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1. Introduction and main results

Let D ⊂ R2 be a bounded (open) domain such that its exterior De := R2\D is 
connected. In this paper, the closure of D represents either the support of an acoustic 
source s ∈ L∞(R2) or the support of the contrast function 1 − q of an inhomogeneous 
medium. The source term s is called non-radiating if it does not radiate wave fields 
at infinity, that is, the far-field pattern caused by s vanishes identically. Analogously, 
if a penetrable obstacle D scatters some incoming wave trivially at the wavenumber 
κ > 0, then κ is called a non-scattering energy. The study of non-scattering energies 
dates back to [26] in the case of a convex (planar) corner domain, where the notion of 
scattering support for an inhomogeneous medium was explored. The existence of non-
radiating sources and non-scattering energies may cause essential difficulties in detecting 
a target from far-field measurements. It is well known that non-scattering energies and 
non-radiating sources can be excluded if ∂D contains a curvilinear polygonal/polyhedral 
corner or a circular conic corner, in other words, corners always scatter; see e.g., [4,14,15,
20,26,32] and recent publications [5,6,8,9,35]. The aforementioned “visible” corners can 
be interpreted as strongly singular points, since the first derivative of the function for 
parameterizing ∂D is usually discontinuous at these points. In this paper, the boundary 
∂D is supposed to be C1-smooth and piecewise analytic with a finite number of weakly 
singular points.

Throughout the paper we set N0 := N∪{0} and Bε(x) := {y = (y1, y2) ∈ R2 : |y−x| <
ε}. Write Bε = Bε(O) where O = (0, 0) always denotes the origin. Set ∂j := ∂/∂xj for 
j = 1, 2. Below we state the definition of a weakly singular point.

Definition 1.1. The point O ∈ ∂D is called a weakly singular point of order m ≥ 2
(m ∈ N) if the subboundary Bε(O) ∩ ∂D for some ε > 0, after a necessary co-
ordinate translation and rotation, can be parameterized by the piecewise polynomial 
x2 = f(x1), x1 ∈ (−ε/2, ε/2), where

f(x1) =
{∑

l∈N0

f+
l

l! x
l
1, −ε/2 < x1 ≤ 0,∑

l∈N0

f−
l

l! x
l
1, 0 ≤ x1 < ε/2.

(1.1)

Here, the real-valued coefficients {f±
l }∞l=1 satisfy the relations

f+
l = f−

l := fl, ∀ 0 ≤ l < m and f+
m 	= f−

m,

with fl = 0 for l = 0, 1. Moreover, the series (1.1) in x1 ≥ 0 (resp. x1 ≤ 0) converges at 
x1 = 0.

A weakly singular point defined by Definition 1.1 can be regarded as the intersection 
of two analytic curves. We require m ≥ 2 in the above definition, because a singular 
point of order one is exactly strongly singular in the sense that f is continuous and the 
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first derivative f ′ := df/dx1 is discontinuous at O. Obviously, each planar corner point 
of a polygon is strongly singular. If O is weakly singular, then ∂D is piecewise analytic 
but cannot be C∞-smooth at this point. The purpose of this paper is to prove that

(i) An inhomogeneous medium with a weakly singular point of arbitrary order lying on 
the support D of the contrast function scatters every incoming wave (Theorem 1.4).

(ii) A source term embedded in an inhomogeneous medium with a weakly singular point 
of arbitrary order lying on the support D of the source function always radiates 
acoustic waves non-trivially (Theorem 1.2).

(iii) Local uniqueness results in recovering source terms and the shape of an inhomoge-
neous medium (Theorems 1.3 and 1.5).

The first/second assertion implies the absence of non-scattering energies/non-radiating 
sources, when the piecewise analytic boundary ∂D contains at least one weakly singular 
point of arbitrary order. We state our main results for inverse medium scattering and 
inverse source problems separately as follows.

1.1. Radiating sources in an inhomogeneous medium

Consider the wave propagation caused by a time-harmonic acoustic source embedded 
in an inhomogeneous background medium in two dimensions. This can be modeled by 
the inhomogeneous Helmholtz equation

Δv(x) + κ2n(x)v(x) = s(x) in R2. (1.2)

In this paper, the potential (or refractive index) function n of the inhomogeneous back-
ground medium is supposed to be real-analytic in BR and n(x) ≡ 1 in |x| > R for some 
R > 0. The number κ > 0 represents the wavenumber of the homogeneous medium in 
|x| > R and s ∈ L2(R2) is a source term compactly supported in D ⊂ BR. Further, it 
is supposed that s = S|D where S is a real-analytic function defined in a neighborhood 
of D. Since v is outgoing at infinity, it is required to satisfy the Sommerfeld radiation 
condition

lim
|x|→∞

√
r

{
∂v

∂r
− iκv

}
= 0, r = |x|, (1.3)

uniformly in all directions x̂ := x/|x| ∈ S := {x ∈ R2 : |x| = 1}. In particular, the 
Sommerfeld radiation condition (1.3) leads to the asymptotic expansion

v(x) = eiκr√
r

v∞(x̂) + O
(

1
r3/2

)
, r → +∞.

The function v∞(x̂) is an analytic function defined on S and is usually referred to as the 
far-field pattern or the scattering amplitude. The vector x̂ ∈ S is called the observation 



4 L. Li et al. / Journal of Functional Analysis 284 (2023) 109800
direction of the far-field pattern. Using the variational approach, one can readily prove 
that the system (1.2)-(1.3) admits a unique solution in H2

loc(R2); see [12, Chapter 5]
or [7, Chapter 5]. Since the far-field pattern encodes information on the source, we are 
interested in the inverse problem of recovering the source support ∂D and/or the source 
term s(x) from the far-field pattern over all observation directions at a fixed frequency.

The source term s(x) is called non-radiating if v∞ vanishes identically. For example, 
setting s := (Δ + κ2n(x))ϕ for some ϕ ∈ C∞

0 (BR), it is easy to observe that the unique 
radiating solution to (1.2) is exactly ϕ, which has the vanishing far-field pattern. Hence, 
in general a single far-field pattern cannot uniquely determine a source function (even its 
support), due to the existence of non-radiating sources. In the following two theorems, 
we shall characterize a class of radiating sources and extract partial or entire information 
of an analytical source term at a weakly singular point.

Theorem 1.2 (Characterization of radiating sources). If O ∈ ∂D is a weakly singular 
point such that |s(O)| + |∇s(O)| > 0, then v∞ cannot vanish identically. Further, the 
wave field v cannot be analytically continued from BR\D to Bε(O) for any ε > 0.

Theorem 1.3 (Determination of source term). Assume that D and n are both known in 
advance and that O ∈ ∂D is a weakly singular point. Then

(i) The far-field pattern v∞ uniquely determines the values of s and ∇s at O.
(ii) Suppose additionally that the source term s(x) satisfies the elliptic equation

Δs(x) + A(x) · ∇s(x) + b(x)s(x) = 0 on D, (1.4)

where A(x) ∈ (L∞(BR))2 and b(x) ∈ L∞(BR) are given functions that are real-
analytic around O. Then s(x) can be uniquely determined by v∞.

The admissible source functions satisfying (1.4) possess the property that the lowest 
order Taylor expansion at O is harmonic (see [19]), that is, for some N ∈ N0,

s(x) = rN (A cos(Nθ) + B sin(Nθ)) + O(rN+1), |x| → 0, x ∈ Bε(O).

In particular, the case that s|D ≡ s0 ∈ C is covered. For such kind of sources, it was 
proved in [19, Lemma 2.3] (see also [15, Appendix]) that solutions to the inhomogeneous 
Laplace equation Δu = s in a sector cannot have vanishing Cauchy data on the boundary. 
Theorems 1.2 and 1.3 have generalized the results of [3,19] for planar corners to the 
case of arbitrarily weakly singular points (in the sense of Definition 1.1), under the 
analytical assumptions imposed on n and s. Without these a priori assumptions, one 
can prove uniqueness by using multi-frequency near/far field data; we refer to [1,13] for 
the uniqueness proof in a homogeneous background medium and to [2,10] for increasing 
stability estimates in terms of the bandwidth of frequencies.
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1.2. Absence of non-scattering energies

Let D ⊂ R2 be a bounded penetrable scatterer embedded in a homogeneous isotropic 
background medium. The acoustic properties of D can be characterized by the refractive 
index function q ∈ L∞(R2) such that q ≡ 1 in De after some normalization. Hence 
the contrast function 1 − q is compactly supported in D. Assume that a time-harmonic 
non-vanishing incoming wave uin is incident onto D, which is governed by the Helmholtz 
equation (Δ + κ2)uin = 0 at least in a neighborhood of D. For instance, uin is allowed 
to be a plane wave, a Herglotz wave function or a point source wave emitting from some 
position in R2\D. The wave propagation of the total field u = uin +usc is then modeled 
by the Helmholtz equation

Δu + κ2q u = 0 in R2.

