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Abstract
The scattering of time-harmonic acoustic plane waves by an impenetrable
obstacle in a piecewise homogeneous medium is considered. Having
established the well posedness of the direct problem by the variational method,
we prove a uniqueness result for the inverse problem, that is, the unique
determination of the obstacle and its boundary condition from a knowledge
of the far-field pattern for incident plane waves. The proof is based on a
generalization of the mixed reciprocity relation.

1. Introduction

In this paper, we consider the problem of scattering of time-harmonic acoustic plane waves
by an impenetrable obstacle surrounded by a piecewise homogeneous medium. In practical
applications, the background might not be homogeneous and then must be modeled as a
layered medium. A medium of this type that is a nested body consisting of a finite number
of homogeneous layers occurs in various areas of applications such as radar, remote sensing,
geophysics and nondestructive testing.

Let � denote the piecewise homogeneous medium which is a bounded and closed subset
of R

n (n = 2, 3) with a C2 boundary S0. Let �0 be the exterior region of �, that is,
�0 = R

n\� (n = 2, 3). The interior of � is divided by means of closed and nonintersecting
C2 surfaces Sj (j = 1, 2, . . . , N) into subsets (layers) �j (j = 1, 2, . . . , N + 1) with
∂�j−1

⋂
∂�j = Sj−1 (j = 1, 2, . . . , N + 1). The regions �j (j = 0, 1, . . . , N) are

homogeneous media. The region �N+1 is the impenetrable obstacle.
We now give a brief description of the direct and inverse scattering problem.
The propagation of time-harmonic acoustic waves in a piecewise homogeneous isotropic

medium in R
n (n = 2, 3) is modeled by the reduced wave equation or Helmholtz equation

with boundary conditions on their interfaces:

�u + k2
j u = 0 in �j, j = 0, 1, . . . , N, (1.1)
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u+ = u−,
∂u+

∂ν
= λj

∂u−
∂ν

on Sj , j = 0, 1, . . . , N − 1, (1.2)

where ν is the unit outward normal to the boundary Sj, u+,
∂u+
∂ν

(
u−,

∂u−
∂ν

)
denote the limit

of u, ∂u
∂ν

on the surface Sj from the exterior (interior) of Sj and λj represents the nonnegative
constant across the surface Sj (j = 0, 1, . . . , N − 1). Here, u denotes the complex-valued
space-dependent part of the time-harmonic acoustic wave u(x)e−iωt and kj is the positive
wave number given by kj = ωj/cj in terms of the frequency ωj and the sound speed cj in the
corresponding region �j (j = 0, 1, . . . , N). The distinct wave numbers kj (j = 0, 1, . . . , N)

correspond to the fact that the background medium consists of several physically different
materials. On these surfaces Sj (j = 0, 1, . . . , N − 1), the so-called transmission conditions
(1.2) are imposed, which represent the continuity of the medium and equilibrium of the forces
acting on it. On the boundary SN of the obstacle �N+1 the total wave u has to satisfy a boundary
condition of the form

B(u) = 0 on SN . (1.3)

For a sound-soft obstacle the pressure of the total wave vanishes on the boundary, so a
Dirichlet boundary condition

B(u) := u on SN

is imposed. Similarly, the scattering from a sound-hard obstacle leads to a Neumann boundary
condition

B(u) := ∂u

∂ν
on SN

since the normal velocity of the total acoustic wave vanishes on the boundary. More general
and realistic boundary conditions are to allow that the normal velocity on the boundary is
proportional to the excess pressure on the boundary, which leads to an impedance boundary
condition of the form

B(u) := ∂u

∂ν
+ iλu on SN

with a nonnegative continuous function λ. Henceforth, we shall use B(u) = 0 to represent
either of the above three types or mixed type of boundary conditions on SN. In the region
R

n\�N+1 (n = 2, 3), the total wave u is the superposition of the given incident plane wave
ui(x) = eik0x·d and the scattered wave us(x) which is required to satisfy the Sommerfeld
radiation condition

lim
r→∞ r

n−1
2

(
∂us

∂r
− ik0u

s

)
= 0 (1.4)

uniformly in all directions x/|x|, where r = |x|. It physically implies that energy is transported
to infinity and it is an important ingredient in ensuring that the physically correct solution of
the scattering problem is selected. The well posedness (existence, uniqueness and stability)
of the direct problem for a sound-soft obstacle using the theory of generalized solutions has
been studied by Athanasiadis and Stratis [2]. However, it is not suitable for our later use, that
is, the proof of the uniqueness result in the inverse problem. Therefore, following Cakoni and
Colton [3] and Mclean [19], we will give a new proof and consider a general mixed boundary
value problem in section 2. Moreover, it is known that us(x) has the following asymptotic
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representation:

us(x, d) = eik0|x|

|x| n−1
2

{
u∞(̂x, d) + O

(
1

|x|
)}

as |x| → ∞ (1.5)

uniformly for all directions x̂ := x/|x|, where the function u∞(̂x, d) defined on the unit sphere
S is known as the far-field pattern with x̂ and d denoting, respectively, the observation direction
and the incident direction. By analyticity, the far-field pattern is completely determined on
the whole unit sphere S by only knowing it on some open subset S∗ of S [8]. Therefore, all
the uniqueness results carry over to the case of limited aperture problems where the far-field
pattern is only known on some open subset S∗ of S. Without loss of generality, we can assume
that the far-field data are given on the whole unit sphere S, that is, in every possible observation
direction.

