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VARIATIONAL APPROACH TO SCATTERING BY UNBOUNDED
ROUGH SURFACES WITH NEUMANN AND GENERALIZED

IMPEDANCE BOUNDARY CONDITIONS∗

GUANGHUI HU† , XIAODONG LIU‡ , FENGLONG QU§ , AND BO ZHANG¶

Abstract. This paper is concerned with problems of scattering of time-harmonic electromagnetic
and acoustic waves from an infinite penetrable medium with a finite height modeled by the Helmholtz
equation. On the lower boundary of the rough layer, the Neumann or generalized impedance boundary
condition is imposed. The scattered field in the unbounded homogeneous medium is required to satisfy
the upward angular-spectrum representation. Using the variational approach, we prove uniqueness
and existence of solutions in the standard space of finite energy for inhomogeneous source terms, and
in appropriate weighted Sobolev spaces for incident point source waves in Rm (m= 2,3) and incident
plane waves in R2. To avoid guided waves, we assume that the penetrable medium satisfies certain
non-trapping and geometric conditions.
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1. Introduction
This paper is concerned with the mathematical analysis of problems of scattering of

time-harmonic electromagnetic and acoustic waves from an infinite and inhomogeneous
medium of a finite height governed by the Helmholtz equation. The interface between
the finite inhomogeneous layer and the unbounded homogeneous medium is supposed
to be a rough surface, which usually means a non-local perturbation of an infinite plane
surface such that the surface lies within a finite distance of the original plane. Such
scattering problems have been of interest to physicists, engineers and applied mathe-
maticians for many years due to their wide range of applications in optics, acoustics,
radio-wave propagation, seismology and radar techniques (see, e.g., [2, 3, 28, 30]).

There has been already a vast literature on rough surface scattering problems for
acoustic and electromagnetic waves. We refer the reader to [6, 7, 10, 11, 12, 32] and
[29, Chapter 5] for the integral equation method applied to the Dirichlet or impedance
boundary value problem with smooth (C1,α) surfaces in Rm (m= 2,3) and to [13, 31] for
scattering by penetrable interfaces and inhomogeneous layers. The variational approach
proposed in [8] by Chandler-Wilde and Monk gives rise to existence and uniqueness
results in non-weighted Sobolev spaces, allowing to treat the scattering problem due to
an inhomogeneous source term whose support lies within a finite distance above rather
general sound-soft surfaces in Rm (m= 2,3). Moreover, this approach leads to explicit
bounds on solutions in terms of the data and applies to acoustic scattering by impedance
surfaces, by inhomogeneous rough layers as well as by penetrable interfaces; see, e.g.,
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[9, 24, 29, 26]. A recently developed variational approach in weighted Sobolev spaces
covers the plane wave incidence case for two-dimensional sound-soft rough surfaces,
whereas in the 3D case incident spherical and cylindrical waves can be treated; see
Chandler-Wilde & Elschner [5]. Recently, the variational approach developed in [8] and
[5] has been extended to the electromagnetic and elastic cases in [18, 19, 21, 25]. Other
studies [14, 15] have been carried out by Durán, Muga, and Nédélec for treating surface
waves arising from locally perturbed impedance rough surfaces, where the sign of the
impedance coefficient is the opposite of ours.

The aim of this paper is to investigate the rough surface scattering problems with
the Neumann boundary condition (NBC) and the Generalized Impedance Boundary
Condition (GIBC). These boundary conditions have important applications in the real
world. For example, GIBC models the third-order approximation of electromagnetic
scattering by highly conducting materials, while the Neumann boundary condition is
the exactly the zero-order approximation in the case of transverse magnetic (TM) po-
larization (see, e.g., [16, 22, 23] and the references therein). Using variational approach,
we prove existence and uniqueness of solutions at arbitrary frequency for the scattering
problem due to either an inhomogeneous source term, an incident point source wave in
Rm (m= 2,3), or an incident plane wave in R2. The refractive index characterizing the
inhomogeneous medium is required to satisfy a certain non-trapping condition in order
to exclude guided waves. For the Neumann boundary value problem, we assume that
the upper boundary of the inhomogeneous medium is a Lipschitz graph but the lower
boundary is a flat plane, which means that the inhomogeneous medium is sitting on a
half space; see Figure 4.1.

Our method is closest to the variational approach of Chandler-Wilde and Monk
[8] in a non-weighted setting and that of Chandler-Wilde and Elschner [5] in weighted
Sobolev spaces. We have employed several new ideas from electromagnetic and elastic
wave scattering problems [18, 21]. Compared with the earlier work, the novel contri-
butions of the present study are summarized as follows. (i) We present a shorter and
simpler proof of the well-posedness of acoustic scattering from generalized impedance
rough surfaces given by Lipschitz graphs. Instead of the generalized Lax-Milgram lemma
used for the classical impedance rough surfaces (see [29]), our proof is based on a pertur-
bation argument for semi-Fredholm operators in combination with the well-posedness of
the Dirichlet problem. This idea stems from [18, Lemma 5.2], where the Lamé equation
is treated in the non-weighted space and from [20, Lemma 7] on the a priori estimate for
solutions of the Helmholtz equation in periodic structures. The proof applies straight-
forwardly to the classical impedance boundary conditions, provided the rough surface is
a Lipschitz graph. (ii) In the Neumann case, we have imposed a rather general condition
(see condition (iii) in Theorem 4.1) relating the refractive index with the transmission
coefficient, which covers both the TE and TM transmission conditions. The approach
dealing with the transmission conditions extends directly to the rough surface scatter-
ing problems in the whole space. Since a piecewise constant refractive index satisfies
the non-decreasing condition, our non-trapping condition is more general than that em-
ployed in [21] for the full Maxwell system. Note that the Neumann surface is required
to be flat since we could obtain vanishing boundary terms over the surface (see (4.14))
in deriving the a priori estimate via the Rellich identities. This trick was already used
in [21] for treating the electromagnetic scattering from penetrable dielectric layers lying
on a perfect conductor in a half space; see also [31], where the TM polarization case
was studied using the integral equation method. (iii) We have derived wave number-
explicit bounds on the solution for inhomogeneous source terms (see theorems 3.4 and
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4.1), which might be important to numerical analysis. The dependence of the bounds
on the Lipschitz constant of the rough interface is also obtained.

Here, we mention several features of our paper. Unlike [5], our variational equations
for incident plane waves are formulated in a straightforward way, with the right-hand
side explicitly expressed in terms of the plane wave. As shown in [5], one can readily
justify the quasi-periodicity of solutions when the medium is periodic and the incident
wave is quasi-periodic. The proof for the Neumann boundary value problem (NBVP)
slightly differs from the Generalized Impedance Boundary value Problem (GIBVP),
and thus we have presented exactly two different ways in the framework of functional
analysis for treating rough surface scattering problems; cf. lemmas 3.1 and 4.2. Both
approaches rely crucially on the a priori estimate of solutions to the Helmholtz equation
at arbitrary wave numbers.

The rest of the paper is organized as follows. In Section 2, we rigorously formulate
the GIBVP for the wave scattering due to an inhomogeneous source term, and propose
the equivalent variational formulation in the usual Sobolev space with finite energy.
The uniqueness and existence proofs will be carried out in Section 3, based on the
abstract functional analysis described in Lemma 3.1. Section 4 is devoted to the unique
solvability of the NBVP under certain assumptions. The final Section 5 deals with the
well-posedness in weighted Sobolev spaces for incident plane and point source waves.

2. The GIBVP and its variational formulation
Consider the time-harmonic electromagnetic scattering (with time variation of the

form exp(−iωt), ω>0) due to a source term g in an infinite inhomogeneous layer of
finite height lying above an imperfect conductor with a high conductivity. For x=
(x1,. ..,xm)∈Rm (m= 2,3), let x̃= (x1,. ..,xm−1) so that x= (x̃,xm). For H ∈R, let
UH ={x :xm>H} and ΓH ={x :xm=H}. Let D⊂Rm be a connected open set such
that for some constants f−<f+ it holds that

Uf+ ⊂D⊂Uf− .

Fig. 2.1. The geometric settings for GIBVP. For x= (x̃,xm)∈Rm, Γ ={x :xm =f(x̃)}, Uf+ =

{x :xm>f+}, D={x :xm>f(x̃)}. A GIBC is imposed on Γ.