At infinity, the perturbed scattered field usc is supposed to fulfill the Sommerfeld radia-
tion condition (1.3). The unique solvability of the above medium scattering problem in 
H2

loc(R2) is well known (see e.g., [12, Chapter 8]). We suppose that q is real-analytic on 
D, that is, there exists a real-analytic function Q defined in a neighborhood of D such 
that Q|D = q. Let O ∈ ∂D be a weakly singular point defined by Definition 1.1, where 
the boundary around O is locally parameterized by the function f . We suppose that 
|q(O) − 1| + |∂1q(O)| > 0 because of the medium discontinuity across the interface. For 
instance, q(x) = q0 + q1x1 + q2x2 on D where q0, q1, q2 ∈ R satisfying |q0 − 1| + |q1| > 0. 
This covers at least the piece-wise constant case that q|D ≡ q0 	= 1. However, we remark 
that the condition |∂1q(O)| 	= 0, which depends on a suitable parameterization of the 
boundary, cannot be replaced by |∇q(O)| 	= 0 due to technical reasons. We shall prove 
that

Theorem 1.4 (Weakly singular points always scatter). The penetrable scatterer D ⊂ R2

scatters every incoming wave, if ∂D contains at least one weakly singular point O (see 
Definition 1.1). Further, u cannot be analytically continued from R2\D to Bε(O) for any 
ε > 0.

As a by-product of the proof of Theorem 1.4, we get a local uniqueness result to the 
shape identification with a single incoming wave.

Theorem 1.5. Let Dj (j = 1, 2) be two penetrable scatterers in R2 with the analytical 
potential functions qj, respectively. If ∂D2 differs from ∂D1 in the presence of a weakly 
singular point lying on the boundary of the unbounded component of R2\(D1 ∪D2), then 
the far-field patterns corresponding to (Dj , qj) incited by any non-vanishing incoming 
wave cannot coincide.

Here we mention the connection of Theorems 1.4 and 1.5 with a cloaking device. The 
latter always leads to vanishing observation data and is closely related to uniqueness in 
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inverse scattering. It follows from Theorem 1.4 that a cloaking device cannot be designed 
by homogeneous and isotropic medium with a weakly singular point lying the boundary 
surface. There are essential difficulties in our attempt to prove the global uniqueness with 
a single far-field pattern. To the best of our knowledge, such kind of global uniqueness 
for shape identification remains open for a long time, since Schiffer’s first result using 
infinitely many plane waves in 1967 (see [27]). Theorem 1.5 has partly answered this 
open question.

The second assertions in Theorems 1.2 and 1.4 imply that, the wave field must be 
“singular” (that is, non-analytic) at a weakly singular point. Excluding the possibility 
of analytical extension turns out to be helpful in designing non-iterative inversion algo-
rithms for locating planar corners; see e.g., the enclosure method [21,22], the one-wave 
version of range test approach [25,26,18] and no-response test method [29,30,34] as well 
as the data-driven scheme recently prosed in [16,19]. Most of these inversion schemes 
can be interpreted as domain-defined sampling methods (or analytic continuation tests, 
see [31, Chapter 15] for detailed discussions), in comparison with the pointwise-defined 
sampling approaches such as Linear Sampling Method [7], Factorization Method [24] and 
Point Source Method [33] etc. Combining the ideas of [16,25,26] with our results, one 
may conclude that arbitrarily weakly singular points lying on the convex hull of D can 
be numerically reconstructed from the data of a single far-field pattern.

In our previous work [28], the analogue results to Theorems 1.5 and 1.4 were verified 
in a piece-wise constant medium where the locally parameterized boundary function f
takes the special form (cf. (1.1))

f(x1) =
{

f+
j xj

1, −ε/2 < x1 ≤ 0,
f−
n xn

1 , 0 ≤ x1 < ε/2,
j, n ∈ N0, f+

j , f−
n ∈ R,

with the conditions

j, n ≥ 2, (f+
j , j) 	= (f−

n , n), (f+
j )2 + (f−

n )2 	= 0.

Obviously, the weakly singular points and potential functions considered in this paper 
are more general than those in [28]. In fact, the mathematical techniques and algebraic 
calculations in the present paper are more subtle and intricate than [28].

For strongly singular corners [15,20], the smoothness of the potential function can 
be even weakened to be Hölder continuous with a lower contrast to the background 
medium (that is, 1 − q is Ck-smooth at O for some k ≥ 2). Using additionally involved 
arguments, our approach can also handle the lower contrast case. However, we only 
consider the higher contrast medium fulfilling the condition |q(O) − 1| + |∂1q(O)| > 0, 
since the emphasis of this paper is placed upon treating interfaces with weakly singular 
points of arbitrarily order m ≥ 2.

In the recent article [8], it is revealed that in Rn (n = 2, 3), if the Lipschitz boundary 
∂D processes a non-analytic point O and if q is analytic in a neighborhood of O, then 
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the object D scatters the incoming wave uin, provided that (q(O) − 1)uin(O) 	= 0. The 
authors have also proved the same result under a weaker regularity assumption on q
(Cm,α-smooth) but with a strong regularity assumption on ∂D (Cm+1,α-smooth) near 
x0. The approach in [8] relies on the free boundary method. Such a method has been 
also employed in [35] to show that penetrable scatterers with real-analytic boundaries 
admit an incident wave such that it doesn’t scatter. Under the non-vanishing condition 
of the incident wave, a necessary condition on a boundary point was derived for the non-
scattering phenomena. In comparison with the free boundary method, our approach does 
not rely on the non-vanishing condition imposed on the incident wave and the contrast 
q− 1. In fact, we will show in Lemma 2.2 that all coefficients in the Taylor expansion of 
the incident field at a boundary singular point must vanish, if the corresponding far-field 
pattern vanishes. Hence, under the strong assumption that uin(O) 	= 0 one can easily 
get a contradiction and our arguments can be significantly simplified. This explains 
why our approach extends to more general incident waves. Our results illustrate that 
piecewise analytic penetrable scatterers (at least C1-smooth but not C∞-smooth) scatter 
any incoming waves, under the analytic assumption on q together with the medium 
discontinuity assumption |q − 1| + |∂1q| > 0 at the weakly singular point. Moreover, 
we establish a local uniqueness result for shape reconstruction with a single incoming 
wave. In comparison with the existing works, our approach is rather elementary, since it 
involves algebraic computations only.

The remaining part is organized as follows. Our main efforts will be spent on an 
analytical approach to the proof of Theorem 1.4 in Section 2. This also yields the local 
uniqueness result of Theorem 1.5. In Section 3, we shall adapt this approach to prove 
Theorems 1.2 and 1.3. The proofs of some important Lemmata will be given in the 
Appendix.

2. Weakly singular points always scatter

2.1. Proofs of Theorems 1.4 and 1.5

This section is devoted to the proofs of Theorems 1.4 and 1.5 when the penetrable 
scatterer ∂D contains a weakly singular point on the boundary. For this aim, we need 
to generalize the Cauchy-Kovalevski theorem for the Helmholtz equation to a piecewise 
analytic domain.

Lemma 2.1. Let D be a domain in R2 and suppose that the boundary ∂D in an ε-
neighborhood of O ∈ ∂D can be represented by Γ = {(x1, f(x1)) : x1 ∈ (−ε/2, ε/2)}, 
where f is given by (1.1). Let ũ satisfy

Δũ + q̃(x)ũ = 0 in D ∩Bε,

ũ = g̃0, ∂ν ũ = g̃1 on Γ,
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where q̃ = Q̃|D, ̃g0 = G̃0|Γ, g1 = G̃1|Γ with Q̃, G̃0 and G̃1 being analytic in Bε. Then, 
there exists ε1 ∈ (0, ε) such that ũ can be extended analytically from D ∩Bε1 to Bε1 and 
the extended function ũ1 satisfies that

Δũ1 + Q̃(x)ũ1 = 0 in Bε1 .

Proof. By the definition of Γ, we may extend one of its analytic components to a well-
defined analytic function over the interval (−ε1/2, ε1/2) for some ε1 ∈ (0, ε) sufficiently 
small. Define Γ1 := {(x1, f+(x1)) : x1 ∈ (−ε1/2, ε1/2)} with

f+(x1) =
∑
n∈N0

f+
n

n! x
n
1 , − ε1/2 < x1 ≤ ε1/2.