The inverse problem we consider in this paper is, given the wave numbers kj (j =
0, 1, . . . , N), the nonnegative constants λj (j = 0, 1, . . . , N − 1) and the far-field pattern
u∞(̂x, d) for all incident plane waves with incident direction d ∈ S, to determine the location
and shape of the obstacle �N+1 and its boundary condition. As usual in most of the inverse
problems, the first question to ask in this context is the identifiability, that is, whether an
obstacle can be identified from a knowledge of the far-field pattern. Mathematically, the
identifiability is the uniqueness issue which is of theoretical interest and is required in order
to proceed to efficient numerical methods of solutions.

In the last 30 years, both the inverse scattering problem in a homogeneous medium (i.e.
N = 0) and the inverse medium problem have obtained great development in the theoretical
and numerical aspects. We refer to the monographs [8, 14, 23] and the references therein for
a comprehensive discussion. As far as we know, there are few uniqueness results for inverse
obstacle scattering in a piecewise homogeneous medium. When the obstacle is penetrable
(with transmission boundary conditions), Athanasiadis, Ramm and Stratis [1] and Yan [25]
proved that the obstacle is determined uniquely by the corresponding far-field pattern based on
an orthogonality result [23]. Yan and Pang [26] gave a proof of uniqueness of the sound-soft
obstacle based on Schiffer’s idea. But their method cannot be extended to other boundary
conditions. They also gave a result for the case of a sound-hard obstacle in a two-layered
background medium in [22] using a generalization of Schiffer’s method. However, their
method is hard to be extended to the case of a multilayered background medium and seems
unreasonable to require the interior wave number to be in an interval.

There are few results on uniqueness in determining an obstacle or a medium buried in
an inhomogeneous medium. In 1998, Kirsch and Päivärinta [15] proved that a sound-soft
obstacle or a penetrable inhomogeneous medium can be uniquely determined if the outside
inhomogeneity is known in advance. In the same year, Hähner [13] showed that both the sound-
soft obstacle and the outside inhomogeneous medium in 2D can be uniquely determined by the
far-field patterns corresponding to all incident plane waves with an interval of wave numbers.
Recently in [20], the authors showed that an obstacle buried in a known inhomogeneous
medium can be determined from measurements of the far field at a fixed wave number without
a priori knowledge of the boundary condition.

In recent years a new version of the linear sampling method based on the reciprocity gap
functional has been developed for the numerical recovery of the shape of an obstacle or an
inhomogeneous medium immersed in a two-layered background medium in the case when the
nonnegative constants λ0 = 1 (see, e.g. [4–7, 10, 11] and the references therein). In particular,
in [10], Cristo and Sun also proved that the obstacle and the surface impedance can be uniquely
determined by the near field on ∂� for all point sources on the boundary of a box containing �.
It should be pointed out that, recently in [24], Yaman presented a numerical method based on
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Figure 1. Scattering in a two-layered background medium.

Newton iterations and integral equations to reconstruct the location and shape of a sound-soft
obstacle buried in a two-layered background medium in 2D using the far-field patterns.

Our contribution in this paper is to provide a uniqueness result for the inverse obstacle
scattering problem in a known layered background medium with arbitrary nonnegative
constants λj using the far-field patterns corresponding to incident plane waves.

This paper is organized as follows. In the next section, we will establish the well posedness
of the direct scattering problem by the variational method. Section 3 is devoted to the unique
determination of the obstacle and its boundary condition from a knowledge of the far-field
pattern for incident plane waves based on a generalization of the mixed reciprocity relation.
We will not assume that we know the boundary condition for the obstacle. This seems to be
appropriate for a number of applications where the physical nature of the obstacle is unknown.

For simplicity, and without loss of generality, in this paper we only consider the case
N = 1, that is, the case where the obstacle is buried in a two-layered background medium,
as shown in figure 1. In this case, �2 is the impenetrable obstacle (see figure 1). The
results obtained in this paper are also available for the case of general N and can be proved
similarly.

2. The direct scattering problem

We only consider the three-dimensional case. We remark that all the results of this section
remain valid in two dimensions after appropriate modifications of the fundamental solution,
the radiation condition and the spherical wavefunctions. The scattering of an incident field in
a two-layered background medium is depicted in figure 1.

We will focus on the general case where mixed boundary conditions are imposed on the
boundary S1 of the obstacle �2. More precisely, the boundary S1 consists of two parts, that
is, S1 = S1,D ∪ S1,I , where S1,D and S1,I are two disjoint, relatively open subsets (possibly
disconnected) of S1.

