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Abstract
In this paper, we prove uniqueness in determining a sound-soft ball or poly-
hedral scatterer in the inverse acoustic scattering problem with a single inci-
dent point source wave in N (N = 2,3). Our proofs rely on the reflection
principle for the Helmholtz equation with respect to a Dirichlet hyperplane or
sphere, which is essentially a ‘point-to-point’ extension formula. The method
has been adapted to proving uniqueness in inverse scattering from sound-soft
cavities with interior measurement data deriving from a single point source.
The corresponding uniqueness for sound-hard balls or polyhedral scatterers
has also been discussed.

Keywords: inverse acoustic scattering, uniqueness, polyhedral scatterers, balls,
point source wave

1. Introduction

This paper is concerned with the inverse time-harmonic acoustic scattering by an impene-
trable scatterer D in N ( ⩾N 2). The incident field is given by the time-harmonic point source
wave
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where >k 0 is the wavenumber, ∈y N the position of the point source and H ( )
0

1 the Hankel
function of the first kind of order zero. We consider both the classical exterior scattering
problems and the fairly new interior scattering problems with near-field measurement data
(see figure 1). To describe the scattering system, we shall use usc and u to represent the
scattered and total fields, respectively, where = +u u uin sc.

Exterior scattering problems. The typical inverse scattering problems are exterior
problems where the measurements (far-field or near-field data) are taken outside of the
scatterer, i.e., in = ⧹D D:e N [5]. Such problems arise in diverse areas such as medical
imaging, ultrasound tomography, material science, radar, remote sensing and seismic
exploration. The direct exterior scattering problem is that of finding the scattered field

∈ ( )u H Dsc
loc

e1 such that usc solves the Helmholtz equation

Δ + =u k u D0 in , (1.2)sc sc e2

and satisfies the Sommerfeld radiation condition

⎛
⎝⎜

⎞
⎠⎟

∂
∂

− = =
→∞

−r
u

r
ku r xlim i 0, , (1.3)( )

r

N
sc

sc1 2

uniformly in all directions  ˆ = ∈ = ∈ =− { }x x x x x: : 1N N1 . If D is an impenetrable

scatterer, the total field u fulfills a boundary condition of the form

 = ∂u D( ) 0 on , (1.4)

where  =u u( ) for a sound-soft scatterer and  ν= ∂ ∂u u( ) for a sound-hard scatterer. In
the latter case, νdenotes the unit outward normal vector at ∈ ∂x D. We emphasize that D may
contain several (finitely many) connected components, but its exterior = ⧹D D:e N is always

connected. It is well-known that there exists a unique solution ∈ ( )u H Dsc
loc

e1 to the scattering

problem (1.2)–(1.4) if ∂D is Lipschitz (see, e.g., [2, 5]).
Interior scattering problems. The interior scattering problems are fairly new research

topics (see the recent papers [15, 16] and the references therein). These problems occur in
many industrial applications of non-destructive testing where both the sources (incident
waves) and measurements (scattered waves) are positioned inside the object D. In this case,
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Figure 1. Object D and the curve Γ (N = 2) where measurements are taken. (1) The
typical exterior scattering system. (2) The fairly new interior scattering system.



we suppose that D is bounded and simply connected. The direct scattering problem is that of
finding the scattered field ∈ ( )u H Dsc 1 such that usc solves the Helmholtz equation

Δ + =u k u D0 in , (1.5)sc sc2

and the total field u satisfies the boundary condition (1.4). The well-posedness of the direct
problem has been established in [2], provided that k2 is not an interior eigenvalue of Δ− in D
with respect to the boundary condition under consideration.

Let Γ be a closed Lipschitz surface in N where the near-field measurement data are
taken, and let D0 be the bounded domain enclosed by Γ . As shown in figure 1, we assume that

⎧⎨⎩Γ ⊂
D
D

for the exterior problems;
for the interior problems.

e

The inverse problem that we consider is that of reconstructing ∂D from the available
measurements taken on Γ relating to one point source wave at one single wavenumber. To the
best of our knowledge, uniqueness is still an open problem for general scatterers without any
a priori information. The aim of this paper is to provide an affirmative answer to the question
of uniqueness in inverse scattering from balls or polyhedral scatterers. The concept of a
polyhedral scatterer for the exterior problems is defined as follows.

Definition 1.1. A compact set ⊂D N is called a polyhedral scatterer if ∂D is the union of
finitely many cells and its exterior De is connected. Here a cell is defined as the closure of an
open connected subset of an −( )N 1 -dimensional hyperplane.

