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Consider a time-harmonic acoustic plane wave incident onto a doubly periodic (biperiodic) surface from
above. The medium above the surface is supposed to be filled with a homogeneous compressible inviscid
fluid of constant mass density, whereas the region below is occupied by an isotropic and linearly elastic
solid body characterized by its Lamé constants. This article is concerned with a variational approach to the
fluid–solid interaction problems with unbounded biperiodic Lipschitz interfaces between the domains of
the acoustic and elastic waves. The existence of quasiperiodic solutions in Sobolev spaces is established at
arbitrary frequency of incidence, while uniqueness is proved only for small frequencies or for all frequencies
excluding a discrete set. A finite element scheme coupled with Dirichlet-to-Neumann mappings is proposed
and the convergence analysis is performed. The Dirichlet-to-Neumann mappings are approximated by trun-
cated Rayleigh series expansions. Finally, numerical tests in 2D are presented to confirm the convergence of
solutions and the energy balance formula. In particular, the frequency spectrum of normally reflected signals
is plotted for water–brass and water–brass–water interfaces. © 2015 Wiley Periodicals, Inc. Numer Methods
Partial Differential Eq 32: 5–35, 2016

Keywords: convergence analysis; fluid–solid interaction; periodic structure; Helmholtz equation; Lamé
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I. INTRODUCTION

Consider a time-harmonic acoustic plane wave incident onto an unbounded doubly periodic
(biperiodic) surface from above (cf. Fig. 1). The medium above the surface is supposed to be
filled with a homogeneous compressible inviscid fluid with a constant mass density, whereas the
region below is occupied by an isotropic and linearly elastic solid body characterized by its Lamé
constants. Due to the external incident acoustic field, an elastic wave propagating downward is
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FIG. 1. Scattering of plane waves from an egg-crate shaped biperiodic interface separating the regions of
fluid (above) and solid (below) in R

3. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

incited inside the solid, while the incident acoustic wave is scattered back into the fluid. This leads
to the fluid–solid interaction (FSI) problem with unbounded biperiodic interfaces separating the
domains of acoustic and elastic waves.

The FSI problem in periodic structures has many applications in underwater acoustics, sonic,
and photonic crystals as well as in the field of ultrasonic nondestructive evaluation (cf. [1–4]
and the references therein). In immersion testing, objects are always put in a tank of water to
minimize the energy loss of the ultrasound beam transmitting from a transducer into a medium
and vice versa. The investigation of surface (Rayleigh) waves generated by periodic interfaces can
be important in developing new surface acoustic wave devices and planar actuators [1]. Manifold
applications of periodic interfaces, for example, in grain structure, lamination, and fiber reinforce-
ment as well as in the manufacturing of material surfaces, motivate us to rigorously investigate
FSI problems in periodic structures. Conversely, fluid–solid interfaces are also important in seis-
mology and exploration geophysics for the acoustical characterization of the first layer of the
sea floor. This is because the propagation of Stoneley–Scholte waves, another type of surface
waves that exit on a fluid–solid interface (cf. [3] for a detailed discussion), is strongly related
to the shear wave velocity of the sedimentary bottom [5]. Note that, so far, a vast literature has
come from the engineering and physical communities only. In this work, we develop a general
mathematical framework for the FSI problem with a 1D or 2D periodic interface via variational
arguments.

Since Lord Rayleigh’s original work [6], grating diffraction problems have received much
attention. In many publication of physical journals, the diffraction on periodic surfaces is sim-
ulated by the Rayleigh–Fourier approach, and numerical solutions are obtained by solving the
classical grating equations under the so-called Lippmann condition [1–3, 7], which requires that
the height of the corrugations of the interface is small compared with the wavelength and that
the latter is comparable with the periods. From the mathematical point of view, the diffraction
of pure acoustic, elastic, or electromagnetic waves has been studied extensively including the-
oretical analysis and numerical approximation, using integral equation methods (e.g., [8–12]),
variational methods (e.g., [13–21]) or the coupling scheme [22, 23]. In particular, the variational
approach appears to be well adapted to the analytical and numerical treatment of rather general
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two-dimensional and three-dimensional periodic diffractive structures involving complex mate-
rials and nonsmooth interfaces (cf., e.g., the adaptive finite element method (FEM) [24] and the
mortar technique combined with Nitsche’s method [19, 20, 25] for diffraction gratings).

The contributions of this work are twofold. First, we establish an equivalent variational formu-
lation in a bounded periodic cell involving two nonlocal transparent boundary operators. Relying
on properties of the Dirichlet-to-Neumann (DtN) maps for the Helmholtz and Navier equations,
we show the existence of solutions in quasiperiodic Sobolev spaces by establishing the Fredholm-
ness of the operator generated by the corresponding sesquilinear form. Moreover, uniqueness is
proved at least for small frequencies or for all frequencies excluding a discrete set. A nonunique-
ness example in Lemma 4.3 shows that uniqueness does not hold in general, even if the interface
is given by the graph of some smooth biperiodic function. This is in sharp contrast to the result
in [21] for the pure Helmholtz equation and that in [26] for the pure Lamé system, where the
uniqueness is proved via periodic Rellich’s identities for a scattering interface given by the graph
of some function. This suggests the possible existence of surface (Rayleigh or evanescent) waves
in general settings, and a corresponding search for eigensolutions may help to design new surface
wave devices.

Second, based on the variational formulation, a finite element scheme with approximated
Dirichlet-to-Neumann mappings in form of truncated Rayleigh series expansions is proposed.
The scheme is capable of treating general piecewise smooth Lipschitz interfaces whose height is
comparable with the periods and thus relaxes the Lippmann condition. The convergence analysis
of the proposed algorithm is performed in terms of the mesh size and truncation order of the
DtN mappings. Numerical examples in 2D are tested to confirm the convergence analysis and the
energy balance formula. In particular, we plot and compare the frequency spectrum of normally
reflected signals for the water–brass and water–brass–water interfaces. The frequency dips imply
the existence of Wood anomalies and show the ability of periodic interfaces to incite surface
waves, which have been verified in many papers of the physical literature [1–3, 7].

In the case of a bounded (nonperiodic) elastic body emerged in a fluid, the scattered acoustic
field decays at infinity according to Sommerfeld’s radiation condition (cf. the pioneering work
[27]), which of course is different from the radiation condition imposed here by the Rayleigh
series. Various systems of boundary integral equations and variational formulations were derived
and analysed (cf., e.g., [28, 29]). It is well known that uniqueness for a bounded elastic body
does not hold at Jones frequencies. In this article, we also show the existence of such irregular
frequencies in periodic structures (cf. Section IV). We refer to [30] for a FEM-based ultraweak
variational formulation for solving the 2D FSI problem with a bounded elastic body.

The article is organized as follows. In Section II, we rigorously formulate the interaction prob-
lems with biperiodic Lipschitz interfaces separating the domains of acoustic and elastic waves.
In Section III, we propose an equivalent variational formulation in a truncated periodic cell by
introducing two nonlocal transparent operators. Section IV is devoted to the solvability of the FSI
problem through the variational approach. An energy balance formula will be stated in Section V
and the numerical analysis of the FEM is given in Section VI. In the final Sections VII and VIII
we introduce the corresponding two-dimensional setting and present numerical tests.

We end up this section by introducing some notation that will be used throughout the article.
Denote by (·)� the transpose of a vector or a matrix, and by (·)∗ the adjoint of an operator. The
symbols ej , j = 1, 2, 3 denote the Cartesian unit vectors in R

3. For a ∈ C, let |a| denote its mod-
ulus, and, for a ∈ C

3, let |a| denote its Euclidean norm. The notation a · b stands for the bilinear
inner product

∑3
j=1 ajbj of a = (a1, a2, a3)

�, b = (b1, b2, b3)
� ∈ C

3. For x = (x1, x2, x3)
� ∈ R

3,

we write x̃ = (x1, x2)
� so that x = (x̃�, x3)

�.
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II. MATHEMATICAL FORMULATIONS

We assume that an acoustic wave is incident onto a biperiodic Lipschitz surface � ⊂ R
3

from above. Without loss of generality we suppose that � is 2π -periodic in x1 and x2, that
is, x = (x̃�, x3)

� ∈ � implies (x̃� + 2π n�, x3)
� ∈ � for all n = (n1, n2)

� ∈ Z
2. Denote

by �+ the region above �, which is filled with a homogeneous compressible inviscid fluid with
the constant mass density ρf > 0. The incident wave is supposed to be a time-harmonic plane
wave of the form vin(x) exp(−iωt) with frequency ω > 0 and speed of sound c0 > 0, where the
spatially dependent function vin takes the form

vin(x) = exp(ikθ̂ · x), θ̂ = (sin θ1 cos θ2, sin θ1 sin θ2, − cos θ1)
� ∈ S

2 := {x ∈ R
3 : |x| = 1}.

(2.1)

In (2.1), the vector θ̂ denotes the incident direction with the incident angles θ1 ∈ (−π/2, π/2), θ2 ∈
[0, 2π), and k = ω/c0 is the wave number in the fluid. We assume the region below �, denoted
by �−, is occupied by an isotropic and linearly elastic solid body characterized by the real valued
constant mass density ρ > 0 and the Lamé constants λ, μ ∈ R satisfying μ > 0, 3λ + 2μ > 0.

Under the hypothesis of small amplitude oscillations both in the solid and the fluid, the direct
or forward scattering problem looks for the total acoustic field v = vin + vsc and the transmit-
ted elastic field u generated from a known (prescribed) incident wave vin such that (cf., e.g.,
[4, 28, 29])

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(	 + k2) v = 0 in �+,

(	∗ + ω2ρ) u = 0 in �−, 	∗ := μ	 + (λ + μ) grad div,

η u · ν = ∂νv on �, η := ρf ω2 > 0,

T u = −v ν on �.

(2.2)

Here, ν = (ν1, ν2, ν3)
� ∈ S

2 denotes the unit normal vector on � pointing into �− and
∂ν u := ν · grad u. As a convention we shall use the symbol ∂j u to denote ∂u/∂xj . In (2.2),
T u stands for the three-dimensional stress vector or traction having the form

T u = T (λ, μ)u := 2μ ∂ν u + λ(div u) ν + μ ν × curl u (2.3)

on �. Due to Betti’s formula (cf., e.g., [31]), the role of the above stress operator in the Lamé
equation is the same as that of the normal derivative in the scalar Helmholtz equation.