Following Cakoni and Colton [3] and Mclean [19], we shall use the variational method
to find a solution of the problem (1.1)–(1.4). To this end, let D denote a bounded domain and
let BR := {x : |x| < R}. Define the Sobolev spaces

H 1(D) := {u : u ∈ L2(D), |∇u| ∈ L2(D)},
H 1

loc(R
3\D) := {u : u ∈ H 1(BR\D) for every R > 0 such that BR\D �= ∅}.

Recall that H
1
2 (∂D) is the trace space of H 1(D) and H− 1

2 (∂D) is the dual space of H
1
2 (∂D).
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In order to study the mixed boundary value problem, we need the following Sobolev
spaces on an open part of the boundary. We refer the reader to [19] for a systematic treatment.

Let � be an open subset of the boundary ∂D. Define

H
1
2 (�) := {

u|� : u ∈ H
1
2 (∂D)

}
, H̃

1
2 (�) := {

u ∈ H
1
2 (∂D) : supp(u) ⊆ �

}
.

Both H
1
2 (�) and H̃

1
2 (�) are Hilbert spaces equipped with the restriction of the inner product

of H
1
2 (∂D). Hence, we can define the corresponding dual spaces

H− 1
2 (�) := (

H̃
1
2 (�)

)′ = the dual space of H̃
1
2 (�),

H̃− 1
2 (�) := (

H
1
2 (�)

)′ = the dual space of H
1
2 (�).

It can be shown (cf theorem A4 in [19]) that there exists a bounded extension operator
τ : H

1
2 (�) → H

1
2 (∂D). An important property of H̃

1
2 (�) is that the extension by zero to the

whole boundary ∂D of u ∈ H̃
1
2 (�) is in H

1
2 (∂D) and the extension operator is bounded from

H̃
1
2 (�) to H

1
2 (∂D). Based on these results, we can identify the dual spaces as follows:

H− 1
2 (�) := {u|� : u ∈ H− 1

2 (∂D)}, H̃− 1
2 (�) := {u ∈ H− 1

2 (∂D) : supp(u) ⊆ �}.
Thus, the duality pairing can be explained as

H
− 1

2 (�)
〈v, u〉

H̃
1
2 (�)

=
H

− 1
2 (∂D)

〈v, ũ〉
H

1
2 (∂D)

,

H̃
− 1

2 (�)
〈v, u〉

H
1
2 (�)

=
H

− 1
2 (∂D)

〈̃v, u〉
H

1
2 (∂D)

,

where ũ ∈ H
1
2 (∂D) is the extension by zero of u ∈ H̃

1
2 (�) and ṽ ∈ H− 1

2 (∂D) is the extension
by zero of v ∈ H̃− 1

2 (�).
Consider the mixed boundary value problem: given h ∈ L2(�1), g ∈ H− 1

2 (S0),
f ∈ H

1
2 (S1,D) and p ∈ H− 1

2 (S1,I ), find u ∈ H 1(�1) ∩ H 1
loc(�0) such that

�u + k2
0u = 0 in �0, (2.1)

�u + k2
1u = h in �1, (2.2)

u+ = u−,
∂u+

∂ν
− λ0

∂u−

∂ν
= g on S0, (2.3)

u = f on S1,D, (2.4)

∂u

∂ν
+ iλu = p on S1,I , (2.5)

lim
r→∞ r

(
∂u

∂r
− ik0u

)
= 0 (2.6)

where r = |x|, kj (j = 0, 1) are positive wave numbers, λ0 is a nonnegative constant and λ is
a nonnegative continuous impedance function. Here, equations (2.1) and (2.2) are understood
in a distributional sense and the boundary conditions (2.3)–(2.5) are understood in the trace
sense.

Remark 2.1. The case S1,I = ∅ corresponds to a sound-soft obstacle, and the case
S1,D = ∅, λ = 0 corresponds to a sound-hard obstacle.

Remark 2.2. The acoustic scattering of the incident plane wave ui = eik0x·d is a particular case
of the problem (2.1)–(2.6). In particular, the scattered field us satisfies the problem (2.1)–(2.6)
with u = us, h = (

k2
0 −k2

1

)
ui |�1 , g = (λ0−1) ∂ui

∂ν
|S0 , f = −ui |S1,D

and p = (− ∂ui

∂ν
−iλui

)∣∣
S1,I

.
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Theorem 2.3. The boundary value problem (2.1)–(2.6) admits at most one solution.

Proof. Clearly, it is enough to show that u vanishes identically for the homogeneous boundary
value problem (2.1)–(2.6), that is, u = 0 if f = g = h = p = 0. Choose a large ball BR

centered at the origin such that � ⊂ BR . Applying Green’s first theorem over BR\�, we
obtain that ∫

∂BR

u
∂u

∂ν
ds =

∫
BR\�

(u�u + |∇u|2) dx +
∫

S0

u
∂u

∂ν
ds.