Note that the definition of a polyhedral scatterer is more general than the terminology
polyhedral obstacle used in the literature (see, e.g., [1, 8, 9, 14]). A polyhedral obstacle is
defined as the union of finitely many convex polyhedra, which always coincides with the
closure of its interior. Hence, a polyhedral scatterer can be equivalently defined as the union
of a polyhedral obstacle and finitely many cells.

The uniqueness for sound-soft and sound-hard balls with a single plane wave was proved
in [13, 20]. In the case of an incident point source wave, the total field turns out to be singular
at the source position, giving rise to essential difficulties in justifying the analytical extension
of the solution from De into D (this plays a central role in the plane wave incidence case; see
[13, 20] or [5]). To overcome this difficulty, we prove that the singularity of solutions to the
Helmholtz equation can be ‘propagated’ if the solution vanishes on a sphere; see lemma 2.1.
This property leads to uniqueness in determining sound-soft balls with an incoming point
source wave. Our mathematical analysis is based on the Schwarz reflection principle for
harmonic functions [12, 19] combined with the constructive method for solving the exterior
Dirichlet boundary value problem for the Helmholtz equation for balls in [4, 6].

Recently, uniqueness results with a minimal number of incident plane waves have been
obtained within the class of polyhedral scatterers; see, e.g., [1, 3, 8, 9, 14]. The key ingre-
dients in carrying out the proof include the reflection principle for the Helmholtz equation
with respect to a Dirichlet or Neumann hyperplane and the essential properties of a plane
wave (for instance, there is no decaying of a plane wave at infinity). It has been shown that a
sound-hard (resp. sound-soft) polyhedral scatterer in N can be uniquely identified using N
(resp. one) incident plane wave(s) (see [1, 14]), and this number cannot be reduced in general.
Since a point source wave admits the same asymptotic behavior as Sommerfeld radiating
waves, the existing argument for plane waves cannot straightforwardly apply to point source
waves. Motivated by the idea used in [11] and the path argument first developed in [1] and
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later simplified in [14], we prove that a sound-soft or sound-hard polyhedral scatterer can be
uniquely identified from the near-field data for one point source wave at a fixed wavenumber;
see section 3 for the details.

The main results of our paper for the exterior scattering problems are summarized
as follows:

Theorem 1.1. Let D be either a sound-soft ball or a sound-soft polyhedral scatterer. Then,
for a fixed wavenumber >k 0 and source point ∈y De, the boundary ∂D can be uniquely
determined by the near-field data ·u y( ; )sc on Γ generated by a single incident point source

wave ·u y( ; )in .

The proof of theorem 1.1 will be presented in sections 2 and 3 for balls and polyhedral
scatterers, respectively. For the interior problems of reconstructing the boundary of a simply
connected domain, we restrict our discussions to sound-soft balls and polyhedral obstacles. In
section 4, the following analogous results from theorem 1.1 will be proved.

Theorem 1.2. Let D be either a sound-soft ball or a sound-soft polyhedral obstacle. Assume

further that D is simply connected and k2 is neither a Dirichlet eigenvalue of Δ− in D nor one
in D0. Then, for a fixed wavenumber >k 0 and any source point ∈y D, the boundary ∂D can
be uniquely determined by the scattered field ·u y( ; )sc on Γ generated by a single incident

point source wave ·u y( ; )in .

2. Proof of theorem 1.1 for balls

Let B z( )r be the ball centered at ∈z N with the radius >r 0. For simplicity, we denote by
Br the ball centered at the origin with the radius >r 0. A main ingredient in our proof is the
following reflection principle for the Helmholtz equation with respect to a sphere. We for-
mulate this principle only for a ball centered at the origin in lemma 2.1 below. However, in
our subsequent applications, we will mostly use the result corresponding to the ball B z( )r0

centered at ∈z N , which can be stated analogously.

Lemma 2.1. (Reflection principle for the Helmholtz equation w.r.t. spheres)
Let ·u y( ; ) be a solution to the boundary value problem

Δ δ+ = − − ⧹
= ∂

u x k u x x y B

u B

( ) ( ) ( ) in ,

0 on , (2.1)

N
r

r

2

0

0

where y is a fixed point in  ⧹BN
r0
. Then ·u y( ; ) can be analytically extended into the

interior of Br0
except for the point * = ( )y r y y0

2
. Furthermore, the extension of ·u y( ; ) in

Br0
solves the following interior boundary value problem:

Δ δ+ = −

= ∂

* *+( ) ( )u x k u x r y x y B

u B

( ) ( ) in ,

0 on . (2.2)

N

r

r

2
0

2

0

0
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The point *y is the inversion of y with respect to the sphere =x r0. For >r 0, set
* =r r r: 0

2 . Then by the definition of *y , it holds that * *=y r1 , where =r y1 . Arguing in the
same way as for the plane waves shown in [5], we believe that lemma 2.1 can be justified by
analyzing the explicit representation of u in terms of special functions in a subtle way.
However, in what follows we prefer to provide a more general argument based on the
celebrated Schwarz reflection principle for harmonic functions. The following property of
harmonic functions is well-known, but will be presented for the readers’ convenience.