Here, {f+
n }n∈N0 is given by (1.1). By the Cauchy-Kovalevski theorem (see e.g. [23, Chap-

ter 3.3]), the Cauchy problem of the Helmholtz equation

Δũ1 + Q̃(x)ũ1 = 0 in Bε1 ,

ũ1 = G̃0|Γ1 , ∂ν ũ1 = G̃1|Γ1 on Γ1

admits only a unique analytic solution ũ1. Note that

Δ(ũ1 − ũ) + q̃(x)(ũ1 − ũ) = 0 in D ∩Bε1 ,

ũ1 = ũ, ∂ν ũ1 = ∂ν ũ, on Γ+ ∩Bε1 ,

where Γ+ = {(x1, f(x1)) ∈ Γ : −ε/2 < x1 < 0}. Then, by Holmgren’s theorem, it can 
be deduced that ũ1(x) = ũ(x) for x ∈ D ∩ Bε1 . Therefore, ũ1 can be considered as 
an analytical extension of ũ from D ∩ Bε1 to Bε1 . The proof of this lemma is thus 
complete. �

Since the Helmholtz equation remains invariant by coordinate translation and rota-
tion, we can always suppose without loss of generality that the weakly singular point 
coincides with the origin. Assume that the boundary ∂D in an ε-neighborhood of O can 
be represented by Γ = {(x1, f(x1)) : x1 ∈ (−ε/2, ε/2)}, where the function f is given 
by (1.1). Assuming that usc vanishes in De, we shall derive a contradiction. Across the 
interface ∂D, we have the continuity of the total field and its normal derivative,

u+ = u−, ∂νu
+ = ∂νu

− on ∂D. (2.1)

Here the superscripts (·)± stand for the limits taken from outside and inside, respectively, 
and ν ∈ S is the unit normal on ∂D pointing into De. Since usc = 0 in De, the Cauchy 
data of u on Γ coincide with those of uin, which are real-analytic since the incoming 
wave fulfills the Helmholtz equation near D. Observing the fact that q = Q|D is analytic 
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Fig. 1. Illustration of the piecewise analytic interface Γ ⊂ R2 which contains a weakly singular point at 
O = (0, 0).

on D and that Γ is piecewise analytic, applying Lemma 2.1, one may analytically extend 
u from D ∩Bε to a small neighborhood of O in De ∩Bε. For notational convenience, we 
still denote the extended domain by Bε and the extended function by u, satisfying the 
Helmholtz equation

Δu + κ2Q(x)u = 0 in Bε.

In the subsequent sections we take ε = 1 for simplicity (see Fig. 1). Using the transmission 
conditions (2.1) together with usc ≡ 0 in De, we deduce that{

Δwj + qj(x)wj = 0, in B1, j = 1, 2,
w1 = w2, ∂νw1 = ∂νw2 on Γ,

(2.2)

where

w1 = uin, w2 = u, q1(x) ≡ κ2, q2(x) = κ2Q(x). (2.3)

We shall prove

Lemma 2.2. Let q1 and q2 be real-analytic functions defined in B1. Suppose that wj ∈
H2(B1) (j = 1, 2) are solutions to (2.2) and O ∈ Γ is a weakly singular point with the 
local parametrization of the form (1.1). If

|(q1 − q2)(O)| + |∂1(q1 − q2)(O)| > 0 (2.4)

then w1 = w2 ≡ 0 in B1.

Lemma 2.2 implies that the Cauchy data of two Helmholtz equations cannot coincide 
on a piecewise analytic curve with a weakly singular point, if the analytical potentials 
involved fulfill the condition (2.4). The result of Lemma 2.2 is not valid if q1 ≡ q2 near 
O. It also implies that, solutions to the Helmholtz equation Δw1 + q1(x)w1 = 0 in 
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B+
1 := {x ∈ B1 : x2 > f(x1)} (see Fig. 1) cannot be analytically continued into B1, 

if the Cauchy data of w1 coincide with those of w2 on Γ. Hence, Lemma 2.2 gives a 
sufficient condition of the boundary under which solutions to the Helmholtz equation 
admit no analytical extension. This is in contrast with the Cauchy-Kowalevski theorem 
(see e.g., [23, Chapter 3.3]) which guarantees a locally analytical extension of analytic 
solutions if both the Cauchy data and boundary surface are analytic. It seems that this 
local property of the Helmholtz equation also extends to other elliptic equations such as 
the Lamé system.

Based on Lemma 2.2, we can readily prove Theorems 1.4 and 1.5.

Proof of Theorems 1.4 and 1.5. Let O ∈ ∂D be a weakly singular point. We first note 
that the jump condition (2.4) applies to the potentials given in (2.3), since |q(O) − 1| +
|∂1q(O)| > 0. To prove the first assertion of Theorem 1.4, we suppose that the far-field 
pattern produced by some non-vanishing incoming wave uin vanishes identically. By 
Rellich’s lemma (see e.g., [12, Theorem 2.13, Chapter 2.5]), the scattered field usc must 
vanish identically in R2\D. Hence, the transmission conditions for the total field u can 
be reduced to

u− = (uin)+, ∂νu
− = ∂ν(uin)+ on ∂D.

By the regularity assumptions on q and ∂D, one can get the system (2.2)-(2.3) around any 
weakly singular point of ∂D. As a consequence of Lemma 2.2, we obtain uin ≡ 0 in a small 
neighborhood of the weakly singular point. By the unique continuation, uin vanishes 
identically in R2, which contradicts our assumption. Hence, an analytical potential with 
a weakly singular point lying on the boundary of the contrast function’s support always 
scatters. If the total field u can be analytically continued from R2\D to Bε(O) for 
some ε > 0, the extended solution, which we denote by w1, should satisfy the following 
Helmholtz equation

Δw1 + κ2w1 = 0 in Bε(O).

Note that the total field fulfills the same equation in the exterior of D. Then one can get 
the same system as (2.2), where w1 is now replaced by the extension of u. By Lemma 2.2
we get u ≡ 0, implying that usc can be extended to an entire radiating solution to the 
Helmholtz equation. Hence we obtain the vanishing of usc and thus also the vanishing of 
uin, which is impossible. This proves the second assertion of Theorem 1.4 by applying 
Lemma 2.2. The local uniqueness result of Theorem 1.5 follows directly from the second 
assertion of Theorem 1.4.

Remark 2.3. Lemma 2.2 does not hold true if the curve Γ is analytic at O. Counterex-
amples can be constructed when Γ is a line segment or a circle (see [15, Remark 3.3], 
[28, Section 4] and [11]). We conjecture that Theorem 1.4 remains valid even under the 
following weaker assumptions:
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Conjecture: Let Γ := {x2 = f±(x1), x1 ≶ 0} where f± are real-analytic functions for 
x1 ≶ 0. Suppose that Γ is C∞-smooth but not real-analytic at O and that q1 	= q2
are two (complex) constants. If w1 and w2 are solutions to⎧⎪⎨⎪⎩

Δw1 + q1w1 = 0, in B1,

Δw2 + q2w2 = 0, in B+
1 ,

w1 = w2, ∂νw1 = ∂νw2 on Γ.

Then it holds that w1 = w2 ≡ 0.

In the present paper we consider only a piecewise analytic interface which is not C∞-
smooth at O. In general, each component of the piecewise analytic curve defined in the 
above conjecture cannot be analytically continued across O ∈ Γ, which is in contrast to 
the singular point defined by (1.1). Hence, the proof for C∞-smooth boundaries with a 
non-analytical point requires novel mathematical arguments.

2.2. Preliminary lemmata

The proof of Lemma 2.2 will be given in Subsections 2.3 and 2.4. In this subsection 
we prepare several import Lemmata to be used in the proof of Lemma 2.2.

Setting w := w1 − w2, it is easy to obtain

Δw + q1w = −(q1 − q2)w2 in B1 (2.5)

subject to the vanishing Cauchy data

w = ∂νw = 0 on Γ. (2.6)

It follows from (2.6) that

h(x1) := w(x1, f(x1)) = 0, (2.7)
g(x1) := ∂2w(x1, f(x1)) = 0, (2.8)

for all x1 ∈ (−1/2, 1/2).
Since the potentials qj are real-analytic, the solutions wj and w are all analytic func-

tions in B1. Hence, w and w2 can be expanded into the Taylor series

w(x) =
∑
i,j≥0

ai,j
i!j!x

i
1x

j
2, w2(x) =

∑
i,j≥0

bi,j
i!j!x

i
1x

j
2, x = (x1, x2) ∈ B1. (2.9)