Using Green’s first theorem over �1 again and taking into account the transmission conditions
(2.3) and the boundary conditions (2.4) and (2.5), we have∫

∂BR

u
∂u

∂ν
ds =

∫
BR\�

(u�u + |∇u|2) dx + λ0

∫
�1

(u�u + |∇u|2) dx + iλ0

∫
S1,I

λ|u|2 ds. (2.7)

Using equations (2.1) and (2.2) and taking the imaginary part of (2.7) we have, on noting that
k2

0, k2
1, λ0 are nonnegative real numbers and λ is a nonnegative continuous function, that

�
∫

∂BR

u
∂u

∂ν
ds = λ0

∫
S1,I

λ|u|2 ds � 0.

Thus, by Rellich’s lemma [8], it follows that u = 0 in R
3\BR . By the unique continuation

principle, we have u = 0 in �0. Holmgren’s uniqueness theorem [16] implies that u = 0 in
R

3\�2, which completes the proof of the theorem. �

The boundary value problems arising in scattering theory are formulated in unbounded
domains. In order to solve such problems by the variational method, we need to write them
as an equivalent problem in a bounded domain. Choose a ball BR centered at the origin large
enough such that the domain � is contained in the ball and define the Dirichlet to Neumann
operator

T : w → ∂w̃

∂ν
on ∂BR

which maps w to ∂w̃
∂ν

where w̃ solves the exterior Dirichlet problem for the Helmholtz equation
�w̃ + k2

0w̃ = 0 in R
3\BR with the Dirichlet boundary data w̃|∂BR

= w. Since BR is a ball,
then, by separating variables, we can find a solution to the exterior Dirichlet problem outside
BR in the form of a series expansion involving Hankel functions. Based on this result the
following important properties of the Dirichlet to Neumann operator can be established (see
[8, p 116–117] or [3, theorem 5.20] for details).

Lemma 2.4. The Dirichlet to Neumann operator T is a bounded linear operator from
H

1
2 (∂BR) to H− 1

2 (∂BR). Furthermore, there exists a bounded operator T0 : H
1
2 (∂BR) →

H− 1
2 (∂BR) satisfying that

−
∫

∂BR

T0ww ds � C‖w‖2

H
1
2 (∂BR)

for some constant C > 0 such that T − T0 : H
1
2 (∂BR) → H− 1

2 (∂BR) is compact.

We now reformulate the problem (2.1)–(2.6) as follows: given h ∈ L2(�1), g ∈ H− 1
2 (S0),

f ∈ H
1
2 (S1,D) and p ∈ H− 1

2 (S1,I ), find u ∈ H 1(�1) ∩ H 1(BR\�) satisfying (2.1)–(2.5) and
the equation

∂u

∂ν
= T u on ∂BR. (2.8)

6
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In exactly the same way as in the proof of lemma 5.22 in [3] one can show that a
solution u to the problem (2.1)–(2.5) and (2.8) can be extended to a solution to the scattering
problem (2.1)–(2.6) and conversely, for a solution u to the scattering problem (2.1)–(2.6), u,
restricted to BR\�2, solves the problem (2.1)–(2.5) and (2.8). Therefore, by theorem 2.3, the
problem (2.1)–(2.5) and (2.8) has at most one solution. We now have the following result on
the well posedness of the problem (2.1)–(2.5) and (2.8).

Theorem 2.5. Let h ∈ L2(�1), g ∈ H− 1
2 (S0), f ∈ H

1
2 (S1,D) and p ∈ H− 1

2 (S1,I ). Then the
problem (2.1)–(2.5) and (2.8) has a unique solution u ∈ H 1(�1) ∩ H 1(BR\�) satisfying that

‖u‖H 1(�1) + ‖u‖H 1(BR\�) � C
(‖f ‖

H
1
2 (S1,D)

+ ‖p‖
H

− 1
2 (S1,I )

+ ‖h‖L2(�1) + ‖g‖
H

− 1
2 (S0)

)
(2.9)

with a positive constant C independent of h, g, p and f .

Proof. Let f̃ ∈ H
1
2 (S1) be the extension of the Dirichlet data f ∈ H

1
2 (S1,D) satisfying

that ‖f̃ ‖
H

1
2 (S1)

� C‖f ‖
H

1
2 (S1,D)

with C independent of f and let u0 ∈ H 1(BR\�2) be such

that u0 = f̃ on S1, u0 = 0 on ∂BR and ‖u0‖H 1(BR\�2) � C‖f̃ ‖
H

1
2 (S1)

(this is possible in

view of theorem 3.37 in [19]). Then for every solution u to the problem (2.1)–(2.5) and (2.8),
w = u − u0 is in the Sobolev space H 1

0 (BR\�2, S1,D) defined by

H 1
0 (BR\�2, S1,D) := {w ∈ H 1(BR\�2) : w = 0 on S1,D}.