Lemma 2.2. Let > = >r r y r2 1 0, and let v x y( ; ) be a solution to the boundary value
problem

Δ δ= − − ⧹ = =v x x y B B v x r( ) ( ) in , 0 on . (2.3)r r 02 0

Then, v x y( ; ) can be harmonically extended into the domain ⧹ *B Br r0 2
from ⧹B Br r2 0

except for

the point *y given as in lemma 2.1. Furthermore, the harmonic extension of v satisfies

Δ δ= − ⧹

= ∂

* *+
*( ) ( )v x r y x y B B

v B

( ) in ,

0 on . (2.4)

N

r r

r

0

2

0 2

0

Proof. Define

⎪
⎪

⎧
⎨
⎩

˜ =
< < ≠

− < < ≠* * *− ( )( )
v x

v x r x r x y

r x v x r x r x y
( )

( ) if ,

if , ,
(2.5)N

0 2

0

2

2 0

where * = ( )x r x x0

2
. The definition of ṽ in * < <r x r2 0 is nothing but the Kelvin transform

of v with respect to the sphere ∂Br0
. One can straightforwardly check that

Δ Δ δ˜ = − = − ⧹* * *+ +

*( )( ) ( )( )v x r x v x r y x y B B( ) in , (2.6)
N N

r r0

2

0

2

0 2

and

ν ν
= = ∂

∂
= ∂

∂
=+ −

+ −

v v
v v

x r0, on ,0

where ν ∈ N denotes the unit normal on ∂Br0
pointing into >x r0 and the superscripts · ±( )

stand for the limits taken from the outside and the inside of Br0
, respectively. This implies that

ṽ is also harmonic in a small neighborhood of the interface =x r0. Hence, ṽ is harmonic in

∪ *⧹ *{ }{ }B B y y,r r2 2
. Moreover, one can conclude from (2.6) that ṽ is singular at *=x y

and x = y. □

A novelty in the proof of lemma 2.2 is the derivation of the singularity of the harmonic
extension ṽ based on the singularity of v. To prove lemma 2.1, we shall follow the spirit of
Colton [6] by constructing solutions to the Helmholtz equation in terms of harmonic func-
tions. The singularity of u at y has to be appropriately treated. The calculations in the proof of
lemma 2.1 below provide us with inspiration as regards how to deal with Neumann and
impedance boundary conditions (see remark 2.1(i)).
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Proof of lemma 2.1. Employing spherical coordinates θ θ θ= ⋯ −( )( )r r, , , , N1 1 allows us to
rewrite θ= ( )u x y u r( ; ) , with =r x , where the dependence on y has been omitted. For a

fixed >r r2 1, set

∪θ θ Ω= = ⩽ ⩽ = ⧹{ }( ) ( ) { }y r I r r r r B B I, , , : , .y y r r1 1 2 2 0

Clearly, I is the one-dimensional line segment in N connecting y and the point θ( )r , y2 .

Proceeding analogously to [6], we make an ansatz on the solution u x y( ; ) in Ω via

∫θ θ θ θ θ θ Ω= + = ∈−( ) ( ) ( ) ( ) ( ) ( )u r v r w r w r s K r s v s s r, , , , , ( , ) , d , , , (2.7)
r

r
N 3

0

where v is a harmonic solution with vanishing boundary data on =x r0 and K r s( , ) is an
unknown continuous function to be determined later. In order for u to be a solution of (2.1),
the function w has to satisfy

⎛
⎝⎜

⎞
⎠⎟Δ Ω∂

∂
+ − ∂

∂
+ ˆ + + =θr

w

r

N

r

w

r r
w k r w v

1 1
( ) 0 in , (2.8)2

2

2 2
2 2

with Δ̂θ being the Laplace–Beltrami operator on the unit sphere in N . Straightforward
calculations lead to the following identities in Ω:

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫ θ

θ θ

θ

∂
∂

+ − ∂
∂

+

= + − +

+ + ∂
∂

+ −

−

− −

−

( )

( ) ( )