The Taylor expansion of ∂2w can be written as

∂2w(x1, x2) =
∑ ai,j+1

i!j! xi
1x

j
2, x = (x1, x2) ∈ B1. (2.10)
i,j≥0
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The above Taylor expansions in the Cartesian coordinate system turn out to be conve-
nient in dealing with weakly singular points (see also [28]). The corresponding expansions 
in polar coordinates were used in [14] for treating planar corners. Inserting (1.1) into (2.9)
and (2.10), we may rewrite the functions h and g as

h(x1) =
∑

i,j∈N0

ai,j
i! j!x

i
1[f(x1)]j =

{∑
l∈N0

h+
l

l! x
l
1, −1/2 < x1 ≤ 0,∑

l∈N0

h−
l

l! x
l
1, 0 ≤ x1 < 1/2,

(2.11)

and

g(x1) =
∑

i,j∈N0

ai,j+1

i! j! xi
1[f(x1)]j =

{∑
l∈N0

g+
l

l! x
l
1, −1/2 < x1 ≤ 0,∑

l∈N0

g−
l

l! x
l
1, 0 ≤ x1 < 1/2,

(2.12)

respectively. It then follows from (2.7) and (2.8) that

h±
l = g±l = 0 for all l ∈ N0. (2.13)

Lemma 2.2 will be proved with the help of (2.5), (2.9), (2.13) and the following identity

ΔΔw + q1Δw + 2∇q1 · ∇w + Δq1w

= −(q1 − q2)q2w2 + 2∇(q1 − q2) · ∇w2 + Δ(q1 − q2)w2 (2.14)

in B1, which was obtained by taking Δ on both sides of (2.5). In fact, from these relations 
we shall deduce through an induction argument and the weekly singularity at O (more 
precisely, f+

m 	= f−
m) that ai,j = bi,j = 0 for all i, j ∈ N0, which imply the vanishing of 

w1 and w2 by analyticity.
Let m ∈ N (m ≥ 2) be the order of the singular point O specified in Definition 1.1. 

We can always find a number n ∈ N, 2 ≤ n ≤ m such that

fl = 0 for all 0 ≤ l < n; fn 	= 0, if n < m. (2.15)

That is, fn is the first non-vanishing coefficient appearing in the expansion of f around 
zero. To prove Lemma 2.2, we first consider the case of n < m. If n = m, the proof can 
be proceeded analogously (see Remark 2.7). Since 2 ≤ n < m and m ≥ 2, we have

x2 = f(x1) =
m−1∑
j=n

fj
j! x

j
1 +

⎧⎨⎩
∑

j≥m

f+
j

j! x
j
1, if x1 < 0,∑

j≥m

f−
j

j! x
j
1, if x1 > 0,

f+
m 	= f−

m. (2.16)

The first lemma describes the relation between the coefficients h±
l , g±l and ai,j for 0 ≤

l < 3n − 1. Recall from and (2.11) and (2.16) that
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h(x1) =
∑

i,j∈N0

ai,j
i! j!x

i
1

(
m−1∑
l=n

fl
l !x

l
1 +

∞∑
l=m

f±
l

l ! x
l
1

)j

=
∑
l∈N0

h±
l

l ! x
l
1 for x1 ≶ 0. (2.17)

Lemma 2.4.

(i) For 0 ≤ l ≤ n − 1, we have

h±
l = al,0

l ! , g±l = al,1
l ! . (2.18)

(ii) For n ≤ l ≤ 2n − 1, we have

h±
l = al,0

l ! +
l−n∑
j=0

al−n−j,1

(l − n− j) !
f±
j+n

(j + n) ! , (2.19)

g±l = al,1
l ! +

l−n∑
j=0

al−n−j,2

(l − n− j) !
f±
j+n

(j + n) ! . (2.20)

(iii) For 2n ≤ l ≤ 3n − 1, we have

h±
l = al,0

l ! +
l−n∑
j=0

al−n−j,1

(l − n− j) !
f±
j+n

(j + n) !

+
l−2n∑
j=0

al−2n−j,2

(l − 2n− j) !

(
j∑

i=0

f±
i+n f±

j−i+n

(i + n)! (j − i + n) !

)
(2.21)

and g±l takes the same form as h±
l with a·,j replaced by a·,j+1.

The above lemma follows directly by equating the coefficients for xl
1 on both sides 

of (2.17) and using the fact that [f(x1)]j = O(xnj
1 ). Write the index l = i + nj for 

i, j, n ∈ N0. Then, the relation 0 ≤ l ≤ n − 1 implies j = 0, i = l in the first assertion; 
the relation n ≤ l ≤ 2n −1 implies j = 0, i = l or j = 1, i = l−n in the second assertion; 
the relation 2n ≤ l ≤ 3n − 1 implies j = 0, i = l, or j = 1, i = l − n, or j = 2, i = l − 2n
in the third assertion. These results will be used in justifying the initial steps of the 
induction hypothesis. We will express g±l and h±

l for some other l in the appendix. In 
our induction arguments, we need the following definition and lemma.

Definition 2.5. Let n be given by (2.15). For a ∈ N0 and α ∈ {0, 1, 2}, it is said that the 
pair (i, j) ∈ N0 ×N0 with i ≤ a and j ≥ α belongs to the index set Υa

α if either (i, j) =
(a, α) or there exists some d ∈ N and two sequences of positive integers {ik}dk=1, {jk}

d
k=1

with ik ≥ n such that
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i +
d∑

k=1

ikjk = a,

d∑
k=1

jk = j − α. (2.22)

Lemma 2.6. Suppose that the coefficients in the Taylor expansion of w (see (2.9)) fulfill 
the relations

ai,j = 0 if i + jn ≤ k − 1 + 3n or i + j ≤ k + 2, j > 3, (2.23)

for some k ∈ N. Then the relation g(x1) ≡ 0 for all x1 ∈ (−1/2, 1/2) (see (2.12) for the 
definition of g) implies that

(f±
m)2

(m!)2
3ak,3
k!3! + f±

m

m! 2Dk,1 + Dk,2 = 0. (2.24)

The relation h(x1) = 0 for all x1 ∈ (−1/2, 1/2) implies that

(f±
m)3

(m!)3
ak,3
k!3! + (f±

m)2

(m!)2
Dk,1 +

fm
±
m! Dk,2 + Dk,3 = 0. (2.25)

Here Dk,l ∈ C (l = 1, 2, 3) depends on ai,j with (i, j) ∈ Υlm+k
3−l and only on the coefficients 

fj of f(x1) with j < m.

The proof of Lemma 2.6 will be postponed to the appendix. To prove Lemma 2.2
when n < m, we need to consider two cases:

Case (i): q1(O) 	= q2(O);
Case (ii): q1(O) = q2(O), ∂1q1(O) 	= ∂1q2(O).

2.3. Proof of Lemma 2.2 in Case (i): q1(O) 	= q2(O)

For simplicity, we shall divide our proof into four steps through the induction argu-
ment. Recall again from (2.13) that h±

l and g±l vanish for all l ∈ N0.
Step 1: First, it follows from the expressions of h±

l and g±l for 0 ≤ l ≤ n − 1 (see 
(2.18)) that

ai,0 = 0, 0 ≤ i ≤ n− 1

and

ai,1 = 0, 1 ≤ i ≤ n− 1. (2.26)

Inserting (2.26) into (2.19) yields

ai+n,0 = 0, 0 ≤ i ≤ n− 1.
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To summarize above, we get

ai,j = 0, i + jn ≤ 2n− 1.

Step 2: We shall prove ai,j = 0, 2n ≤ i + jn ≤ 3n − 1 and b0,0 = 0.
Using the results of Step 1 and the expression of g (see (2.12)), we get

0 =
∑
i≥n

ai,1
i ! xi

1 +

⎛⎝∑
i≥0

ai,2
i ! xi

1

⎞⎠ (
m−1∑
l=n

fl
l! x

l
1 +

∞∑
l=m

f±
l

l! xl
1

)
+ · · · . (2.27)

Equating the coefficients of xγ
1 with m ≤ γ ≤ n + m − 1, we have

ηγ + 1
(γ −m)!

f+
m

m! aγ−m,2 = ηγ + 1
(γ −m)!

f−
m

m! aγ−m,2,

where ηγ depends on ai,j and fl with l < m. Utilizing the condition that f+
m 	= f−

m, we 
have

aγ−m,2 = 0 for any m ≤ γ ≤ n + m− 1,

implying that al,2 = 0 for all 0 ≤ l ≤ n − 1. Now, using (2.20) we get al,1 = 0 for all 
n ≤ l ≤ 2n − 1. Together with (2.21), this gives al,0 = 0 for all 2n ≤ l ≤ 3n − 1. Now we 
conclude that ai,j = 0 for all i, j such that 2n ≤ i + jn ≤ 3n − 1.

The results in the first two steps give rise to a0,0 = a2,0 = a0,2 = 0, implying that 
w(O) = Δw(O) = 0. Since q1(O) 	= q2(O), it is deduced from (2.5) that w2(O) = 0, that 
is,

b0,0 = 0. (2.28)

Step 3: In this step, we will prove

ai,j = 0 if 3n ≤ i + jn ≤ 3n + 1 or i + j = 4,
bi,j = 0 if 1 ≤ i + j ≤ 2.

