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In this work, we investigate the shape identification and coefficient determination 
associated with two time-dependent partial differential equations in two dimensions. 
We consider the inverse problems of determining a convex polygonal obstacle and the 
coefficient appearing in the wave and Schrödinger equations from a single dynamical 
data. With the near-field data, we first prove that the sound speed of the wave 
equation together with its contrast support of convex-polygon type can be uniquely 
determined, then establish a uniqueness result for recovering an electric potential as 
well as its support appearing in the Schrödinger equation. As a consequence of these 
results, we demonstrate a uniqueness result for recovering the refractive index of a 
medium from a single far field pattern at a fixed frequency in the time-harmonic 
regime.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

This work aims at the mathematical understanding of the unique identifiability for three coefficient/obsta-
cle inverse problems concerning the wave, the Schrödinger and the Helmholtz equations. We first introduce 
some notations which will be used throughout the work. For R > 0, we shall write BR := {x ∈ R2 : |x| < R}, 
ΓR := {x ∈ R2 : |x| = R}, and S := {x ∈ R2 : |x| = 1}.

1.1. Formulation of the inverse wave problem

Consider the propagation of acoustic waves in an unbounded inhomogeneous background medium due 
to a compactly supported source term in R2. This can be modeled by the inhomogeneous wave equation
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1
c2(x)

∂2u

∂t2
= Δu + f(x)g(t) in R2 ×R+, (1.1)

together with the initial conditions

u(x, 0) = ∂tu(x, 0) = 0 on R2. (1.2)

Throughout this manuscript, we will assume that c ∈ L∞(R2), c(x) ≥ c0 > 0 for all x ∈ R2 and that c ≡ 1
in R2\D, where D ⊂ R2 is an inhomogeneous medium such that R2\D is connected. Now from [30], we 
have that for f ∈ L2(R2) and g ∈ L1(R+), the initial value problem (1.1)-(1.2) admits a unique solution 
u ∈ C

(
R+;H1(R2)

)
∩C1 (R+;L2(R2)

)
(see also Theorem 8.1 in [37]). In the first part of the paper, we study 

the inverse problem of determining the sound speed c|D in Equation (1.1) and the shape of the unknown 
inhomogeneous medium, namely, D = supp (1 − c(x)), from the knowledge of a single dynamical data. More 
precisely, we prove that the sound speed and its contrast support are unique, under the knowledge of the 
solution u measured on ΓR ×R+, provided they satisfy some a priori conditions (see Section 2 below).

1.2. Formulation of the inverse Schrödinger problem

The second part of the work deals with two inverse problems arising from the Schrödinger equation defined 
in R2 × R+. More precisely, we intend to uniquely determine a compactly supported electric potential as 
well as its convex polygonal support, from the knowledge of the boundary observation. We shall consider 
the time-dependent Schrödinger equation

(i∂tu + Δ + q(x))u(x, t) = 0 in R2 ×R+, (1.3)

together with the initial condition

u(x, 0) = u0 in R2, (1.4)

where u0 ∈ H2(R2) and q ∈ C(R2) is the compactly supported electric potential that is assumed to be a 
real-valued function. According to [44], the initial value problem (1.3)-(1.4) is well posed, with a unique 
solution u ∈ C(R+; H2(R2)), also satisfying the energy identity

‖u(·, t)‖L2(R2) = ‖u0‖L2(R2) for all t > 0. (1.5)

Our goal in the second part of the paper is to deal with the inverse problem of determining the electric 
potential q as well as its polygonal support D := supp (q) ⊂ BR from the knowledge of the boundary 
measurement u|ΓR×R+ .

1.3. Formulation of the inverse Helmholtz problem

Consider the time-harmonic medium scattering problem for the total field v = vin + vsc:

Δv + k2n(x)v = 0 in R2 , (1.6)

where k > 0 is the wave number of the homogeneous isotropic background medium, and the refractive index 
function n is supposed to satisfy n ≡ 1 in |x| > R for some R > 0. The incident wave vin is allowed to be 
either a plane wave of the form

vin(x) = eikx·d, d = (cos θ, sin θ)T ∈ S
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where d is a fixed incident direction d, and θ ∈ [0, 2π) is the incident angle, or a point source wave emitting 
from the fixed source position z, taking the form

vin(x) = i

4 H
(1)
0 (k|x− z|), x �= z,

where H(1)
0 (·) is the Hankel function of the first kind of order zero. The scattered field vsc is required to 

fulfill the Sommerfeld radiation condition

√
r (∂rvsc − ikvsc) → 0 as r = |x| → ∞

uniformly in all directions x̂ := x/r, leading to the far-field pattern v∞ in the asymptotic behavior

vsc(x) = eikr√
r

(
v∞(x̂) + O

(
1
r

))
as r → ∞.

Our aim in this part is to consider the inverse problem of determining the refractive index n and the shape 
of supp(1 −n) from the knowledge of v∞(x̂) for x̂ ∈ Γ1. We prove that an admissible set of n and supp(1 −n)
can be determined uniquely from the far field pattern v∞ of a single incident plane wave or a point source.

1.4. Literature review

Inverse problems of partial differential equations (PDEs) are a very broad field of various research direc-
tions, among which the inverse coefficients and/or obstacles problems have recently attracted a tremendous 
attention, particularly from the mathematical point of view. Inverse coefficient problems for time-dependent 
PDEs were widely studied, but still not much progress has been made for inverse transmission problems of 
recovering interfaces.

This paper will mainly be concerned with the simultaneous identification of both obstacles and coefficients 
appearing in some PDEs. More precisely, our main focus is on the uniqueness issue for time-dependent 
problems with a single dynamical data. There is a wide mathematical literature on this topic, but it is mostly 
concerned with the knowledge of sufficiently large measurement data; for example, the entire Dirichlet-to-
Neumann map. We shall consider the cases that are very important in applications, namely, only one 
single dynamical data is available, and focus on the determination of both the geometrical shape of convex 
penetrable scatterers and some coefficients appearing in the wave, the dynamical Schrödinger and the 
Helmholtz equations.