Throughout the article, we write α = (α1, α2)
� := k(sin θ1 cos θ2, sin θ1 sin θ2)

� ∈ R
2. Now

the incoming wave is α-quasiperiodic in the sense that vin(x) exp(−iα · x̃) is 2π -periodic with
respect to x1 and x2. The geometry is 2π -periodic. So it is natural to restrict our considerations
to α-quasiperiodic solutions of our transmission problem, that is, for w = v in �+ and w = u in
�− it holds that

w(x̃ + 2π n, x3) = exp(2πiα · n) w(x1, x2, x3) for all n = (n1, n2)
� ∈ Z

2. (2.4)

Note that a mathematically rigorous argument for this restriction would require a uniqueness
result in nonperiodic weighted Sobolev spaces covering plane waves, which is still open. The
Rellich type identities derived in [32] and [33] for the pure Helmholtz and Navier equations do
not apply to the FSI problem, even if the interface is given by the graph of a smooth function in
two dimensions (cf. the nonuniqueness example in Section IV below).
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As the domain �± is unbounded in the ±x3-direction, a radiation condition must be imposed
at infinity to ensure well-posedness of the boundary value problem (2.2). Let �+ := maxx∈�{x3}
and �− := minx∈�{x3}. Following [21], we require that the scattered acoustic field vsc admits an
upward Rayleigh expansion (cf. also [15, 34, 35])

vsc(x̃, x3) =
∑
n∈Z2

vn exp(iαn · x̃ + iηnx3), x3 > �+, (2.5)

with the Rayleigh coefficients vn ∈ C. The parameters αn = (α(1)
n , α(2)

n )
� ∈ R

2 and ηn ∈ C in
(2.5) are given by

αn := α + n ∈ R
2, ηn :=

⎧⎨
⎩

(k2 − |αn|2)
1
2 if |αn| ≤ k,

i(|αn|2 − k2)
1
2 if |αn| > k,

for n ∈ Z
2. (2.6)

To see the corresponding expansion of the elastic field, we decompose it into the compressional
and shear parts,

u = 1

i
(grad ϕ + curl ψ) with ϕ := − i

k2
p

div u , ψ := i

k2
s

curl u , (2.7)

where the scalar function ϕ and the vector function ψ satisfy the homogeneous Helmholtz equa-
tions (	 + k2

p) ϕ = 0 and (	 + k2
s ) ψ = 0 in �− with the compressional and shear wave

numbers defined as kp := ω
√

ρ/(2μ + λ) and ks := ω
√

ρ/μ. Applying the downward Rayleigh
expansion for the scalar Helmholtz equation to ϕ and the components of ψ , that is, setting
ϕ(x̃, x3) = ∑

n∈Z2 ϕp,n exp(iαn · x̃ − iβnx3) and ψ(x̃, x3) = ∑
n∈Z2 �s,n exp(iαn · x̃ − iγnx3) with

the orthogonality condition �s,n · (α�
n , −γn)

� = 0, we finally obtain the corresponding expansion
of u into downward propagating plane elastic waves

u(x) =
∑
n∈Z2

{
Ap,n

(
αn

−βn

)
exp(iαn · x̃ − iβnx3) + As,n exp(iαn · x̃ − iγnx3)

}
, x3 < �−.

(2.8)

In (2.8), the Rayleigh coefficients are given as Ap,n := ϕp,n ∈ C and As,n := (α�
n , −γn)

� ×�s,n ∈
C

3. In particular, we have the orthogonality As,n · (α�
n , −γn)

� = 0 for all n ∈ Z
2. The parameters

βn and γn occurring in (2.8) are defined analogously to ηn in (2.6) with k replaced by kp and ks ,
respectively. By up and us we denote the compressional and shear parts of u, respectively, that is,
for x3 < �−,

up(x) =
∑
n∈Z2

Ap,n

(
αn

−βn

)
exp(iαn · x̃ − iβnx3), us(x) =

∑
n∈Z2

As,n exp(iαn · x̃ − iγnx3).

Then it is obvious that u = up +us with (	+k2
p) up = 0, curl up = 0 as well as (	+k2

s ) us = 0,
div us = 0 in �−. As ηn, βn and γn are real for at most finitely many indices n ∈ Z

2, we observe
that only the finite number of plane waves in (2.5) corresponding to |ηn| ≤ k and those in (2.8) cor-
responding to |βn| ≤ kp and |γn| ≤ ks propagate into the far field. These plane waves are referred
to as the upward and downward outgoing plane waves, respectively. The remaining part consists
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of evanescent (or surface) waves decaying exponentially as |x3| → +∞. Thus, the Rayleigh
expansion (2.5) converges uniformly with all derivatives in the upper half-space {x : x3 > b} for
any b > �+, while (2.8) converges in the lower half-space {x : x3 < a} for any a < �−.

Now, we can formulate our FSI problem as the following boundary value problem, in which
the interface � is not necessarily the graph of a biperiodic function.

Boundary value problem (BVP): Given a biperiodic Lipschitz surface � ⊂ R
3, which is

2π -periodic in x1 and x2 and which splits R
3 into an upper and lower half space, and an inci-

dent field vin of the form (2.1), find a scalar function v = vin + vsc ∈ H 1
loc(�

+) and a vector
function u ∈ H 1

loc(�
−)

3 satisfying the equations and transmission conditions in (2.2), the quasi-
periodic boundary condition (2.4) and the radiation conditions, that is, that u and v admit Rayleigh
expansions like in (2.5) and (2.8), respectively.

III. VARIATIONAL FORMULATION IN A TRUNCATED DOMAIN

In this section, we propose a variational formulation equivalent to BVP, based on the approach
of [21, 35] and [18, 26] for the scattering of acoustic and elastic waves by diffraction gratings.
Thanks to the periodicity of the unbounded domains �±, we can restrict our discussions to one
single periodic cell {x : 0 < xj < 2π , j = 1, 2} such that after a truncation in the x3-direction the
compact imbedding of Sobolev spaces can be applied. This together with Friedrich’s inequality
for the Helmholtz equation and Korn’s inequality for the Navier equation, enables us to justify
the strong ellipticity of the sesquilinear form generated by the variational formulation.

We begin with introducing artificial boundaries �±
b := {(x1, x2, ±b) : 0 ≤ x1, x2 ≤ 2π} with

the x3-coordinates b ≥ �+ and −b ≤ �− and define the two adjacent bounded domains �+
b :=

{x ∈ �+ : 0 < x1, x2 < 2π , x3 < +b} and �−
b := {x ∈ �− : 0 < x1, x2 < 2π , x3 > −b}. For

simplicity, we still use � to denote one period of the unbounded periodic grating surface � (cf.
Fig. 2). As � is a Lipschitz surface, we may restrict our considerations to the case that �±

b are
bounded Lipschitz domains in R

3. Let H 1
α (�±

b ) denote the Sobolev space of scalar functions on
�±

b , which are α-quasiperiodic with respect to x1 and x2.
Introduce V +

t := Ht
α(�

+
b ), V −

t := Ht
α(�

−
b )

3 and the family of product spaces Vt = Vt(α) :=
V +

t ×V −
t , equipped with the norm in the usual product space of Ht(�+

b )×Ht(�−
b )

3. In particular,
V1 is the energy space. Using the transmission conditions in (2.2), it follows from Green’s and
Betti’s formulas that, for (ϕ, ψ) ∈ V1,

−
∫

�+
b

(	 + k2)v ϕ dx =
∫

�+
b

[
grad v · grad ϕ − k2vϕ

]
dx − η

∫
�

u · νϕ ds −
∫

�+
b

∂νv ϕ ds ,

−
∫

�−
b

(	∗ + ω2ρ)u · ψ dx =
∫

�−
b

[E(u, ψ) − ω2ρu · ψ ] dx −
∫

�

v ν · ψds −
∫

�−
b

T u · ψ ds ,

(3.1)

where the bar indicates complex conjugation, T is the stress vector defined by (2.3) and

E(u, ψ) := 2μ

3∑
i,j=1

∂iuj ∂iψj + λ (div u)(div ψ) − μ curl u · curl ψ . (3.2)

Now we introduce the DtN maps T ± on the artificial boundaries �±
b .

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 2. The geometry settings in one periodic cell. Here �±
b := {(x1, x2, ±b)� : 0 < x1, x2 < 2π} and �±

b

denotes the domain between �±
b and �.

Definition 3.1. For any w ∈ Hs
α(�+

b ), s > 0, the DtN operator T + applied to w is defined
as ∂νv

sc|�+
b

, where vsc is the unique α-quasiperiodic solution of the homogeneous Helmholtz
equation in x3 > b, which satisfies the upward radiation condition (2.5) and has the Dirichlet
boundary value vsc = w on �+

b .
Analogously, for any w ∈ Hs

α(�−
b )

3, s > 0, the DtN operator T − applied to w is defined as
T u|�−

b
, where u is the unique α-quasiperiodic solution of the homogeneous Navier equation in

x3 < −b, which satisfies the downward radiation condition (2.8) and takes the Dirichlet boundary
value u = w on �−

b .

In this article, we use the following equivalent norm on Hs
α(R2):

||w||Hs
α(R2) :=

⎛
⎝∑

n∈Z2

(1 + |n|)2s |ŵn|2
⎞
⎠

1/2

, s ∈ R, (3.3)

where ŵn ∈ C are the Fourier coefficients of the function exp(−iα · x̃) w(x̃), that is, w(x̃) =∑
n∈Z2 ŵn exp(iαn · x̃). Letting w ∈ Hs

α(�+
b ), s > 0 be given as above, one can readily derive an

explicit expression of the DtN map T + from its definition as follows:

(T +w)(x̃) =
∑
n∈Z2

iηn ŵn exp(iαn · x̃), (3.4)

where ηn is defined as in (2.6). Analogously, for w ∈ Hs
α(�−

b )
3, s > 0 with Fourier coefficients

ŵn ∈ C
3, we can represent the DtN map T − as

(T −w)(x̃) =
∑
n∈Z2

iWn ŵn exp(iαn · x̃), (3.5)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where Wn is the 3 × 3 matrix given by

Wn = Wn(ω, ρ, α) := 1

|αn|2 + βnγn

⎛
⎝an bn −cn

bn dn −en

cn en fn

⎞
⎠ , (3.6)

an := μ[(γn − βn)(α
(2)
n )

2 + k2
s βn], bn := −μα(1)

n α(2)
n (γn − βn),

cn := (2μα2
n − ω2ρ + 2μγnβn)α

(1)
n , en := (2μα2

n − ω2ρ + 2μγnβn)α
(2)
n ,

dn := μ[(γn − βn)(α
(1)
n )

2 + k2
s βn], fn := γnω

2ρ.

The expression of T + is well-known (cf. [21, 35]), whereas that of T − can be derived following
the way in [26] for upward propagating elastic waves. Throughout the article we assume ω is not
an exceptional frequency, that is,

ω /∈ D0 := {
ω : ∃n ∈ Z

2 s.t. |αn(ω)|2 + βn(ω)γn(ω) = 0
}

, (3.7)

so that the denominator of (3.6) never vanishes. The condition (3.7) can be guaranteed if ω is
sufficiently small or if the relation λ + 2μ ≤ ρc2

0 (equivalently k ≤ kp) holds [cf. Theorem 4.4
(ii)]. The condition ω /∈ D0 is a technical assumption only. If ω ∈ D0 is an exceptional frequency,
then the DtN mapping and the subsequent variational form (3.12) is to be modified in accordance
with Remark 3.3.

