,1 = v±1,0 (k2
p − 3k2

s)/8.(24)
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Combining (23) and (24), and using the fact that g−3,0 = −f+
3,0, g

+
3,0 = f−3,0, we may

transform the equations in (23) into

0 =

(
cos(3ϕ0) (k2

s − 3k2
p) cosϕ0

− sin(3ϕ0) (k2
p − 3k2

s) sinϕ0

)(
f+

3,0

v+
1,0/8

)
=: A+

0

(
f+

3,0

v+
1,0/8

)
,

0 =

(
sin(3ϕ0) (k2

s − 3k2
p) sinϕ0

cos(3ϕ0) −(k2
p − 3k2

s) sinϕ0

)(
f−3,0
v−1,0/8

)
=: A−0

(
f−3,0
v−1,0/8

)
.

Simple calculations yield that the determinant of A±0 takes the form

Det(A±0 ) = ∓(k2
p + k2

s) sin(4ϕ0)± 2(k2
s − k2

p) sin(2ϕ0).

Thus, Det(A±0 ) 6= 0 if and only if

± sin(2ψ) 6= 2
k2
s − k2

p

k2
s + k2

p

sinψ = 2
λ+ µ

λ+ 3µ
sinψ, with ψ = 2ϕ0.

This can be guaranteed by assuming that the number z = 2 is not an integer
root of (13). Therefore, we obtain v±1,0 = f±3,0 = 0. Consequently, it holds that

w±1,0 = g±3,0 = 0, and thus w±1,m = v±1,m = 0 for all m ∈ N0, v+
3,0 = −w−3,0, v−3,0 = w+

3,0.
In summary, we have proved that for j = 1,

w±n,m = v±n,m = 0 for all 1 ≤ n ≤ j, m ∈ N0,

v+
n,0 = −w−n,0, v−n,0 = w+

n,0, n = j + 1, j + 2.
(25)

Now, assuming that (25) is valid for some fixed j ∈ N, we show that (25) also holds
with j replaced by j + 1.

Consider N = j + 2. From (21) and (25), we see f±n,m = g±n,m = 0 for all
n ≤ j, m ∈ N0. Hence, it follows from (22) with N = j + 2 that{

f+
j+3,0 cos((j + 3)ϕ0) + f+

j+1,1 cos((j + 1)ϕ0) = 0,

g−j+3,0 sin((j + 3)ϕ0) + g−j+1,1 sin((j + 1)ϕ0) = 0,
(26) {

f−j+3,0 sin((j + 3)ϕ0) + f−j+1,1 sin((j + 1)ϕ0) = 0,

g+
j+3,0 cos((j + 3)ϕ0) + g+

j+1,1 cos((j + 1)ϕ0) = 0.
(27)

By the definition of f+
n,m and the recurrence relations (19) with n = j + 1,m = 0,

it follows that

f+
j+1,1 = (j + 3) v+

j+1,1 + (j + 1)w−j+1,1

=
1

4(j + 2)

[
−(j + 3) k2

p v
+
j+1,0 − (j + 1) k2

s w
−
j+1,0

]
=

v+
j+1,0

4(j + 2)

[
(j + 1) k2

s − (j + 3) k2
p

]
,(28)

where in the last equality we have used the relation v+
j+1,0 = −w−j+1,0 from (25).

Analogously, we have

g−j+1,1 =
v+
j+1,0

4(j + 2)

[
(j + 1) k2

p − (j + 3) k2
s

]
.
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Arguing in the same manner with the relation v−j+1,0 = w−j+1,0, we find

f−j+1,1 =
v−j+1,0

4(j + 2)

[
(j + 1) k2

s − (j + 3) k2
p

]
,

g+
j+1,1 =

v−j+1,0

4(j + 2)

[
−(j + 1) k2

p + (j + 3) k2
s

]
.

Inserting the previous expressions of f±j+1,1, g±j+1,1 into (26) and (27) yields the
algebraic equations

A+
j

(
f+
j+3,0

v+
j+1,0/[4(j + 2)]

)
= 0,(29)

A−j

(
f−j+3,0

v−j+1,0/[4(j + 2)]

)
= 0,(30)

with

A+
j :=

(
cos((j + 3)ϕ0) [(j + 1)k2

s − (j + 3)k2
p] cos((j + 1)ϕ0)

− sin((j + 3)ϕ0) [(j + 1)k2
p − (j + 3)k2

s ] sin((j + 1)ϕ0)

)
,

A−j :=

(
sin((j + 3)ϕ0) [(j + 1)k2

s − (j + 3)k2
p] sin((j + 1)ϕ0)

cos((j + 3)ϕ0) −[(j + 1)k2
p − (j + 3)k2

s ] cos((j + 1)ϕ0)

)
.