Denote by Rm\D the imperfect conductor with a high conductivity under consideration.
Throughout the paper, it is supposed that the boundary Γ :=∂D of D is given by the
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graph of a bounded and uniformly Lipschitz continuous function f , i.e.,

Γ :={xm=f(x̃),x̃∈Rm−1}, |f(x̃)−f(ỹ)|≤L|x̃− ỹ|, ∀ x̃, ỹ∈Rm−1, (2.1)

with the Lipschitz constant L>0; see Figure 2.1. In the TE polarization case, the
electromagnetic scattering problem can be modeled by the inhomogeneous Helmholtz
equation

∆u+k2n(x)u=g in D, (2.2)

in a distributional sense, with the positive constant wave number given by k :=
√
µ0ε0ω

in terms of the electric permittivity ε0>0 and the magnetic permeability µ0>0 in
the vacuum. The refractive index function n(x), which models the medium inside the
inhomogeneous layer D\Uf+ , is given by

n(x) =

1 in Uf+ ,
ε(x)

ε0
+ i

σ(x)

ωε0
in D\Uf+ ,

i=
√
−1, (2.3)

where the electric permittivity ε(x)>0 and the conductivity σ(x)>0 are both spatially
varying functions. Since Rm\D consists of highly conducting materials, there is a rapid
exponential decay of the wave inside Rm\D, i.e., the electromagnetic field cannot pene-
trate deeply into Rm\D. The scattering effect on Γ in this case can be modeled by the
generalized impedance boundary condition

∂u

∂ν
+divΓ(µ∇Γu)+λu= 0 on Γ, (2.4)

where ν= (ν1,·· · ,νm) stands for the unit norm pointing into D, and divΓ and ∇Γ are
respectively the surface divergence and the surface gradient on Γ. We refer to [22]
for the associated asymptotic analysis and error estimate for scattering problems from
unbounded highly absorbing media. If µ= 0, (2.4) reduces to the standard impedance
boundary condition which corresponds to the second-order approximation of the electro-
magnetic scattering by highly conducting materials. The generalized impedance bound-
ary condition (2.4) is exactly the third-order approximation of the scattering problem,
and thus could lead to more precise and accuracy reflecting effects.

In this paper, we assume that the impedance coefficients λ and µ are constants
satisfying

Re(λ)≤0, Im(λ)>0, Im(µ)≤0, Re(µ)>0. (2.5)

The differential operator divΓ(µ∇Γ·) can be interpreted as follows. For v∈H1(∂D) the
surface gradient ∇Γv lies in the tangential space L2

t (Γ) :={V ∈L2(∂D) :ν ·V = 0}. The
operator divΓ(µ∇Γu) is defined in H−1(Γ) by〈

divΓ(µ∇Γu),v
〉

=−
∫

Γ

µ∇Γu ·∇Γvds, ∀v∈H1(∂D),

where
〈
·,·
〉

stands for the duality pairing in
〈
H−1(Γ),H1(Γ)

〉
which is an extension of

the inner product in L2(Γ).
The variational problem will be posed on the open set SH =D\UH for some H>f+.

To derive an equivalent variational formulation, we adapt the upward Angular Spectrum
Representation proposed in [8], which can be written as

u(x) =
1

(2π)(m−1)/2

∫
Rm−1

exp(i[(xm−H)
√
k2−ξ2 + x̃ ·ξ])F̂H(ξ)dξ, x∈UH , (2.6)
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where FH =u|ΓH
and F̂H =FFH denotes the Fourier transform of FH given by

Fv=
1

(2π)(m−1)/2

∫
Rm−1

exp(−ix̃ ·ξ)v(x̃)dx̃, m= 2,3.

In this equation,
√
k2−ξ2 = i

√
ξ2−k2 when ξ2>k2. The representation of u in the

integral (2.6) can be interpreted as a formal radiation condition in the physics and
engineering literature on rough surface scattering (see e.g. [28]). We will discuss the
GIBVP due to the source term in the Hilbert space

VH :={φ|SH
:φ∈H1(D),φ∈H1(Γ)}, H≥f+,

equipped with the norm

‖|u‖|VH
:=‖u‖H1(SH) +‖u‖H1(Γ), (2.7)

where H1(·) denotes the standard Sobolev space. By the trace lemma, we have FH ,F̂H ∈
L2(Γ), and thus the right hand side of (2.6) makes sense for every x∈UH . When
u|ΓH

∈BC(ΓH)∩L∞(ΓH), the space of bounded and continuous functions on ΓH , it
has been shown in [1] by Arens and Hohage that (2.6) can be interpreted as a bilinear
dual pairing of H−s and Hs with 1/2<s<1 in two dimensions.

We emphasize that in this paper, unless otherwise stated, we employ the equivalent
norm ‖·‖VH

to ‖| ·‖| (see (2.7)) given by

‖u‖2VH
:=

∫
SH

(|∇u|2 +k2|u|2)dx+Im(λ)‖u‖2L2(Γ) +Re(µ)‖∇Γu‖2L2(Γ),

which depends on the wave number k2 and the impedance coefficients λ and µ.
The generalized impedance boundary value problem can be stated as follows.

(GIBVP) : Given g∈L2(D) whose support lies in SH , determine u :D→C such that
u|SH

∈VH satisfies the equation (2.3) in a distributional sense, the boundary
condition (2.4) in a weak sense and the Angular Spectrum Representation (2.6).

We will prove the existence and uniqueness of solutions to (GIBVP) under the
following non-trapping condition

(A): n∈L∞(D) and Re[n(x)] is monotonically increasing as xm increases, that is,

essinf
[
Re
[
n(x+sem)−n(x)

]
:x∈D

]
≥0 (2.8)

for all s>0, where em denotes the m-th Cartesian unit vector of Rm.

Obviously, under the assumption (A) we have the upper bound

||Re(n)||L∞(D)≤1. (2.9)

The condition (2.8) can be slightly relaxed; see Remark 3.1 at the end of the next
section.

The variational formulation of (GIBVP). In the following, we will introduce
some trace operators and a Dirichlet-to-Neumann operator defined on ΓH . To de-
scribe the mapping properties of these operators we use standard fractional Sobolev
space notation equipped with a wave number dependent norm that is equivalent to the
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usual norm. Identifying ΓH with Rm−1, we denote by Hs(ΓH), s∈R the completion of
C∞0 (ΓH) endowed with the norm

‖φ‖Hs(ΓH) =

(∫
Rm−1

(
k2 + |ξ|2

)s |Fφ(ξ)|2dξ
)1/2

. (2.10)

We recall [8] that, for all a>H>f+ there exist continuous embeddings γ+ :
H1(UH\Ua)→H1/2(ΓH) and γ− :VH→H1/2(ΓH) such that γ±φ coincides with the re-
striction of φ to ΓH when φ∈C∞. It is also known that, if u+∈H1(UH\Ua), u−∈VH ,
and γ+u+ =γ−u−, then v∈Va, where v(x) :=u+(x), x∈UH\Ua, :=u−(x), x∈SH . Con-
versely, if v∈Va and u+ :=v|UH\Ua

, u− :=v|SH
, then γ+u+ =γ−u−.

The Dirichlet-to-Neumann (DtN) operator T is defined by

T =T (k) :=F−1MzF , (2.11)

where Mz =Mz(k) is the operator of multiplying by

z(ξ;k) :=

{
−i
√
k2−|ξ|2 if |ξ|≤k,√
|ξ|2−k2 if |ξ|>k.

Hence, it follows that, if FH ∈C∞0 (ΓH) and u is defined by (2.6), then

Tγ+u=− ∂u

∂xm
|ΓH

. (2.12)

Let us recall two lemmas which concern properties of the DtN operator T .

Lemma 2.1. ([8])

(i) The DtN operator T :H1/2(ΓH)→H−1/2(ΓH) is bounded with the norm
‖T‖H1/2(ΓH)→H−1/2(ΓH) = 1.

(ii) For all φ,ψ∈H1/2(ΓH), we have∫
ΓH

φTψds=

∫
ΓH

ψTφds.

For all φ∈H1/2(ΓH), it holds that

Re

∫
ΓH

φTφds≥0 and Im

∫
ΓH

φTφds≤0.

The following lemma describes properties of u, defined by (2.6) (see [8]).

Lemma 2.2. If (2.6) holds with FH ∈H1/2(ΓH), then u∈H1(UH\Ua)∩C2(UH) for
every a>H,

4u+k2u= 0 inUH ,

γ+u=FH , and∫
ΓH

γ+vTγ+uds+k2

∫
UH

uvdx−
∫
UH

∇u ·∇vdx= 0, v∈H1(D). (2.13)

Further, the restrictions to Γa of u and ∇u are in L2(Γa) for all a>H, and∫
Γa

[ | ∂u
∂xm

|2−|∇x̃u|2 +k2|u|2 ]ds≤2k Im

∫
Γa

u
∂u

∂xm
ds. (2.14)
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Moreover, for all a>H, (2.6) holds with H replaced by a.

In what follows we shall derive an equivalent variational formulation for (GIBVP),
following the spirit of [8], where the Dirichlet boundary value problem was treated. De-
fine D(SH) :={v|SH

:v∈C∞0 (Rm)}, so that D(SH) is dense in H1(SH). Let the trace
operator γ∗ :D(SH)→L2(Γ) be defined by γ∗φ=φ|Γ for φ∈D(SH). Then it can be
extended to a bounded linear operator γ∗ :H1(SH)→L2(Γ). Now suppose that u is a
solution to (GIBVP), then u|Sa

∈Va for every a>f+. Since u satisfies the inhomoge-
neous equation (2.2) and the boundary condition (2.4) in the weak sense, we have∫

D

[gv+∇u ·∇v−k2n(x)uv]dx−
∫

Γ

[λγ∗uγ∗v+µ∇Γu ·∇Γv]ds= 0, v∈H1(D).

(2.15)

Defining w :=u|SH
and then applying Lemma 2.2, it follows that

0 =

∫
SH

[gv+∇w ·∇v−k2n(x)wv]dx+

∫
ΓH

γ−vTγ−wds

−
∫

Γ

[λγ∗wγ∗v−µ∇Γw ·∇Γv]ds, (2.16)

for v∈H1(D). Let ‖·‖2 and (·, ·) denote the norm and scalar product on L2(SH), that
is,

‖v‖2 =

(∫
SH

|v|2dx
)1/2

, (w,v) =

∫
SH

wvdx.