The wave model (1.1)-(1.2) may be used in many applications, such as the thermoacoustic (TAT) and 
photoacoustic (PAT) tomography; see, e.g., [40,41,54,57,58] and references therein. There have been some 
results about the determination of the sound speed or the source term in the wave equation from a single 
measurement data. A uniqueness result was studied in [25] for determining the constant sound speed and 
in [59] for the recovery of the source term or the sound speed provided that one of them is known. The 
unique recovery of both the sound speed and the source term was considered in [21] for the case when 
the sound speed is radial. Recently, the result of [45] was improved in [39] to more general coefficients, 
indicating that the sound speed can be recovered from a single measurement provided it is a harmonic 
function. We consider in this work the uniqueness result for simultaneously recovering both the sound 
speed and its convex polygonal support from a single dynamical data. For more related works, we refer to 
[5,24,26,47–50,52,53,60].

In regard with the determination of potentials appearing in the dynamical Schrödinger equation, there 
are many studies in the literature, but they are mostly concerned with the determination of the potentials 
from infinitely many boundary measurements. We refer to, e.g., [6–8,10,11,14,15,19,61,62] and references 



4 I. Ben Aïcha et al. / J. Math. Anal. Appl. 497 (2021) 124910
therein. In the frequency domain, the determination of potentials appearing in the Schrödinger equation 
was studied in [56], where a uniqueness result was established for recovering the small potentials from the 
knowledge of the scattering amplitude.

All the aforementioned studies are concerned only with inverse coefficient problems. For determining 
the shape of a sound-soft obstacle, the recent development in the time domain can be found in [12], in 
which an inverse obstacle problem for an acoustic transient wave equation is considered. The authors in [12]
proved a uniqueness result for the determination of a sound-soft obstacle from the lateral Cauchy data given 
on a subboundary of an open bounded domain. In [38] the uniqueness and stability issues for recovering 
penetrable or impenetrable obstacles from various boundary data were considered. We shall restrict our 
consideration in this work to determine the shape of a convex polygonal penetrable scatterer using a single 
dynamical data. By means of the data along all the time, we prove in the theory that the Laplace transform 
can be applied to the measurement data and the time-dependent inverse problem is thus transformed to 
an equivalent problem in the Fourier-Laplace domain with many parameters (frequencies). To apply the 
recently developed shape identification theory [18,27] to inverse coefficient problems in a corner domain, we 
shall show that there exists at least one parameter (frequency) for which the Laplace-transformed solution 
cannot vanish at the corner points (see Lemma 4.1, also [31]). We will then prove via asymptotic analysis 
that this parameter in two dimensions can be taken sufficiently small for wave equations and sufficiently 
large for the Schrödinger equation (see Lemmas 4.2 and 5.1). We refer to [9,17,18,23,27–29,31–33,36,42] for 
related works on target identification with a single measurement data in the stationary case. Finally, let us 
mention that although our results are restricted to contrast support of convex-polygon type, they remain 
valid for piecewise analytic interfaces with arbitrarily weakly singular points under additional assumptions 
(see e.g., [43]).

The coefficient determination problems considered in subsections 1.1, 1.2 and 1.3 are formally determined 
in the sense that the measurement data depend on boundary observations over an infinite time and the 
unknown coefficient to be recovered also depends on two variables. Our inverse obstacle scattering problems 
are overdetermined, because the time-dependent data have one more degree than the unknowns. In this 
sense our results are weaker than those for fixed-frequency inverse scattering problems. In the literature, 
the celebrated Bukhgeim-Klibanov method [13] provides a powerful tool for proving uniqueness with a 
single measurement over a finite time-period by applying appropriate Carleman estimate. The uniqueness 
result in [13] was proved with non-vanishing initial data and was later modified in [51] for proving the first 
stability result for hyperbolic equations. For more works related to hyperbolic and Schrödinger equations 
with single measurement data, we refer to [1–4,16,20,34,35,37,46,63] and references therein for an incomplete 
list. We remark that the derivation of Carleman estimate depends essentially on the governing equations 
and the shape of a bounded domain and that many difficulties arise for equations with non-regular variable 
coefficients. In comparison with the Bukhgeim-Klibanov method, our approach avoids using the Carleman 
estimate and can deal with inverse coefficient and obstacle problems in an unbounded domain.

The rest of the paper is organized as follows. In Sections 2 and 3, we state our main results and present 
some preliminary results that will be used to prove the main theorems of the work. In Sections 4, 5 and 
6 we prove our main results, Theorems 2.1, 2.2 and 2.3 respectively. Some concluding remarks and open 
problems are summarized in Section 7.

2. Statement of the main results

In order to state our main results, we first introduce some notations. For some R > 0, let Di ⊂ BR for 
i = 1, 2 be two convex polygons. For any corner point O of ∂Di for i = 1, 2, we denote by

Bε(O) := {x ∈ R2 : |x−O| < ε},
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for some ε > 0. We denote by E a subset of BR satisfying E ⊂ BR\(D1 ∪D2). Moreover, it is assumed that 
BR\(D1 ∪D2 ∪ E) is connected.

For A(x) = (a1(x), a2(x)) ∈ (L∞(BR))2 and b ∈ L∞(BR), we define a set S(A, b) by

S(A, b) :=
{
v(x) : Δv(x) + A(x) · ∇v(x) + b(x)v(x) = 0 in BR

}
.

2.1. Inverse wave problem

Here we state the main result for the inverse problem related to wave Equations (1.1) and (1.2). For 
α ∈ (0, 1) we define the following admissible set of coefficient c ∈ L∞(R2):

CD :=
{
c ∈ C0,α

(
Bε(O) ∩D

)
for each corner O of ∂D and some ε > 0 :

supp(1 − c) = D and c(O) �= 1 for each corner point O of ∂D
}
.

Theorem 2.1. Let (Di, ci) (i = 1, 2) be two pairs of convex polygonal scatterers Di and sound speeds ci such 
that ci ∈ CDi

for i = 1, 2. Let f ∈ C∞
0 (E) and g ∈ C∞

0 (0, T ) be two non-vanishing functions, and ui(x, t) be 
the unique solution to Equations (1.1) and (1.2) with c replaced by ci for i = 1, 2. If

u1(x, t) = u2(x, t), for all x ∈ ΓR and t > 0 , (2.7)

then D1 = D2. Moreover, Equation (2.7) also implies that c1 = c2 provided the following conditions hold:

(i) 1/c2i (x) = Vi|Di
for x ∈ Di and some function Vi ∈ S(A, b) where A and b are analytic functions near 

the corner points of Di.
(ii) ĝ(0) �= 0 and 

∫
R2

f(y) dy �= 0, where ĝ denotes the Laplace transform of g.