Remark 3.2. Suppose that w satisfies the upward α-quasiperiodic Rayleigh expansion

w(x) =
∑
n∈Z2

{
Ap,n

(
αn

βn

)
exp(iαn · x̃ + iβnx3) + As,n exp(iαn · x̃ + iγnx3)

}
, x3 > �+,

as a solution to the Navier equation in �+, with the Rayleigh coefficients Ap,n ∈ C, As,n ∈ C
3

such that As,n · (α�
n , γn)

� = 0. Then one can prove (T w)|�+
b

= ∑
n∈Z2 i W�

n ŵn exp(iαn · x̃) (cf.

[[26], Lemma 1]), where ŵn denotes the Fourier coefficient of exp(−iα · x̃) w(x̃, b) of order n.
Hence, the matrix in (3.6) differs from that in [26] only in the signs of the entries cn and en.

Making use of the norm (3.3) and the asymptotic behavior

ηn, βn, γn ∼ i|n|, |βn − γn| ∼ 1

|n|2
k2

s − k2
p

2
, |αn|2 + βnγn ∼ k2

p + k2
s

2
as |n| → ∞,

one can straightforwardly verify that T + : Hs
α(R2) → Hs−1

α (R2) and T − : Hs
α(R2)

3 →
Hs−1

α (R2)
3 with s > 0 are both bounded operators. Moreover, the operator −Re T + is positive

semidefinite over Hs
α(�+

b ), that is,

−Re
∫

�+
b

T +w w̄ ds = 4π 2
∑

|αn|≥k

|ηn| |ŵn|2 ≥ 0 for all w ∈ Hs
α(�+

b ). (3.8)

Unfortunately, the positive semidefiniteness of −Re T − over Hs
α(�−

b )
3 does not hold in general

(cf. [18, 26]). With the definitions of T ±, we can substitute the terms ∂νv and T u on the right-hand
sides of (3.1) by

(∂νv)|�+
b

= f0 + T +(v|�+
b
), (T u)|�−

b
= T −(u|�−

b
), (3.9)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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f0 := (∂νv
in)|�+

b
− T +(vin|�+

b
), f0(x̃) = −2iη0 exp(iα · x̃ − iη0b) ∈ H−1/2

α (�+
b ), (3.10)

which follows from the expression of vin in (2.1). Combining (3.9) and (3.1), we obtain the
following variational formulation of BVP: Find (v, u) ∈ V1 such that

A((v, u), (ϕ, ψ)) =
∫

�+
b

f0ϕ ds for all (ϕ, ψ) ∈ V1, (3.11)

where the sesquilinear form A : V1 × V1 → C is defined as

A((v, u), (ϕ, ψ)) :=
∫

�+
b

[
grad v · grad ϕ − k2vϕ

]
dx − η

∫
�

u · ν ϕ ds −
∫

�+
b

T +v ϕ ds

+ η

[∫
�−

b

[E(u, ψ) − ω2ρu · ψ ] dx −
∫

�

v ν · ψds −
∫

�−
b

T −u · ψds

]

(3.12)

for all (ϕ, ψ) ∈ V1. The above sesquilinear form obviously generates a continuous linear operator
A : V1 → V ′

1 such that

A((v, u), (ϕ, ψ)) = 〈A(v, u), (ϕ, ψ)〉 for all (ϕ, ψ) ∈ V1. (3.13)

Here V ′
1 denotes the dual space of V1 with respect to the duality 〈·, ·〉 extending the L2 scalar

product in L2(�+
b ) × L2(�−

b )
3.

Remark 3.3. Now we consider the case that the condition ω /∈ D0 is violated. For simplicity,
we assume that the condition |αn(ω)|2 + βn(ω)γn(ω) = 0 is satisfied if and only if n = n# for a
fixed n# ∈ Z

2. To introduce a modified DtN map and a modified variational form, we need some
notation. For the three downward Rayleigh modes and the two auxiliary modes

w−
1 (x) := �w −

1 exp(i(αn# · x̃ − βn# [x3 + b])), �w −
1 := (α�

n#
, −βn# )

�

w−
2 (x) := �w −

2 exp(i(αn# · x̃ − γn# [x3 + b])), �w −
2 := (α(2)

n#
, −α(1)

n#
, 0)

�
,

w−
3 (x) := �w −

3 exp(i(αn# · x̃ − γn# [x3 + b])), �w −
3 := (γn#α

�
n#

, |αn# |2)�
,

w⊥
0 (x) := �w ⊥

0 exp(i(αn# · x̃ − γn# [x3 + b])), �w ⊥
0 := (βn#α

�
n#

, |αn# |2)�
,

w−
0 (x) := γn#w

−
1 − w−

3 ,

we observe w−
0 (x)|�+

b
= 0 and that the w−

j (x) are orthogonal to w⊥
0 (x) over �−

b . The tractions of

w−
j over �−

b take the form T wj(x) = �w t
j exp(αn# · x̃) with the vectors

�w t
1 := i(−2μβn#α

�
n#

, [2μβ2
n#

+ λ(β2
n#

+ |αn# |2)])�
, �w t

2 := −iμγn# �w −
2 ,

�w t
3 := iμ([−γ 2

n#
+ |αn# |2]α�

n#
, −2γn# |αn# |2)�

, �w t
0 := γn# �w t

1 − �w t
3 .
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14 HU, RATHSFELD, AND YIN

It is not hard to prove that �w t
0 �= 0. Now, using the definition of matrices �w t

j ⊗ �w −
j :=

([ �w t
j ]

l
[ �w −

j ]
m
)

3

l,m=1
(tensor product of vectors �w t

j and �w −
j ), we define the modified DtN map

by setting (T −
# w)(x̃) = ∑

n∈Z2 iW #
n ŵn exp(iαn · x̃) with W #

n#
:= Wn for n �= n# and

W #
n#

:= 1

|αn# |2
�w t

2 ⊗ �w −
2 + 1

|αn# |2(γ 2
n#

+ |αn# |2)
�w t

3 ⊗ �w −
3 .

Note that T −
# (w−

j |�−
b
) = T w−

j |�−
b

, j = 2, 3 and T −
# (w⊥

0 |�−
b
) = 0. The modified variational

form of (3.13) is obtained by adding a new unknown parameter ξ and by replacing the last
term − ∫

�−
b

T −u · ψ ds in the square bracket by − ∫
�−

b
{T −

# u + ξ �w t
0 } · ψ ds. To get the solution

(v, u, ξ), we have to solve the corresponding Eq. (3.11) together with the additional scalar equation∫
�−

b
u · w⊥

0 ds = 0.

It is not hard to show that the triple (v, u, ξ) with (v, u) the solution of the BVP and with
ξ := Ap,n#/γn# [cf. (2.8)] is a solution of the modified variational equation. Moreover, if BVP
has no trivial solution, then it is not hard to see that the only solution of the homogeneous modi-
fied variational equation is trivial. In other words, BVP is equivalent to the modified variational
equation.

IV. SOLVABILITY RESULTS

Having established the equivalent variational formulation in a truncated domain in Section III, the
purpose of this section is to derive uniqueness and existence of weak solutions to the variational
Eq. (3.13). We first prove the strong ellipticity of the sesquilinear form A.

Lemma 4.1. The sesquilinear form A defined in (3.12) is strongly elliptic over V1, and the
operator A defined by (3.13) is always a Fredholm operator with index zero.

Proof. As the matrix −Re (iW�
n ) is positive for large |n| (cf. [26, Lemma 2]), the opera-

tor −Re (T −) can be decomposed into the sum of a positive definite operator T1 and a finite
rank operator T2 from H 1/2

α (�−
b )

3 to H−1/2
α (�−

b )
3. We split the sesquilinear form A into the sum

A = A1 + A2, where

A1((v, u), (ϕ, ψ)) :=
∫

�+
b

[
grad v · grad ϕ + vϕ

]
dx −

∫
�+

b

T +v ϕ ds

+ η

[∫
�−

b

[E(u, ψ) + u · ψ ] dx +
∫

�−
b

T1 u · ψds

]
,

A2((v, u), (ϕ, ψ)) := −
∫

�+
b

[
(1 + k2)vϕ

]
dx − η

∫
�

u · ν ϕ ds

+ η

[∫
�−

b

[−(1 + ω2ρ)u · ψ ] dx −
∫

�

v ν · ψ ds +
∫

�−
b

T2u · ψ ds

]
.

Recalling (3.8) and Korn’s inequality (cf., e.g., [28, Chap. 5.4] or [18]), we have

Re A1((v, u), (v, u)) ≥ c1 (||v||2
V +

1
+ ||u||2

V −
1

) for all (v, u) ∈ V1,
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with some constant c1 > 0. Moreover, applying the Cauchy-Schwarz inequality yields

Re A2((v, u), (v, u)) ≥ −c2 (||v||2
L2(�+

b
)
+ ||v||2

L2(�)
+ ||u||2

L2(�−
b

)
3 + ||u||2

L2(�)3)

+ η Re (T2u, u)
L2(�−

b
)
3 ,

for some constant c2 > 0. From the compact imbeddings H 1(�±
b ) ↪→ L2(�±

b ), H 1/2(�) ↪→
L2(�) and the compactness of T2, we conclude that the sesquilinear form A is strongly elliptic
over V1 ×V1. Consequently, the operator A defined by (3.13) is always a Fredholm operator with
index zero.

From Lemma 4.1 and the Fredholm alternative, it follows that the variational formulation
(3.11) is uniquely solvable provided the homogeneous operator equation A(v, u) = 0 has only
the trivial solutions v = 0, u = 0. However, uniqueness cannot be proved in the general case.
It will be shown below that only the upward outgoing modes of vsc and the downward outgoing
modes of u can be uniquely determined, whereas the other evanescent modes may be nonunique.

Lemma 4.2. Assume (vsc, u) ∈ V1 is a solution pair to the variational problem (3.11) with
vin = 0 or, equivalently, f0 = 0. Then there holds vn = 0 for |αn| < k, Ap,n = 0 for |αn| < kp ,
and |As,n| = 0 for |αn| < ks , where vn, Ap,n and As,n denote the Rayleigh coefficients of vsc and
u [cf. (2.5) and (2.8) ].

Proof. Taking the imaginary part of (3.11) with ϕ = vsc, ψ = u, vin = 0 and using the fact
that η > 0, we get

−Im (T + vsc, vsc)L2(�+
b

) − η Im (T − u, u)
L2(�−

b
)
3 = 0. (4.1)

From the explicit expressions for T + and T −, we can derive that

Im (T + vsc, vsc)L2(�+
b

) = 4π 2
∑

n:|αn|<k

ηn |vn|2,

Im (T − u, u)L2(�−
b

) = 4π 2

⎛
⎝ ∑

n:|αn|<kp

βn |Ap,n|2 ω2ρ +
∑

n:|αn|<ks

γn |As,n|2μ
⎞
⎠ , (4.2)

where the second equality follows from the arguments in proving [26, Lemma 3]. As ηn > 0 for
|αn| < k, βn > 0 for |αn| < kp and γn > 0 for |αn| < ks , we complete the proof of Lemma 4.2
by combining (4.1) and (4.2).