( )( )

r
w

r

N

r

w

r
k w

s K r s
N

r
K r s k K r s r v s s

r K r r v r r
r

r K r r v r

r K r r v r N

1

( , )
1

( , ) ( , ) , d

( , ) , ( , ) ,

( , ) , 1 , (2.9)

r

r
N

rr r

N
r

N

N

2
2

2
2

3 2 2

1 2 3

2

0

⎛
⎝⎜

⎞
⎠⎟

∫

∫

Δ Δ θ

θ

ˆ = ˆ

= − ∂
∂

+ − ∂
∂

θ θ
−

−

( )

( )

w s K r s v s s

s K r s
s

N

s s
v s s

( , ) , d

( , )
1

, d . (2.10)

r

r
N

r

r
N

3

1
2

2

0

0

Note that we have used the relation

⎛
⎝⎜

⎞
⎠⎟ θ Δ θ Ω∂

∂
+ − ∂

∂
+ ˆ =θ( ) ( )

s

N

s s
v s

s
v s

1
,

1
, 0 in

2

2 2

in deriving (2.10). Further, integration by parts in (2.10) yields

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥∫

Δ θ θ

θ θ

θ

ˆ = − −

+ −

− + −

θ
−

−

−

( ) ( )
( ) ( )

( )

w r K r r v r K r r v r

r K r r v r K r r v r

s K r s
N

s
K r s s v s s

( , ) , ( , ) ,

( , ) , ( , ) ,

( , )
1

( , ) , d . (2.11)

N
s s

N
s s

r

r
N

ss s

1

0
1

0 0 0 0

3 2

0

Inserting (2.11) and (2.9) into (2.8) and using the boundary condition θ =( )v r , 00 , it

follows that w is a solution of (2.8) provided that the kernel K r s( , ) satisfies the identities

Inverse Problems 30 (2014) 065010 G Hu and X Liu

6



⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥+ − + = + −

=

K r s
N

r
K r s k K r s r K r s

N

s
K r s s

K r r

( , )
1

( , ) ( , ) ( , )
1

( , ) ,

( , ) 0, (2.12)

rr r ss s
2 2 2

0

and the function ˜ =K r K r r( ) : ( , ) is subject to the ordinary differential equation condition

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦˜ ′ = − − ˜ + ∀ ∈−( )rK r N K r k r r r r2 ( ) 2 4 ( ) , , . (2.13)N2 4
0 2

The unique solution to (2.13) with the compatibility condition ˜ = =K r K r r( ) ( , ) 00 0 0 is
given by

= − −− ( )K r r k r r r( , ) 4 . (2.14)N2 2 2
0
2

In [6], the problem of (2.12) and (2.14) was transformed into a Goursat problem for a
hyperbolic equation in a cone. Consequently, the well-posedness of analytic solutions of

K r s( , ) in < >{ }s r s r r r( , ): , 0 and > <{ }s r s r r r( , ): , 0 follows from the technique of

successive approximations (see [10]). It is worth noting that the kernel K r s( , ) is independent
of v.

Having determined the kernel K r s( , ), we now want to represent θ( )u r, in the form

θ θ=( ) ( )u r Tv r, , in Ω, where v will be proved to be some harmonic function in Ω and

∫θ θ θ θ Ω= + ∈−( ) ( ) ( ) ( )Tv r v r s K r s v s s r, : , ( , ) , d , , .
r

r
N 3

0

Since T is a Volterra integral equation of the second kind and the integral kernel K r s( , )
is analytic, there always exists a unique solution v to the equation Tv = u in Ω. Moreover, v

has the same singularity as u and satisfies θ =( )v r , 00 . Hence the values of θ( )v r, y for

< <r r r1 2 can be defined by taking the limit. Applying properties of K r s( , ), it is easy to

verify that Δ δ= − −v x y( ) for all ∪∈ ⧹{ }x B B y{ }r r2 0
.

To proceed with the proof, we need to extend the total field u from ∪⧹{ }B B y{ }r r2 0
into

∪ *⧹ *{ }{ }B B yr r0 2
. Introduce the function

∪θ θ˜ = ˜ ⧹ **{ { }}( ) ( )u r Tv r B B y y, : , in , ,r r2 2

where ṽ is the extension of v into ∪ *⧹ *{ }{ }B B yr r0 2
given by (2.5). Now it can be seen that

ũ is the extension of u as a solution of the Helmholtz equation to ∪ *⧹ *{ }{ }B B yr r0 2
. Since ṽ

satisfies (2.4), the extension of u in Br0
satisfies the interior boundary value problem (2.2). The

proof of lemma 2.1 is finished. □

Remark 2.1.