Note that f+
j+3,0 = −g−j+3,0, f−j+3,0 = g+

j+3,0 by definition. It can be readily checked

that Det(A±j ) 6= 0 if and only if

± sin((j + 2)ψ) 6= (j + 2)
λ+ µ

λ+ 3µ
sinψ.

By the assumption of the lemma, we obtain v±j+1,0 = f±j+3,0 = 0, which in turn

proves the relations in (25) with j replaced by j + 1. Thus, by induction (25) is
true for any j ≥ 1. The proof of the lemma is complete.

Based on the proof of Lemma 2.3, we now present the corresponding results when
ϕ1 − ϕ2 = π/2, which will be used subsequently to prove our uniqueness results in
inverse diffraction by rectangular rigid surfaces.

Lemma 2.4. Suppose (∆∗ + ω2)u = 0 in R2 and u = 0 on ϕ = ϕ1, ϕ2, where
ϕ1 − ϕ2 = π/2. Then, we have either (i) u ≡ 0 under the condition (9), or (ii)
u = c u0 for some c ∈ C if (10) holds, where u0 is some fixed real-analytic function.

Remark 2. Lemma 2.4 implies that the dimension of the solution space to the
Navier equation in R2 with vanishing data on two perpendicular straight lines is at
most one.

Proof of Lemma 2.4. (i) In the case of ψ = ϕ1 − ϕ2 = π/2, the positive integer
roots to (13) must be odd numbers satisfying the condition (10). Hence, the tran-
scendental equation (13) has no integer roots under the condition (9). Applying
Lemma 2.3 gives u ≡ 0.

(ii) If (10) holds, then n0 = (λ + 3µ)/(λ + µ) ∈ N is the unique positive integer
root to (13) with ψ = π/2. Let the matrices A±j be defined as in the proof of Lemma

2.3 with ϕ0 = π/4. Set j = n0 − 2. Without loss of generality, we may suppose
sin(n0π/2) = 1 so that

Det(A+
j ) = 0, Det(A−j ) 6= 0, and Det(A±n ) 6= 0 for all n 6= j.
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The case sin(n0π/2) = −1 can be treated analogously. In view of the proof of
Lemma 2.3, we see that the relations in (25) hold with the selected j = n0 − 2.
Consider again the coefficient of rN in (20) and (22), where ϕ0 = π/4. For clarity
we divide our proof into three steps.

Step 1. Prove v±n,m = w±n,m = 0 for all n = j + 2, j + 4, · · · , and m ∈ N0.
By (25), it holds that

w±n,m = v±n,m = 0, n = j, j − 2, · · · , m ∈ N0,(31)

v+
j+2,0 = −w−j+2,0, v−j+2,0 = w+

j+2,0.(32)

Hence, f±n,m = g±n,m = 0 for all n = j, j − 2, · · · ,m ∈ N0. Consider N = j + 3. It
follows from (22) that (cf. (29), (30) in the case N = j + 2 )

A±j+1

(
f±j+4,0

v±j+2,0/[4(j + 3)]

)
= 0.

Since Det(A±j+1) 6= 0, we get f±j+4,0 = v±j+2,0 = 0. This implies that (31) and (32)
are valid with j replaced by j + 2. By induction we finish the proof in Step 1.

Step 2. Prove v−n,m = w+
n,m = 0 for all n = j + 1, j + 3, · · · , and m ∈ N0.

Again using (25), we see

w+
n,m = v−n,m = 0, for all n = j − 1, j − 3, · · · , m ∈ N0,

v−j+1,0 = w+
j+1,0.

(33)

Then, the relations (27) and (30) can be proved again following the lines in the
proof of Lemma 2.3. Since Det(A−j ) 6= 0, one can verify that f+

j+3,0 = v−j+1,0 = 0,

leading to the relations in (33) with j replaced by j + 2. This implies the desired
results in Step 2.