Using the arguments of the above proof, we cannot prove uniqueness of solutions to (3.11)
for general biperiodic Lipschitz interfaces separating domains of the fluid and solid. Moreover,
uniqueness does not hold in general, even if � is the graph of a smooth biperiodic function. To see
this, we construct a nonuniqueness example where � is a flat surface parallel to the x1x2-plane.

Lemma 4.3. Assume that � = �0 := {x : x3 = 0} is a flat interface, the incident angle θ2 = 0
and that k = kp = k sin θ1 + m0 for some m0 ∈ Z . Then there exists at least one nontrivial
solution pair (vsc, u) ∈ V1 to the homogeneous variational problem A((vsc, u), (ϕ, ψ)) = 0 for
all (ϕ, ψ) ∈ V .
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16 HU, RATHSFELD, AND YIN

Proof. Observing that the interface �0 is invariant in x2 and the incident direction θ̂ =
(sin θ1, 0, − cos θ1) is orthogonal to the x2-axis, the original three-dimensional scattering problem
reduces to a two-dimensional problem in the x1x3-plane. Consequently, we look for upward and
downward Rayleigh expansion solutions vsc and u of the special form

vsc(x) =
∑
m∈Z

vm ei(α̃mx1+ηmx3), x3 > 0,

u(x) =
∑
m∈Z

⎛
⎝Ap,m

⎛
⎝ α̃m

0
−βm

⎞
⎠ ei(α̃mx1−βmx3) + As,m

⎛
⎝γm

0
α̃m

⎞
⎠ ei(α̃mx1−γmx3)

⎞
⎠ , x3 < 0,

with vm, Ap,m, As,m ∈ C, α̃m := α1 + m = α(1)
n for n = (m, 0). Here, α1 = k sin θ1 due to the

assumption that θ2 = 0. The parameters ηm, βm, γm for m ∈ Z are defined in the same way as
ηn, βn, γn [cf. (2.6)] with n = (m, 0) and α = (α1, 0)�. Note that the solution pair (vsc, u) does
not depend on x2.

Elementary calculations show that, using ν = (0, 0, −1) on �0,

(T u)(x)|�0 = i
∑
m∈Z

(
2μα̃mβm ω2ρ − 2μα̃2

m

2μα̃2
m − ω2ρ 2μα̃mγm

)(
Ap,m

As,m

)
eiα̃mx1 ,

ν · u(x)|�0 =
∑
m∈Z

(
Ap,mβm − As,mα̃m

)
eiα̃mx1 , (∂νv

sc)(x)|�0 =
∑
m∈Z

−i vmηmeiα̃mx1 .

Hence, the coupling conditions between v = vsc and u on �0 are equivalent to the algebraic
equations

Dm

⎛
⎝ vm

iAp,m

iAs,m

⎞
⎠ = 0, Dm :=

⎛
⎝ 0 2μα̃mβm ω2ρ − 2μα̃2

m

−1 2μα̃2
m − ω2ρ 2μα̃mγm

−ηm/(ρf ω2) βm −α̃m

⎞
⎠ (4.3)

The determinant of Dm is given by

Det (Dm) = − ηm

ρf ω2

∣∣∣∣ 2μα̃mβm ω2ρ − 2μα̃2
m

2μα̃2
m − ω2ρ 2μα̃mγm

∣∣∣∣ − ω2ρ βm.

Under the assumption that kp = k = k sin θ1 + m0 = α̃m0 for some m0 ∈ Z, we have
ηm0 = βm0 = 0. Thus, the linear system (4.3) has the nontrivial solution (vm0 , Ap,m0 , As,m0),
if this vector satisfies the relations vm0 + iλk2Ap,m0 = 0 and As,m0 = 0. These imply
that one of the nontrivial solutions (vsc, u) is of the form vsc(x) = c eikx1 for x3 > 0 and
u(x) = −ic/(λk2) (k, 0, 0)� eikx1 for x3 < 0 with a constant c ∈ C.

Next, we show the existence of Jones frequencies for the FSI problem in periodic struc-
tures. A frequency ω ∈ R+ is called a Jones frequency with the quasiperiodic parameter
α = (α1, α2)

� ∈ R
2, if there exists at least one nontrivial α-quasiperiodic solution to the boundary

value problem

(	∗ + ω2ρ)u = 0 in �−, T u = 0, ν · u = 0 on �, u admits an expansion (2.8). (4.4)

Obviously, the solution (0, u) satisfies the homogeneous transmission problem (2.2) with
vin = 0, provided u is a solution of (4.4). This implies that the FSI problem is not uniquely solvable
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at Jones frequencies. To find a nontrivial solution to (4.4), we suppose that γn = √
k2

s − |αn|2 = 0
for some n ∈ Z

2 and that � := {x : x3 = 0} is a flat surface. Then the α-quasiperiodic function

u(x) = (−α(2)
n , α(1)

n , 0)
�
ei(α

(1)
n x1+α

(2)
n x2) is a solution of (4.4).

Although there is no uniqueness in general, we can verify the existence of solutions to BVP at
any frequency ω ∈ R and the unique solvability for all frequencies excluding possibly a discrete
set. This exceptional set does not necessarily include the values ω ∈ D0, for which there is an
n ∈ Z

2 with |αn|2 + βnγn �= 0 (cf. Remark 3.3). The main results of this section are stated in the
following theorem, where the number c0 denotes the speed of sound in the fluid.

Theorem 4.4.

i. For the incident plane wave vin of the form (2.1), there always exists a solution (v, u) ∈ V1

to the variational problem (3.11) and hence to BVP.
ii. Assume λ + 2μ ≤ ρc2

0. There exists a small frequency ω0 > 0 such that for all ω ∈ (0, ω0]
the solution to (3.11) is unique. Moreover, the variational problem (3.11) admits a unique
solution for all frequencies excluding a discrete set D with the only possible accumulation
point at infinity.

Proof. (i) The variational problem (3.11) can be formulated as the equivalent operator equa-
tion A(v, u) = F0, where F0 ∈ V ′

1 is defined as the right-hand side of (3.11). By the Fredholm
alternative and Lemma 4.2, this operator equation (3.11) is solvable provided F0 is orthogonal to
all solutions (ṽ, ũ) of the homogeneous adjoint equation A∗(ṽ, ũ) = 0, that is, 〈F0, (ṽ, ũ)〉 = 0.
Note that the component ṽ of such a pair can always be extended to a solution of the Helmholtz
equation in the unbounded domain �+ by setting ṽ(x) = ∑

n∈Z2 ṽn exp(i αn · x̃ − iηn[x3 − b])
for x3 > b, where the Rayleigh coefficients ṽn are determined as the n-th Fourier coefficient of
(e−iα·x̃ ṽ)|�+

b
. The above ṽ has a finite number of incoming plane waves that propagate downward,

while the others terms in the sum are exponentially growing modes as x3 → ∞. Conversely, by
arguing as in the proof of Lemma 4.2, it can be derived by taking the imaginary part of the equation
0 = 〈A∗(ṽ, ũ), (ϕ, ψ)〉 = 〈(ṽ, ũ), A(ϕ, ψ)〉 = A((ϕ, ψ), (ṽ, ũ)) with (ϕ, ψ) = (ṽ, ũ) that ṽ has
vanishing Rayleigh coefficients of the incoming modes, that is, ṽn = 0 for |αn| < k. In particular,
we have ṽ0 = 0 and hence 〈F0, (ṽ, ũ)〉 = ∫

�+
b

f0 ṽds = ∫
�+

b
f0 ṽ0 exp(−i α0 · x̃)ds(x̃) = 0, with

f0 given in (3.10). Applying the Fredholm alternative yields the existence of a solution to BVP.
(ii) We first prove uniqueness for small frequencies. The assumption λ + 2μ ≤ ρc2

0 implies
that k ≤ kp. If A(vsc, u) = 0 for some (vsc, u) ∈ V , we conclude from k ≤ kp and Lemma 4.2 that
the zero-order Rayleigh coefficients of vsc and u vanish, that is, v0 = 0, Ap,0 = 0 and As,0 = 0.
This together with the asymptotic behavior |ηn| ≥ C0 (1 + |n|2)1/2 for k = ω/c0 → 0+ valid for
|n| �= 0 and a constant C0 > 0, leads to the estimate [cf. (3.8)]

−Re
∫

�+
b

v̄sc T +vscds = 4π 2
∑
|n|�=0

|ηn| |vn eiηnb|2 = 4π 2
∑
n∈Z2

|ηn| |vn eiηnb|2 ≥ C1||vsc||2
H

1/2
α (�+

b
)
,

(4.5)

for some C1 > 0 and ω ∈ (0, ω1] with ω1 > 0 being sufficiently small. In a completely similar
manner, from the asymptotic properties of the matrix Wn as ω → 0+ (cf. [18, Lemma 2]) we
obtain

−Re
∫

�−
b

ū · T −u ds ≥ C2||u||2
H

1/2
α (�−

b
)
3 . (4.6)
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18 HU, RATHSFELD, AND YIN

Inserting (4.5) into (3.11) and setting (ϕ, ψ) = (vsc, 0), vin = 0, we arrive at

0 = Re A((vsc, u), (vsc, 0))

≥ ||grad vsc||2
L2(�+

b
)
+ C1||vsc||2

H
1/2
α (�+

b
)
− ω2/c2

0 ||vsc||2
L2(�+

b
)
− ω2 ρf

∫
�

u · νvsc ds.

Applying Friedrich’s inequality and the Cauchy-Schwarz inequality, it follows that

0 ≥ C3||vsc||2
H1

α (�+
b

)
− C4 ω2||u||2

L2(�)3 , ω ∈ (0, ω1], (4.7)

for some constants C3, C4 > 0 uniformly in all ω ∈ (0, ω1]. Similarly, inserting (4.6) into (3.11)
with (ϕ, ψ) = (0, u) and f0 = 0 and applying Korn’s inequality (cf., e.g., [28, Chap. 5.4] or [18]),
we obtain

0 = Re A((vsc, u), (0, u)) ≥ C5||u||2
H1

α (�−
b

)
3 − C6 ||vsc||2

L2(�)
, ω ∈ (0, ω1], (4.8)

where C5, C6 > 0 are independent of ω ∈ (0, ω1]. Now, combining (4.7), (4.8) and using the trace
lemma we arrive at vsc = 0, u = 0 for all ω ∈ (0, ω0] with some small frequency ω0 > 0. The
existence follows directly from uniqueness by the Fredholm alternative.