Define the sesquilinear form b :VH×VH→C by

b(w,v) = (∇w,∇v)−k2(n(x)w,v)+

∫
ΓH

γ−vTγ−wds

−
∫

Γ

[λγ∗wγ∗v−µ∇Γw ·∇Γv]ds. (2.17)

The form b obviously generates a continuous linear operator B=B(k) :VH→V ∗H such
that

(Bw,v) = b(w,v), ∀v∈VH , (2.18)

where V ∗H denotes the dual of the space VH with respect to the duality (·,·). Thus,
if u is a solution to (GIBVP), then w :=u|SH

is a solution of the following variational
problem: find w∈VH such that

(Bw,v) =−(g,v) for all v∈VH . (2.19)

Conversely, assume w is a solution to the variational problem (2.19). Introduce the
function

u(x) :=

{
w(x), x∈SH ,

the integral (2.6) with FH :=γ−w, x∈UH .

Then, by Lemma 2.2, u∈H1(UH\Ua) for every a>H with γ+u=FH =γ−w. Thus,
u|Sa
∈Va for all a>f+. Furthermore, by (2.13) and (2.16) it can be shown that (2.15)
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holds. Hence, u is a weak solution to GIBVP. The above analysis yields the following
lemma.

Lemma 2.3. If u is a solution of (GIBVP), then u|SH
satisfies the variational problem

(2.19). Conversely, if u satisfies the variational problem (2.19) with FH =γ−u, then the
extended solution u to D by setting u(x) as the right-hand side of (2.6) is a solution of
(GIBVP), with g extended by zero from SH to D.

3. Unique solvability of (GIBVP)
The aim of this section is to prove the uniqueness and existence of solutions to

(GIBVP) by analyzing the operator equation (2.19) for an arbitrary wave number k2>0.
Our proof is based on the perturbation of semi-Fredholm operators, shown as follows.

Lemma 3.1 (see [18]). Let X, Y be infinite-dimensional Banach spaces equipped
with norm || · ||X and || · ||Y , and let L(X,Y ) denote by the set of all bounded linear
operators from X to Y . Assume that {B(k),k∈R+}⊂L(X,Y ), and that B(k) depends
continuously on the parameter k in the operator norm. Suppose further that

(i) ||B(k)(u)||Y ≥C(k)||u||X for some constant C(k)>0 and each k∈R+;

(ii) there exists a small number k0>0 such that the inverse of B(k) exists for all k∈
(0,k0].

Then the operator B(k) is invertible for all k∈R+, with the operator norm of its inverse
fulfilling the bound ||B(k)−1||Y→X ≤C(k)−1.

To apply Lemma 3.1, we shall take X=VH ,Y =V ∗H , and define B(k) to be the same
as the operator in (2.18). We first check that B(k) indeed depends continuously on
k∈R+, i.e.,

||B(k)−B(k1)||VH→V ∗H→0 as k→k1, k,k1∈R+. (3.1)

To prove (3.1), we adapt the wave number-independent norms |||u|||VH
given in (2.7)

and |||u|||Hs(ΓH) (s∈R) defined analogously to the norm ||u||Hs(ΓH) (see (2.10)) but
with k= 1. By the definitions of T (k) and the norm || · ||Hs , we see

|||T (k)u−T (k1)u|||2H−1/2(ΓH)

=

∫
Rm−1

(1+ |ξ|2)−1/2|(Mz(k)−Mz(k1))ûH(ξ)|2dξ

≤||u||2H1/2(ΓH) sup
ξ∈Rm−1

|z(ξ;k)−z(ξ;k1)|2

1+ |ξ|2
.

Consequently,

||T (k)−T (k1)||H1/2(ΓH)→H−1/2(ΓH)

= sup{|||T (k)u−T (k1)u |||H−1/2(ΓH) : |||u |||H1/2(ΓH) = 1}

≤

[
sup

ξ∈Rm−1

|z(ξ;k)−z(ξ;k1)|2

1+ |ξ|2

]1/2

→0, as k→k1. (3.2)

Hence, the convergence in (3.1) simply follows from the definitions of the operator B(k)
and the sesquilinear form b combined with the continuity of the DtN map T in the
operator norm as shown in (3.2). Thus it remains to justify the conditions (i) and (ii) in
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Lemma 3.1. The invertibility of the operator B(k) for small wave numbers is presented
in the following lemma.

Lemma 3.2. The sesquilinear form b(·, ·) is coercive over VH for sufficiently small
wave numbers. More precisely, there exists a number k0>0 such that

|(Bw,w)|≥
√

2

4
‖w‖2VH

, for allk∈ (0,k0].

Hence, the operator B(k) :VH→V ∗H is invertible for all k<k0.

Proof. Taking the real part of the sesquilinear form b(·, ·) in (2.17) with v=w and,
making use of Lemma 2.1 and the assumption (2.8), we obtain

Re(Bw,w) =

∫
SH

|∇w|2−k2Re[n(x)]|w|2dx+Re

∫
ΓH

γ−wTγ−wds

−
∫

Γ

[
Re(λ)|γ∗w|2−Re(µ) |∇Γw|2

]
ds

≥
∫
SH

|∇w|2−k2|w|2dx+

∫
Γ

Re(µ) |∇Γw|2ds. (3.3)

Taking the imaginary part of the sesquilinear form b(·,·) in (2.17), it follows that

Im(Bw,w) =−k2

∫
SH

Im[n(x)]|w|2dx+Im

∫
ΓH

γ−wTγ−wds

−
∫

Γ

[
Im(λ)|γ∗w|2− Im(µ) |∇Γw|2

]
ds. (3.4)

Using Lemma 2.1 and the fact that Im(n(x))≥0, Im(λ)>0, Im(µ)≤0, we obtain

|Im(Bw,w)|≥ Im(λ)‖w‖2L2(Γ). (3.5)

Combining (3.3) and (3.5) yields

|(Bw,w)|≥
√

2/2{|Re(Bw,w)|+ |Im(Bw,w)|}

≥
√

2/2
{
‖∇w‖22−k2‖w‖22 +Re(µ)‖∇Γu‖2L2(Γ) +Im(λ)‖w‖2L2(Γ)

}
=
√

2/2
{
||w||2VH

−2k2||w||22
}
. (3.6)

Recall the estimate (see [29])

‖w‖22≤ (H−f−)2‖ ∂w
∂xm

‖22 +2(H−f−)‖w‖2L2(Γ)

≤ (H−f−)2‖∇w‖22 +2(H−f−)‖w‖2L2(Γ). (3.7)

Now, set

k2
0 = min

{
1

4(H−f−)2
,

Im(λ)

8(H−f−)

}
.

Then, by (3.7) we have for all k<k0,

2k2‖w‖22≤2k2
0‖w‖22≤

1

2

[
‖∇w‖22 +(Im(λ))‖w‖2L2(Γ)

]
≤ 1

2
||w||2VH
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which, together with (3.6), gives

|(Bw,w)|≥
√

2/4 ||w||2VH
.

This ends the proof of Lemma 3.2.

In order to apply Lemma 3.1, we need further to check the condition (i), i.e., the
inequality

||u||VH
≤C ||G||V ∗H , for all u∈VH , G :=B(k)u∈V ∗H , (3.8)

for each k∈R+. Analogously to [8, Lemma 4.5], we reduce the problem of justifying
(3.8) to that of proving an a priori bound for solutions of the variational equation (2.19).

Lemma 3.3. If we have

||u||VH
≤k−1C̃ ||g||2 (3.9)

for all u∈VH and g∈L2(SH) satisfying B(k)u=g, then the bound (3.8) holds with
C≤1+(1+ ||n||L∞(D))C̃, where C̃ is a dimensionless positive constant depending on k.

For brevity we omit the proof of Lemma 3.3, which can be carried out analogously
to [8, Lemma 4.5]. We now turn to establishing the a priori bound (3.9).

Theorem 3.4. Suppose that the assumption (A) holds. Let H>f+, g∈L2(SH), and
suppose that w∈VH satisfies

b(w,φ) =−(g,φ), for all φ∈VH .

Then the estimate in (3.9) holds with C̃=
√

2κ(η+κ2η2)1/2, where κ :=k(H−f−) and

η := (κ+
1

2
+
√

2)

[
1+

(κ+1/2+
√

2)

β Im(λ)

]
, (3.10)

with β := δ/
√

1+L2, δ := infx∈Γ{xm−f−}. In particular, there exists a unique solution
u∈VH to (GIBVP) satisfying the bound

k||u||VH
≤ C̃ ||g||2.

The rest of this section is devoted to proving Theorem 3.4.

3.1. An auxiliary Dirichlet boundary value problem. We introduce an
auxiliary Dirichlet boundary problem (DP) for the rough surface scattering problem.
Define the space

X :={u|SH
:u∈H1(Sa) for all a>H, u= 0 on Γ}.

(DP): For h∈L2(SH), find u∈X such that the inhomogeneous Helmholtz equation

∆u+k2n(x)u=h inSH (3.11)

holds in a distributional sense and the Angular Spectrum Representation (2.6)
is satisfied.
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The a priori estimates in the following lemma extend [20, Lemma 5.2] to the case of
non-periodic rough surfaces and will play an important role in proving Theorem 3.4. In
particular, we derive an estimate for the L2-norm of ∂νu over the rough surface by the
source term, provided Γ is given by the graph of some Lipschitz function.