(2.29)

We first consider the case of i +nj = 3n. It is deduced from Steps 1-2 that the coefficients 
ai,j satisfy the assumption of Lemma 2.6 with k = 0. Taking k = 0 in (2.24) and (2.25), 
we obtain

(f±
m)3 a0,3

3!(m!)3
+ (f±

m)2

(m!)2
D0,1 +

fm
±
m! D0,2 + D0,3 = 0, (2.30)

(f±
m)2 3a0,3

3!(m!)2
+ 2f

±
m

m!D0,1 + D0,2 = 0. (2.31)
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We deduce from (2.31) and (2.30) that

(f+
m)2 3a0,3

3!(m!)2
+ 2f

+
m

m!D0,1 = (f−
m)2 3a0,3

3!(m!)2
+ 2f

−
m

m!D0,1, (2.32)

2(f+
m)3 a0,3

3!(m!)3
+ (f+

m)2

(m!)2
D0,1 = 2(f−

m)3 a0,3

3!(m!)3
+ (f−

m)2

(m!)2
D0,1. (2.33)

Combining (2.32) and (2.33) gives the algebraic equations for a0,3 and D0,1,

(f+
m + f−

m)3a0,3

3!m! + 2D0,1 = 0,

2a0,3

3!m! ((f
+
m)2 + (f−

m)2 + f+
mf−

m) + D0,1(f+
m + f−

m) = 0, (2.34)

which can be written in the matrix form

M

[ a0,3
3!m!
D0,1

]
= 0, M =:

[
3(f+

m + f−
m) 2

2((f+
m)2 + (f−

m)2 + f+
mf−

m) (f+
m + f−

m)

]
. (2.35)

Since |M | = −(f+
m − f−

m)2 	= 0, we obtain

a0,3 = 0. (2.36)

Now, the expression of g can be rephrased in x1 ≶ 0 as (cf. (2.27))

0 =
∑
i≥2n

ai,1
i ! xi

1 +

⎛⎝∑
i≥n

ai,2
i ! xi

1

⎞⎠ (
m−1∑
l=n

fl
l! x

l
1 +

∞∑
l=m

f±
l

l! xl
1

)

+

⎛⎝∑
i≥0

ai,3
i ! 2!x

i
1

⎞⎠ (
m−1∑
l=n

fl
l! x

l
1 +

∞∑
l=m

f±
l

l! xl
1

)2

+ · · · ,

where we have used the results of Step 2. Making the difference for the coefficients of 
xn+m

1 , we get

a0,3

2!
fn
n!

f+
m

m! + an,2
n!2!

f+
m

m! = a0,3

2!
fn
n!

f−
m

m! + an,2
n!2!

f−
m

m! .

Utilizing the fact f+
m 	= f−

m, we get

a0,3fn + an,2 = 0.

This together with (2.36) yields that

an,2 = 0. (2.37)
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Furthermore, by equating the coefficients of x2n
1 we get

a0,3

2!(n!)2 (fn)2 + an,2
(n!)2 fn + a2n,1

(2n)! = 0.

On the other hand, equating the coefficients of x3n
1 in the expression of h(x1) leads to

a0,3

3!n!3
(fn)3 + an,2

2(n!)3
(fn)2 + a2n,1

(2n)!n!fn + a3n,0

(3n)! = 0.

Combining (2.36), (2.37) and the previous two identities leads to a2n,1 = a3n,0 = 0. This 
proves the first relations for ai,j with i + jn = 3n appearing in (2.29), i.e.,

a0,3 = an,2 = a2n,1 = a3n,0 = 0. (2.38)

Recall from the first two steps that a0,3 = a2,1 = a1,2 = 0. Hence, ∂jΔw(O) = 0 for 
j = 1, 2. Taking ∂j to both sides of (2.5) and using the fact that q1(O) 	= q2(O) and 
w2(O) = 0, we get ∂jw2(O) = 0, or equivalently,

b1,0 = b0,1 = 0. (2.39)

Repeating the same arguments, one can prove for i + jn = 3n + 1 that

a1,3 = an+1,2 = a2n+1,1 = a3n+1,0 = 0. (2.40)

This together al,0 = 0 for 2n ≤ l ≤ 3n − 1 and (2.38) yields that

a4,0 = a3,1 = a2,2 = a1,3 = 0. (2.41)

Equating the coefficients of the lowest order in (2.14) and using (2.28), (2.39), we readily 
obtain a0,4 = 0. Furthermore, we get b0,2 = b1,1 = b2,0 = 0 with the help of (2.5). This 
together with (2.38)-(2.41) gives (2.29).

Step 4: Induction arguments. We make the hypothesis that

ai,j = 0 for all (i, j) ∈ N0 ×N0 such that{
i + jn ≤ p− 1 if j ≤ 3,
i + j ≤ p− 3n + 2, if j ≥ 4,

(2.42)

bi,j = 0 for all (i, j) ∈ N0 ×N0 such that i + j ≤ p− 3n

for some p ≥ 3n + 2, p ∈ N. Note that for p = 3n + 2, this hypothesis has been proved 
in steps 1-3. Now we need to prove the hypothesis with the index p replaced by p + 1. 
For this purpose, it suffices to check that
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ai,j = 0 for all (i, j) ∈ N0 ×N0 such that{
i + jn = p if j ≤ 3,
i + j = p− 3n + 3, if j ≥ 4,

(2.43)

bi,j = 0 for all (i, j) ∈ N0 ×N0 such that i + j = p− 3n + 1. (2.44)

For notational convenience, we introduce the set

Ip := {(i, j) ∈ N0 ×N0 : i + jn = p}.

By our assumption that n > 2, it holds for (i1, j1), (i2, j2) ∈ Ip that

i1 + j1 > i2 + j2, if j1 < j2.

Therefore, for (i, j) ∈ Ip, we have

i + j < p− 3n + 3, if j > 3.

By the induction hypothesis (2.42), we get

ai,j = 0, for all (i, j) ∈ Ip, j > 3.

Furthermore, it follows from the induction hypothesis that the coefficients ai,j fulfill the 
assumption of Lemma 2.6 with k = p −3n. Hence, setting k = p −3n in (2.24) and (2.25)
yields

0 = (f±
m)3 ap−3n,3

(p− 3n)!3!(m!)3
+ (f±

m)2

(m!)2
Dp−3n,1 +

fm
±
m! Dp−3n,2 + Dp−3n,3, (2.45)

0 = (f±
m)2 3ap−3n,3

(p− 3n)!3!(m!)2
+ 2f

±
m

m!Dp−3n,1 + Dp−3n,2. (2.46)

Similarly to the derivation of (2.34) and (2.36) in Step 3, using f+
m 	= f−

m we can get a 
linear algebraic system for ap−3n,3 and Dp−3n,1 as follows:

M

( ap−3n,3
(p−3n)!3!m!
Dp−3n,1

)
= 0, (2.47)

where M ∈ R2×2 is defined again by (2.35). The fact that |M | 	= 0 gives ap−3n,3 = 0. 
Inserting (1.1) into (2.8) and equating the coefficients of xp−2n+m

1 , we readily get

2 3ap−3n,3

(p− 3n)!3!
fn
n!

f+
m

m! + 2ap−2n,2

2(p− 2n)!
f+
m

m! = 2 3ap−3n,3

(p− 3n)!3!
fn
n!

f−
m

m! + 2ap−2n,2

2(p− 2n)!
f−
m

m! .

This combined with ap−3n,3 = 0 and f+
m 	= f−

m yields
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ap−3n,3 = ap−2n,2 = 0. (2.48)

Using the induction hypothesis and comparing the coefficients of xp
1 and xp−n

1 , respec-
tively, it follows that

ap−3n,3

3!(p− 3n)!
(fn)3

(n!)3
+ ap−2n,2

2(p− 2n)!
(fn)2

(n!)2
+ ap−n,1

(p− n)!
fn
n! + ap,0

(p)! = 0, (2.49)

3ap−3n,3

3!(p− 3n)!
(fn)2

(n!)2
+ 2ap−2n,2

2(p− 2n)!(n!)
fn
n! + ap−n,1

(p− n)! = 0. (2.50)

Combining (2.48), (2.49) and (2.50), we have

ap−3n,3 = ap−2n,2 = ap−n,1 = ap,0 = 0. (2.51)

On the other hand, utilizing the fact that n ≥ 2 and the induction hypothesis for ai,j
with j ≤ 3, we get

ap−3n+1,2 = ap−3n+2,1 = ap−3n+3,0 = 0. (2.52)

With the aid of (2.14), (2.52) and the induction hypothesis bi,j = 0, i + j ≤ p − 3n, we 
readily get by equating the coefficients of xi1

1 xj1
2 , with i1 + j1 = p − 3n − 1 that

ai,j = 0, if i + j = p− 3n + 3, j ≥ 4. (2.53)

This together with (2.5) gives bi,j = 0 if i + j = p − 3n + 1.
By far we have proved all relations in (2.43) and (2.44). By induction, it holds that 

ai,j = bi,j = 0 for all i, j ∈ N0. The proof of case (i) is thus complete. �
2.4. Proof of Lemma 2.2 in Case (ii): q1(O) = q2(O), ∂1q1(O) 	= ∂1q2(O)

The proof in the second case can be carried out analogously to case (i). Below we 
sketch the proof by indicating the differences to case (i).