Step 3. Prove that v+
n,m, w

−
n,m depend linearly on some constant c ∈ C for all

n = j + 1, j + 3, · · · , and m ∈ N0.
Since j = n0 − 2, sin(n0π/2) = 1, there hold

sin((j + 3)π/4) = cos((j + 1)π/4) 6= 0, (j + 1)k2
s = (j + 3)k2

p,

where the second equality follows from (10). While (30) is only trivially solvable,
the equation (29) has non-trivial solutions given by

f+
j+3,0 = 0, v+

j+1,0 = c,(34)

for some constant c ∈ C. By (34), we have

v+
j+3,0 = −w−j+3,0, w−j+1,0 = −v+

j+1,0 = −c.(35)

The second equality in (35), together with (19) and the definition of f+
j+1,m, implies

v+
j+1,m = ṽ+

j+1,m c, w−j+1,m = w̃−j+1,0 c, f+
j+1,m = f̃+

j+1,m c, m ≥ 0,

with some ṽ+
j+1,m, w̃

−
j+1,0, f̃

+
j+1,m ∈ C. Now, set N = j + 4. Making use of the first

equality in (35), one can derive from Fj+4(±ϕ0) = Gj+4(±ϕ0) = 0 that (cf. (26)
and (29) in the case N = j + 2)

A+
j+2

(
f+
j+5,0

v+
j+3,0/[4(j + 4)]

)
= −

(
f̃+
j+1,3 cos((j + 1)π/4)

g̃−j+1,3 sin((j + 1)π/4)

)
c.

The above equation is uniquely solvable, with the solution pair (f+
j+5,0, v

+
j+3,0) de-

pending linearly on c. This in turn implies that v+
j+3,m, m ∈ N0, depend linearly on
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c. Since f+
j+3,0 = 0, we also get the linear dependence of w−j+3,0 and that of w−j+3,m,

m ∈ N0 on c. Repeating the above procedure, we finally conclude that

v+
n,m = ṽ+

n,m c, w−n,m = w̃−n,m c, for all m ∈ N0, n = n0 − 1, n0 + 1, n0 + 3, · · · .

In order to prove Lemma 2.4, we need to introduce the function u0 = ∇v0 +−−→
curlw0, where

v0(r, ϕ) :=
∑

n=n0−1,n0+1,··· ,m∈N0

[
rn+2m ṽ+

n,m cos(nϕ)
]
,

w0(r, ϕ) :=
∑

n=n0−1,n0+1,··· ,m∈N0

[
rn+2m w̃−n,m sin(nϕ)

]
.

Since ṽ+
n,m and w̃−n,m satisfy the recurrence relation (19), v0 and w0 are solutions

to the Helmholtz equations in (15). Hence u0 satisfies the Navier equation and
u = cu0. The proof of Lemma 2.4 is complete. �

2.3. Proof of Theorem 2.1. Relying on the properties of the Navier equation
shown in Lemma 2.4, we prove the uniqueness results in Theorem 2.1 for diffraction
gratings by contradiction. Let the incident elastic plane wave be given as in (8) with
the incident angle θ. Assume there are two distinct scattering surfaces Λ1,Λ2 ∈ A
generating the same near-field data on Γb:

u1(x; θ) = u2(x; θ), x ∈ Γb.

By the well-posedness of the direct scattering problem for a flat profile, we get the
coincidence of u1 and u2 in x2 > b, and the unique continuation of solutions to the
Navier equation leads to

u1(x; θ) = u2(x; θ) =: u(x), x ∈ Ω,(36)

where Ω denotes the unbounded connected component of ΩΛ1
∩ ΩΛ2

. We consider
two cases.

Case 1. The corners of Λ1 and Λ2 coincide.
Since the convex hull of the corner points coincides with a strip and both profiles

are bounded in the x2-direction, the line segments lying on them must be parallel
to the coordinate axes in Case 1. Therefore, the horizontal line segments of Λj
(j = 1, 2) lie on two straight lines Γb1 and Γb2 for some −b < b2 < b1 < b, whereas
the vertical segments are identical (see Figure 2 ).