Lemma 3.5. Under the assumption (A), there exists a unique solution u∈X to the
Dirichlet problem (DP) satisfying the estimate

||u||2≤C1||h||2, C1 = (H−f−)2

(
1

2
κ+

1

4
+

1√
2

)
, (3.12)

||∂u
∂ν
||L2(Γ)≤C2||h||2, C2 = δ−1/2(1+L2)1/4(H−f−)

(
κ+

1

2
+
√

2

)
, (3.13)

where δ is defined as in Theorem 3.4 and L is the global Lipschitz constant of the function
f .

Proof. Our proof is essentially based on the arguments in [8] with necessary
modifications devoted to the estimates (3.12) and (3.13) in the case of the variable
refractive index function n(x). Let r= |x̃|. For A≥1 let φA∈C∞0 (R) be such that
0≤φA≤1, φA= 1 if r≤A, φA= 0 if r≥A+1, and ‖φ′A‖∞≤M for some fixed M in-
dependent of A. We first assume that the rough surface Γ is the graph of some C∞-
function f satisfying (2.1) and that n∈C∞(D)∩L∞(D). By assumption (A), it holds
that ∂[Ren(x)]/∂xm≥0 for all x∈D. Since u satisfies the inhomogeneous Helmholtz
equation in (3.11), it follows that

2Re

∫
SH

φA(r)(xm−f−)h
∂u

∂xm
dx

= 2Re

∫
SH

φA(r)(xm−f−)(∆u+k2n(x)u)
∂u

∂xm
dx

=

∫
SH

(
2Re∇·

{
φA(r)(xm−f−)∇u ∂u

∂xm

}
−2φA(r)

∣∣ ∂u
∂xm

∣∣2
−2Re

[
φA(r)(xm−f−)

∂∇u
∂xm

·∇u
]
−2φ′A(r)(xm−f−)

x̃

|x̃|
·Re(∇x̃u

∂u

∂xm
)
)
dx

+2Re

∫
SH

φA(r)(xm−f−)k2n(x)u
∂u

∂xm
dx. (3.14)

Using the divergence theorem and integration by parts, we have

2Re

∫
SH

φA(r)(xm−f−)h
∂u

∂xm
dx

= (H−f−)

∫
ΓH

φA(r)

{∣∣ ∂u
∂xm

∣∣2−|∇x̃u|2 +k2Re(n(x))|u|2
}
ds

+

∫
Γ

φA(r)(xm−f−)

{
νm(|∇u|2−k2Re(n(x))|u|2)−2Re

( ∂u
∂xm

∂u

∂ν

)}
ds

+

∫
SH

{
φA(r)(|∇u|2−k2Re(n(x))|u|2−2

∣∣ ∂u
∂xm

∣∣2)−2φ′A(r)(xm−f−)Re
( ∂u
∂xm

∂u

∂r

)}
dx

−2

∫
SH

φA(r)(xm−f−)k2 ∂Re(n(x))

∂xm
|u|2dx. (3.15)
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Letting A→∞ and applying Lebesgue’s dominated convergence theorem to (3.15), we
arrive at the Rellich identity∫

Γ

(xm−f−)νm|
∂u

∂ν
|2ds+2

∫
SH

∣∣ ∂u
∂xm

∣∣2dx+2

∫
SH

(xm−f−)k2 ∂Re(n(x))

∂xm
|u|2dx

= (H−f−)

∫
ΓH

{∣∣ ∂u
∂xm

∣∣2−|∇x̃u|2 +k2|u|2
}
ds

+

∫
SH

{
(|∇u|2−k2Re

(
n(x)

)
|u|2)−2Re

[
(xm−f−)h

∂u

∂xm

]}
dx, (3.16)

where the fact that u= 0 on Γ and n(x) = 1 on ΓH has been used. Note that in the
case when n(x)≡1 in D, the identities (3.14), (3.15), and (3.16) could be reduced to
the corresponding ones used in [8].

The variational formulation for (DP) can be formulated as (cf. (2.17), (2.19))

a(u,v) =−
∫
SH

hvds, for all v∈X, (3.17)

where

a(u,v) := (∇u,∇v)−k2(n(x)u,v)+

∫
ΓH

γ−vTγ−uds.

Taking the real and imaginary parts of (3.17) with v=u and applying Lemma 2.1, it
follows that∫

SH

{∣∣∇u∣∣2−k2Re
(
n(x)

)
|u|2
}
dx≤−Re

∫
SH

hudx, (3.18)

0≤−Im

∫
ΓH

γ−uTγ−uds= Im

∫
SH

hudx−k2

∫
SH

Im
(
n(x)

)
|u|2dx. (3.19)

Using (3.19) and the fact that Im(n(x))≥0 in SH , it is derived from (2.14) that∫
ΓH

{
| ∂u
∂xm

|2−|∇x̃u|2 +k2|u|2
}
ds≤2k Im

∫
SH

hudx≤2k‖h‖2‖u‖2. (3.20)

Inserting (3.20) and (3.18) into (3.16), we then obtain the estimate

δ√
1+L2

∣∣∣∣∂u
∂ν

∣∣∣∣2
L2(Γ)

+2

∥∥∥∥ ∂u

∂xm

∥∥∥∥2

2

≤
(

2κ‖u‖2 +‖u‖2 +2(H−f−)

∥∥∥∥ ∂u

∂xm

∥∥∥∥
2

)
‖h‖2, (3.21)

where we have used the definition κ=k(H−f−) and the inequalities infx∈Γ{xm}−f−≥
δ and

νm=
1√

1+ |∇x̃f(x̃)|2
≥ 1√

1+L2
>0 on Γ.

Recalling the inequality (see [8, Lemma 3.4])

||u||2≤
H−f−√

2

∣∣∣∣ ∂u
∂xm

∣∣∣∣
2
, (3.22)
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we see from (3.21) that∥∥∥∥ ∂u

∂xm

∥∥∥∥
2

≤ (H−f−)

(√
2

2
κ+

1

2
√

2
+1

)
||h||2, (3.23)

which together with (3.22) leads to the estimate (3.12). Analogously, the inequality
(3.13) follows from the estimate

δ√
1+L2

∥∥∥∥∂u∂ν
∥∥∥∥2

L2(Γ)

≤ (H−f−)

(√
2κ+

1√
2

+2

)
‖h‖2

∥∥∥∥ ∂u

∂xm

∥∥∥∥
2

≤2(H−f−)2

(√
2

2
κ+

1

2
√

2
+1

)2

||h||22.

Moreover, combining the Rellich identity (3.16) and the inequalities (3.18)-(3.20) gives
the a priori bound

k2||u||22 + ||∇u||22≤
(H−f−)2

2
(1+κ)4 ||h||2, (3.24)

which can be justified analogously to the proof of [8, Lemma 4.6] for the case n≡1. The
argument from [8] can be extended directly to the case of a variable refractive index
satisfying assumption (A). The estimate in (3.24) together with the generalized Lax-
Milgram theorem implies the existence and uniqueness of solutions to (DP) provided
Γ is C∞-smooth. Since the sesquilinear form b defined in (3.17) is coercive over X for
small wave numbers, one can also verify the unique solvability of (DP) by employing
Lemma 3.1 in combination with the a priori bound (3.24).

The case of Lipschitz graphs can be treated analogously to the proof of [8, Lemma
4.8] for much more general Dirichlet rough surfaces. It also follows from Nečas’ method
[27, Chap. 5] of approximating a Lipschitz graph by smooth ones; see the last part in
the proof of Lemma 4.3 below. This proves Lemma 3.5 when n∈C∞(D).

For n∈L∞(D), using convolution one can approximate it by C∞-smooth functions
which also fulfill the monotonicity condition (2.8). More precisely, for ε>0 sufficiently
small, we introduce the functions ψε∈C∞0 (Rm), nε∈L∞(Dε) withDε :={x :xm>f(x̃)−
ε} such that

ψε(x)>0 for x∈Rm, ψε(x) = 0 for |x|>ε,
∫
Rm

ψε(x)dx= 1,

nε(x) =

{
essinf{n(x̃,xm+s) :s≥f(x̃)−xm} if f(x̃)≥xm>f(x̃)−ε,
n(x) if xm>f(x̃).

Then we define a new function ñε∈C∞(D) by

ñε(x) =−
∫
Rm

nε(y)ψε(x−y)dy=

∫
Rm

nε(x−y)ψε(y)dy=

∫
|y|<ε

nε(x−y)ψε(y)dy.

From the definition of nε and the monotonicity of n, we observe that ñε(x) satisfies the
assumption (A) and that ñε(x)≡1 for xm>H+ε with H>f+ since, by (2.3), n(x) = 1
for xm>f+. Then the a priori bound (3.24) and the estimates in Lemma 3.5 can be
justified by arguing similarly as in [29]. Lemma 3.5 is thus proven under the general
assumption (A).
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3.2. Proof of Theorem 3.4. As discussed at the beginning of Section 3, it
suffices to justify the a priori estimate (3.9) with the constant C̃ given in Theorem 3.4.
Taking the imaginary part of the variational problem (2.19) with v=w, we obtain (cf.
(3.4) and (3.5))

‖w‖2L2(Γ)≤ [Im(λ)]−1‖g‖2‖w‖2. (3.25)

Combining Lemma 3.5 and (3.25) gives an explicit a priori bound on the L2-norm
of solutions to (GIBVP) in terms of the source term g.