With respect to the frequency parameter ω, the operators corresponding to the variational
form (3.12) form an analytic operator family. Indeed, ω enters the coefficients of the volume
integrals in a quadratic way, and the operators T ± are block diagonal with entries analytic over
{ω ∈ C : ε0Re ω > Im ω, |αn(ω)|2 + βn(ω)γn(ω) �= 0} for a fixed small ε0 > 0 [cf. (3.7)]. In
accordance with the proof of Lemma 4.1, the values of this analytic function of ω are Fredholm
operators of index zero and, for 0 < ω < ω0, even invertible. Consequently, in view of the analytic
Fredholm theory (cf., e.g., [36, Theorem 8.26] or [37, Theorem I. 5. 1]) there exists a discrete set
D with D0 ⊆ D ⊆ R

+ such that the operators of the variational form are invertible for ω ∈ R
+\D.

Moreover, we conclude from the arguments in [18, Theorem 6] or [35, Theorem 3.3] that D
cannot have a finite accumulation point. The proof is completed.

Remark 4.5. Theorem 4.4 (i) remains valid for a broad class of incident waves of the form
vin(x) = ∑

n∈Z2:|αn|<k qn exp(iαn · x̃ − iηnx3) with qn ∈ C.

V. ENERGY BALANCE

The energy balance in the FSI problem asserts that the sum of the reflected energy in the fluid
and the transmitted energy in the solid should be equal to the energy of the incident wave. Let
the incident plane wave vin = exp(iα · x ′ − η0x3) be given by (2.1), with η0 = k cos θ1. Define
the efficiency of the reflected acoustic wave of order n as E+

n := ηn

η0
|vn|2. This is the ratio of

the energy flux of the reflected mode of order n over the energy flux of the incoming mode. The
energy flux is measured over a unit of time period on a unit square parallel to the x1x2-plane. In
the FSI problem, the efficiencies of the transmitted compressional and shear elastic waves in the
fluid are defined as E−

p,n := βn

η0
|Ap,n|2 ω2ρ η and E−

s,n := γn

η0
|As,n|2 μ η, respectively. The energy

balance formula, which can be used as an indicator of the validity of the numerical solution, is
formulated as follows.
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Theorem 5.1. It holds that
∑

n∈Z2:ηn>0 E+
n + ∑

n∈Z2:βn>0 E−
p,n + ∑

n∈Z2:γn>0 E−
s,n = 1.

Proof. It follows from (3.1) that

0 =
∫

�+
b

[
grad v · grad ϕ − k2vϕ

]
dx − η

∫
�

u · νϕ ds −
∫

�+
b

∂ν v ϕ ds

+ η

[∫
�−

b

[E(u, ψ) − ω2ρu · ψ ] dx −
∫

�

v ν · ψds −
∫

�−
b

T −u · ψds

]

for all (ϕ, ψ) ∈ H 1(�+
b ) × H 1(�−

b )
3, where v = vin + vsc denotes the total acoustic field in the

fluid. Choosing (ϕ, ψ) = (v, u) and taking the imaginary part of the above expression yields [cf.
(4.1)]

Im (∂νv, v)L2(�+
b

) + η Im (T − u, u)
L2(�−

b
)
3 = 0, (5.1)

It can be readily checked that

Im (∂νv, v)L2(�+
b

) = Im (∂νv
in, vin)L2(�+

b
) + Im (T + vsc, vsc)L2(�+

b
). (5.2)

Indeed, by the definition of T + [cf. (3.4)] we observe

Im
[
(∂νv

in, vsc)L2(�+
b

) + (T + vsc, vin)L2(�+
b

)

]
= 4π 2 Im

[−iη0v̄0 e−2iη0b + iη0v0e
2iη0b

] = 0

where v0 denotes the zeroth-order Rayleigh coefficient of vsc [cf. (2.5)]. Conversely, we get
Im (∂ν vin, vin)L2(�+

b
) = −4π 2 η0. Inserting this together with (4.2) and (5.1) into (5.1) yields the

desired result of the lemma.

Remark 5.2. If the Rayleigh expansion of u takes the following form equivalent to (2.8):

u(x) =
∑
n∈Z2

{
Ap,n

(
αn

−βn

)
exp(iαn · x̃ − iβnx3) +

(
αn

−γn

)
× Ãs,n exp(iαn · x̃ − iγnx3)

}
(5.3)

for x3 < �− with Ãs,n ∈ C
3 such that Ãs,n · (αn, −γn)

� = 0, then it holds that [cf. (4.2)]

Im
∫

�−
b

ū · T −u ds = 4π 2ω2ρ

⎛
⎝ ∑

n:|αn|<kp

βn |Ap,n|2 +
∑

n:|αn|<ks

γn |Ãs,n|2
⎞
⎠ . (5.4)

In this case, the definition of the efficiency E−
s,n in Theorem 5.1 should be replaced by

E−
s,n := γn

η0
|Ãs,n|2 ω2ρ η. The quantity in (5.4) denotes the energy flux through �−

b for the
transmitted elastic wave of the form (5.3).
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VI. DISCRETIZATION VIA TRUNCATED DTN MAPPINGS AND FINITE ELEMENT
METHOD

A. Truncation of DtN mappings

Clearly, for the numerical treatment of the infinite number of terms in the definition of the DtN
maps (3.4) and (3.5), we have to truncate the sums. We choose an integer N > 0 and introduce
the truncated DtN maps

(T +
N w)(x̃) :=

∑
n∈Z2:|n|≤N

iηn ŵn exp(iαn · x̃), (T −
N w)(x̃) :=

∑
n∈Z2:|n|≤N

iWn ŵn exp(iαn · x̃). (6.1)

We suppose that N is sufficiently large s.t. all the propagating plane wave modes have indices
with |n| ≤ N . Replacing the DtN maps in (3.12), we arrive at the approximate sesquilinear form

AN((v, u), (ϕ, ψ)) :=
∫

�+
b

[
grad v · grad ϕ − k2vϕ

]
dx − η

∫
�

u · ν ϕ ds −
∫

�+
b

T +
N v ϕ ds

+ η

[∫
�−

b

[E(u, ψ) − ω2ρu · ψ ] dx −
∫

�

v ν · ψds −
∫

�−
b

T −
N u · ψds

]
.

(6.2)

Using this, Eq. (3.11) turns to

AN((vN , uN), (ϕ, ψ)) = F0((ϕ, ψ)) :=
∫

�+
b

f0ϕ ds for all (ϕ, ψ) ∈ V1, (6.3)

which is equivalent to the operator equation AN(vN , uN) = F0. Here, AN : V1 → V ′
1 is the

approximate operator of A appearing in the operator equation A(v, u) = F0 corresponding to
(3.11). Now the exponential decay of the Rayleigh coefficients imply the following truncation
error estimate.

Lemma 6.1.

i. Suppose (v, u) ∈ V1 is the solution of A(v, u) = F0 with F0 as in (6.3), then the Rayleigh
coefficients of (v, u) satisfy

v(x) =
∑
n∈Z2

v+
n exp(iαn · x̃ + iηn[x3 − b]) + vin(x), x3 > �+, |v+

n | ≤ c||v||H1
α (�+

b
)q

|n|,

(6.4)

u(x) =
∑
n∈Z2

{
u−

p,n

(
αn

βn

)
exp(iαn · x̃ − iβn[x3 + b]) + u−

s,n exp(iαn · x̃ − iγn[x3 + b])
}

,

x3 < �−,

|u−
p,n| ≤ c||u||

H1
α (�−

b
)
3q

|n|, |u−
s,n| ≤ c||u||

H1
α (�−

b
)
3q

|n| (6.5)

for any n . Here, c and q are constants independent of (u, v) s.t. c > 0 and 0 < q < 1.
Recall that u−

s,n · (α�
n , −γn)

� = 0.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



FINITE ELEMENT METHOD TO FLUID–SOLID INTERACTION 21

ii. Suppose (vN , uN) ∈ V1 is the solution of AN(v, u) = F0 with F0 as in (6.3), then the
Rayleigh coefficients of (vN , uN) satisfy

vN(x)=
∑
n∈Z2

{v+
N ,n exp(iαn · x̃+iηn[x3 − b]) + v−

N ,n exp(iαn · x̃ − iηn[x3 − b])} + vin(x),

(6.6)

x3 > �+,

v−
N ,n = 0 if |n| ≤ N , v−

N ,n = v+
N ,n if |n| > N , |v±

N ,n| ≤ c||vN ||H1
α (�+

b
)q

|n|, (6.7)

uN(x) =
∑
n∈Z2

{u+
N ,p,n

(
αn

βn

)
exp(iαn · x̃ + iβn[x3 + b]) + u+

N ,s,n exp(iαn · x̃ + iγn[x3 + b])

+ u−
N ,p,n

(
αn

−βn

)
exp(iαn · x̃ − iβn[x3 + b]) + u−

N ,s,n exp(iαn · x̃ − iγn[x3 + b])},

x3 < �−,

u+
N ,p,n = 0, u+

N ,p,n = 0 if |n| ≤ N , u+
N ,p,n = u−

N ,p,n, u+
N ,p,n = u−

N ,p,n if |n| > N ,

|u±
N ,p,n| ≤ c||uN ||

H1
α (�−

b
)
3q

|n|, |u±
N ,s,n| ≤ c||uN ||

H1
α (�−

b
)
3q

|n| (6.8)

for any n . Here, c and q are constants independent of N and (u, v) s.t. c > 0 and 0 < q < 1.
Note that u±

N ,s,n · (α�
n , ±γn)

� = 0.
iii. Suppose the operator A : V1 → V ′

1 is invertible. Then, of course, the problem BVP is
uniquely solvable. Moreover, there is an integer N0 > 0 s.t. AN : V1 → V ′

1 is invertible
for N ≥ N0 and supN≥N0

||A−1
N || < ∞ . For (v, u) ∈ V1 the solution of A(v, u) = F0 with

F0 as in (6.3) and for (vN , uN) ∈ V1 the solution of AN(v, u) = F0 with the same F0 , we
obtain the estimate ||(v, u) − (vN , uN)||V1 ≤ c||(v, u)||V1q

N for any N . Here, c and q are
constants independent of N and (v, u) s.t. c > 0 and 0 < q < 1.

Remark 6.2. To simplify the formulas in part ii) of the Lemma, we have assumed ηn �= 0. The
at most finite number of terms with ηn = 0 does not affect the asymptotics. Note that, for ηn = 0,
the modes x �→ exp(iαn · x̃ ±γnx3) are to be replaced by x �→ exp(iαn · x̃)(1±x3). Moreover, for
the simplicity of the formulas, we assume γn �= 0 and βn �= 0. Again, the at most finite number
of exceptional terms does not affect the asymptotics.