Figure 2. Examples of rectangular diffraction gratings sharing
the same corners.
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Without loss of generality, we suppose Γb1 to be the x1-axis, i.e., b1 = 0. Recalling
the Dirichlet boundary conditions on Λ1 and Λ2, we get u = 0 on Γ0. This suggests
that u is the total field corresponding to the rigid scattering surface x2 = 0 due
to the incident plane wave (8). By linear supposition, it is not difficult to get the
explicit expression of u in x2 ≥ 0 as follows: u = (cp/kp)Up + (cs/ks)Us, where cp
and cs are the coefficients attached to the incident plane pressure and shear waves,
respectively, and

Up =

(
αp
−βp

)
ei(αpx1−βpx2) −

α2
p − βpγp
α2
p + βpγp

(
αp
βp

)
ei(αpx1+βpx2)

− 2αpβp
α2
p + βpγp

(
γp
−αp

)
ei(αpx1+γpx2),

Us =

(
γs
αs

)
ei(αsx1−γsx2) − 2αsγs

α2
s + βsγs

(
αs
βs

)
ei(αsx1+βsx2)

− βsγs − α2
s

α2
s + βsγs

(
γs
−αs

)
ei(αsx1+γsx2),

(37)

with

αp = kp sin θ, βp = kp cos θ, γp =
√
k2
s − α2

p,

αs = ks sin θ, γs = ks cos θ, βs =
√
k2
p − α2

s.

Since u consists of finitely many terms only, it extends analytically to the whole
space R2. Hence, u must also vanish on at least one vertical straight line, for
instance {x1 = 0}, which can be extended to infinity in the x2-direction. This
implies that cp = cs = 0, which is a contradiction. Hence, Λ1 = Λ2.

Case 2. The corners of Λ1 and Λ2 do not coincide.
First we consider Case (a): there exists a corner point Oj of Λj in ΩΛj+1

for
j = 1 or j = 2, where ΩΛ3 = ΩΛ1 . Without loss of generality, we suppose that Case
(a) occurs with j = 1; see Figure 3 (left). It follows from (36) and the Dirichlet
boundary condition of u1 on Λ1 that u2 vanishes on the two perpendicular line
segments of Λ1 meeting at O1 in ΩΛ2

. Moreover, u2 satisfies the Navier equation
in a small neighborhood D1 ⊂ ΩΛ2

of O1. Applying Lemma 2.4 to u2 yields:

(i): u2(x; θ) ≡ 0 under the condition (9). This contradiction implies Λ1 = Λ2,
and thus uniqueness with a single incident plane wave holds.

(ii): u2(x; θ) = c u0(x), x ∈ D1, under the condition (10). By arguing in the
same manner we get u2(x; θ′) = c′ u0(x), x ∈ D1, if u2(x; θ′) = u1(x; θ′) on
Γb, where θ′ 6= θ is another incident angle. Hence, u2(x; θ) = c/c′ u2(x; θ′)
in D1 and by unique continuation also in x2 > b. This contradicts the linear
independence of u2(x; θ) and u2(x; θ′) in x2 > b2 which can be readily justified
using the Rayleigh expansions of usc2 (x; θ) and usc2 (x; θ′). Now we conclude
that Λ1 = Λ2 if the near-field data coincide for two distinct incident angles.

If Case (a) is excluded, we may suppose the existence of a corner point O1 of
Λ1 lying on a certain line segment l ⊂ Λ2; see Figure 3 (right). In this case, l
must be perpendicular to a line segment of Λ1 passing through O1, and l coincides
partly with another line segment of Λ1. Since l is an analytic boundary part of
ΩΛ2 and u2 = 0 on l, u2 is analytic in ΩΛ2 up to l (see [16, Theorem A]) and thus
u2 has analytic Cauchy data on l. Applying the Cauchy-Kowalewski theorem, we
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Figure 3. Two rectangular diffraction gratings whose corners
are not identical.

can extend u2 to a small neighborhood of O1 as a solution to the Navier equation.
Repeating the arguments in Case (a), we complete the proof of Theorem 2.1. �

3. Uniqueness for non-periodic rough surfaces. The aim of this section is to
remove the periodicity assumption imposed on the rectangular grating profiles from
the admissible class A. Define a new admissible class Ã by

Ã =

{
Λ :

Λ is a piecewise linear curve in |x2| < b. Any two
neighboring line segments of Λ are perpendicular.

}
.