2.2. Inverse Schrödinger problem

In order to express the main statement of the second part of this work, we first introduce the set of 
the admissible unknown compactly supported coefficients q. For any α ∈ (0, 1) and M > 0, we define an 
admissible set of q by

Q :=
{
q : supp(q) = D ⊂ BR is a convex polygon, q(O) �= 0 at each corner O of ∂D,

q ∈ C0,α(Bε(O) ∩D) for some ε > 0
}
.

Then we can state the uniqueness result for the inverse problem related to the Schrödinger equation below.
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Theorem 2.2. Let u0 ∈ C∞
0 (E), (Di, qi) (i = 1, 2) be two pairs of convex polygonal obstacles Di and 

potentials qi ∈ Q, and ui (i = 1, 2) be the solutions to the initial value problems (1.3) and (1.4) with q
replaced by qi. If

u1(x, t) = u2(x, t) on ΓR ×R+, (2.8)

then D1 = D2. As a consequence, under the following additional assertions:

i) The coefficients qj ∈ S(A, b) for j = 1, 2 where A and b are analytic functions near each corner point 
of Di.

ii) There exists a r0 > 0 such that 
2π∫
0

u0(r0 cos θ, r0 sin θ) dθ �= 0,

the relation (2.8) implies that q1 = q2 in D.

The above result claims the unique determination of the obstacle D from the boundary measurement 
data u|ΓR×R+ and the recovery of the coefficient q under some additional conditions.

2.3. Inverse Helmholtz problem

The main uniqueness result we will establish for the inverse Helmholtz problem can be stated in the 
following theorem.

Theorem 2.3. Let k > 0 be fixed, and ui for i = 1, 2 be the solution to (1.6) when n is replaced by ni. Suppose 
that

(i) ni ∈ L∞(R2), Di = supp(ni − 1) is a convex polygon and ni ≡ 1 in R2\Di.
(ii) ni(x) = Vi(x)|Di

for all x ∈ Di, where Vi ∈ S(A, b) for some functions A and b which are analytic 
near each corner point of Di, and ni(O) �= 1 for each corner point of ∂Di.

(iii) |ui(O)| > 0 for each corner point O of ∂Di.

Then the equality u∞
1 (x̂) = u∞

2 (x̂) for all x̂ ∈ S implies that D1 = D2 and n1 = n2.

Remark 2.4. In the time-harmonic regime, the condition (iii) has already been used in [31] to prove unique-
ness in recovering the support of the contrast function. For linear inverse source problems, the condition 
(ii) guarantees the unique identification of a source term having a convex-polygonal support (see [27]). The 
above Theorem 2.2 verifies that both the support and the refractive index can be uniquely identified under 
the conditions (i)-(iii).

3. Preliminaries

An important idea in establishing our main results in this work is to transform the time-dependent 
problems into the equivalent frequency dependent problems with the help of the Laplace transform. The 
Laplace transform of a function u of time variable t is given by

û(x, s) :=
∞∫
e−st u(x, t) dt, s > 0, x ∈ R2. (3.9)
0
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Our goal in this section is to study the long time behavior of the solutions to the wave and Schrödinger 
equations, in order to justify the use of the Laplace transform. It is well known that such kind of behaviors 
can be derived from classical energy estimates, which will be presented below for the sake of completeness 
of our arguments. Our emphasis will be placed upon the interpretation of the Laplace transform of u in 
(3.9).

3.1. Long time behavior of solutions to the wave equation

Lemma 3.1. Let c ∈ L∞(R2) with c(x) > c0 ≥ 0 for all x ∈ R2 and let F ∈ C∞
0

(
R2 ×R+

)
satisfy 

supt∈[0,∞)‖∂k
t F (t, ·)‖L2(R+) ≤ Ck for k = 0, 1, 2 and some constant Ck > 0 independent of t. Let u be a 

solution to the initial value problem{
1

c2(x)∂
2
t u(x, t) − Δxu(x, t) = F (x, t), (x, t) ∈ R2 ×R+

u(x, 0) = ∂tu(x, 0) = 0, x ∈ R2.
(3.10)

Then the solution u has the asymptotic estimate

‖u(·, t)‖H2(R2) = O(t2) as t → ∞, (3.11)

leading to the well-definedness of the Laplace transform of u for all x ∈ R2. Moreover, the following estimate 
holds:

s3‖û(·, s)‖H2(R2) ≤ C, s > 0, (3.12)

for some constant C > 0 independent of s.

Proof. Since c ∈ L∞(R2) and F ∈ C∞
0 (R2 × R+), we have from [30] that the solution u to (3.10) satisfies 

u ∈ ∩2
j=0C

j
(
(0,∞);H2−j(R2)

)
. Now multiplying the first equation in (3.10) by 2∂tu(x, t) and integrating 

over (0, t) ×R2, we get

∫
R2

(
1

c2(x) |∂tu(x, t)|2 + |∇xu(x, t)|2
)
dx = 2

t∫
0

∫
R2

F (x, s)∂tu(x, s)dxds.

By using the Cauchy-Schwartz inequality, the hypothesis on F (x, t), along with the fact that 0 < c(x) ≤ c

for some constant c > 0, we obtain

E(t) :=
∫
R2

(
|∂tu(x, t)|2 + |∇xu(x, t)|2

)
dx ≤ C

t∫
0

‖F (., s)‖L2(R2)‖∂tu(., s)‖L2(R2)ds

≤ C‖F‖L∞(0,∞;L2(R2))

t∫
0

E(s)1/2ds ≤ C

t∫
0

E(s)1/2ds

for some constant C > 0, depending only on c(x) and F (x, t). Now let us define

φ(T ) := max
0≤t≤T

E(t).

Using this, we derive from the above estimate that
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φ(T ) ≤ C max
0≤t≤T

t∫
0

E(s)1/2ds ≤ C

T∫
0

E(s)1/2ds ≤ C

T∫
0

max
0≤s≤T

E(s)1/2ds = Cφ(T )1/2T.