Step 1: Using the same arguments in the proof of case (i), we have ai,j = 0, i + jn ≤
3n − 1.

Step 2: Similar to the derivation of (2.38) in case (i), we can obtain a0,3 = an,2 =
a2n,1 = a3n,0 = 0. From (2.5), we get

∂1(q1(O) − q2(O))b0,0 = a3,0 = 0.

This together with the condition ∂1q1(O) 	= ∂1q2(O) gives b0,0 = 0. Repeating this 
procedure, we could prove a1,3 = an+1,2 = a2n+1,1 = a3n+1,0 = 0. Combining this with 
(2.5) yields that
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(
∂1(q1(O) − q2(O))

)
b1,0 = 1

2a4,0 + 1
2a2,2 = 0,(

∂2(q1(O) − q2(O))
)
b1,0 +

(
∂1(q1(O) − q2(O))

)
b0,1 = a3,1 + a1,3 = 0,(

∂2(q1(O) − q2(O))
)
b0,1 = 1

2a0,4,

which imply b1,0 = b0,1 = 0. This together with (2.14) leads to a0,4 = 0. To summarize 
this step we obtain

ai,j = 0, 3n ≤ i + jn ≤ 3n + 1 or i + j = 4;

bi,j = 0, i + j ≤ 1.

Step 3. In this step, we will adopt an induction argument similar to Step 4 of case (i). 
We make the same hypothesis for ai,j as before: ai,j = 0 for all i + jn ≤ p − 1, j ≤ 3 and 
i + j ≤ p − 3n + 2, j ≥ 4, where p ≥ 3n + 2, p ∈ N0. However, we assume that bi,j = 0, 
i + j ≤ p − 3n − 1, with an upper bound of i + j different from case (i). Our aim is to 
prove (2.43) and

bi,j = 0, i + j = p− 3n. (2.54)

We remark that the relations in (2.43) can be proved in the same way as Step 3 of case 
(i). To prove (2.54), with the help of induction hypothesis, we conclude from (2.5) that(

∂1(q1 − q2)(O)
)

(p1 − 3)! bp1−3,0 = 1
(p1 − 2)! (ap1,0 + ap1−2,2),(

∂2(q1 − q2)(O)
)

(p1 − k1 − 3)!k1!
bp1−k1−3,k1 +

(
∂1(q1 − q2)(O)

)
(p1 − k1 − 4)!(k1 + 1)!bp1−k1−4,k1+1 (2.55)

= 1
(p1 − k1 − 3)!(k1 + 1)!(ap1−k1−1,k1+1 + ap1−k1−3,k1+3), (2.56)(

∂2(q1 − q2)(O)
)

(p1 − 3)! b0,p1−3 = 1
(p1 − 2)!a2,p1−2,

where p1 = p − 3n + 3 and k1, k2 are two integers satisfying 0 ≤ k1 ≤ (p1 − 4), 0 ≤ k2 ≤
(p1 − 4). Analogously, combining with induction hypothesis and (2.14) gives that

2
(p1 − 4)!

((
∂1(q1 − q2)(O)

)
bp1−3,0 +

(
∂2(q1 − q2)(O)

)
bp1−4,1

)
= (ap1,0 + 2ap1−2,2 + ap1−4,4)

(p1 − 4)! ,

2
(p1 − k2 − 4)!k2!

((
∂1(q1(O) − q2(O))

)
bp1−k2−3,k2 ,+

(
∂2(q1(O) − q2(O))

)
bp1−k2−4,k2+1

)
= 1

(p1 − k2 − 4)!k2!
(ap1−k2,k2 + 2ap1−k2−2,k2+2 + ap1−k2−4,k2+4). (2.57)
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Further, using the similar arguments in deriving (2.51), we readily obtain that

ap1,0 = ap1−1,1 = ap1−2,2 = ap1−3,3.

This together with (2.55) and (2.56) with k1 = 0 implies

bp1−3,0 = bp1−4,1 = 0. (2.58)

Hence, it is deduced from (2.57) and (2.58) that ap1−4,4 = 0, and combining (2.56)
with k1 = 1 yields that bp1−5,2 = 0. Setting k2 = 1 in (2.57), it is easy to verify that 
ap1−5,5 = 0 due to bp1−4,1 = bp1−5,2 = 0. Repeating this procedure successively, we will 
get (2.43) and (2.54).

By induction, it holds that ai,j = bi,j = 0 for all i, j ∈ N0. The proof of Lemma 2.2 is 
thus complete in the second case. �
Remark 2.7. In the case of n = m, the proof of Lemma 2.2 should be slightly modified. 
The only difference is to replace (2.45) and (2.46) by

(f±
m)3 ap−3m,3

(p− 3m)!3!(m!)3
+ ap−2m,2

(p− 2m)!2
(f±

m)2

(m!)2
+ ap−m,1

(p−m)!
fm
±
m! + ap,0

p! = 0 (2.59)

and

(f±
m)2 3ap−3m,3

(p− 3m)!3!(m!)2
+ 2ap−2m,2

(p− 2m)!2
(f±

m)
(m!) + ap−m,1

(p−m)! = 0, (2.60)

respectively. Similar to the derivation of (2.47), we can obtain ap−3m,3 = ap−2m,2 = 0. 
This together with (2.59) and (2.60) also gives that

ap−3m,3 = ap−2m,2 = ap−m,1 = ap,0 = 0.

Proceeding with the same lines as for the case n < m, we can also prove w1 = w2 ≡ 0
when n = m.

3. Characterization of radiating sources

This section is devoted to proving Theorems 1.2 and 1.3. One should note that the 
inverse source problem for recovering a source term is linear, whereas the inverse medium 
problems for shape identification and medium recovery are both nonlinear. Hence, the 
techniques for extracting source information from measurement data are usually easier 
than inverse medium scattering problems. Lemma 3.1 below can be regarded as the 
analogue of Lemma 2.2 for inverse source problems.
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Lemma 3.1. Let w ∈ H1(B1) be a solution to{
Δw + κ2n(x)w = s in B1,

w = 0, ∂w
∂ν = 0 on Γ ∩B1,

(3.1)

where n(x) is analytic in B1 and O ∈ Γ is a weakly singular point. The source term s(x)
is supposed to satisfy the elliptic equation

Δs(x) + A(x) · ∇s(x) + b(x)s(x) = 0 in B1, (3.2)

where A(x) = (a1(x), a2(x)) and b(x) are both analytic in B1. Then

w = s ≡ 0 in B1. (3.3)

Proof. Since w and s are real-analytic in B1, they can be expanded into the Taylor series

w(x) =
∑
i,j≥0

wi,j

i!j! x
i
1x

j
2, s(x) =

∑
i,j≥0

si,j
i!j!x

i
1x

j
2, x = (x1, x2) ∈ B1. (3.4)

Taking Δ to the equation of w and using the governing equation of s, we find

ΔΔw + κ2Δ(n(x)w) = −A(x) · ∇s(x) − b(x)s(x). (3.5)

From (3.1), it follows that, for any integer l ≥ 2, the statement wi,j = 0, i + j ≤ l leads 
to si,j = 0, i + j ≤ l − 2. Further, similar to the derivation of (2.53), one can deduce 
from (3.5) and the relations wi,j = 0, i + j = l, j ≤ 3; wi,j = 0, i + j ≤ l − 1 and 
si,j = 0, i + j ≤ l − 3 that wi,j = 0, i + j = l, j ≥ 4. Hence, using the same method 
as employed in the proof of Lemma 2.2, one can prove (3.3). We omit the details for 
brevity. �
Remark 3.2. Lemma 3.1 applies to analytical source terms s(x) whose lowest order Taylor 
expansion at O is harmonic. By [19], the solutions to (3.2) process such a property.

Lemma 3.3. If the source term s is only required to be analytic in Lemma 3.1, then

s(O) = |∇s(O)| = 0.