Proof. i. Fixing a small ε s.t. �+ + 2ε < b, we conclude

|v+
n exp(iηn

(
�+ + 2ε − b)

) | ≤
∑

n

|v+
n exp(iηn

(
�+ + 2ε − b)

) |2

≤
√∑

n

|v+
n exp(iηn (�+ + ε − b)) |2(1 + |n|2)1/2

×
√∑

n

| exp(iηnε)|2(1 + |n|2)−1/2

≤ c||v||
H

1/2
α ({x:x3=�++ε}) ≤ c||v||H1

α (�+
b

), (6.9)
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where ηn ∼ i|n| was used in the last step. Consequently, we obtain |v+
n | ≤ cq |n| with the constant

q := exp((�+ + 2ε) − b) < 1. The assertions for u follow analogously.
ii. According to the integral

∫
�+

b
T +

N v ϕ in the variational form (6.2), the solution vN satisfies

the boundary condition ∂3vN |�+
b

= T +
N (vN |�+

b
), that is, by (6.6) we conclude

ηnv
+
N ,n − ηnv

−
N ,n =

{
ηn(v

+
N ,n + v−

N ,n) if |n| ≤ N

0 if |n| > N .
(6.10)

Hence, v−
N ,n = 0 for |n| ≤ N and v+

N ,n = v−
N ,n if |n| > N . The proof of the remaining assertions

for vN is analogous to that of part i). Suppose, e.g., that |n| > N . Then, similarly to (6.9), we
obtain

|v+
N ,n[exp(iηn

(
�+ + 2ε − b)

) + exp(−iηn

(
�+ + 2ε − b)

)]| ≤ c||vN ||H1
α (�+

b
). (6.11)

Again ηn ∼ i|n| implies |v+
N ,n| ≤ cq |n| with q := exp((�+ + 2ε) − b) < 1. The assertions for

uN follow analogously.
iii. In accordance with Lemma 4.1 the operator A : V1 → V ′

1 is strongly elliptic. Due to
the proof of this lemma, AN : V1 → V ′

1 is strongly elliptic too. Indeed, the only N dependent
parts of AN are the integrals over �±

b . The truncated operator −Re TN is positive semidefinite
[cf. (3.8)] and its quadratic form can be estimated from below by zero too. Now suppose the Tj

are the operators of the splitting T − = T1 + T2 in the proof of Lemma 4.1 and the truncation
Tj ,N the restriction of Tj to the subspace of all functions with Fourier coefficients vanishing for
|n| > N . Then together with −Re TN the truncation −Re T1,N is positive semidefinite. The trun-
cation T2,N of the compact operator T2, however, tends to zero in operator norm as N → ∞. Thus
AN : V1 → V ′

1 is strongly elliptic at least for sufficiently large N .
Moreover, the above mentioned proof of Lemma 4.1 implies the uniform strong ellipticity esti-

mate Re 〈AN(v, u), (v, u)〉 ≥ c||(v, u)||2V1
− Re 〈U(v, u), (v, u)〉 with a constant c and a compact

operator U independent of N . We define BN := AN +Re U and B := A+Re U . Then the uniform
strong ellipticity of the AN and A implies that Re BN and Re B are coercive, that is, the B−1

N are
uniformly bounded and B−1

N converges to B−1 strongly. From

AN = BN(I − B−1
N Re U) = BN(I − B−1Re U) − BN(B−1

N − B−1)Re U

= BNB−1(B − Re U) − BN(B−1
N − B−1)Re U

= (A−1BB−1
N )

−1 − BN(B−1
N − B−1)Re U , ||(B−1

N − B−1)Re U || → 0,

we conclude that A−1
N is uniformly bounded. Using this fact and the exponential decay of the

Rayleigh coefficients in the parts i) and ii) of the lemma, the estimate in the third assertion is a
simple consequence of

(v, u) − (vN , uN) = A−1F0 − A−1
N F0 = A−1

N (AN − A)A−1F0,

||(v, u) − (vN , uN)||V1 ≤ c||(AN − A)(v, u)||V1 .
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B. FEM

Now we consider the classical FEM. We introduce FE meshes over the domains �±
b and denote

the mesh size, that is, the maximal diameter of the simplex subdomains by h. Using this h, we
denote the space of piecewise linear functions in V1, which are linear over each subdomain of the
mesh, by Vh. Note that, for the sake of simplicity, we restrict ourselves to the linear case. Higher
order elements can be treated analogously and are useful especially for large wavenumbers. For
a given truncation number N and a given mesh of mesh size h, we compute the approximate
solution (vN ,h, uN ,h) ∈ Vh as the solution of the finite-element system

AN((vN ,h, uN ,h), (ϕh, ψh)) = F0(ϕh), for all (ϕh, ψh) ∈ Vh. (6.12)

To get convergence estimates for this FEM, we need the following two assumptions on the
regularity of the solution. Suppose the Sobolev space indices s1, s2 are fixed in the intervals (1, 2]
and [0, 1), respectively.

(RA1) For given v0 and u0, consider the boundary value problem of quasiperiodic functions
(v, u) ∈ H 1

α (�+
a ) × H 1

α (�−
a )

3 defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(	 + k2) v = 0 in �+
a := {x ∈ �+

b : x3 < 1
2 (b + �+)},

(	∗ + ω2ρ)u = 0 in �−
a := {x ∈ �−

b : 1
2 (−b + �−) < x3},

η u · ν = ∂νv on �,

T u = −v ν on �,

v = v0 on �+
a := {x : 0 < x1, x2 < 2π , x3 = 1

2 (b + �+)},
u = u0 on �−

a := {x : 0 < x1, x2 < 2π , x3 = 1
2 (−b + �−)}.

(6.13)

Suppose that any solution (v, u) of the variational formulation corresponding to (6.13) with
v0 ∈ Hs1−1/2(�+

a ) and u0 ∈ Hs1−1/2(�−
a )

3 has the regularity v ∈ Hs1(�+
a ) and u ∈ Hs1(�−

a )
3.

(RA2) Consider the sesquilinear form corresponding to (6.13)

C((v, u), (ϕ, ψ)) :=
∫

�+
a

[
grad v · grad ϕ − k2vϕ

]
dx − η

∫
�

u · ν ϕ ds

+ η

[∫
�−

a

[E(u, ψ) − ω2ρu · ψ ] dx −
∫

�

v ν · ψds

]
. (6.14)

Clearly, for any functional F ∈ V ′
1, the solution (ϕ, ψ) of the adjoint variational equa-

tion C((v, u), (ϕ, ψ)) = F(v, u), ∀(v, u) ∈ V1 is in V1. We suppose that, for F(v, u) :=
〈v, fv〉 + η〈u, fu〉 with functions fv ∈ H−s2(�+

a ) and fu ∈ H−s2(�−
a )

3, the solution (ϕ, ψ)

is in H 2−s2(�+
a ) × H 2−s2(�−

a )
3 and satisfies the estimate

||ϕ||
H2−s2 (�+

a )
+ ||ψ ||

H2−s2 (�−
a )

3 ≤ c{||fv||H−s2 (�+
a ) + ||fu||

H−s2 (�−
a )

3}, (6.15)

where c is independent of fv and fu.

Remark 6.3. The assumptions (RA1) and (RA2) are fulfilled for smooth boundaries � with
s1 = 2 and s2 = 0. If � is piecewise linear, then the assumptions hold with s1 and s2 depending
on the singularities at the vertices and edges (compare the asymptotic analysis of, e.g., [38]).
For Lipschitz boundaries �, (RA1) and (RA2) are fulfilled at least with s1 = 1.5 and s2 = 0.5.
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These regularity results have been observed by Estécahandy [39, Remark I.1.3.1] and are based
on a deep result by Jerison and Kenig [40]. For instance in the case of (RA1) for a smooth inter-
face �, we can argue as follows. The regularity results contained in (RA1) and (RA2) are of
local nature s.t. the regularity of the solution is to be proved in the neighbourhood of � only.
If (v, u) ∈ H 1

α (�+
a ) × H 1

α (�−
a )

3 is the solution of (6.13), then ∂νv = ηu · ν ∈ H 1/2
α (�) and

T u = −vν ∈ H 1/2
α (�)3. Well-known regularity theorems for the Neumann boundary value prob-

lem over smooth domains imply (v, u) ∈ H 2
α (�+

a ) × H 2
α (�−

a )
3. Repeating this trick, even higher

order regularity can be derived.

Theorem 6.4. Suppose the operator A : V1 → V ′
1 is invertible, that is, the variational equation

(3.11) is uniquely solvable for any right-hand side from V ′
1 .

i. There exist N0 > 0 and h0 > 0 s.t., for any N > N0 and h < h0, the FEM system (6.12)
has a unique solution (vN ,h, uN ,h) ∈ Vh. For N → ∞ and h → 0, the FEM solutions
(vN ,h, uN ,h) converge in the norm of V1 to the solution (u, v) ∈ V1 of (3.11).

ii. Suppose the right-hand side F0 is defined as in (6.3), that is, in accordance to the plane
wave incidence in the scattering problem BVP. Furthermore, suppose regularity assump-
tion (RA1) is satisfied with 1 < s1 ≤ 2. Then there exist constants c and q with c > 0 and
0 < q < 1 s.t., for any N > N0 and h < h0,

||(vN ,h, uN ,h) − (v, u)||V1 ≤ c||(v, u)||
Hs1 (�+

b
)×Hs1 (�−

b
)
3{hs1−1 + qN }. (6.16)

iii. Suppose the right-hand side F0 is defined as in (6.3) . Furthermore, suppose the regularity
assumptions (RA1) with 1 < s1 ≤ 2 and (RA2) with 0 ≤ s2 < 1 are satisfied. Then there
exist constants c and q with c > 0 and 0 < q < 1 s.t., for any N > N0 and h < h0,

||(vN ,h, uN ,h) − (v, u)||
Hs2 (�+

b
)×Hs2 (�−

b
)
3 ≤ c||(v, u)||

Hs1 (�+
b

)×Hs1 (�−
b

)
3{hs1−s2 + qN }.