Lemma 3.6. Suppose the assumption (A) holds. Then the solution of the variational
problem (2.19) satisfies

‖w‖2≤η(H−f−)2‖g‖2,

where η is given in (3.10).

Proof. Suppose that w∈VH is a solution to the variational problem (2.19). By
Lemma 3.5, there admits a unique solution u∈X to the problem{

∆u+k2n(x)u=w inSH , u= 0 on Γ,
u satisfies the radiation condition (2.6) in UH ,

(3.26)

with the bounds

||u||2≤C1||w||2, ‖∂νu‖L2(Γ)≤C2||w||2, (3.27)

where C1,C2 are given in (3.12) and (3.13), respectively. Using integration by parts and
analogous arguments in deriving (3.14)-(3.16), we have

‖w‖22 =

∫
SH

wwdx=

∫
SH

w(4u+k2n(x)u)dx

=

∫
SH

(4w+k2n(x)w)udx+

∫
SH

(4uw−4wu)dx

=

∫
SH

gudx+

(
−
∫

Γ

+

∫
ΓH

)[∂u
∂ν
w− ∂w

∂ν
u
]
ds.

Note that the integral over the Lipschitz surface Γ in the previous identity makes sense
because w∈H1(Γ) and u,∂νu∈L2(Γ). Since u= 0 on Γ and both w and u satisfy the
Angular Spectrum Representation (2.6), we see from Lemma 2.1 and (2.12) that

‖w‖22 =

∫
SH

gudx−
∫

Γ

[
∂u

∂ν
w− ∂w

∂ν
u

]
ds

=

∫
SH

gudx−
∫

Γ

∂u

∂ν
wds

≤‖g‖2‖u‖2 +

∥∥∥∥∂u∂ν
∥∥∥∥
L2(Γ)

‖w‖L2(Γ). (3.28)

Inserting the estimate (3.27) into the previous inequality and making use of (3.25),

‖w‖2≤C1‖g‖2 +C2‖w‖L2(Γ)
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≤C1‖g‖2 +C2[Im(λ)]−1/2||g||1/22 ‖w‖
1/2
2 .

This, combined with Young’s inequality τab≤a2/2+τ2b2/2 for τ,a,b>0, implies that

‖w‖2≤
(
2C1 +C2

2 [Im(λ)]−1
)
‖g‖2 =η (H−f−)2‖g‖2.

Lemma 3.6 is thus proven.

Relying the a priori estimate established in Lemma 3.6, we next finish the proof of
Theorem 3.4.

Completing the proof of Theorem 3.4. Taking the real part of the variational
formulation (2.19) with v=w, we find (cf. (3.3))

Re(µ)||∇Γw||2L2(Γ) +‖∇w‖22≤k2‖w‖22−Re

∫
SH

gwdx. (3.29)

Combining (3.29), Lemma 3.6, and (3.25), we finally obtain

||w||2VH
= Re(µ) ||∇Γw||2L2(Γ) +‖∇w‖22 +k2||w||22 +Im(λ)||w||2L2(Γ)

≤2(k2||w||22 + ||g||2 ||w||2)

≤2[η(H−f−)2 +η2(H−f−)4k2] ||g||22
= 2(H−f−)2(η+κ2η2) ||g||22
= 2k−2κ2(η+κ2η2)||g||22,

from which the first assertion of Theorem 3.4 follows. The second assertion is a conse-
quence of lemmas 3.1, 3.2 ,and 3.3.

Remark 3.1. Using a more subtle analysis, the monotonicity assumption (A) can be
slightly weakened to the case where the derivative with respect to xm is allowed to be
negative; see [29, Chapter 2.4].

4. Unique solvability for the NBVP
If the impedance coefficients λ=µ= 0, then the generalized impedance boundary

condition (2.4) reduces to the classical Neumann boundary condition ∂νu= 0 on Γ, which
models the TM polarization of electromagnetic scattering from perfect conductors. We
formulate the Neumann boundary value problem as follows:

(NBVP) : Given g∈L2(D) whose support lies in SH , determine u :D→C such that
u|SH

∈H1(SH) satisfying the equation (2.3) in a distributional sense, the bound-
ary condition ∂νu= 0 on Γ in a weak sense, and the radiation condition (2.6).

The aim of this section is to prove uniqueness and existence of solutions of (NBVP)
under some special conditions imposed on Γ and the refractive index n(x). Denote by Ω
the domain of the inhomogeneous medium lying above Γ, in which the refractive index
function n(x) is not one. It is assumed that n∈L∞(Ω) and that the interface Γ̃ between
Ω and D\Ω is given by the graph of some positive Lipschitz function f(x̃), i.e.,

Γ̃ :={xm= f̃(x̃)>0 : x̃∈Rm−1}, |f̃(x̃)− f̃(ỹ)|≤ L̃|x̃− ỹ|, ∀ x̃, ỹ∈Rm−1, (4.1)

with the Lipschitz constant L̃>0. Further, the following transmission conditions are
supposed to hold:

u+ =u−, ∂νu
+ =γ∂νu

− on Γ̃, (4.2)
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Fig. 4.1. The geometric setting for the NBVP. For x= (x̃,xm)∈Rm, Γ ={x :xm = 0}, Γ̃={xm =
f̃(x̃)}, Ω={x : 0<xm<f̃(x̃)}, SH ={x : 0<xm<H}, D={x :xm>0}.

where γ>0 is a positive constant, ν denotes the unit norm pointing into D\Ω and the
superscripts (·)± denote the limits taken from above and below, respectively. We stress
that, in our settings we suppose that H>f+>f̃(x̃)>0 for all x̃∈Rm−1.

Introduce the variational space ṼH for the Neumann problem

ṼH :={φ|SH
:φ∈H1(D)},

equipped with the wave number-dependent norm

||u||2
ṼH

:= ||∇u||22 +k2||u||22.

Here is our main result regarding the well-posedness of (NBVP).

Theorem 4.1. Suppose the following conditions hold.

(i) The rough interface Γ is a hyperplane. Without loss of generality we assume that
Γ ={x :xm= 0} (see Figure 4.1).

(ii) Assumption (A) holds (see Section 2) and γ≥1.

(iii) We have

1−γ esssup
{

Re[n(x−sem)] :x∈ Γ̃,0<s≤s0

}
≥0 if γ>1, (4.3)

k
(

1−esssup
{

Re[n(x−sem)] :x∈ Γ̃,0<s≤s0

})
≥ η̃ if γ= 1, (4.4)

where η̃,s0>0 are two small constants and em denotes the m-th unit vector in
Rm.

Then there exists a unique solution u to (NBVP), satisfying the estimate

||u||ṼH
≤k−1

√
C̃(1+2C̃) ||g||L2(SH), (4.5)

where, if γ= 1, the dimensionless constant C̃ is given by

C̃ := κ̃
(
κ̃+4(η̃β̃)−1

)1/2[
2κ̃+(κ̃+4η̃β̃)−1)(2κ̃+1)2

]1/2
, (4.6)
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with

κ̃=kH, β̃= δ̃/
√

1+ L̃2, δ̃= min
x∈Γ̃
{xm};

and if γ >1, H>1,

C̃ :=
{

(1+ L̃2)γ2[(2κ̃+1)(1+6χ)+2κ̃]2 +2[γ2κ̃2(6χ+1)+ κ̃2]2
}1/2

. (4.7)

with χ := (β̃(γ−1))−1.

We have several remarks concerning Theorem 4.1.

Remark 4.1.
(i) In the case γ= 1, (4.2) reduces to the TE transmission condition. Our condition

(4.4) means that the refractive index has a jump over the interface Γ̃.

(ii) The condition (ii) covers the TM transmission condition when the refractive
index is a constant in Ω. Assume n(x) = c0<1 in Ω. In the TM case, it holds
that γ= 1/c0>1 and the strict equal sign in (4.3) holds.

(iii) The conditions on the refractive index have excluded the case where the en-
tire half space xm>0 is occupied by a homogeneous medium. If n(x)≡1 for
xm>0, one can readily construct the non-trivial solution u(x) = exp(ikx1) to
the homogeneous Neumann boundary value problem. Hence, the solvability of
(NBVP) in this simple case is actually quite involved and it is beyond the scope
of this paper.

To prove Theorem 4.1, we introduce the sesquilinear form b̃ : ṼH× ṼH→C by

b̃(w,v) =
(
α∇w,∇v

)
−k2 (αn(x)w, v)+

∫
ΓH

γ−vTγ−wds, (4.8)

with the piecewise constant function α=α(x) given by

α(x) =

{
1, x∈SH\Ω,
γ, x∈Ω.