Multiplying equations (2.1) and (2.2) by a test function ϕ ∈ H 1
0 (BR\�2, S1,D), integrating

by parts and using the boundary conditions on S1, S0, ∂BR , we obtain the following variational
formulation for the problem (2.1)–(2.5) and (2.8): find w ∈ H 1

0 (BR\�2, S1,D) such that

a(w, ϕ) = −a(u0, ϕ) + b(ϕ) ∀ϕ ∈ H 1
0 (BR\�2, S1,D) (2.10)

where, for v, ϕ ∈ H 1
0 (BR\�2, S1,D),

a(v, ϕ) = λ0

∫
�1

(∇v · ∇ϕ − k2
1vϕ

)
dx +

∫
BR\�

(∇v · ∇ϕ − k2
0vϕ

)
dx

−
∫

∂BR

T vϕ ds − iλ0

∫
S1,I

λvϕ ds,

b(ϕ) = −λ0

∫
�1

hϕ dx −
∫

S0

gϕ ds − λ0

∫
S1,I

pϕ ds.

We write a = a1 + a2 with

a1(v, ϕ) = λ0

∫
�1

(∇v · ∇ϕ + vϕ) dx +
∫

BR\�
(∇v · ∇ϕ + vϕ) dx

−
∫

∂BR

T0vϕ ds − iλ0

∫
S1,I

λvϕ ds

and

a2(v, ϕ) = −λ0
(
1 + k2

1

) ∫
�1

vϕ dx − (
1 + k2

0

) ∫
BR\�

vϕ dx −
∫

∂BR

(T − T0)vϕ ds,

where T0 is the operator defined in lemma 2.4. By the boundedness of T0 and the trace theorem,
a1 is bounded. On the other hand, for all w ∈ H 1

0 (BR\�2, S1,D),

�a1(w,w) � min(λ0, 1)‖w‖2
H 1

0 (BR\�2,S1,D)
−

∫
∂BR

T0ww ds

� min(λ0, 1)‖w‖2
H 1

0 (BR\�2,S1,D)
+ C‖w‖2

H
1
2 (∂BR)

� min(λ0, 1)‖w‖2
H 1

0 (BR\�2,S1,D)
,

7
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that is, a1 is strictly coercive. By the compactness of T − T0 and Rellich’s selection theorem
(that is, the compact imbedding of H 1

0 (BR\�2, S1,D) into L2(BR\�2)), it follows that a2

is compact. The Lax–Milgram theorem implies that there exists a bijective bounded linear
operator A : H 1

0 (BR\�2, S1,D) → H 1
0 (BR\�2, S1,D) satisfying that

a1(w, ϕ) = (Aw, ϕ) for all ϕ ∈ H 1
0 (BR\�2, S1,D).

By the Riesz representation theorem, there exists a bounded linear operator
B:H 1

0 (BR\�2, S1,D) → H 1
0 (BR\�2, S1,D) such that

a2(w, ϕ) = (Bw, ϕ) for all ϕ ∈ H 1
0 (BR\�2, S1,D).

By the Riesz representation theorem again, one can find v ∈ H 1
0 (BR\�2, S1,D) such that

F(ϕ) := −a(u0, ϕ) + b(ϕ) = (v, ϕ) for all ϕ ∈ H 1
0 (BR\�2, S1,D).

Thus, the variational formulation (2.10) is equivalent to the problem:

Find w ∈ H 1
0 (BR\�2, S1,D) such that Aw + Bw = v, (2.11)

where A is bounded and strictly coercive and B is compact. The Riesz–Fredholm theory
and the uniqueness result (theorem 2.3) imply that the problem (2.11) or equivalently the
problem (2.10) has a unique solution. The estimate (2.9) follows from the fact that, by a duality
argument, ‖v‖H 1

0 (BR\�2,S1,D) = ‖F‖ is bounded by ‖p‖
H

− 1
2 (S1,I )

, ‖h‖L2(�1), ‖g‖
H

− 1
2 (S0)

and

‖u0‖H 1(BR\�2) which in turn is bounded by ‖f ‖
H

1
2 (S1,D)

. �

3. The inverse scattering problem

To establish the uniqueness result for the inverse scattering problem as mentioned in the
introduction, we need a generalization of the mixed reciprocity relation.

The scattering of incident plane waves in a two-layered background medium can be
formulated as follows:

�u + k2
0u = 0 in �0, (3.1)

�u + k2
1u = 0 in �1, (3.2)

u+ = u−,
∂u+

∂ν
= λ0

∂u−
∂ν

on S0, (3.3)

B(u) = 0 on S1, (3.4)

u = ui + us in �0 ∪ �1, (3.5)

lim
r→∞ r

n−1
2

(
∂us

∂r
− ik0u

s

)
= 0, r = |x|, (3.6)

with positive wave numbers kj (j = 0, 1) and the nonnegative constant λ0.
Recall that the fundamental solution of the Helmholtz equation is given by

�(x, y) =

⎧⎪⎪⎨⎪⎪⎩
eik0|x−y|

4π |x − y| for x, y ∈ R
3, x �= y,

i

4
H 1

0 (k0|x − y|) for x, y ∈ R
2, x �= y,

where H 1
0 is the Hanker function of the first kind of order zero.