This gives

E(T ) ≤ φ(T ) ≤ CT 2, for any 0 ≤ T < ∞.

Also the Minkowski inequality for integrals ([22], page 194), we have

‖u(·, t)‖L2(R2) =

∥∥∥∥∥
t∫

0

∂tu(·, s)ds
∥∥∥∥∥
L2(R2)

≤
t∫

0

‖∂tu(·, s)‖L2(R2)ds ≤ Ct2.

This proves (3.11). Combining the estimate of E(t) together with Equation (3.11), we get that

‖u(., t)‖H1(R2) ≤ Ct2, for t large enough and some constant C > 0 independent of t. (3.13)

Now setting ũ(x, t) := ∂tu and using the fact that c(x) is independent of t, we have ũ solves (3.10) with right 
hand side equal to ∂tF (x, t) and hence ‖ũ(., t)‖H1(R2) ≤ Ct2 for some constant C > 0 independent of t. 
Now repeating the previous arguments, we can have that ∂2

t u(., t) ∈ L2(R2) and then solving the Poisson’s 
equation for u at each fixed t, we can conclude that u(., t) ∈ H2(R2) and

‖u(., t)‖H2(R2) ≤ Ct2, (3.14)

holds for t large enough and C > 0 independent of t. Next we will show that the Laplace transform defined 
in Equation (3.9) makes sense for all x ∈ R2. To show this, it suffices to prove that

‖û(·; s)‖L2(R2) =

∥∥∥∥∥
∞∫
0

e−stu(·, t)dt
∥∥∥∥∥
L2(R2)

is finite. Again using the Minkowski inequality for integrals ([22], page 194), we have

∥∥∥∥∥
∞∫
0

e−stu(x, t)dt

∥∥∥∥∥
L2(R2)

≤
∞∫
0

e−st‖u(·, t)‖L2(R2)dt.

Now using Equation (3.11), we further derive

‖û(·; s)‖L2(R2) =

∥∥∥∥∥∥
∞∫
0

e−stu(x, t)dt

∥∥∥∥∥∥
L2(R2)

≤
∞∫
0

e−st ‖û(·, t)‖L2(R2) ≤ C

∞∫
0

e−stt2dt ≤ C

s3 .

Thus

∞∫
0

e−stu(x, t)dt ∈ L2(R2),

which implies that
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û(x; s) =
∞∫
0

e−stu(x, t)dt

exists for almost every x ∈ R2. Since the solution u to (3.10) satisfies u ∈ C
(
(0,∞);H2(R2)

)
and in two 

dimensions the Sobolev space H2(BR) is imbedded into C0,α(BR), the Laplace transform û(x; s) of u(x, t)
can be defined pointwise. This completes the proof of Lemma 3.1. �
Lemma 3.2. Let u(x, t) be the solution to (1.1)-(1.2) when c ∈ CD, f and g are two functions as given in 
Theorem 2.1. Then the relation that u(x, t) = 0 for (x, t) ∈ ΓR × R+ implies ∂νu(x, t) = 0 for (x, t) ∈
ΓR ×R+.

Proof. It is easy to see that Equations (1.1)-(1.2) reduce to the following equations in 
(
R2\BR

)
× (0, T ):

{
∂2
t u(x, t) − Δxu(x, t) = 0, (x, t) ∈

(
R2\BR

)
×R+

u(x, 0) = ∂tu(x, 0) = 0, x ∈ R2\BR.
(3.15)

Now after multiplying (3.15) by 2∂tu(x, t) and integrating over 
(
R2\BR

)
× (0, t), we get

∫
R2\BR

(
|∂tu(x, t)|2 + |∇xu(x, t)|2

)
dx = 0, for any t ∈ R+.

This gives

u(x, t) = 0, for (x, t) ∈
(
R2\BR

)
×R+.

Now using the fact that solution u ∈ C∞ ((
R2\BR

)
×R+

)
, we conclude that ∂νu(x, t) = 0 for any for 

(x, t) ∈ ΓR ×R+. This completes the proof of Lemma 3.2. �
3.2. Long time behavior of solutions to the Schrödinger equation

The following lemma indicates that û is well defined and that û(·, s) ∈ H2(R2).

Lemma 3.3. Suppose that u0 ∈ L2(R2) and q ∈ L∞(R2), and there exists M > 0 such that

‖u0‖L2(R2) + ‖q‖L∞(R2) ≤ M. (3.16)

Then the following estimate holds

‖u(·, t)‖L2(R2) ≤ C(1 + t),

where C is a constant depending only on M . Moreover, we have û(·, s) ∈ H2(R2).

Proof. From the Duhamel formula, we can express the solution u of the initial value problem (1.3)-(1.4) in 
the form

u(x, t) = eitΔ u0(x) + i

t∫
ei(t−s)Δ u(x, s) q(x) ds. (3.17)
0
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Therefore, we readily get

‖u(·, t)‖L2(R2) ≤ ‖u0‖L2(R2) +
t∫

0

‖u(·, s) q‖L2(R2) ds.

In light of (1.5) and (3.16), we get

‖u(·, t)‖L2(R2) ≤ ‖u0‖L2(R2) + Mt‖u0‖L2(R2) ≤ C(1 + t). (3.18)

In view of (3.18), one can see that û(·, s) ∈ L2(R2). Indeed, we have

‖û(x, s)‖2
L2(R2) ≤

∞∫
0

e−2st ‖u(·, t)‖2
L2(R2) dt < ∞.

Then, û(·, s) is well defined. Moreover, by applying the Laplace transform, one has

Δ û(·, s) = i u0(·) − is û(·, s) − q(·) û(·, s) ∈ L2(R2).

Therefore, û(·, s) ∈ H2(R2), which completes the proof of Lemma 3.3. �
Proceeding as we did in the proof of Lemma 3.2, we can come to the following claim.

Lemma 3.4. Let s > 0 be fixed, and U ∈ H2(R2\BR) be a solution to the following elliptic equation

ΔU(x) + is U(x) = 0, ∀x ∈ R2\BR. (3.19)

Then, we have

U(x)
∣∣∣
ΓR

= 0 implies that ∂νU(x)
∣∣∣
ΓR

= 0.