Then, the sesquilinear form b̃(·, ·) generates a continuous linear operator B̃= B̃(k) : ṼH→
Ṽ ∗H such that

(B̃w,v) = b̃(w,v), ∀v∈ ṼH . (4.9)

If u is a solution to the Neumann problem, then w :=u|SH
is a solution of the following

variational problem: find w∈ ṼH such that

(B̃w,v) =−(αg,v) for all v∈ ṼH . (4.10)

Conversely, by arguing analogously to Lemma 2.3, we see that any solution to the
variational problem (4.10) can be extended to a solution of (NBVP). By (4.9), the
adjoint operator B∗ : ṼH→ Ṽ ∗H of B is defined as

(B̃∗w,v) = (w,B̃v) =(B̃v,w) = b̃(v,w), ∀v∈ ṼH . (4.11)



528 SCATTERING BY UNBOUNDED ROUGH SURFACES

To verify Theorem 4.1, we may apply Lemma 3.1 following the proof of Theorem
3.4. In what follows we prefer to provide another approach by deriving a priori estimates
for both B̃ and B̃∗. We first state a basic result from functional analysis. Let X be
a Hilbert space, and denote by L(X,X∗) the set of bounded linear operators from X
to its dual space X∗. For A∈L(X,X∗), we denote by A∗ its adjoint operator, which
also belongs to L(X,X∗). Let KerA and RangeA stand for the kernel and range of A,
respectively. Our proof of Theorem 4.1 relies on the following auxiliary lemma.

Lemma 4.2. For any u,v∈X, if there exist some constants C,C∗>0 such that

||u||X ≤C||Au||X∗ , ||v||X ≤C∗||A∗v||X∗ , (4.12)

then the equation Au=f for f ∈X∗ always admits a unique solution u∈X satisfying
||u||X ≤C||f ||X∗ .

Proof. It follows from ||u||X ≤C||Au||X∗ that A is injective with a closed range
in X∗, and from ||v||X ≤C∗||A∗v||X∗ that KerA∗={0}. Since RangeA= RangeA=
(KerA∗)⊥, we obtain RangeA=X∗, i.e., A is also surjective. Here (·)⊥ denotes the
set of elements that are orthogonal to (·). This implies the unique solvability of the
equation Au=f , f ∈X∗, with the estimate ||u||X ≤C||f ||X∗ .

In order to apply Lemma 4.2, we need to establish the a priori estimates (4.12)
with A= B̃ and X= ṼH . Note that in contrast to Lemma 3.1, it is not necessary to
justify the invertibility of B̃(k) for small wave numbers, but the a priori estimate for B̃∗
is essentially required in Lemma 4.2.

Theorem 4.1 is a direct consequence of Lemma 4.2 and the following lemma.
Lemma 4.3. Suppose that the assumptions in Theorem 4.1 hold.

(i) If w∈ ṼH is a solution of (4.10), then we have

‖w‖ṼH
≤k−1

√
C̃(1+2C̃)‖g‖L2(SH),

with C̃ given as in (4.6) and (4.7). Moreover, there holds ||w||ṼH
≤C||B̃w||Ṽ ∗H

with

C≤ [1+(1+ ||n||L∞(D))]

√
C̃(1+2C̃)).

(ii) If w∈ ṼH is a solution of the adjoint equation

(B∗w,v) =−(αg,v) for some g∈L2(SH) and all v∈ ṼH ,

then w satisfies the same estimates as shown in the first assertion.

Proof. Suppose first that n∈C∞(Ω) and f̃ is a C∞ function with the global
Lipschitz constant L̃>0. Under such regularity assumptions it holds that w∈H2(Ω)
and ∇w∈L2(Γ̃), so that the Rellich identity can be applied.

(i) Let w∈ ṼH be a solution of (4.10). In view of the derivation of the Rellich
identity (3.16) with f−= 0, we obtain a new Rellich identity in the inhomogeneous
domain Ω:

2k2

∫
Ω

xm
∂Re(n)

∂xm
|w|2dx+2

∫
Ω

∣∣ ∂w
∂xm

∣∣2dx
=−

∫
Γ̃

xm

{
νm
(
|∇w−|2−k2Re[n(x)]|w−|2

)
−2Re

(
∂w−

∂xm

∂w−

∂ν

)}
ds
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+

∫
Ω

(
|∇w|2−k2Re[n(x)]|w|2

)
dx−2Re

∫
Ω

xmg
∂w̄−

∂xm
dx. (4.13)

Here, ν= (ν1, ·· · ,νm) stands for the unit normal pointing into to D\Ω. Note that in
deriving (4.13) we have used the vanishing of the integral term on Γ ={x :xm= 0}:∫

Γ

xm

{∣∣ ∂w
∂xm

∣∣2−|∇x̃w|2 +k2Re[n(x)|w|2
}
ds= 0. (4.14)

On the other hand, since w∈ ṼH satisfies the equation ∆u+k2u=g in SH \Ω, we obtain
analogously to (4.13) that

2k2

∫
SH\Ω

xm
∂Re(n)

∂xm
|w|2dx+2

∫
SH\Ω

∣∣ ∂w
∂xm

∣∣2dx
=H

∫
ΓH

{∣∣ ∂w
∂xm

∣∣2−|∇x̃w|2 +k2|w|2
}
ds

+

∫
Γ̃

xm

{
νm(|∇w+|2−k2|w+|2)−2Re

(
∂w+

∂xm

∂w+

∂ν

)}
ds

+

∫
SH\Ω

(∣∣∇w∣∣2−k2|w|2
)
dx−2Re

∫
SH\Ω

xmg
∂w̄+

∂xm
dx. (4.15)

Let τ ∈Rm denote the unit tangential direction to Γ̃ such that ∇w=ν∂νw+τ∂τw,
and let τm denote the m-th component of τ . Since

∂w

∂xm
=em ·∇w=em ·

(
ν
∂w

∂ν
+τ

∂w

∂τ

)
=νm

∂w

∂ν
+τm

∂w

∂τ
,

it holds that

2Re

(
∂w

∂xm

∂w

∂ν

)
−νm|∇w|2 = 2Re

(
νm
∣∣∂w
∂ν

∣∣2 +τm
∂w

∂τ

∂w

∂ν

)
−νm

(∣∣∂w
∂ν

∣∣2 +
∣∣∂w
∂τ

∣∣2)
=νm

(∣∣∂w
∂ν

∣∣2− ∣∣∂w
∂τ

∣∣2)+2τmRe

(
∂w

∂τ

∂w

∂ν

)
.

Making use of the transmission conditions (4.2) on Γ̃, we thus obtain the identity[
2Re

(
∂w+

∂xm

∂w+

∂ν

)
−νm|∇w+|2

]
−γ
[
2Re

(
∂w−

∂xm

∂w−

∂ν

)
−νm|∇w−|2

]
=

[∣∣∂w−
∂ν

∣∣2γ(γ−1)+
∣∣∂w−
∂τ

∣∣2(γ−1)

]
νm (4.16)

on Γ̃. Next, multiplying the first Rellich identity (4.13) by γ and adding the resulting
expression to (4.15) yields∫

Γ̃

xmνm

[∣∣∂w−
∂ν

∣∣2γ(γ−1)+
∣∣∂w−
∂τ

∣∣2(γ−1)+k2(1−γRe(n))|w|2
]
ds

+2k2

∫
SH

αxm
∂Re(n)

∂xm
|w|2dx+2

∫
SH

α
∣∣ ∂w
∂xm

∣∣2dx
=H

∫
ΓH

{∣∣ ∂w
∂xm

∣∣2−|∇x̃w|2 +k2|w|2
}
ds
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+

∫
SH

α
(
|∇w|2−k2Re[n(x)]|w|2

)
dx−2Re

∫
SH

αxmg
∂w̄

∂xm
dx. (4.17)

Setting v=w in (4.10), we have∫
SH

α(x)
{
|∇w|2−k2n(x)|w|2

}
dx=−

∫
ΓH

γ−w̄Tγ−wds−
∫
SH

αgw̄dx. (4.18)

Taking the real and imaginary parts of (4.18) and then applying lemmas 2.1 and 2.2, it
follows that (cf. (3.18) and (3.20))∫

SH

α(x)
{∣∣∇w∣∣2−k2Re[n(x)]|w|2

}
dx≤−Re

∫
SH

αgw̄dx, (4.19)∫
ΓH

{
| ∂w
∂xm

|2−|∇x̃w|2 +k2|w|2
}
ds≤2kIm

∫
SH

αgw̄dx. (4.20)

Set Λ−= min{1,γ}, Λ+ = max{1,γ}. Inserting the estimates (4.19), (4.20) into (4.17)
and using the monotonicity of Re(n(x)) and the Cauchy-Schwarz equality, we can esti-
mate the first term on the left hand side of (4.17) by∫

Γ̃

xmνm

[∣∣∂w−
∂ν

∣∣2γ(γ−1)+
∣∣∂w−
∂τ

∣∣2(γ−1)+k2(1−γRe(n))|w|2
]
ds+2Λ−

∣∣∣∣ ∂u
∂xm

∣∣∣∣2
2

≤2kHIm

∫
SH

αgw̄dx−Re

∫
SH

αgw̄dx−2Re

∫
SH

αxmg
∂w̄

∂xm
dx

≤ (2kH+1)Λ+‖g‖2‖w‖2 +2Λ+H
∣∣∣∣ ∂w
∂xm

∣∣∣∣
2
||g||2. (4.21)

This, together with the Young’s inequality ab≤ εa2 +b2/(4ε) for any a,b,ε>0, implies
the estimate for the L2-norm of ∂u/∂xm over SH :

|| ∂w
∂xm

||22≤ (2kH+1)Λ‖g‖2‖w‖2 +Λ2H2||g||22, Λ := Λ+/Λ−. (4.22)

We proceed with the proof by studying the cases γ= 1 and γ>1 separately.