As incident fields ui, plane waves and point sources are of special interest. Denote by
us(·, d) the scattered field for an incident plane wave ui(·, d) with the incident direction d ∈ S

8
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and by u∞(·, d) the corresponding far-field pattern. The scattered field for an incident point
source �(·, z) with the source point z ∈ R

n is denoted by us(·; z) and the corresponding
far-field pattern by �∞(·, z).
Remark 3.1. The trivial field u = 0 is not a solution of the scattering problem in the case
when the incident field is a point source �(·, z) with the source point z ∈ R

n—although it
satisfies the radiation condition (since the incident field does). This is because in this case the
scattered field us(·; z) = −�(·, z) has a singularity at the source point z ∈ R

n, contradicting
to the fact that the scattered field has no singularities. In fact, in this case, equation (3.1)
or (3.2) above should hold in �0\{z} or �1\{z} depending on where the source point z is
(cf (3.17) in lemma 3.5 below).

For the mixed reciprocity relation we need the constant

γn =

⎧⎪⎪⎨⎪⎪⎩
1

4π
, n = 3,

eiπ/4

√
8k0π

, n = 2

depending on the dimension n.

Lemma 3.2. (Mixed reciprocity relation.) For the scattering of plane waves ui(·, d) with
d ∈ S and point sources �(·, z) from an obstacle �2 we have

�∞(̂x, z) =
{

γnu
s(z,−x̂), z ∈ �0, x̂ ∈ S,

λ0γnu
s(z,−x̂) + (λ0 − 1)γnu

i(z,−x̂), z ∈ �1, x̂ ∈ S.

Remark 3.3. The proof for the case of an obstacle in a homogeneous medium (i.e. the case
� = �2) can be found in [17] or [21].

Proof. By Green’s second theorem and the Sommerfeld radiation condition we have that∫
S0

(
us

+(y; z)
∂us

+(y, d)

∂ν(y)
− us

+(y, d)
∂us

+(y; z)

∂ν(y)

)
ds(y) = 0 (3.7)

for z ∈ �0 ∪ �1 and d ∈ S. Using theorem 2.5 in [8], we obtain the representation

�∞(̂x, z) = γn

∫
S0

(
us

+(y; z)
∂e−ik0x̂·y

∂ν(y)
− e−ik0x̂·y ∂us

+(y; z)

∂ν(y)

)
ds(y) (3.8)

for z ∈ �0 ∪ �1 and x̂ ∈ S.

We first consider the case z ∈ �0. Adding equation (3.8) to equation (3.7) multiplied
by γn and with d replaced by −x̂ to equation (3.8) we obtain, with the help of the boundary
condition on S0 and Green’s second theorem, that for z ∈ �0, x̂ ∈ S,

�∞(̂x, z) = γn

∫
S0

(
us

+(y; z)
∂u+(y,−x̂)

∂ν(y)
− u+(y,−x̂)

∂us
+(y; z)

∂ν(y)

)
ds(y)

= λ0γn

∫
S1

(
us

+(y; z)
∂u+(y,−x̂)

∂ν(y)
− u+(y,−x̂)

∂us
+(y; z)

∂ν(y)

)
ds(y)

+ λ0γn

∫
�1

((
k2

1 − k2
0

)
�(y, z)u(y,−x̂)

)
dy

+ (1 − λ0)γn

∫
S0

(
u−(y,−x̂)

∂�(y, z)

∂ν(y)

)
ds(y). (3.9)

9
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Green’s second theorem gives that for z ∈ �0 and x̂ ∈ S

γn

∫
S0

(
ui(y,−x̂)

∂�(z, y)

∂ν(y)
− �(z, y)

∂ui(y,−x̂)

∂ν(y)

)
ds(y) = 0. (3.10)

Using Green’s formula (see theorem 2.4 in [8]) we have

γnu
s(z,−x̂) = γn

∫
S0

(
us

+(y,−x̂)
∂�(z, y)

∂ν(y)
− �(z, y)

∂us
+(y,−x̂)

∂ν(y)

)
ds(y) (3.11)

for z ∈ �0 and x̂ ∈ S. Adding (3.10) to equation (3.11) we deduce, with the help of the
boundary condition on S0 and Green’s second theorem, that

γnu
s(z,−x̂) = γn

∫
S0

(
u+(y,−x̂)

∂�(z, y)

∂ν(y)
− �(z, y)

∂u+(y,−x̂)

∂ν(y)

)
ds(y)

= λ0γn

∫
S1

(
u+(y,−x̂)

∂�(z, y)

∂ν(y)
− �(z, y)

∂u+(y,−x̂)

∂ν(y)

)
ds(y)

+ λ0γn

∫
�1

((
k2

1 − k2
0

)
�(y, z)u(y,−x̂)

)
dy

+ (1 − λ0)γn

∫
S0

(
u−(y,−x̂)

∂�(y, z)

∂ν(y)

)
ds(y) (3.12)

for z ∈ �0 and x̂ ∈ S. It is easy to see that the last two terms on the right-hand side (rhs) of
(3.9) and (3.12) coincide. By the boundary condition on S1, the first terms on the rhs of (3.9)
and (3.12) coincide, so �∞(̂x, z) = γnu

s(z,−x̂) for all z ∈ �0, x̂ ∈ S.