(i) A more explicit extension formula was constructed in [18] for general analytic (Dirichlet)
curves, from which the result of lemma 2.1 for a disk also follows. The investigation of
the Neumann and Robin boundary conditions would lead to a Goursat problem in a cone
with the Dirichlet data (2.14) and a certain Robin boundary condition on =s r0, which is
beyond the scope of this paper.

(ii) When → ∞y , the incident point source wave (1.1) behaves like a plane wave with the

direction −y y and the inversion point *y tends to the origin. Hence, the scattered field
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for plane waves can be analytically extended into the interior of a sound-soft ball except
for its center. This fact has been used to prove uniqueness for balls by sending an incident
plane wave (see [5, 13]).

We are now ready to present the proof of theorem 1.1 for balls in N .

Proof of theorem 1.1 for balls. Assume that there are two sound-soft balls =D B z( )r1 11
,

=D B z( )r2 22
producing the same near-field data · = ·u y u y( ; ) ( ; )sc sc

1 2 on Γ for the

incident point source ·u y( ; )in with ∩∈y D De e
1 2 . In the following, we shall prove the

coincidence of the centers and radii, i.e., =z z1 2, =r r1 2.

By lemma 2.1, the total field · = · + ·u y u y u y( ; ) ( ; ) ( ; )l
in

l
sc can be analytically

extended into Dl except for the point

= +
−

− =*y z
r

y z
y z l: ( ), 1, 2.

l l
l

l

l

2

2

Denote by ˜ ·u y( ; )l
sc the extension of ·u y( ; )l

sc into the domain  *⧹{ }yN
l

. By the

uniqueness of the exterior Dirichlet boundary value problem [5], the coincidence of
˜ ·u y( ; )sc

1 and ˜ ·u y( ; )sc
2 on Γ implies that ˜ = ˜u x y u x y( ; ) ( ; )sc sc

1 2 for all x outside of Γ .
Furthermore, from analytic continuation we conclude that ˜ ·u y( ; )sc

1 and ˜ ·u y( ; )sc
2 coincide

in  * *⧹{ }y y,N
1 2

. If * *≠y y
1 2

, we can construct a non-trivial radiating solution to the

Helmholtz equation in the whole space N , which is impossible. Hence, we get * * *= =y y y
1 2

,

from which there follows the relation

− − = =*z y z y r l, 1, 2. (2.15)l l l
2

In addition, one can readily conclude that z z y, ,1 2 and *y are collinear points and *y is

located between =( )z j 1, 2j and y.

Denote by ·∞u y( ; )l the far-field pattern of the scattered field ·u y( ; )l
sc . In view of the

mixed reciprocity relation (see, e.g., [17, theorem 2.1.4]),

⎪

⎪

⎧
⎨
⎩η η

π
π

ˆ = − ˆ = =
=
=

π
∞ ( ) ( ) ( )

u x y u y x l
k N

N
; ; , 1, 2,

e 8 if 2,

1 4 if 3,
(2.16)l l

sc
i 4

where · − ˆ( )u x;l
sc denotes the scattered field generated by the plane wave incident onto Dl

with the direction −x̂. Since =u x y u x y( ; ) ( ; )sc sc
1 2 on Γ , we know that

ˆ = ˆ∞ ∞( ) ( )u x y u x y; ;1 2 and thus by (2.16) we have the relation − ˆ = − ˆ( ) ( )u y x u y x; ;sc sc
1 2

for all ˆ ∈ −x N 1. The explicit representation of ul
sc in three dimensions is given by (see, e.g.,

[5] when zl coincides with the origin)

∑ φ− ˆ = − + − =
=

∞

( )( ) ( )
( )
( )

u y x n
j kr

h kr
h k z y P l; i 2 1 ( cos ), 1, 2.

( )
( )

l
sc

n

n n l

n l

n l n l
0

1

1

Here: j
n
denotes the spherical Bessel function of order n; h ( )

n
1 , the spherical Hankel

function of the first kind of order n; Pn, the Legendre polynomial of order n; and φ
l
, the angle

between − −y z y z( )l l and −x̂. By the asymptotic behavior of the spherical Bessel and
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Hankel functions for large n, we see that