Proof. Multiplying the equation (3.19) by U(x) and integrating by parts lead to U(x) ≡ 0 in R2\BR. This 
particularly implies the vanishing of the normal derivative of U on ΓR. �
4. Proof of Theorem 2.1

This section is devoted to the proof of our main results in Theorem 2.1, separated in two subsections. We 
first prove the unique identification of ∂D in subsection 4.1, and then show in subsection 4.2 two lemmas 
which are used to establish the uniqueness for identifying c(x). The results of Theorem 2.1 are a consequence 
of the results from subsections 4.1 and 4.2.

4.1. Shape identification

Suppose that there are two convex polygonal obstacles (D1, c1) and (D2, c2) which generate the identical 
measurement data u1 = u2 on ΓR ×R+. We will show that D1 = D2 in this subsection. Note that we have 
the following transmission conditions on ∂Dj (see (3.11)):

u+
j = u−

j , ∂νu
+
j = ∂νu

−
j on ∂Dj ×R+, j = 1, 2,
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which are understood in the trace spaces C(R+, H3/2(∂Dj)) and C(R+, H1/2(∂Dj)), respectively. Here 
the symbols (·)± denote the limits taking from outside (+) and inside (-) of Dj with respect to the space 
variable, respectively.

By Lemma 3.1, we can apply the Laplace transform to uj to obtain

ûj(x, s) :=
∞∫
0

uj(x, t)e−stdt ∈ H2(R2), for every positive number s > 0.

Recalling the assumption that u1 = u2 on ΓR ×R+ and Lemma 3.2, we obtain

û1(x, s) = û2(x; s), ∂ν û1(x, s) = ∂ν û2(x; s), on ΓR.

It is easy to deduce that uj , for j = 1, 2, fulfills the inhomogeneous elliptic equation

Δûj(x, s) − pj(x, s) ûj(x; s) = −f(x)ĝ(s), in BR

for every fixed s > 0, where pj(x, s) := s2/c2j (x). Noting that E ⊂ BR\(D1 ∪D2) is the support of the 
spatial source term f , we get û1 = û2 in BR\D1 ∪D2 ∪ E by the unique continuation of elliptic equations.

If D1 �= D2, without loss of generality, we may assume that there exists a corner point O ∈ ∂D1\∂D2
such that Bε(O) ∩ (D2 ∪ E) = ∅ for some ε > 0. Set Γ := Bε(O) ∩ ∂D1. Then we obtain⎧⎪⎨⎪⎩

Δû1(x, s) − p1(x, s)û1(x, s) = 0, in Bε(O),
Δû2(x, s) − s2û2(x, s) = 0, in Bε(O),
û1(x, s) = û2(x, s), ∂ν û1(x, s) = ∂ν û2(x, s) on Γ.

(4.20)

Note that û2 is analytic in Bε(O) and û1 ∈ H2(Bε(O)). Since c1(O) �= 1, it holds that p1(O, s) �= s2 for 
any s > 0. Applying [18, Lemma 1] we obtain û1 = û2 ≡ 0 in Bε(O). By the unique continuation, we see 
ûj(x, s) = 0 in BR\Dj ∪ E for j = 1, 2 and every s > 0. Let E∗ ⊃ E be a neighboring area of E such that 
E∗ ⊂ BR and E∗ ∩D1 = ∅. Then the function û1 satisfies

Δû1(x, s) − s2û1(x, s) = f(x)ĝ(s) in E∗, û1 ≡ 0 in E∗\E (4.21)

for all s > 0. Let v be any solution to the equation Δv(x, s) − s2v(x, s) = 0. Now multiplying (4.21) by 
v(x, s) and integrating over R2, we have for all s > 0 that

ĝ(s)
∫
E∗

f(x)v(x, s)dx =
∫
E∗

(
Δû1(x, s) − s2û1(x, s)

)
v(x, s)dx

=
∫
E∗

(
Δû1(x, s) v(x, s) − s2û1(x, s) v(x, s)

)
dx. (4.22)

Now using the integration by parts and noting the vanishing of û1 near ∂E∗, we get from (4.22) that

ĝ(s)
∫
R2

f(x)v(x, s)dx = 0, for all s > 0 and v(x, s) as specified above.

Since g does not vanish identically, there exists an open interval in which ĝ �= 0. Now for any ω ∈ S, taking 
the special solution v(x, s) = e−sx·ω to Δv(x, s) − s2v(x, s) = 0, we deduce
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f̂(sω) = 0, for all ω ∈ S and for s > 0 belongs to some open interval.

Since f is compactly supported, we have f ≡ 0 in R2, which is not true. This completes the proof that 
D1 = D2.

4.2. Coefficient determination

Having proved that D1 = D2 := D in subsection 4.1, we can now verify that c1 = c2 on D, under the 
additional conditions (i) and (ii) as stated in Theorem 2.1. To this purpose, we first present two auxiliary 
results in Lemmas 4.1 and 4.2.

Lemma 4.1. Define

Σ :=
{

(r, θ) : |θ| < θ0, r < 1 and θ0 ∈
(
0, π2

)}
,

Γ := {(r, θ) : θ = ±θ0, r < 1} .

Suppose that p ∈ C0,α(Σ), f ∈ C0,α(Σ) with f(O) �= 0 is not identically zero and that u ∈ H2(Σ) is a 
solution to the boundary value problem{

Δu(x) + p(x)u(x) = h(x)f(x), x ∈ Σ ,

u(x) = ∂νu(x) = 0, x ∈ Γ .
(4.23)

If the source component h above belongs to S(A, b) in a neighborhood of Σ and both A and b are analytic on 
Σ, then u = h ≡ 0 in Σ.

Proof. Obviously, the right hand side hf belongs to C0,α(Σ). Since h ∈ S(A, b) is analytic, its lowest order 
Taylor expansion at O must be harmonic (see e.g., [27, Corollary 2.2]), that is, the asymptotic expansion

h(x) = rN (A cos(Nθ) + B sin(Nθ)) + O(rN+1), |x| → 0, x ∈ Σ (4.24)

holds uniformly in all θ ∈ (−θ0, θ0) for some N ∈ N0 and A, B ∈ C. Using the fact that f(O) �= 0 and 
f ∈ C0,α(Σ), it follows that the lowest order Taylor expansion of hf at O is also harmonic. Applying [27, 
Lemma 2.3] or [18, Lemma 2] we get h(x)f(x) ≡ 0 for x ∈ Σ, which implies h ≡ 0 and thus u ≡ 0. This 
completes the proof of Lemma 4.1. �
Lemma 4.2. Let u be the unique solution to the initial value problem (1.1)-(1.2), with f and g as in Theo-
rem 2.1 fulfilling the conditions ĝ(0) �= 0 and 

∫
R2 f(y) dy �= 0. Let û be the Laplace transform of u(x, t) with 

respect to the time variable. Then for any point O of ∂D, there exists a small number s0 > 0 depending on 
O such that û(O, s0) �= 0.