Case (a): Suppose the condition (4.4) holds for γ= 1.
In this case it holds that Λ+ = Λ−= Λ = 1. In view of condition (iii) of Theorem 4.1

and the inequalities (4.21) and (4.22), again applying Young’s inequality gives

β̃ kη̃ ||w||2
L2(Γ̃)

≤ (2kH+1)‖g‖2‖w‖2 + || ∂w
∂xm

||22 +H2 ||g||22

≤2(2kH+1)‖g‖2‖w‖2 +2H2 ||g||22, (4.23)

with β̃ := δ̃/
√

1+ L̃2. Therefore, combining (4.22) and (4.23), we obtain (see [24] for
the first inequality)

||w||22≤2H ||w||2
L2(Γ̃)

+H2 || ∂w
∂xm

||22

≤H(2kH+1)(H+4(kη̃β̃)−1) ||g||2 ||w||2 +H3(H+4(kη̃β̃)−1) ||g||22. (4.24)

Hence, using Young’s inequality,

||w||2≤C0 ||g||2
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with C0 =H(H+4(kη̃β̃)−1)1/2
[
2H+(H+4(kη̃β̃)−1)(2kH+1)2

]1/2
. From (4.19), we

obtain the estimate

||∇w||22≤||g||2 ||w||2 +k2 ||w||22≤C0 (1+k2C0)||g||22,

and thus

||w||2
ṼH

=k2||w||22 + ||∇w||22≤C0 (1+2k2C0)||g||22≤k−2C̃ (1+2C̃)||g||22, (4.25)

where the constant C̃=k2C0 can be reformulated as in (4.6). Arguing analogously to
[8, Lemma 4.5], we obtain

||w||ṼH
≤C||B̃w||Ṽ ∗H , C≤1+(1+ ||n||L∞(D))

√
C̃(1+2C̃). (4.26)

Case (b): Suppose the condition (4.3) holds when γ>1.
We have Λ+ = Λ =γ, Λ−= 1. Since νm≥ (1+ L̃2)−1/2 on Γ̃, it follows from (4.21)

and (4.22) that

β̃(γ−1)||∇w||2
L2(Γ̃)

≤2(2kH+1)γ‖g‖2‖w‖2 +2γ2H2||g||22. (4.27)

In order to estimate ||u||L2(Γ̃), we have to use another Rellich identify over the strip

SH\Ω. Multiplying ∂w/∂xm to both sides of the equation

∆w+k2w=g in SH\Ω

and then integrating by parts yields

2Re

∫
SH\Ω

g
∂w

∂xm
dx= 2Re

∫
SH\Ω

∂w

∂xm
(∆w+k2w)dx

=

(∫
ΓH

−
∫

Γ̃

){
−νm|∇w|2 +νmk

2|w|2 +2Re

(
∂w+

∂xm

∂w+

∂ν

)}
ds

Rearranging the terms in the above expression and making use of (4.19), (4.20),∫
Γ̃

{
−νm|∇w|2 +νmk

2|w|2 +2Re

(
∂w+

∂xm

∂w+

∂ν

)}
ds

≤2kIm

∫
SH

αgw̄dx−2Re

∫
SH\Ω

g
∂w

∂xm
dx

≤2kγ ||g||2 ||w||2 +2||g||2 ||∂w/∂xm||2. (4.28)

Combining (4.22), (4.28), and (4.27), we obtain an upper bound of ||w||L2(Γ̃):

k2√
1+ L̃2

||w||2
L2(Γ̃)

≤3||∇w||2
L2(Γ̃)

+γ (2kH+2k+2) ||g||2||w||2 +(γ2H2 +1)||g||22

≤γ[(2kH+1)(1+6χ)+2k]||g||2||w||2 +[γ2H2(6χ+1)+1] ||g||22

with χ := (β̃(γ−1))−1. Now, applying the first inequality in (4.24) we find after some
simple calculations that ||w||2≤C0||g||2 with

C0 =
{
k−4(1+ L̃2)γ2[(2kH+1)(1+6χ)+2k]2 +2k−2[γ2H2(6χ+1)+1]2

}1/2

.
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Finally, arguing analogously to (4.25) and (4.26), we can get the estimate (4.5) with
the coefficient C̃=k2C0 given as in (4.7). Note that in the last step we have used the
fact that κ=kH >k if H>1. If H≤1, the constant C̃ depends on both κ and k. This
finishes the proof of the first assertion when n∈C∞(Ω) and f̃ ∈C∞(R).

Having established the a priori estimate for C∞-interfaces, we now adapt Nečas’
method [27, Chap. 5] of approximating a Lipschitz graph by smooth surfaces to justify
the a priori estimate (4.5) when f̃ is a Lipschitz continuous function and n∈C∞(Ω).
Similar arguments are employed in [20] for the Helmholtz equation in the periodic case
and in [17, 18] for the Navier equation in linear elasticity.

Choose C∞-smooth functions f̃j such that (see e.g., [29, Lemma 3.10])

Γ̃j :={x :xm= f̃j(x̃),x̃∈Rm−1}⊂Ω, j∈N,
sup{|f̃j(x̃)− f̃(x̃)| : x̃∈Rm−1}→0, as j→∞,
|f̃j(x̃1)− f̃j(x̃2)|≤ L̃|x̃1− x̃2|, for all x̃1,x̃2∈Rm−1 and j∈N,

where L̃>0 is the Lipschitz constant of f̃ (cf. (4.1)). Accordingly, introduce the domain
Ωj and the piecewise constant function αj(x) in the same way as Ω and α with the

interface Γ̃ replaced by Γ̃j . Define the sesquilinear form b̃j(·, ·) as the same as b̃ (see
(4.8)) with α replaced by αj . Repeating the previous proof for smooth interfaces, we

can get a solution wj ∈ ṼH to the variational equation b̃j(w,v) =−(αj g,v) for all v∈ ṼH ,
with the estimate

||wj ||ṼH
≤k−1

√
C̃j(1+2C̃j) ||g||2 for allj∈N.

Moreover, we have C̃j→ C̃ as j→∞, where C̃ is given as in Theorem 4.1. Hence, there
exists a weakly convergent sequence, which we still denote by wj , satisfying wj⇀w

in ṼH for some w∈ ṼH . We claim that w is just the solution to the original varia-
tional formulation b̃(w,v) =−(αg,v) for all v∈ ṼH . To see this, we need to prove the
convergence

b̃j(wj ,v)→ b̃(w,v), (αj g,v)→ (αg,v) as j→+∞,

for any v∈ ṼH . This is obvious in the case γ= 1 where it holds that αj =α= 1. Below

we suppose that γ 6= 1. Since wj⇀w in ṼH , we have∫
ΓH

γ−vTγ−wjds→
∫

ΓH

γ−vTγ−wds as j→+∞.

Next we shall prove that (αj∇wj ,∇v)→ (α∇w,∇v), as j→+∞. Obviously,

(αj∇wj ,∇v)−(α∇w,∇v) = ((αj−α)∇w,∇v)+(αj(∇wj−∇w),∇v).

We have the convergence (αj(∇wj−∇w),∇v)→0 as j→+∞, since wj⇀w in ṼH and
||αj ||L∞(SH)≤max{γ,1}. To prove the convergence of the first term on the right hand

side of the previous equation, we define the domain Kj := Ω\Ωj in which αj =γ, but
α= 1. Then we have∫

SH

(αj−α)∇w ·∇vdx= (γ−1)

(∫
Kj∩{|x|≤M}

+

∫
Kj∩{|x|>M}

)
∇w ·∇vdx
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for any M>0. Since w,v∈ ṼH , we can choose M sufficiently large so that the integral
over Kj ∩{|x|>M} can be arbitrarily small for any j∈N. As j→∞, the integral over
Kj ∩{|x|<M} tends to zero, due to the fact that the volume of Kj ∩{|x|<M} tends
to zero. Hence, ((αj−α)∇w,∇v)→0 as j→+∞. To sum up, we get (αj∇wj ,∇v)→
(α∇w,∇v), and similarly, (αjnwj ,v)→ (αnw,v), (αjg,v)→ (αg,v). As a consequence,

we obtain wj⇀w in ṼH , and thus

||w||ṼH
≤ limsup

j→+∞
||wj ||ṼH

≤k−1||g||2 limsup
j→+∞

√
C̃j(1+2C̃j)≤k−1

√
C̃(1+2C̃)||g||2.

This finishes the proof if the interface Γ̃ is a graph of a Lipschitz continuous function
and n∈C∞(Ω). The case n∈L∞(Ω) can be treated as before in the proof of Lemma
3.5 (see also [29]). The first assertion of Lemma 4.3 is thus proven.

(ii) Assume w∈ ṼH is a solution of the adjoint equation

(B̃∗w,v) = b̃(v,w) =−(αg,v), for allv∈ ṼH . (4.29)

From the definition of the sesquilinear form b̃ (see (4.8)), we derive that

b̃(v,w) = (α∇w,∇v)−k2(αn(x)w,v)+

∫
ΓH

γ−vT
∗γ−wds, (4.30)

where T ∗ is the adjoint of the DtN map T . In view of the proof of the first assertion,
only the monotonicity of the real part of the refractive index n(x) (assumption A) and
the positivity of the real part of the DtN map (Lemma 2.1 (ii)) were involved, but not
their imaginary parts, for instance, in the proof of (4.23) and (4.20). Therefore, the
previous proof carries over to the solution of (4.29) with the same a priori estimate.
The proof of Lemma 4.3 is complete.