− ∼
+ !! −

→ ∞
+

+( )( )
( ) ( )

j kr

h kr
h k z y

k

n

r

z y
n

2 1
as ,

( )
( )n l

n l

n l

n
l

n

l
n1

1
2 1

1

where + !! = · · ⋯ +( ) ( )n n2 1 1 3 5 2 1 . Hence, it follows from − ˆ = − ˆ( ) ( )u y x u y x; ;sc sc
1 2

and φ φ=
1 2

for all ˆ ∈ −x N 1 that


−

=
−

∈
+

+

+

+

r

z y

r

z y
nfor sufficiently large ,

n

n

n

n

1
2 1

1
1

2
2 1

2
1

from which we conclude that

−
=

−
r

z y

r

z y
. (2.17)1

2

1

2
2

2

Making use of (2.15), we obtain * *− = −y z y z1 2 , implying that =z z1 2. Finally, the

relation =r r1 2 follows immediately from (2.15) and (2.17). This finishes the proof of theorem

1.1 for balls in 3. The two-dimensional case can be treated in the same manner. □

3. Proof of theorem 1.1 for polyhedral scatterers

We first state the reflection principle for the Helmholtz equation with respect to a Dirichlet
hyperplane.

Lemma 3.1. (Reflection principle for the Helmholtz equation w.r.t. planes)
Suppose that Ω ⊂ N is a symmetric connected domain with respect to an

−( )N 1 -dimensional hyperplane Π and that ∩Λ Ω Π= ≠ ∅. Denote by Ω+ and Ω− the

two connected subdomains of Ω separated by Λ. If Δ + =u k u 02 in Ω+ and u = 0 on Λ, then
u can be analytically extended into Ω− via the formula

 Ω= − ∈Π
−( )u x u x x( ) ( ) , , (3.1)

where Π stands for the reflection with respect to Π .

Lemma 3.1 arises naturally from the Schwarz reflection principle for harmonic solutions
which vanish on a flat surface. The corresponding principle for the Helmholtz equation was
first studied in [7], in which one may also find the extension formulas under the Neumann and
impedance boundary conditions. Recently, it has been used to prove uniqueness in inverse
acoustic scattering from polyhedral scatterers with one or several incident plane waves (see,
e.g., [1, 3, 8, 14]). To prove the uniqueness for polyhedral scatterers with a single point source
wave, we introduce the concept of a Dirichlet set.

Definition 3.1. Let Π be an −( )N 1 -dimensional hyperplane in N . A non-void open
connected component Λ Π⊂ will be called a Dirichlet set of u if u = 0 on Π .

The reflection principle described in lemma 3.1 immediately gives us the following
properties of the Helmholtz equation.
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Corollary 3.1. With the notation used in lemma 3.1, we suppose that u is a solution to the
Helmholtz equation in Ω vanishing on Λ.

(i) If Λ0 is a Dirichlet set of u in Ω+, then  Λ Ω⊂Π
−( )0 is also a Dirichlet set of u.

(ii) If u is singular at Ω∈y , then u is also singular at Π y( ).

From the second assertion of corollary 3.1, we see that the number of singularities of u in
Ω cannot be 1. This fact will be utilized to justify the uniqueness within the polyhedral
scatterers, since the total field has exactly one singular point (i.e., the position of the inci-
dence point source) in the exterior of the scatterer under investigation. Our proof will be
carried out by using the path and reflection arguments first developed in [1, 3] and later
modified in [9, 14]. Note that in contrast to the Dirichlet set for incident plane waves being
bounded, a Dirichlet set caused by point source waves is allowed to be unbounded. The final
contradiction in our proof also differs from that using plane wave incidence.

Proof of theorem 1.1 for polyhedral scatterers. Assume that two sound-soft polyhedral
scatterers D1 and D2 generate the same total fields · = ·u y u y( ; ) ( ; )1 2 on Γ due to the point
source located at Ω∈y 0, where Ω0 denotes the unbounded connected component of

∩D De e
1 2 . We are aiming at proving ∂ = ∂D D1 2. By the well-posedness of the acoustic

scattering problem in  ⧹DN
0 and the unique continuation of solutions to the Helmholtz

equation, we see that

Ω= ⧹{ }u x y u x y y( ; ) ( ; ) in . (3.2)1 2 0

If ∂ ≠ ∂D D1 2, without loss of generality we may always assume that there exists a
Dirichlet set Λ of u1 in D e

1 . This follows from the relation (3.2) together with the fact that D1

and D2 are both polyhedral scatterers in the sense of definition 1.1 and that Dj
e for j = 1,2 are

connected; see, e.g., [1, 14]. Since u1 is real analytic in the exterior of D1, a Dirichlet set of u1

in our proof always means its maximum extension in D e
1 . It might happen that Λ extends to

infinity in D e
1 or Λ is identical with some Dirichlet hyperplane. Next, we shall carry out the

proof by deriving a contraction. For clarity we divide our proof into three steps.
Step 1. The path argument. Introduce the set of all Dirichlet sets of u1 via