(6.17)

Proof. i. Clearly, (vN ,h, uN ,h)−(v, u) = [(vN ,h, uN ,h)−(vN , uN)]+[(vN , uN)−(v, u)]. In view
of Lemma 6.1, it remains to analyze the convergence [(vN ,h, uN ,h)− (vN , uN)] → 0. However, all
estimates for this FEM must be shown uniformly w.r.t. N . We denote the L2 orthogonal projection
of V1 onto the spline space Vh by Ph. From the proof of Lemma 6.1, we recall AN = BN − Re U
with a compact operator U , the uniform coercivity Re 〈BN(v, u), (v, u)〉 ≥ c||(v, u)||2 and the
strong convergence A−1

N → A−1. In accordance with the proof of [20, Lemma 5.5], the uniform
stability follows if we can show that the operator norm of (Ph − I )A−1

N Re U : V1 → V1 is smaller
than any prescribed threshold for h sufficiently small (compare the operator(Ph − I )B−1T in [20,
Lemma 5.5]). However, this is true as

(Ph − I )A−1
N Re U = (Ph − I )[A−1Re U] + (Ph − I )[A−1

N − A−1]Re U ,

as [A−1Re U] and U are compact, and as Ph → I as well as A−1
N → A−1. Now the uniform

stability implies

||(vN , uN) − (vN ,h, uN ,h)||V1 ≤ c inf
(ϕh ,ψh)∈Vh

||(vN , uN) − (ϕh, ψh)||V1 . (6.18)

The uniform convergence of the FEM in the norm of V1 follows as the discrete set {(vN , uN) :
N = 0, 1, . . . } is precompact due to (vN , uN) → (v, u).
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ii) This part follows from (6.18) and the approximation property of finite-element functions
if we can prove ||(vN , uN)||

Hs1 (�+
b

)×Hs1 (�−
b

)
3 < c. However, ||(vN , uN)||V1 < c and the proof to

Lemma 6.1 i) and ii) implies that the Hs1 norms over �±
b \�±

a are uniformly bounded. Conse-
quently, we conclude v|�+

a
∈ Hs1−1/2(�+

a ) and u|�−
a

∈ Hs1−1/2(�−
a )

3 s.t. assumption (RA1) yields
||(vN , uN)||

Hs1 (�+
b

)×Hs1 (�−
b

)
3 < c.

iii) The estimate in Sobolev norms of order less than 1 follows from Nitsche’s trick, from part
ii) of the Lemma and from the approximation property. It remains only to show that the opera-
tors A∗

N : H 2−s2(�+
b ) × H 2−s2(�−

b )
3 → H−s2(�+

b ) × H−s2(�−
b )

3 are invertible with uniformly
bounded inverse operators. More precisely, for given gv ∈ H−s2(�+

b ) and gu ∈ H−s2(�+
b )

3, we
have to show that the solution (ϕ, ψ) = [A∗

N ]−1(gu, gv) ∈ V1 satisfies

||ϕ||
H2−s2 (�+

b
)

≤ c
{
||gu||H−s2 (�+

b
) + ||gv||

H−s2 (�+
b

)
3

}
||ψ ||

H2−s2 (�+
b

)
3 ≤ c

{
||gu||H−s2 (�+

b
) + ||gv||

H−s2 (�+
b

)
3

}
.

We choose a partition of unity 1 = ∑3
j=1 χj (x3) with smooth functions χj s.t.

[
1

4
�+ + 3

4
b, b

]
⊆ {x3 : χ1(x3) = 1)} ⊆ supp χ1 ⊆

[
1

2
(�+ + b), b

]
,

[
3

4
�− − 1

4
b,

3

4
�+ + 1

4
b

]
⊆ {x3 : χ2(x3) = 1)} ⊆ supp χ2 ⊆

[
1

2
(�− − b),

1

2
(�+ + b)

]
,

[
−b,

1

4
�− − 3

4
b

]
⊆ {x3 : χ3(x3) = 1)} ⊆ supp χ3 ⊆

[
−b,

1

2
(�− − b)

]
.

So it is sufficient to prove the regularity estimates for the functions [χ1ϕ], [χ2ϕ], [χ2ψ] and
[χ3ψ] instead of ϕ and ψ .

The functions [χ2ϕ] and [χ2ϕ], however, are solutions of the boundary value problem appear-
ing in the assumption (RA2) with H−s2 bounded right-hand side. Thus [χ2ψ] and [χ3ψ] have
bounded H 2−s2 norms according to assumption (RA2). The function [χ1ϕ] is a solution of the
Helmholtz equation with inhomogeneous H−s2 bounded right-hand side and the boundary condi-
tion ∂3[χ1ϕ]|�+

b
= T ∗

N ([χ1ϕ]|�+
b
). Now we take a quasiperiodic H−s2 extension of the right-hand

side of the Helmholtz equation, which has a bounded support in x3-direction. Using a volume
potential based on a quasiperiodic Green’s function satisfying the radiation condition for the
lower half plane, we can construct a quasiperiodic solution ϕ0 of the inhomogeneous Helmholtz
equation with the just extended right-hand side. As this is H 2−s2 bounded, it remains to estimate
the H 2−s2 norm of ϕ00 := [χ1ϕ] − ϕo. This function, however, is a solution of the homogeneous
Helmholtz equation in {x : 0 < x1, x2 < 2π , x3 < b} satisfying the radiation condition and the
inhomogeneous boundary condition ∂3ϕ00|�+

b
−T ∗

N (ϕ00|�+
b
) = ∂3ϕ0|�+

b
−T ∗

N (ϕ0|�+
b
). The uniform

H 2−s2 bound of the solution of the latter problem can be derived easily by Rayleigh expansions.
Finally, the estimate for [χ3ψ] is analogous to that for [χ1ϕ].

Now we discuss how to choose the truncation of the DtN map in an optimal way. Optimal
means that the error estimates in (6.16) and (6.17) are majorized by the typical FEM bound chκ

with κ := s1 − 1 and κ := s1 − s2, respectively, and that the number of nontruncated modes in
the DtN map is as small as possible. We shall use the following notation. Again c stands for a
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generic positive constant, the value of which varies from instance to instance. By d we denote
the period of the periodic grating structure. Thus, till the end of this section, we do not suppose
that the period is normalized to 2π . However, for simplicity, we assume the same period in the
x1- and the x2-direction. Moreover, we assume that the thickness of the grating is also in the size
of d. Note that the x1- and x2-components of the wave vector for the nth Rayleigh mode is given
by αn := α + 2π

d
n [cf. (2.6)]. We introduce the thickness � of the additional strips between the

artificial boundaries �±b and the interface �. More precisely, for a sufficiently small ε > 0, we
suppose � := min{b − �+, �− − (−b)} − ε, which is supposed to be fixed. Finally, we slightly
modify the truncation algorithm. We replace T ±

N [cf. (6.1)] by T ±
� , where

(T +
� w)(x̃) :=

∑
cn∈Z

2:
|αn|2≤k2+�2

iηn ŵn exp(iαn · x̃), (T −
� w)(x̃) :=

∑
n∈Z

2:
|αn|2≤k2

s +�2

iWn ŵn exp(iαn · x̃).

For the truncated modes, we conclude |ηn| > � and |γn| > �. Due to ks > kp, we even get
|βn| > �. Consequently, we arrive at |eiηn[b−�+]| < e−�� as well as |eiβn[�−−(−b)]| < e−�� and
|eiγn[�−−(−b)]| < e−��. Following the estimates in the proofs of this section, we get the error esti-
mates (6.16) and (6.17) with qN replaced by e−��. In other words, for an optimal truncation we
should have e−�� = chκ or equivalently � = (c + κ log h−1)/�. Using the truncation operators

T ±
N , this corresponds to choosing N = km + c+κ log h−1

�
with km := max{k, ks}.

Now suppose h is small and that km is a fixed number, which is small in comparison to
� = (c + κ log h−1)/�. Then the complexity of the proposed algorithm, that is, the number of
arithmetic operations necessary to compute an approximate solution with an error less than a
prescribed threshold, is comparable with that for a classical FEM applied to an elliptic boundary
value problem with local boundary condition. Indeed, in this case the number of degrees of free-
dom included into the DtN map is of order O(1 + [log h−1] 2

) and much less than the degrees of
freedom of the finite elements. Conversely, if the mesh size h is chosen as large as possible, for
example, by a rule like h = λ/8 = 2π/km8, then the complexity might be slightly higher. Using
an iterative solver with a good preconditioner and applying one of the fast numerical algorithms
for integral equations to the DtN, the complexity of conventional FEM can be reached again.
However, we note that a rule like h = λ/8 is usually not sufficient due to a numerical effect,
which is called numerical pollution or numerical dispersion (cf. [41]).

VII. VARIATIONAL FORMULATION IN TWO DIMENSIONS

In this section, we change the notation. For a reduction to two dimensions, the last component
should be dropped. Therefore, we suppose that the geometry is periodic in the x1-component, that
the component normal to the interface is the x2-component (formerly the x3-component), and that
the geometry is invariant in the x3 direction (formerly the x2 direction of the second period). The
cross-section of � in the (x1, x2)-plane will be represented by a curve �, which is 2π -periodic
in x1. All elastic waves are assumed to be propagating perpendicular to the x3-axis, so that the
problem can be treated as a problem of plane elasticity. This implies that the incident plane wave
is of the form

vin(x1, x2) = exp(iαx1 − iη0x2), α := k sin θ , η0 := k cos θ , (7.1)

where θ ∈ (−π/2, π/2) denotes the angle of incidence.
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The boundary value problem for finding α-quasiperiodic solutions v = v(x1, x2) and u =
(u1(x1, x2), u2(x1, x2))

� can be formulated analogously to (2.2) with the two-dimensional traction
operator having the form

T u = 2μ ∂nu + λ div u n + μ

(
n2 (∂1u2 − ∂2u1)

n1 (∂2u1 − ∂1u2)

)
on � , (7.2)

where n = (n1, n2)
� denotes the exterior unit normal on �. As done in 3D, we will confine

ourselves to a single periodic cell by setting

�±
b := {

(x1, ±b)� : 0 ≤ x1 ≤ 2π
}

, �±
b := {

(x1, x2)
� : ∃x ∈ �± s.t. 0 < x1 < 2π , x2≶ ± b

}
.

The upward and downward Rayleigh expansions for vsc and u can be expressed as

vsc(x) =
∑
n∈Z

vn exp(iαnx1 + iηnx2), x2 > �+,

u(x) =
∑
n∈Z

{
Ap,n

(
αn

−βn

)
exp(iαnx1 − iβnx2) − As,n

(
γn

αn

)
exp(iαnx1 − iγnx2)

}
, x2 < �−

(7.3)

with αn, ηn, βn, and γn defined analogously to the 3D case. The DtN maps T ± can be represented
as

(T +w)(x) :=
∑
n∈Z

iηn ŵn exp(iαnx1) for w =
∑
n∈Z

ŵn exp(iαnx1) ∈ Hs
α(�+

b ), s ≥ 1/2, (7.4)

(T −w)(x) :=
∑
n∈Z

i Wn ŵn exp(iαnx1) for w =
∑
n∈Z

ŵn exp(iαnx1) ∈ Hs
α(�−

b )
2, s ≥ 1/2, (7.5)

where Wn is the 2 × 2 matrix

Wn :=
(

ω2βn/dn −2μαn + ω2αn/dn

2μαn − ω2αn/dn ω2γn/dn

)
, dn := α2

n + βnγn. (7.6)

The expression (7.6) follows from the arguments of [18] and differs from the matrix corre-
sponding to upward propagating elastic waves only in the signs of the off-diagonal terms. We
state the variational formulation for the FSI problem in the two-dimensional setting as follows:
Find (v, u) ∈ V1 := H 1

α (�+
b ) × H 1

α (�−
b )

2 s.t.