Before carrying over the proof of Theorem 2.1 to the non-periodic case, we give a
brief sketch of the well-posedness of the forward elastic scattering from rigid rough
surfaces for incident plane waves in 2D. Instead of the Rayleigh expansion radiation
condition (5), the scattered field is now required to satisfy a more general upward
radiation condition (which is usually referred to as the upward angular spectrum
representation):

usc(x) =
1√
2π

∫
R

(
eiγp(ξ) (x2−b)Mp(ξ) + eiγs(ξ) (x2−b)Ms(ξ)

)
ûscb (ξ) eix1ξ dξ(38)

for x2 > b, where Mp and Ms are two matrices given by

Mp(ξ) =
1

ξ2 + γpγs

(
ξ2 ξγs
ξγp γpγs

)
, Ms(ξ) =

1

ξ2 + γpγs

(
γpγs −ξγs
−ξγp ξ2

)
,

respectively, with γp(ξ) :=
√
k2
p − ξ2, γs(ξ) :=

√
k2
s − ξ2. The notation ûscb (ξ) in

(38) stands for the Fourier transform of usc(x1, b), given by

ûscb (ξ) = (2π)−1/2

∫
R

exp(−it ξ) usc(t, b) dt , ξ ∈ R ,

Let the incident plane wave be given as in (8), and define Sh := ΩΛ\{x2 ≥ h} .
It was shown in [9] that the forward two-dimensional scattering problem admits a
unique total field u = uin + usc in the following weighted Sobolev space

Vh,% := (1 + x2
1)−%/2H1

0 (Sh)2 for all h ≥ b, −1 < % < −1/2,(39)

provided the scattering surface Λ is given by the graph of a bounded and uniformly
Lipschitz continuous function. Note that the space H1

0 (Sh) denotes the functions
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in the standard Sobolev space H1(Sh) with vanishing trace on Λ, and that Vh,% is
defined as the closure of {u|Sh

: u ∈ C∞0 (Sh)} in the norm

||u||Vh,%
:=

(∫
Sh

(1 + x2
1)%
(∣∣u∣∣2 +

∣∣∇u|2)dx)1/2

, u ∈ Vh,%.

Since the above mentioned uniqueness and existence results do not cover the non-
graph rectangular surfaces from Ã, we suppose the forward scattering problem for
any Λ ∈ Ã is always solvable in the weighted Sobolev space (39). In particular,
if Λ = {x2 = 0}, the explicit solution takes the same form as that constructed in
the proof of Theorem 2.1 for diffraction gratings (see (37)). Below we state the
uniqueness result for the inverse scattering problem.

Theorem 3.1. Let the incident elastic plane wave uin(x; θ) be given by (8), and

set I = {(x1, b) : x1 ∈ (c1, c2)} for some c1 < c2. Then, Λ ∈ Ã can be uniquely
determined by the scattered near field data {usc(x; θ) : x ∈ I} with a single angle
θ under the condition (9), whereas the data from two distinct incident angles are
sufficient if the condition (10) holds.

Proof. Assume there are two scattering surfaces Λ1,Λ2 ∈ Ã generating the same
near-field data on I, i.e., usc1 (x) = usc2 (x) for x ∈ I. From the analyticity of usc1 ,
usc2 in x2 ≥ b, we see usc1 = usc2 on x2 = b. To adapt the proof of Theorem 2.1 to
the non-periodic case, we only need to verify the linear independence of the total
fields u(x; θ) and u(x; θ′) in x2 > b for different incident angles θ and θ′. Here,
u(x; θ) = uin(x; θ) + uscj (x; θ) for j = 1, 2. Assume u(x; θ) = au(x; θ′) with some
a ∈ C. We then obtain

w(x) := uin(x; θ)− a uin(x; θ′) = −
(
uscj (x; θ)− a uscj (x; θ′)

)
,(40)

for all x2 ≥ b, which satisfies the upward radiation condition. From (40), we con-
clude that w(x) can be regarded as the scattered field reflected from the rigid surface
{x2 = b} with the incident field U in = −(uin(x; θ)− a uin(x; θ′)). We observe that
U in cannot vanish identically, because uin(x; θ) and uin(x; θ′) are linearly indepen-
dent. The explicit form of w can be computed analogously to (37). On the other
hand, w is a linear combination of scattered waves travelling upwards. Therefore,
it is a contradiction that w = −U in is an incoming wave for x2 > b, as shown in
the first relation of (40). Hence, u(x; θ) and u(x; θ′) are linearly independent in
x2 > b. Arguing analogously to the proof of Theorem 2.1, we complete the proof of
Theorem 3.1.
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