Proof. The analyticity of n and s guarantees the same Taylor expansions as in (3.4). 
Employing the same arguments in steps 1-2 in the proof of Lemma 2.2 yields s(O) = 0. 
The method for proving (2.38) in the proof of Lemma 2.2 could directly lead to |∇s(O)| =
0. �

Now we are ready to prove Theorems 1.2 and 1.3, by applying Lemmata 3.3 and 3.1, 
respectively.
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Proof of Theorem 1.2. (i) Assuming v∞ = 0, then we obtain v ≡ 0 in |x| > R by 
Rellich’s lemma and v ≡ 0 in R2\D by the unique continuation of the Helmholtz 
equation (see [17, Theorem 17.2.6, Chapter XVII]). In particular, the Cauchy data 
v, ∂νv vanish on Γε = ∂D∩Bε(O) for some ε > 0. Since Γε is piecewise analytic and 
the Cauchy data are both analytic on Γε, by the Cauchy-Kovalevski theorem we can 
extend v from D ∩Bε(O) to Bε. Hence, the extended function v satisfies

{
Δv + κ2n(x)v = S in Bε,

v = 0, ∂v
∂ν = 0 on Γε,

(3.6)

where S is the analytical extension of s around O. Applying Lemma 3.3 gives s(O) =
|∇s(O)| = 0, which contradicts the assumption that |s(O)| + |∇s(O)| > 0.

(ii) Suppose that v can be analytically continued from BR\D to Bε(O) for some ε >
0. The extended solution obviously satisfies Δv + κ2n(x)v = 0 in Bε(O). On the 
other hand, by Lemma 2.1 we can extend v from D ∩ Bε(O) to Bε as the solution 
of Δw + κ2n(x)w = S in Bε(O). Now, we can observe that the difference w − v

satisfies the same Cauchy problem as in (3.6). Applying Lemma 3.3 yields the same 
contradiction to |s(O)| + |∇s(O)| > 0. �

Proof of Theorem 1.3. (i) Suppose that there are two sources s and s̃ which generate 
identical far-field patterns and have the same support D. Denote by v and ṽ the 
wave fields radiated by s and s̃, respectively. By Rellich’s lemma and the unique 
continuation, we know v = ṽ in R2\D. Setting u := v − ṽ, it follows that

{
Δu + κ2n(x)u = s− s̃ in Bε,

u = 0, ∂u
∂ν = 0 on ∂D ∩Bε,

(3.7)

for some ε > 0. Applying Lemma 3.3 gives s(O) = s̃(O) and ∇s(O) = ∇s̃(O).
(ii) Applying Lemma 3.1 to (3.7), we get s = s̃ near O, because the difference s − s̃

on the right hand side also satisfies the elliptic equation (1.4). Applying the unique 
continuation for elliptic equation (see [17, Theorem 17.2.6, Chapter XVII]) gives 
s ≡ s̃ on D. �

4. Appendix: Proof of Lemma 2.6

Let m ≥ 2 be the order of the weakly singular point O ∈ Γ and let k ∈ N be the 
integer specified in Lemma 2.6 where 2 ≤ n < m is the integer satisfying (2.15). Recall 
that g := w|Γ and h := ∂2w|Γ are given by (2.12) and (2.11), respectively. It follows from 
(2.7) and (2.8) that g±j = h±

j = 0 for all j ∈ N0. Before proving Lemma 2.6, we need to 
introduce several new index sets and prepare some lemmas.
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Definition 4.1. For (i, j) ∈ Υa
α, we denote the set of all pair sequences {(ik, jk)}dk=1

satisfying (2.22) by Λa
i,j,α. Here, Υa

α is given by Definition 2.5. Furthermore, we define 

the set Λa
i,j,α,m :=

{
{(ik, jk)}dk=1 ∈ Λa

i,j,α : ik < m
}

and denote by

Ma
α :=

∑
(i,j)∈Υa

α

Cα
j ai,j

i!j!
∑

{(ik,jk)}d
k=1∈Λa

i,j,α,m

d∑
k=1

(
fik
ik!

)jk

Cjk
j−α−

∑
l<k

jl
. (4.1)

Here, Ca
b := b!/(a!(b − a)!) denotes the combination number with 0 ≤ a ≤ b.

Remark 4.2. From the definition of Ma
α, it is easily seen that

Ma
αx

a
1 =

∑
(i,j)∈Υa

α

Cα
j ai,j

i!j! xi
1

∑
{(ik,jk)}d

k=1∈Λa
i,j,α,m

d∑
k=1

(
fik
ik!

xik
1

)jk

Cjk
j−α−

∑
l<k

jl
.

Note that by definition we have i + ikjk = a for (i, j) ∈ Υa
α and {(ik, jk)}dk=1 ∈ Λa

i,j,α,m.

Now we make use of Ma
α ∈ C to express gl± and hl

± for some l.

Lemma 4.3. Let the assumptions in Lemma 2.6 hold true.

(a) For −(m + k) ≤ l < m, we have

g±m+l+k

(m + l + k)! =
∑
λ∈J

2Mλ+k
2

f±
l+m−λ

(l + m− λ)! + Ml+m+k
1 . (4.2)

Here, J := {λ ∈ Z : −k ≤ λ ≤ l}. If J = ∅, then we denote 
∑

λ∈J = 0. For l = m, 
we have

g±2m+k

(2m + k)! =
∑

m<l≤2m+k

f±
l

l! 2M2m−l+k
2

+ 3ak,3
k!3!

(f±
m)2

(m!)2
+ f±

m

m! 2M
m+k
2 + M2m+k

1 . (4.3)

(b) It holds that

h±
3m+k

(3m + k)! =
∑

m<l≤3m+k

f±
l g±3m−l+k

l!(3m− l + k)!

−
∑

3m+k

(
f±
l

l!

)2

M3m−2l+k
2 + (f±

m)3

(m!)3
ak,3
k!3!
m<l≤ 2
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+ (f±
m)2

(m!)2
Mm+k

2 + f±
m

m!M
2m+k
1 + M3m+k

0 . (4.4)

Proof. (a) Denote by A± := {f±
j : j ≥ m}, and recall (see e.g., (2.12))

g(x1) =
∑

i≥0,j≥1

jai,j
i! j! x

i
1

(
m−1∑
l=n

fl
l !x

l
1 +

∞∑
l=m

f±
l

l ! x
l
1

)j−1

=
∑
l∈N0

gl±
l ! x

l
1 for x1 ≶ 0.

Then, by comparing the coefficients of xl+m+k
1 in the expansion of g, it follows that when 

−(m + k) ≤ l < m,

g±m+l+k

(m + l + k)!x
m+l+k
1

=
∑

(i,j)∈Υm+l+k
1

[
jai,j
i!j! x

i
1

∑
{(ik,jk)}d

k=1∈Λm+l+k
i,j,1,m

d∑
k=1

(
fik
ik!

xik
1

)jk

Cjk
j−1−

∑
l<k

jl

]

+
∑
λ∈J

[ ∑
(i,j)∈Υλ+k

2

jai,j
i!j! x

i
1
f±
l+m−λ(j − 1)
(l + m− λ)! xl+m−λ

1

∑
{(ik,jk)}d

k=1∈Λλ+k
i,j,2,m

×
d∑

k=1

(
fik
ik!

xik
1

)jk

Cjk
j−2−

∑
l<k

jl

]
+η±l x

m+l+k
1 .

Here, η±l are the sum of a finite number of products relying on at least two elements from 
the set A± and ai,j with (i, j) ∈ Jk,l := {(i, j) : i ≤ l +m + k− (2m + (j − 3)n), j ≥ 3}. 
This together with the Remark 4.2 yields that

g±m+l+k

(m + l + k)!x
m+l+k
1 =

(
Ml+m+k

1 +
∑
λ∈J

2Mλ+k
2 f±

l+m−λ

(l + m− λ)! + η±l

)
xm+l+k

1 , x1 ≶ 0.

Further, when l < m, it is easy to verify that i + jn < k + 3n for (i, j) ∈ Jk,l. Then, 
in view of the induction hypothesis on ai,j in Lemma 2.6 (see formula (2.23)), it can be 
deduced that ai,j = 0 for (i, j) ∈ Jk,l, implying η±l = 0. This thus proves the equality 
(4.2).

Similarly, to prove (4.3) we compare the coefficients of x2m+k
1 in the expansion of g

and use Remark 4.2 to deduce that

g±2m+k

(2m + k)! =
∑

m<l≤2m+k

f±
l

l! 2M2m−l+k
2 + 3ak,3

k!3!
(f±

m)2

(m!)2
+ f±

m

m! 2M
m+k
2 + M2m+k

1 + ζ±.
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Here, ζ± are the sum of a finite number of products relying on at least two elements 
from the set A± and ai,j with (i, j) ∈ Jk,m := {(i, 3) : i ≤ 2m + k − (2m + 1)} ∪ {(i, j) :
i ≤ 2m + k− (2m + (j − 3)n), j ≥ 4}. Further, note that n ≥ 2, it is easy to verify that 
i + 3n < k + 3n with j = 3 and i + j ≤ k − n + 3 < k + 2 with j ≥ 4 when (i, j) ∈ Jk,m. 
Thus, we deduce from the assumptions on ai,j that ai,j = 0 for (i, j) ∈ Jk,m, implying 
that ζ± = 0. This implies that (4.3) holds.