A((v, u), (ϕ, ψ)) =
∫

�+
b

f0ϕ ds for all (ϕ, ψ) ∈ V1, (7.7)

where the sesquilinear form A : V1 × V1 → C is defined analogously to (3.12) with �, �±
b , n in

place of �, �±
b and ν, and

E(u, ϕ) = (2μ + λ) (∂1u1 ∂1ϕ1 + ∂2u2 ∂2ϕ2) + μ (∂2u1 ∂2ϕ1 + ∂1u2 ∂1ϕ2)

+ λ (∂1u1 ∂2ϕ2 + ∂2u2 ∂1ϕ1) + μ (∂2u1 ∂1ϕ2 + ∂1u2 ∂2ϕ1) .
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The function f0 ∈ H−1/2
α (�+

b ) on the right-hand side of (7.7) is given by f0(x1) :=
−2iη0 exp(iαx1 − iη0b). All the uniqueness, existence and nonuniqueness results in Section
IV carry over to the 2D case. Moreover, there holds the energy balance formula

1 =
∑

n∈Z:ηn>0

ηn

η0
|vn|2 + ω2ρ η

⎛
⎝ ∑

n∈Z:βn>0

βn

η0
|Ap,n|2 +

∑
n∈Z:γn>0

γn

η0
|As,n|2

⎞
⎠ . (7.8)

When the scattering interface � coincides with the straight line �0 := {(x1, x2) : x2 = 0},
the energy balance formula (7.8) can be verified straightforwardly. Indeed, for the incident plane
wave (7.1), the unique solution of (2.2) takes the form

vsc(x) = a1 exp(iαx1 + iη0x2), x ∈ �+, (7.9)

u(x) = a2

(
α

−β0

)
exp(iαx1 − iβ0x2) + a3

(
γ0

α

)
exp(iαx1 − iγ0x2), x ∈ �−, (7.10)

where the coefficients aj ∈ C, j = 1, 2, 3 can be obtained by solving the linear system

⎛
⎝iη0 ρf ω2β0 −ρf ω2α

0 2iμαβ0 2iμγ 2
0 − iμk2

s

1 2iμβ2
0 + iλk2

p −2iμαγ0

⎞
⎠
⎛
⎝a1

a2

a3

⎞
⎠ =

⎛
⎝iη0

0
−1

⎞
⎠ . (7.11)

We suppose further that kp < ks ≤ α = k sin θ < k. This physically implies that the acoustic
wave velocity in the fluid is smaller than the shear and compressional wave velocities in the solid.
Straightforward calculations show that a1 is of the form

a1 = c1 + ic2

c1 − ic2
,

where c1, c2 ∈ R are some constants. This verifies the energy balance |a1|2 = 1. Note that the
terms in the bracket of (7.8) vanish under our assumptions.

The variational formulations (7.7) and (3.11) are convenient for theoretical justifications.
However, in numerical implementations we prefer the following formulation equivalent to (7.7):

A((vsc, u), (ϕ, ψ)) =
∫

�

(
∂nv

inϕ − ηnvin · ψ
)

ds for all (ϕ, ψ) ∈ V1. (7.12)

In other words, we compute the scattered field vsc = v − vin instead of the total field v over
the domain �+

b .
The truncation of the DtN mappings and the FEM can be defined analogously to the 3D case.

With a straightforward modification of the conditions (RA1) and (RA2), Theorem 6.4 remains
true.

VIII. NUMERICAL EXAMPLES

In this section, we present several numerical tests to confirm our theoretical results in 2D. The
computational domains �±

b are discretized by quasiuniform triangular elements. A direct solver
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FIG. 3. One-dimensional periodic interfaces. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

for sparse systems is employed for computing solutions of the resulting linear system. In our
numerical tests, the energy function is defined by

EN ,h :=
N∑

n=−N :ηn>0

ηn

η0
|vN ,h

n |2 + ω2ρη

(
N∑

n=−N :βn>0

βn

η0
|AN ,h

p,n |2 +
N∑

n=−N :γn>0

γn

η0
|AN ,h

s,n |2
)

,

vN ,h
n := 1

2π

∫
�+

b

vN ,h(x1, b) exp(−i(αnx1 + ηnb))dx1,

AN ,h
p,n := 1

2π

1

α2 + βnγn

∫
�+

b

uN ,h(x1, b) · (αn, −γn)
� exp(−i(αnx1 + βnb))dx1,

AN ,h
s,n := 1

2π

1

α2 + βnγn

∫
�+

b

uN ,h(x1, b) · (−βn, −αn)
� exp(−i(αnx1 + γnb))dx1,

where N = 20 is the truncation number of the Rayleigh series. Note that the exact value of the
energy function is E∞,0 = 1 [cf. (7.8)].

Example 1. In this example, we check whether our code provides the correct solution. We con-
sider two grating profiles, one is smooth (Grating 1) and another one is piecewise linear (Grating
3), shown in Fig. 3. We take the parameters ω = 1, μ = 1, λ = 1, ρf = 2, ρ = 1, b = 3, θ = π/6.
To the system (2.2) we add inhomogeneous right-hand sides g ∈ H−1/2(�) and h ∈ H−1/2(�)2

over the interface, that is, ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(	 + k2) v = 0 in �+,

(	∗ + ω2ρ) u = 0 in �−,

η u · ν − ∂νv = g on �,

T u + v ν = h on �.

(8.1)

The results presented in Sections II–VII are still true for (8.1). We choose g and h s.t. the exact
solutions of (8.1) take the forms (7.9) and (7.10) with a1 = 1, a2 = 2 and a3 = −1. In Figs. 4 and
5, we present the numerical error ||(vsc, u)−(vsc

N ,h, uN ,h)|| in the spaces V0 := L2
α(�

+
b )×L2

α(�
−
b )

2

and V1 := H 1
α (�+

b )×H 1
α (�−

b )
2 with respect to 1/h for k = 1, 3 and 5. We can obviously observe

that ||(vsc, u) − (vsc
N ,h, uN ,h)||V0 = O(h2) and ||(vsc, u) − (vsc

N ,h, uN ,h)||V1 = O(h).
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FIG. 4. Log-log plot of errors vs. 1/h. Errors in V0-norm (left) and V1-norm (right) of FEM solution for (8.1)
with Grating 1. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIG. 5. Log–log plot of errors vs. 1/h. Errors in V0-norm (left) and V1-norm (right) of FEM solution for (8.1)
with Grating 3. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Example 2. In the second example, we consider the system (2.2) with homogeneous boundary
conditions and the smooth grating profiles 1 and 2 illustrated in Fig. 3. We plot the numerical
energy functions with respect to 1/h in Fig. 6. In these cases the wave number in the fluid is
taken as k = 9 and the other coefficients are set as in Example 1. The numerical solutions are
consistent with the proposed energy balance formula and thus support our theoretical results. Next
we consider the problem (2.2) with Grating 2 for a fixed mesh. We define k0 := max{k, kp, ks}
and set N0 := max{|n| : |αn| ≤ k0 or |α−n| ≤ k0} and

Nτ := min

{
N :

||(vsc
N ,h, uN ,h) − (vsc

20,h, u20,h)||V0

||(vsc
20,h, u20,h)||V0

≤ 0.01

}
.
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FIG. 6. Numerical energy function EN ,h vs. 1/h for the one-dimensional periodic interfaces.

TABLE I. The values of Nτ (cols. 2–5) compared with the N0 (col. 6) depending on k and b.

b = 0.7 b = 1 b = 2 b = 3
(h = 0.3181) (h = 0.3385) (h = 0.3083) (h = 0.3621) N0

k = 1 4 3 2 2 2
k = 3 5 4 4 4 5
k = 5 7 7 7 9 8

Table I exhibits the numbers Nτ and N0 depending on the wave number k and the x2-coordinates
±b of the truncation boundaries �±

b . The truncation number N can be chosen relatively small. In
our example, we even do not need to choose Nτ larger than N0.

Example 3. In this example, we consider a water–brass interaction problem with the physical
parameters taken from [7]. We set the period of the interface to � = 2.2 mm and the height of the
corrugation h = 0.05 mm (cf. Fig. 7, left). The frequency and speed of sound are ω = 2π 1.5 ·106

Hz and c0 = 1 480 m/s, and the density of water is ρf = 1 000 kg/m3. The density of brass is
ρ = 8 100 kg/m3. The velocities for shear and pressure waves are cs = 2 270 m/s and cp = 4 840
m/s. Figure 8 shows the numerical solutions of the elastic displacement in the brass and the scat-
tered acoustic field in the water, where we have taken the incident angle θ = 0, b = 3 mm and
the mesh size h = 0.0462 mm. We compute the relative V0-error and V1-error of the scattered
field in �+

b via RE1 = ||(vsc, u) − (vsc
N0,h0

, uN0,h0)||V0 and RE2 = ||(vsc, u) − (vsc
N0,h0

, uN0,h0)||V1 ,
where (vsc

N0,h0
, uN0,h0) is the numerical solution with N0 = 20 and h0 = 0.0209 mm. In Table II,

we present the relative errors and the order of accuracy, and one can observe the expected second
order accuracy for RE1 and first order accuracy for RE2. Furthermore, we plot the frequency
spectrum of the normally reflected signals in Fig. 9 (left), showing the reflection efficiency R0 (in
dB) with respect to f := ω/(2π). Here, R0 := |vN ,h

0 |2 with N = 20 and h = 0.0836 mm, and
R0( in dB ) := 20log10R0. In Fig. 9 (left), the clearly identified frequency dip shows the existence
of a Wood anomaly. This implies the possibility of generating interface waves by the mechan-
ical coupling of acoustic waves incident upon a fluid–solid interface and mode conversion (cf.
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FIG. 7. The geometry settings of the interface for Examples 3 and 4. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

FIG. 8. Numerical solutions with b = 3 mm and mesh size h = 0.0209 mm for example 3. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE II. Relative L2-error and order of accuracy for Example 3.

h RE1 Order RE2 Order

6.69 E– 1 2.21E0 – 1.45E1 –
1.51 7.76 E– 1 6.54E0 1.15
1.67 E– 1 2.30 E– 1 1.75 2.74E0 1.26
8.36 E– 2 5.88 E– 2 1.97 1.21E0 1.18
4.18 E– 2 1.21 E– 2 2.28 5.24 E– 1 1.21
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FIG. 9. The reflection efficiency R0 (in dB) vs. f for Examples 3 and 4. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

FIG. 10. Numerical solutions with b = 3 mm and mesh size h = 0.0462 mm for the plane wave
normally incident onto Grating 1. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

[2, 7]), even if the amplitude of the interface is rather small compared to the period. Note that
surface waves cannot be incited by a plane wave normally incident onto a flat surface, due to the
unique solvability of the linear system (7.11) when α = 0. The numerical solutions for the above
water–brass interaction problem with Grating 1 are illustrated in Fig. 10, where the amplitude of
the interface is comparable with the period.

Example 4. In the last example, we consider an interesting water–brass–water interaction prob-
lem in periodic structures. The geometry of the two-dimensional diffraction problem is shown in
Fig. 7 (right). The upper boundary of the layer is the same as Fig. 7 (left), while the lower boundary
is a flat surface. The thickness of the layer is taken as d = 2 mm, and the other parameters are set
to be the same as in Example 3. We plot the reflection efficiency R0 (in dB) with respect to f in
Fig. 9 (right). It can be seen that there are two major dips occurring in R0, which differ drastically
from those for the water–brass interaction problem shown in Fig. 9 (left). The extra dip implies
that additional interface waves may exist in a layer structure. Our computational results are in a
good agreement with those of [7]. Of course, an exact comparison was not possible as we do not
know the exact geometry used for the calculations in [7].
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