 Λ Λ= ˜ ˜{ }u D: is a Dirichlet set of in .e
1 1

The set ≠ ∅, because Λ ∈ . Choose a point Λ∈y
0

and a continuous injective curve γ t( )

for ⩾t 0 connecting y
0
and the position y of the incident point source. Without loss of

generality, we assume that γ =( ) y0
0
and γ =( )T y for some >T 0. Let  be the set of

points of intersection of γ with all Dirichlet sets of u1, i.e.,

  ∩Λ Λ γ= ∈ ⩾ ={ }y t t y: there exist and 0 such that ( ) .
n n n n n n

It is clear that the points contained in are uniformly bounded, since γ t( ) is a bounded
curve with finite length. Moreover, it was shown in [14] that  is closed in the sense that if

→ ′y y
n

, then there exist ′ >t 0 and a Dirichlet set Λ′ ∈ such that ∩Λ γ′ ′ = ′( )t y . Hence,

 is compact, and we can find some * >t 0 such that there exists *Λ ∈ intersecting with

γ t( ) at *=t t and that
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∩γ = ∅ ∀ > > *t T t t( ) , .

Note that * <t T , because u1 vanishes at *γ ( )t but is singular at γ =( )T y.

Step 2. The reflection argument. Let *Π be the hyperplane containing *Λ , and let Π*

denote the reflection with respect to the plane *Π . We now apply corollary 3.1 to prove the

existence of a symmetric open set *Ω Λ⊃ with respect to *Π such that Ω ⊂ D e
1 and Ω∈y .

This will be done in the following paragraph.

Choose *γ ϵ= ++ ( )x t for ϵ > 0 sufficiently small such that * ϵ+ < <t t T and define

= Π
−

*
+( )x x: . Let ±G be the connected component of  ∪ *Λ⧹{ }DN

1 containing ±x , and

denote by Ω± the connected component of ∩ Π
±

*
∓( )G G containing ±x . Setting

∪ ∪*Ω Ω Λ Ω= + −: , we observe that Ω ⊂ D e
1 is a connected symmetric domain with

respect to *Π whose boundary is a subset of   ∪ ∪ ∪∂ ∂Π*( ) ( )D D1 1 . Thus, by

corollary 3.1 ( )i , u1 vanishes on Ω∂ . What differs from the plane wave incidence case is that

the domain Ω in the current situation might be unbounded. It now remains to prove Ω∈y .

Assume to the contrary that Ω∉y . Since *γ ϵ Ω= + ∈+ +( )x t and the continuous curve

γ t( ) for * ϵ+ < <t t T lies in D e
1 , γ t( ) must intersect ∪Ω∂ ∂Π* ( )D1 at some ** * ϵ> +t t .

This implies the existence of a new Dirichlet set intersecting γ t( ) at ** *>t t , contradicting

the Dirichlet set *Λ obtained at *=t t . Hence Ω∈y .

Step 3. The end of the proof. Let Ω and *Π be given as in step 2. We observe that

* Ω= ∈Π*y y: ( ) , since Ω∈y and Ω is a connected symmetric domain with respect to *Π .

By corollary 3.1 ( )ii , u1 is also singular at * ≠( )y y . However, this is a contradiction to the

analyticity of u1 in Ω ⊂ ⧹D y{ }e
1 . The proof of theorem 1.1 for polyhedral scatterers is thus

complete. □

We finally remark that, for sound-hard polyhedral scatterers, one should apply the even
extension formula = Π( )u x u x( ) ( ) in place of (3.1), which is still a ‘point-to-point’ kind of

extension. Hence, the proof for sound-soft polyhedral scatterers carries over to the sound-hard
ones. However, it was shown in [7] that the extension formula with the impedance boundary
condition is no longer of the ‘point-to-point’ kind. To the best of the authors’ knowledge, it is
still unknown how one would prove the uniqueness with one incident plane or point source
wave within the class of non-convex polyhedral obstacles of impedance type.

4. Uniqueness with interior measurement data

This section is devoted to extending the previous results for the exterior problems to the
interior problems. In contrast to the case for the exterior problems, we have to assume that k2

is not an eigenvalue of Δ− in D with respect to the boundary conditions under consideration
to ensure that the direct problem is uniquely solvable and thus that the measurements make

sense. Such an assumption can be removed by adding an artificial obstacle   ⊂( )D with

an impedance boundary condition to the underlying scattering system [15]. Furthermore, we
assume that k2 is not a Dirichlet eigenvalue of Δ− in D0. However, this is not essential since
we have the freedom to choose D0.