Proof. It is easy to check that

Δû(x, s) − s2û(x, s) = −f(x)ĝ(s) + s2
(

1
c2(x) − 1

)
û(x, s) in R2. (4.25)

Recall that

(
Δ − s2) i

H
(1)
0 (is|x− y|) = δ(x− y), for fixed y ∈ R2 and x �= y
4
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where H(1)
0 is the Hankel function of first kind of order zero, which has the following asymptotic expansion 

as s → 0 (cf. [55]):

i

4H
(1)
0 (is|x− y|) = − 1

2π ln|x− y| + i

4 − ln is

2 − C

2π + O(s2|x− y|2 ln s|x− y|) . (4.26)

Then the solution to Equation (4.25) can be given by

û(x, s) = − i

4 ĝ(s)
∫
R2

f(y)H(1)
0 (is|x− y|) dy + i

4s
2
∫
R2

(
1

c2(y) − 1
)
û(y, s)H(1)

0 (is|x− y|)dy.

Taking x, y ∈ BR, sufficiently small s > 0 and using the asymptotic expansion (4.26), we get

û(x, s) = − i

4 ĝ(s)
∫
R2

f(y)
(
− 1

2π ln|x− y| + i

4 − ln is

2 − C

2π

)
dy

+ i

4s
2
∫
R2

(
1

c2(y) − 1
)
û(y, s)

(
− 1

2π ln|x− y| + i

4 − ln is

2 − C

2π

)
dy

− i

4 ĝ(s)
∫
R2

f(y)O(s2|x− y|2 ln s|x− y|)dy

+ i

4s
2
∫
R2

(
1

c2(y) − 1
)
û(y, s)O(s2|x− y|2 ln s|x− y|)dy.

(4.27)

Multiplying Equation (4.27) by s2 and using Equation (3.12) together with the fact that f, g and 
(

1
c2(x) − 1

)
are compactly supported, we derive

lim
s→0

s2û(x, s) = 0, for x ∈ BR. (4.28)

Then noting that s2û(x; s) is a continuous function for x ∈ R2 and s > 0, we know there exists a constant 
M > 0 such that

|s2û(x, s)| ≤ M, for s close to 0 and x ∈ BR. (4.29)

Now multiplying Equation (4.27) by s and using Equation (4.29), we get

lim
s→0

sû(x, s) = 0, for x ∈ BR. (4.30)

Using this and repeating the same argument as above, we know the existence of a constant M1 > 0 such 
that

|sû(x, s)| ≤ M1, for s close to 0 and x ∈ BR. (4.31)

Finally using Equation (4.31) in (4.27) and the fact that ĝ(0) �= 0, 
∫
R2

f(y)dy �= 0, we further deduce

lim
s→0

û(x, s) = ∞, for x ∈ BR.

This implies that for O ∈ ∂D, there exists a sufficiently small s0 such that û(O, s0) �= 0, hence completes 
the proof of Lemma 4.2. �
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Proof of Theorem 2.1. The uniqueness for ∂D was already established in subsection 4.1. Next we prove the 
uniqueness of identifying c(x), namely, c1(x) = c2(x) for all x ∈ D. Taking the Laplace transform to uj, it 
follows from the arguments as in subsection 4.1 that û1 = û2 in BR\D ∪ E. Let O ∈ ∂D be a corner point 
and set Σ := Bε(O) ∩D for some small ε > 0. Then it is easy to see⎧⎪⎨⎪⎩

Δû1(x, s) − p1(x, s)û1(x, s) = 0 in Σ,

Δû2(x, s) − p2(x, s)û2(x, s) = 0 in Σ,

û1(x, s) = û2(x, s), ∂ν û1(x, s) = ∂ν û2(x, s) on Γ := Bε(O) ∩ ∂D.

Setting w := û1 − û2, we get {
Δw − p1(x, s)w = s2h(x)û2(x, s) in Σ,

w = ∂νw = 0 on Γ,
(4.32)

where h is defined by

h(x) := 1/c21(x) − 1/c22(x) = V1(x) − V2(x), x ∈ Σ.

By the assumption on cj , we know h ∈ S(A, b). Now from Lemma 4.2 there exists s0 > 0 such that 
s2
0û2(O, s0) �= 0. Hence using Lemma 4.1, we have that h ≡ 0. This completes the proof of Theorem 2.1. �

5. Proof of Theorem 2.2

5.1. Shape identification

Our goal in this subsection is to deal with the obstacle identification problem for the time dependent 
Schrödinger equation (1.3). More precisely, we aim to prove that the measurement data u|ΓR×R+ can 
uniquely determine the object D defined as the support of the coefficient q. We will make some appro-
priate changes of the proof of Theorem 2.1 for the wave equation to be applicable to the Schrödinger 
equation.

Let us consider two convex polygonal obstacles D1 and D2 corresponding to the two electric potentials 
q1 and q2 respectively. Let u1 and u2 be two respective solutions to the initial value problem (1.3) and (1.4)
for the Schrödinger equations corresponding to the coefficients q1 (with support D1) and q2 (with support 
D2). After applying the Laplace transform, one can see that for any fixed s > 0, the solutions ûj for j = 1, 2
satisfy

Δûj(x, s) + (qj(x) + is) ûj(x, s) = i u0(x), for all x ∈ BR

and û1 = û2 on ΓR for any fixed s > 0. Let us recall that the function u0 satisfies supp(u0) ⊂ E. In view of 
the proof of Lemma 3.4 we obtain û1 = û2 in (R2\BR) × R+. Thus, by the unique continuation principle 
for elliptic equations, one can see that for any fixed s > 0, we have the following identity

û1(x, s) = û2(x, s) in BR\(D1 ∪D2 ∪ E). (5.33)