We now consider the case z ∈ �1. Adding equation (3.8) to equation (3.7) multiplied by
γn and with d replaced by −x̂ to equation (3.8) and using the boundary condition on S0 and
Green’s second theorem yield that

�∞(̂x, z) = γn

∫
S0

(
us

+(y; z)
∂u+(y,−x̂)

∂ν(y)
− u+(y,−x̂)

∂us
+(y; z)

∂ν(y)

)
ds(y).

We circumscribe the point z ∈ �1 with a sphere �(z; ε) := {y ∈ R
n : |y − z| = ε} contained

in �1. Applying Green’s second theorem in the domain �1,ε := {y ∈ �1 : |y − z| > ε} and
taking into account the boundary condition on S0 we obtain that

�∞(̂x, z) = λ0γn

∫
S1

(
us

+(y; z)
∂u+(y,−x̂)

∂ν(y)
− u+(y,−x̂)

∂us
+(y; z)

∂ν(y)

)
ds(y)

+ λ0γn

∫
�(z;ε)

(
us(y; z)

∂u(y,−x̂)

∂ν(y)
− u(y,−x̂)

∂us(y; z)

∂ν(y)

)
ds(y)

+ λ0γn

∫
�1,ε

((
k2

1 − k2
0

)
�(y, z)u(y,−x̂)

)
dy

+ (1 − λ0)γn

∫
S0

(
u−(y,−x̂)

∂�(y, z)

∂ν(y)

)
ds(y) (3.13)

for z ∈ �1 and x̂ ∈ S. By the well posedness of the direct problem and the interior elliptic
regularity (see section 6.3.1 in [12]), u(·,−x̂) ∈ C∞(�1) and us(·; z) ∈ H 2(V ) for any
compact subset V of �1. Thus, there is a sequence εj such that εj → 0 and∫

�(z;εj )

(|us(y; z)|2 + |∇us(y; z)|2) ds(y) → 0

as j → ∞. This together with the Cauchy–Schwarz inequality implies that the integral on
�(z; ε) with ε = εj tends to 0 as j → ∞. By passing to the limit j → ∞ in (3.13) with

10
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ε = εj we have

�∞(̂x, z) = λ0γn

∫
S1

(
us

+(y; z)
∂u+(y,−x̂)

∂ν(y)
− u+(y,−x̂)

∂us
+(y; z)

∂ν(y)

)
ds(y)

+ λ0γn

∫
�1

((
k2

1 − k2
0

)
�(y, z)u(y,−x̂)

)
dy

+ (1 − λ0)γn

∫
S0

(
u−(y,−x̂)

∂�(y, z)

∂ν(y)

)
ds(y). (3.14)

The volume integral exists as an improper integral since its integrand is weakly singular.
On the other hand, with the help of Green’s formula (see theorem 2.1 in [8]), we have

u(z,−x̂) =
∫

S0

(
�(z, y)

∂u−(y,−x̂)

∂ν(y)
− u−(y,−x̂)

∂�(z, y)

∂ν(y)

)
ds(y)

−
∫

S1

(
�(z, y)

∂u+(y,−x̂)

∂ν(y)
− u+(y,−x̂)

∂�(z, y)

∂ν(y)

)
ds(y)

+
∫

�1

((
k2

1 − k2
0

)
�(z, y)u(y,−x̂)

)
dy. (3.15)

It follows from (3.14) and (3.15) together with the boundary conditions on S0 and S1 and
Green’s second theorem that

�∞(̂x, z) − λ0γnu(z,−x̂) = γn

∫
S0

(
�(z, y)

∂u+(y,−x̂)

∂ν(y)
− u+(y,−x̂)

∂�(z, y)

∂ν(y)

)
ds(y)

= γn

∫
S0

(
�(z, y)

∂ui(y,−x̂)

∂ν(y)
− ui(y,−x̂)

∂�(z, y)

∂ν(y)

)
ds(y)

+ γn

∫
S0

(
�(z, y)

∂us
+(y,−x̂)

∂ν(y)
− us

+(y,−x̂)
∂�(z, y)

∂ν(y)

)
ds(y)

= −γnu
i(z,−x̂).

This implies that �∞(̂x, z) = λ0γnu
s(z,−x̂) + (λ0 − 1)γnu

i(z,−x̂) for all z ∈ �1, x̂ ∈ S.

�

Remark 3.4. For the case of an (N + 1)-layered background medium, it is easy to deduce
that

�∞(̂x, z) =
{
γnu

s(z,−x̂), z ∈ �0, x̂ ∈ S,

λ0λ1 · · · λN−1γnu
s(z,−x̂) + (λ0λ1 · · · λN−1 − 1)γnu

i(z,−x̂), z ∈ �N, x̂ ∈ S.