Inverse Problems 30 (2014) 065010 G Hu and X Liu

11



We emphasize that the object that we want to reconstruct in the interior inverse problems
is a simply connected domain. If the center of the ball is given in advance, it has been proved
in [16] that the radius can be uniquely determined by a single interior measurement. In the
following, we remove this additional assumption and show that both the center and the radius
can be uniquely determined by a single interior measurement.

Proof of theorem 1.2. The unique determination of a polyhedra obstacle follows from
arguments similar to those in section 3. Hence, it remains to consider the case of a sound-soft
ball. We shall carry out the proof by applying theorem 1.1 for the exterior scatter-
ing problems.

Assume that there are two sound-soft balls =D B z( )r1 11
, =D B z( )r2 22

generating the

same near-field data · = ·u y u y( ; ) ( ; )sc sc
1 2 on Γ due to the incident point source ·u y( ; )in

with ∩∈y D D1 2. Set · = · + ·u y u y u y( ; ) ( ; ) ( ; )l l
sc in (l = 1, 2) to be the total fields for

the interior scattering problems associated with Dl. Define

= +
−

− =*y z
r

y z
y z l: ( ), 1, 2.

l l
l

l

l

2

2

Clearly, * ∈ ⧹y D
l

N
l is the inversion of y with respect to the sphere ∂ =D l, 1, 2l .

Let *·( )w y;l l
be a radiating solution to the exterior Dirichlet problem

Δ δ+ = − · − ⧹
= ∂

*( )w k w y D

w D

in ,

0 on . (4.1)
l l l

N
l

l l

2

The solution *·( )w y;l l
can be regarded as the total field generated by the incident point

source wave *·( )u y;in
l

, i.e., * * *· = · + ·( ) ( ) ( )w y u y w y; ; ;l l
in

l l
sc

l
, where *·( )w y;l

sc
l

denotes the associated scattered field. By lemma 2.1, *·( )w y;l l
can be analytically extended

into Dl except for the point ∩∈y D D1 2. Furthermore, wl is a solution of the following
Dirichlet boundary value problem in Dl (see (2.2)):

Δ
α

δ+ = − · −

= ∂

w k w y D

w D

1
( ) in ,

0 on . (4.2)

l l
l

l

l l

2

Here, α =− −
+( )y z r:l l l

N 2
is a constant. Since αul l is also a solution of (4.2), we get

α =w ul l l in Dl by the assumption that k2 is not a Dirichlet eigenvalue of Δ− in Dl. Define

α= − ∈ ⧹ =* *{ }( )v x w x y u x y x y l( ) ; ( ; ), , 1, 2.l l l l

in N

l

Then, vl is a radiating solution of the Helmholtz equation in  *⧹{ }yN
l

. The assumption that

· = ·u y u y( ; ) ( ; )sc sc
1 2 on Γ and the relation α =w ul l l in Dl imply that =v v1 2 on Γ . Since k2

is not a Dirichlet eigenvalue of Δ− in D0, we obtain =v v1 2 in D0 and therefore in

 * *⧹{ }y y,N
1 2

by analytic continuation. If * *≠y y
1 2

, we can construct a non-trivial radiating

solution to the Helmholtz equation in the whole space N , which is impossible. Hence, we get
* * *= =y y y

1 2
. The relation =v v1 2 in  *⧹{ }yN implies that
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α α= ⧹ *{ }w w y yin , . (4.3)N
1 1 2 2

We claim that α α=1 2. Actually, if α α≠1 2, it follows from (4.3) and the relation

* * *· = · + ·( ) ( ) ( )w y u y w y; ; ;l l
in

l l
sc

l
that

α α α α− · = · − · ⧹* * * *{ }( ) ( ) ( )u y w y w y y y( ) ; ; ; in , .in sc sc N
1 2 2 2 1 1

However, this leads to an obvious contradiction sincethe left-hand side of the above equality

is singular at *=x y due to the point source wave uin, while the scattered fields wl
sc (l = 1, 2)

on the right-hand side are both smooth at  ∪* ∈ ⧹y D DN
1 2. Hence, α α=1 2.

To finish the proof, we deduce from (4.3) and α α=1 2 that * *· = ·( ) ( )w y w y; ;sc sc
1 2 on

∂BR, where BR is a large ball containing D1 and D2. Finally, we obtain =z z1 2 and =r r1 2 as a
consequence of theorem 1.1. □
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