(b) We first recall the expansion of h by

h(x1) =
∑

i≥0,j≥0

ai,j
i! j!x

i
1

(
m−1∑
l=n

fl
j!x

l
1 +

∞∑
l=m

f±
l

j! x
l
1

)j

=
∑
l∈N0

hl
±
l ! x

l
1 x1 ≶ 0.

Equating the coefficients of x3m+k
1 in the above expansion and using Remark 4.2, we get

h±
3m+k

(3m + k)! =
∑

m<l≤3m+k

f±
l

l!

(∑
λ∈J1

2Mλ+k
2 f±

3m−l−λ

(3m− l − λ)! + M3m−l+k
1

)

+
∑

m<l≤ 3m+k
2

(
f±
l

l!

)2

M3m−2l+k
2

+ (f±
m)3

(m!)3
ak,3
k!3! + (f±

m)2

(m!)2
Mm+k

2 + f±
m

m!M
2m+k
1 + M3m+k

0 + γ± (4.5)

where J1 := {λ ∈ Z : −k ≤ λ ≤ 2m − l, λ 	= 3m − 2l}; γ± are the sum of a finite number 
of products relying on at least three elements from the set A± and ai,j with (i, j) ∈ Jk,m, 
where Jk,m is given by the assertion (a). Employing similar arguments as for ζ± in the 
assertion (a), it follows from the induction hypothesis on ai,j that γ± = 0. On the other 
hand, it is easily seen that 3m − l < 2m when l > m. Thus, from (4.2), we have

g±3m−l+k

(3m− l + k)! =
∑

−k≤λ≤2m−l

2Mλ+k
2 f±

3m−l−λ

(3m− l − λ)! + M3m−l+k
1 .

This together with (4.5) and the fact that γ± = γ±
m = 0 proves the relation (4.4). �

To proceed we introduce two new sets of indices.

Definition 4.4. Given j ∈ N, j < m, the set �j is defined by

�j = {a : ∃ b > m, j + m = a + b, a ≥ n, f+
b 	= f−

b }

and the subset �j,1 of �j is defined by

�j,1 = {a ∈ �j : ∃ a1 ≥ n, b1 > m, a + m = a1 + b1, f
+
b 	= f−

b }.

1 1
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Lemma 4.5. Under the assumptions of Lemma 2.6, the relation g(x1) ≡ 0 for all x1 ∈
(−1/2, 1/2) (see (2.12) for the definition of g) implies that

Ml+k
2 = 0 for all − k ≤ l < m. (4.6)

Proof. Assume −k ≤ l < n. From the definition of the index sets Υa
α (see Definition 2.5), 

it follows for (i, j) ∈ Υl+k
2 that,

i = l + k, if j = 2,

i ≤ l + k − (j − 2)n, if j ≥ 3.

This leads to

i + jn ≤ l + 2n + k < 3n + k if (i, j) ∈ Υl+k
2 ,

which together with the induction hypothesis of Lemma 2.6 yields ai,j = 0 when (i, j) ∈
Υl+k

2 . By Definition 4.1, this implies

Ml+k
2 = 0 for − k ≤ l < n. (4.7)

Below we only need to consider the case of l ≥ n. In the sequel, we set fp = f+
p = f−

p if 
f+
p = f−

p for some p > m.
We first assume that �l is empty. Combining (4.2) in Lemma 4.3, the relations in 

(4.7) and g±m+l+k = 0, we arrive at

2Ml+k
2

f+
m

m! +
∑

n≤λ<l

2Mλ+k
2 fl+m−λ

(l + m− λ)! + Ml+m+k
1

= 2Ml+k
2

f−
m

m! +
∑

n≤λ<l

2Mλ+k
2 fl+m−λ

(l + m− λ)! + Ml+m+k
1 ,

implying that

Ml+k
2

(
f+
m

m! −
f−
m

m!

)
= 0. (4.8)

This together with the fact that f+
m 	= f−

m proves (4.6).
Now, suppose that �l 	= ∅. Again using (4.2), (4.7) and g±m+l+k = 0 we deduce that

∑
λ0∈�l

2f±
m+l−λ0

(m + l − λ0)!
Mλ0+k

2 + 2f±
m

m! M
l+k
2

= Mm+l+k
1 −

∑
n≤λ0<l,λ0 /∈�l

2Mλ0+k
2 fl+m−λ0

(l + m− λ0)!
. (4.9)
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Split the set �l into two classes �l,1 and �l\�l,1. For λ0 ∈ �l\�l,1, similar to the 
derivation of (4.8), it follows from (4.2), (4.7) and g±λ0+m+k = 0 that

Mλ0+k
2

(
f+
m

m! −
f−
m

m!

)
= 0,

leading to

Mλ0+k
2 = 0. (4.10)

For any λ0 ∈ �l,1, one can deduce from (4.2), (4.7) and g±λ0+m+k = 0 that

∑
λ1∈�λ0

2f±
λ0+m−λ1

(λ0 + m− λ1)!
Mλ1+k

2 + 2Mλ0+k
2 f±

m

m!

= Mλ0+m+k
1 −

∑
n≤λ0<λ1,λ1 /∈�λ0

2Mλ1+k
2 fλ0+m−λ1

(λ0 + m− λ1)!
.

Repeating this process we can divide the set �λ0 into �λ0,1 and �λ0\�λ0,1 to generate 
a new set �λ1 . Then we split �λ1 into �λ1,1 and �λ1\�λ1,1 to continue this process. 
After a finite number of steps we may end up this process with the empty set �λr

= ∅
for some λr ≥ n. In this way we can get the sequence λ0 > λ1 > · · · ≥ λr. For simplicity, 
we assume that there is only one chain λ0 → λ1 → · · · → λr and that �λr

is the first 
empty set. The case of multiple chains can be proved similarly. Further, with the aid of 
(4.2), (4.7) and g±λl+m+k = 0 with 0 ≤ l ≤ r, we have for each l, 0 ≤ l ≤ r − 1 that

∑
λl+1∈�λl

2Mλl+1+k
2 f±

λl+m−λl+1

(λl + m− λl+1)!
+ 2f±

m

m! M
λl+k
2

=Mλl+m+k
1 −

∑
n≤λ0<λl,λl+1 /∈�λl

2Mλl+1+k
2 fλl+m−λl+1

(λl + m− λl+1)!
(4.11)

and

2Mλr+k
2

f±
m

m! = −
∑

n≤λ<λr

2Mλ+k
2 fλr+m−λ

(λr + m− λ)! −Mλr+m+k
1 .

The last identity together with the fact that f+
m 	= f−

m implies Mλr+k
2 = 0. This combined 

with (4.11) for l = r − 1 gives the relation

Mλl−1+k
2 = 0.

Repeating the same arguments, we can obtain (4.10). Combining with (4.9) and (4.10)
gives (4.6). The proof is thus completed. �
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Now we are in a position to finish the proof of Lemma 2.6.

Proof of Lemma 2.6. Let

Dk,l = Mlm+k
3−l for l = 1, 2, 3.

From the formula (4.1) in Definition 4.1, it is deduced that Dk,l ∈ C depends on ai,j
with (i, j) ∈ Υlm+k

3−l and only on the coefficients fl of f(x1) with l < m.
We first prove (2.24). Using (4.3) in Lemma 4.3 and g±2m+k = 0, we get

∑
m<l≤2m+k

f±
l

l! 2M2m−l+k
2 + 3ak,3

k!3!
(f±

m)2

(m!)2
+ f±

m

m! 2Dk,1 + Dk,2 = 0. (4.12)

Note that 2m −l < m when m < l < 2m. The relation (2.24) then follows from Lemma 4.5
and (4.12).

Now we need to prove (2.25). Recalling (4.4) in Lemma 4.3 and h±
3m+k = 0, we have

0 =
∑

m<l≤3m+k

f±
l g±3m−l+k

l!(3m− l + k)! −
∑

m<l≤ 3m+k
2

(
f±
l

l!

)2

M3m−2l+k
2 + (f±

m)3

(m!)3
ak,3
k!3!

+ (f±
m)2

(m!)2
Dk,1 + f±

m

m!Dk,2 + Dk,3.

Note that g±3m−l+k denotes the (3m − l + k)th coefficient of g(x1) defined by (2.12). 
Further, it is easily seen that 3m − 2l < m when l > m. Thus, using the results of 
Lemma 4.5 together with g±3m−l+k = 0, it follows that (2.25) holds. The proof is thus 
complete. �
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