Lemma 3.5. For n = 2 or 3 and for �2, �̃2 ⊂ � let G be the unbounded component of

R
n\(�2 ∪ �̃2) and let u∞(x̂, d) = ũ∞(x̂, d) for all x̂, d ∈ S with ũ∞(x̂, d) being the far-field

pattern of the scattered field ũs(x, d) corresponding to the obstacle �̃2 and the same incident
plane wave ui(x, d). For z1 ∈ � ∩ G let us = us(x; z1) be the unique solution of the problem

�us + k2
0u

s = 0 in �0, (3.16)

�us + k2
1u

s = (
k2

0 − k2
1

)
�(x, z1) in �1\{z1}, (3.17)

us
+ = us

−,
∂us

+

∂ν
− λ0

∂us
−

∂ν
= (λ0 − 1)

∂�(x, z1)

∂ν
on S0, (3.18)

B(us) = −B(�(x, z1)) on S1, (3.19)

11
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lim
r→∞ r

n−1
2

(
∂us

∂r
− ik0u

s

)
= 0. (3.20)

Assume that ũs = ũs(x; z1) is the unique solution of the problem (3.16)–(3.20) with �2 replaced

by �̃2 and �1 replaced by �̃1 := �\�̃2. Then we have

us(x; z1) = ũs(x; z1), x ∈ G. (3.21)

Remark 3.6. By theorem 2.5, the problem (3.16)–(3.20) has a unique solution.

Proof. By Rellich’s lemma [8], the assumption u∞(x̂, d) = ũ∞(x̂, d) for all x̂, d ∈ S

implies that

us(x, d) = ũs(x, d),
∂us(x, d)

∂ν
= ∂ũs(x, d)

∂ν
, x ∈ S0, d ∈ S.

Using Holmgren’s uniqueness theorem [16], we obtain that us(z1, d) = ũs(z1, d) for
z1 ∈ � ∩ G, d ∈ S. For the far-field pattern of incident point sources we have by lemma 3.2
that

�∞(d, z1) = �̃∞(d, z1), z1 ∈ � ∩ G, d ∈ S.

Thus, Rellich’s lemma [8] gives

us(x; z1) = ũs(x; z1),
∂us(x; z1)

∂ν
= ∂ũs(x; z1)

∂ν
, x ∈ S0, z1 ∈ � ∩ G.

From Holmgren’s uniqueness theorem [16] it is derived that

us(x; z1) = ũs(x; z1), x ∈ � ∩ G, z1 ∈ � ∩ G,

which yields the desired result (3.21). �

Using the generalized mixed reciprocity relation (lemma 3.2) and lemma 3.5, the following
uniqueness result can be proved following Colton and Kress [9] and Kress [18].

Theorem 3.7. Assume that �2 and �̃2 are two obstacles with boundary conditions B and
B̃, respectively, for the same piecewise homogeneous background medium. If the far-field
patterns of the scattered fields for the same incident plane wave ui(x) = eik0x·d coincide at
a fixed frequency for all incident direction d ∈ S and observation direction x̂ ∈ S, then
�2 = �̃2, B = B̃.

Proof. Let G be the unbounded component of R
n\(�2 ∪ �̃2). Assume that �2 �= �̃2. Then,

without loss of generality, we may assume that there exists z0 ∈ ∂�2 ∩ (Rn\�̃2). Choose
h > 0 such that the sequence

zj := z0 +
h

j
ν(z0), j = 1, 2, . . . ,

is contained in � ∩ G, where ν(z0) is the outward normal to ∂�2 at z0. Consider the
solution to the problem (3.16)–(3.20) with z1 replaced by zj . By lemma 3.5 we have that

us(x; zj ) = ũs(x; zj ), x ∈ G\{zj }. Since z0 has a positive distance from �̃2, we conclude
from the well posedness of the direct scattering problem that there exists C > 0 such that

|B(̃us(z0; zj ))| � C

uniformly for j � 1. On the other hand, by the boundary condition on ∂�2,

|B(̃us(z0; zj ))| = |B(us(z0; zj ))| = |−B(�(z0, zj ))| → ∞
as j → ∞. This is a contradiction, which implies that �2 = �̃2.

12
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We now assume that the boundary conditions are different, that is B �= B̃. First, for
the case of impedance boundary conditions we assume that we have two different continuous
impedance functions λ �= λ̃. Then from the conditions

∂u

∂ν
+ iλu = 0,

∂u

∂ν
+ ĩλu = 0 on S1,

we obtain that

(λ − λ̃)u = 0 on S1.

Therefore, on the open set � := {x ∈ S1 : λ �= λ̃} we have that ∂u
∂ν

= u = 0. Then Holmgren’s
uniqueness theorem [16] implies that the total field u = ui + us = 0. The scattered field us

tends to zero uniformly at infinity while the incident plane wave has modulus 1 everywhere.
Thus, the modulus of the total field tends to 1. This leads to a contradiction, giving that λ = λ̃.
The case for other boundary conditions can be dealt with similarly. �
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