On the other hand, by assuming that D1 �=D2, one can see that there exists (without loss of generality) a 
corner point O ∈ ∂D1\∂D2. For ε > 0, we recall that Bε(O) is the ball centered in O satisfying

Bε(O) ∩ (E ∪D2) = ∅,
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and Γ := ∂D1 ∩Bε(O). Since D2 ∩Bε(O) = ∅, then for any fixed s > 0, u1 and u2 satisfy

Δû1(x, s) + (q1(x) + is) û1(x, s) = 0, and Δû2(x, s) + is û2(x, s) = 0, for all x ∈ Bε(O). (5.34)

Moreover, taking into account the fact that ûj(·, s) ∈ H2(R2) for j = 1, 2, one can see in light of (5.33) and 
Lemma 3.4 that we have for any fixed s > 0,

û1(x, s) = û2(x, s), and ∂ν û1(x, s) = ∂ν û2(x, s), for all x ∈ Γ. (5.35)

By our assumption, q1(O) �= 0. Now, applying [18, Lemma 1] (see also Lemma 4.1) to the Cauchy problem 
(5.34) and (5.35), we obtain the following identity (cf. (4.20) in the wave equation case):

û1(x, s) = û2(x, s) = 0, ∀x ∈ Bε(O) (5.36)

for any fixed s > 0. In view of the unique continuation principle, we have

û1(x, s) = 0, ∀x ∈ BR\(D1 ∪ E). (5.37)

To derive the desired contradiction, we still denoted by E∗ a neighborhood of E that satisfies the conditions

E ⊂ E∗ ⊂ BR, and E∗ ∩D1 = ∅.

Let v be an arbitrary solution to the homogeneous equation

Δv(x, s) + is v(x, s) = 0.

Multiplying v to the equation of û1:

Δû1(x, s) + is û1(x, s) = i u0(x), for all x ∈ BR (5.38)

and integrating over E∗, one gets the following identity

i

∫
E∗

u0(x) v(x, s) dx =
∫
E∗

(Δû1(x, s) + is û1(x, s))v(x, s)dx

=
∫

∂E∗

(∂ν û1(x, s)v(x, s) − ∂νv(x, s)û1(x, s)) ds.

Now, taking v(x, s) = i e−i
√
s x·θ with θ ∈ S above and using (5.37), we get

F(u0)(
√
s θ) =

∫
R2

u0(x)e−i
√
s θ x dx = 0, for all θ ∈ S, s > 0,

where F(·) denotes the Fourier transform of u0. This implies that u0 ≡ 0 in R2, which is a contradiction. 
Thus we have proved D1 = D2.
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5.2. Coefficient identification

Our goal in this subsection is to pursue the proof of Theorem 2.2. For q1, q2 ∈ Q, having already proved 
that D1 = D2 =: D, we now move forward to show that q1 = q2 in D. We start first with one of the main 
key ingredients in our proof.

Lemma 5.1. Let O ∈ ∂D be a corner point, û be the solution to the equation

Δ û(x, s) + (q(x) + is) û(x, s) = iu0(x), for all x ∈ R2, s > 0. (5.39)

Then there exists a sufficiently large s0 > 0 such that û(O, s0) �= 0.

Proof. Let us decompose the solution û into the sum û = v̂ + ŵ, where v̂ solves the equation

Δ v̂(x, s) + is v̂(x, s) = i u0(x), for all x ∈ R2, s > 0, (5.40)

and ŵ satisfies

Δ ŵ(x, s) + is ŵ(x, s) + q(x) ŵ(x, s) = 0, for all x ∈ R2, s > 0. (5.41)

Note that v(x, t) satisfies the initial value problem (1.3)-(1.4) for the Schrödinger equation with q ≡ 0 in 
R2 and w := u − v denotes the scattered field incited by the potentials v(x, t) and q(x). The proof will be 
divided into two steps.

Step 1: We prove that there exists a large s0>0 such that v̂(O, s0) �= 0. Indeed, one can easily see that the 
solution v̂ to (5.40) solves the following integral equation

v̂(x, s) =
∫
E

i φ(x, y; s)u0(y) dy,

where the function φ is given by

φ(x, y; s) = i

4H
(1)
0 (

√
is |x− y|) = i

4H
(1)
0 (

√
seiπ/4|x− y|). (5.42)

Here H(1)
0 denotes the Hankel function of the first kind of order zero. This yields the following identity

v̂(x, s) =
∫
E

−1
4 H

(1)
0 (

√
s eiπ/4|x− y|)u0(y) dy.

Then, by taking s to the infinity, we will get in view of the asymptotic behavior of H(1)
0 at infinity, together 

with the identity (47) in [55], that only the principal part of v̂ will dominate and it will be equivalent to

v̂(x, s) � −
√

2 e−iπ/4

4
√
π eiπ/4

∫
R2

u0(y)√√
s |x− y|

ei
√
s |x−y|

( 1√
2+i 1√

2

)
dy, as s → ∞. (5.43)

Thus, at the corner point O which is assumed to be, without loss of generality, the origin of R2, we have
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v̂(O, s) � −
√

2 e−iπ/4

4
√
π eiπ/4

∫
R2

u0(y)√√
s|y|

ei
√
s |y|

( 1√
2+i 1√

2

)
dy, (5.44)

= −C0

∫
R2

u0(y)√√
s|y|

ei
√
s |y|

( 1√
2+i 1√

2

)
dy

as s → ∞, where C0 ∈ C is a constant. Let us denote by

I(s) :=
∫
R2

u0(y)√√
s|y|

ei
√
s |y|

( 1√
2+i 1√

2

)
dy.

In polar coordinates with y = (r cos θ, r sin θ) and r = |y|, the integral I will be given by

I(s) = s
−1
4

∞∫
0

e−(
√

s√
2−i

√
s√
2 ) r √

r
( 2π∫

0

u0(r cos θ, r sin θ) dθ
)

dr

= s
−1
4

∞∫
0

e−Zs r g(r) dr

:= s
−1
4 ĝ(Zs),

where Zs :=
√
s/
√

2 − i
√
s/
√

2 and ĝ denotes the Laplace transform of g with respect to r, defined by

g(r) :=
√
r

2π∫
0

u0(r cos θ, r sin θ) dθ.