5. Solvability for incident plane and point source waves
In this section we shall consider incident plane and point source waves, relying on

the well-posedness results for inhomogeneous terms and following the argument of [5].
We first restrict ourselves to two-dimensional incident plane waves and then discuss the
results for point source waves in Rm (m= 2,3).

Suppose a two-dimensional incident plane wave of the form

uin= exp(ikx ·d), d= (cosθ,sinθ), θ∈ (−π/2,0), (5.1)

is incident onto the rough surface Γ⊂R2 from above. We shall adapt the weighted
Sobolev spaces used in [5] for sound-soft rough surfaces to our generalized impedance
and Neumann boundary value problems in R2. For %∈R and H≥f+, denote by H1

%(SH)
the weighted Sobolev space defined as

‖u‖H1
%(SH) =

[∫
SH

(∣∣(1+ |x1|2)%/2u
∣∣2 +

∣∣∣∇[(1+ |x1|2)%/2u
]∣∣∣2)dx]1/2

.

Obviously, the restriction of the plane wave (5.1) to SH (H>f+) belongs to the space
H1
%(SH) for all %<−1/2. One can also employ the following equivalent norm to || · ||VH,%

:

||u||′ :=
[∫

SH

(1+ |x1|2)%
(∣∣u∣∣2 +

∣∣∇u|2)dx]1/2

, u∈VH,%.



534 SCATTERING BY UNBOUNDED ROUGH SURFACES

Moreover, we introduce

Hs
%(ΓH) := (1+x2

1)−%/2Hs(ΓH), %∈R,

with the norm

||u||Hs
%(ΓH) := ||(1+x2

1)%/2u(x1)||Hs(ΓH).

Our scattering problem will be posed over the weighted Hilbert space

(GIBVP): VH,% :={φ|SH
:φ∈H1

%(D),φ∈H1
%(Γ)},

(NBVP): ṼH,% :={φ|SH
:φ∈H1

%(D)},

corresponding to the generalized impedance and Neumann boundary value problems,
equipped with the weighted norm

‖|u‖|VH,%
:=‖u‖H1

%(SH) +‖u‖H1
%(Γ), ‖|u‖|ṼH,%

:=‖u‖H1
%(SH),

respectively. The space H1
%(Γ) will be equipped with the norm

‖u‖H1
%(Γ) =

[∫
Γ

(1+ |x1|2)%(|u|2 + |∇Γu|2)dx

]1/2

,

where the symbol ∇Γ denotes again the surface gradient. Since Γ is the graph of the
function f(x1), the above norm ‖u‖H1

%(Γ) is equivalent to

||u||H1
%(Γ) := ||(1+ |x1|2)%/2u◦f(x1)||H1(R).

If %= 0, we have the coincidence VH,0 =VH , ṼH,0 = ṼH , where VH ,ṼH are the non-
weighed Sobolev spaces used in Sections 3 and 4, respectively. Below we collect some
properties of Hs

%(·), which will be used for our subsequent analysis.

Proposition 5.1.
(i) The Fourier transform F is an isomorphism of Hs

%(R) onto H%
s (R) for all s,%∈R.

(ii) The trace operators

γ− :H1
%(SH)→H1/2

% (ΓH) , γ+ :H1
%(Uh\ŪH)→H1/2

% (ΓH), H >h,

are continuous.

(iii) The dual space of Hs
%(R) with respect to the L2 scalar product is H−s−%(R), that is,

Hs
%(R)∗=H−s−%(R) for all s,%∈R.

With these properties for Fourier transforms, it has been shown in [5, Lemma 3.3]
that the upward Angular Spectrum Representation (2.6) can be interpreted as a linear

functional from H
1/2
% (ΓH) to H1

%(Sa) for any a>H if and only if %>−1. Moreover, the

DtN map defined as in (2.11) is a bounded linear map from H
1/2
% (ΓH) to H

−1/2
% (ΓH)

for any |%|<1. Before formulating the variational formulations for plane waves, we
still need to interpret the differential operator divΓ(µ∇Γ·) in weighted Sobolev spaces.
For v∈H1

%(∂D), the surface gradient ∇Γv lies in the tangential space L2
t,%(Γ) :={V ∈

L2
%(∂D) :ν ·V = 0}. The operator divΓ(µ∇Γu) is then defined in the space H%

−1(Γ) =
(H1
−%(Γ))∗ by 〈

divΓ(µ∇Γu),v
〉
%

=−
∫

Γ

µ∇Γu ·∇Γvds, ∀v∈H1
−%(Γ), (5.2)



G. HU, X. LIU, F. QU, AND B. ZHANG 535

where
〈
·,·
〉
%

stands for the duality pairing in
〈
H%
−1(Γ),H1

−%(Γ)
〉

extending the inner

product in L2(Γ), and the right hand side of (5.2) is the dual between H0
−%(Γ) and

H%
0 (Γ). Now we formulate the variational formulations for Neumann and generalized

impedance boundary value problems with an incident plane wave in the following way:
for −1<ρ<−1/2,

(GIBVP): find u∈VH,% such that b(u,v) =

∫
ΓH

ψvds, ∀v∈VH,−%, (5.3)

(NBVP): find u∈ ṼH,% such that b̃(u,v) =

∫
ΓH

ψvds, ∀v∈ ṼH,−%, (5.4)

where b :VH,%×VH,−%→C, b̃ : ṼH,%× ṼH,−%→C, defined as in (2.17) and (4.8) respec-
tively, are both bounded sesquilinear forms, and

ψ :=
∂uin

∂x2
|ΓH
−T (uin|ΓH

)∈H−1/2
% (R).

Note that the right hand sides of the above variational formulations lead to bounded

linear functionals over VH,−% resp. ṼH,−% due to the dual
〈
H
−1/2
% (R),H

1/2
−% (R)

〉
. More-

over, using the relation F exp(ikx1 cosθ) = δ(ξ−kcosθ) (the δ-function concentrated at
ξ=kcosθ) and the definition of T (see (2.11)), we see

T (uin|ΓH
) =

∫
R

exp(iξx1)z(ξ;k)δ(ξ−kcosθ)dξ exp(ikH sinθ)

=−iksinθexp(ik(x1 cosθ+H sinθ)),

and thus

ψ=−i2ksinθexp(ik(x1 cosθ+H sinθ)).

The uniqueness and existence of solutions of (5.3) and (5.4) follow immediately from
the solvability results in the non-weighted setting %= 0 and the perturbation argument
used in the proof of [5, Theorem 4.1] that relies essentially on a parameter-dependent
commutator estimate for the DtN map in weighted spaces. A significant idea of [5] is
to reduce the invertibility of the operator corresponding to the left hand side of (5.3)
resp. (5.4) for % 6= 0 to that for %= 0. To achieve this, the authors there introduced a
real parameter into the commutator estimate of the convolution operator (associated
with the DtN map) with a non-smooth square-root symbol. Since the DtN map in our
studies is exactly the same as that considered in [5], this approach extends directly to our
boundary value problems with only minor changes. We summarize the well-posedness
for incident plane waves as follows:

Theorem 5.2. Under the conditions in Theorem 3.4 (resp. Theorem 4.1), the vari-
ational problem (5.3) (resp. (5.4)) has exactly one solution in the space VH,% (resp.

ṼH,%) for every H>f+ and −1<%<−1/2. Hence, the Neumann (resp. generalized
impedance) boundary value problem with an incident plane wave is unique solvable in
the space mentioned above.

To the best of the authors’ knowledge, it is still unknown how to establish the
variational approach for three-dimensional incident plane waves. Difficulties arise from
the fact that, as explained in [5], the radiation condition (2.6) can be interpreted as a
linear functional on H1

%(ΓH) only if %>−1 but the restriction of a three-dimensional
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plane wave to the strip SH lies in the space H1
%(SH) for any %<−1. However, this

dilemma can be avoided in the case of an incident point source wave. Define an acoustic
point source wave Gin(x;y) by

Gin(x;y) =


i

4
H

(1)
0 (k|x−y|), m= 2,

eik|x−y|

4π|x−y|
, m= 3,

x= (x̃,xm),y= (ỹ,ym)∈Rm, x 6=y,

where H
(1)
0 (·) denotes the first kind Hankel function of order zero. In R2, the asymptotic

behavior of the Hankel function for large arguments implies that Gin(x;y),∇xGin(x;y)∼
O(|x|−1/2) as |x|→∞. Hence, it holds that Gin(x;y)∈H1

%(SH) for any %<0 and ym>
H, which is also true in R3. As a consequence of Theorem 5.2 we get

Theorem 5.3. Let the conditions in Theorem 3.4 (resp. Theorem 4.1) hold and let
uin(x) =Gin(x,y) be an incident point source wave with ym>f+. Then the rough surface
scattering problem with GIBC (resp. NBC) has exactly one solution u−uin in the
weighted Sobolev space VH,% (resp. ṼH,%) for every H>f+ and −1<%<0.
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