Assume on the contrary that v̂(O, s) ≡ 0 for all s ≥ M0 for a large constant M0 > 0. Then the principal part 
I(s) must also vanish for s ≥ M0, implying that ĝ(Zs) = 0 for s ≥ M0. Since u0 has a compact support, we 
have g(r) ≡ 0 for large r. Therefore, the analyticity of ĝ leads to g(r) = 0 for any r ≥ 0. Consequently,

2π∫
0

u0(r cos θ, r sin θ) dθ = 0 for any r ≥ 0,

which contradicts the condition ii).

Step 2: We prove that the principal part of û(O, s) is dominated by v̂(O, s) as s → ∞, namely, ŵ(O, s)
decays faster than v̂(O, s) when s goes to the infinity. In the frequency domain, it is well known the solution 
ŵ can be represented via the integral equation

ŵ(x, s) =
∫
BR

φ(x, y; s) q(y) û(y, s) dy,

where φ is given by (5.42). Define the integral operator

Ks : L∞(BR) −→ L∞(BR)

û �−→
∫

φ(x, y; s) q(y) û(y, s) dy.

BR
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Similar to (5.43), we have for sufficiently large s that

‖ŵ‖L∞(BR) = ‖Ks û‖L∞(BR) ≤
C

s1/4 ‖û‖L∞(BR) (5.45)

where C depends on M and BR. Thus, for large s it holds that

‖Ks‖ <
C

s1/4 < 1.

This entails that (I −Ks) is an invertible operator. Since û = v̂ + ŵ = v̂ + Ksû, then one can get

û = (I −Ks)−1v̂ =
∞∑

n=0
Kn

s û = v̂ + Ksv̂ + · · · + Kn
s v̂ + · · · (5.46)

We recall that Bε(O) is a neighborhood of the corner point O. Therefore, for any n ≥ 1 we have

‖Kn
s v̂‖L∞(Bε(O)) ≤ ‖Kn

s v̂‖L∞(BR) ≤
C

sn/4
‖û‖L∞(BR) ≤

C

sn/4
‖v̂‖L∞(BR). (5.47)

In view of (5.47), we can see that the second part ŵ of the solution û decays faster to zero than v̂ as s
intends to infinity. This together with the first step completes the proof of Lemma 5.1. �
Proof of Theorem 2.2. Let ûj (j = 1, 2) be the solution to the equation corresponding to qj , namely

Δûj(x, s) + (qj(x) + is)ûj(x, s) = i u0(x), ∀x ∈ Bε(O) ∩D.

Arguing like in the previous section, we can get that

û1 = û2, and ∂ν û1 = ∂ν û2, ∀x ∈ Γ = Bε ∩ ∂D. (5.48)

Denote u := u1 − u2. Then u is a solution to

Δu(x, s) − q1(x)u(x, s) = (q1 − q2)(x)u2(x, s), ∀x ∈ Bε(O). (5.49)

By Lemma 5.1, we may choose a large s > 0 such that u2(O, s) �= 0. On the other hand, since q1 − q2 lies in 
the admissible set S(A, b), by arguing analogously to the proof of Theorem 2.1, we obtain q1 = q2 in Bε(O). 
Now applying the unique continuation argument concludes that q1 = q2 in D. �
Remark 5.2. The analogue of Lemma 5.1 for wave equations was proved via asymptotic analysis with a 
small number s > 0 (see Lemma 4.2). For the Schrödinger equation, we shall carry out the proof by taking 
a large number s > 0, as the proof of Lemma 4.2 does not apply to the Schrödinger equation.

6. Proof of Theorem 2.3

Proof of Theorem 2.3. We give a sketch of the proof. Suppose D1 �= D2. Without loss of generality, we may 
assume that there exists a corner point O ∈ ∂D1\∂D2 and Bε(O) ∩D2 = ∅ for some ε > 0. We recall the 
notations that Σ := Bε(O) ∩D1 and Γ := Bε(O) ∩ ∂D1. Then we get⎧⎪⎪⎨⎪⎪⎩

Δu1 + k2n1(x)u1 = 0 in Σ,

Δu2 + k2u2 = 0 in Σ,

u = u , ∂ u = ∂ u on Γ,
1 2 ν 1 ν 2
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and the difference u := u1 − u2 solves the Cauchy problem{
Δu + k2n1(x)u = k2 (1 − n1(x))u2 in Bε(O),
u = ∂νu = 0 on Γ.

(6.50)

Noting that u2 solves Δu2 + k2u2 = 0 in Bε(O), its lowest order expansion around O is harmonic. Then 
using Lemma 4.1, we get that u2 ≡ 0 in Σ, and further by unique continuation, u2 ≡ 0 in R2, which is 
impossible. Therefore we have D1 = D2 := D. Now setting Σ := Bε(O) ∩D and Γ := Bε(O) ∩ ∂D, then{

Δu + k2n1(x)u = k2 (n2 − n1)u2, in Σ
u = ∂νu = 0, on Γ.

(6.51)

Since ni ∈ S(A, b) and u2(O) �= 0, again applying Lemma 4.1 we get n1 = n2 in R2. �
7. Concluding remarks

This work has been mainly devoted to the target identification and coefficient recovery problems for the 
time-dependent wave and Schrödinger equations as well as the Helmholtz equation. We have considered the 
penetrable scatterers with transmission conditions on the interface. As we are interested in the important 
case when only a single dynamical data is available, our investigations have been restricted to convex 
polygonal scatterers and an admissible set of coefficients that include harmonic functions.

There are several interesting topics that deserve further investigation. The first topic is the uniqueness 
for the important cases when the data is available only on a finite period of time as well as for general 
penetrable scatterers. Note that our general idea of applying the Laplace transform relies heavily on the 
data available over the infinite time, which can not be carried out to the case of the dynamical data available 
only on a finite period of time. However, we believe that the uniqueness results in recovering the shape (the 
first part in Theorems 2.1 and 2.2) can be generalized to non-polygonal convex penetrable scatterers, while 
the Laplace transform provides the measurement data for each parameter (frequency). The second topic is 
how to design efficient inversion algorithms for recovering convex polygonal scatterers with only a single 
dynamical data, based on the theory that has been developed here and some existing numerical schemes 
for time-harmonic inverse problems.
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