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Abstract This paper is concerned with inverse acoustic source problems in an unbounded domain with

dynamical boundary surface data of Dirichlet kind. The measurement data are taken at a surface far away from

the source support. We prove uniqueness in recovering source terms of the form f(x)g(t) and f(x1, x2, t)h(x3),

where g(t) and h(x3) are given and x = (x1, x2, x3) is the spatial variable in three dimensions. Without these

a priori information, we prove that the boundary data of a family of solutions can be used to recover general

source terms depending on both time and spatial variables. For moving point sources radiating periodic signals,

the data recorded at four receivers are prove sufficient to uniquely recover the orbit function. Simultaneous

determination of embedded obstacles and source terms was verified in an inhomogeneous background medium

using the observation data of infinite time period. Our approach depends heavily on the Laplace transform.

Keywords Inverse source problems, Laplace transform, moving point source, uniqueness.

2000 MR Subject Classification 35R30; 35L05

1 Introduction

Inverse source problems have significant applications in many scientific areas such as antenna
synthesis and design, biomedical engineering, medical imaging and optical tomography. For
a mathematical overview of various inverse source problems we refer to [22] by Isakov where
uniqueness and stability are discussed. An application in the fields of inverse diffraction and
near-field holography was presented in [16, Chapter 2.2.5].

The approaches of applying Carleman estimate [30] and unique continuation [39] for hyper-
bolic equations have been widely used in the literature, giving rise to uniqueness and stability
results for inverse coefficient and inverse source problems with the dynamical data over a finite
time; we refer to [1, 8, 21, 25, 41, 42] for an incomplete list. Recently, an inverse source problem
for doubly hyperbolic equations arising from the nucleation rate reconstruction in the three-
dimensional time cone model was analyzed in [32]. A Lipschitz stability result was proved
for recovering the spatial component of the source term using interior data and an iterative
thresholding algorithm (see also [26] with the final observation data) was tested. However,
most of the above mentioned works dealt with recovery of time independent source terms. We
refer to [2, 9, 18, 36] where specific time-dependent source terms for hyperbolic equations were
considered and to [29] for the recovery of some class of space-time-dependent source terms in
the parabolic equation on a wave guide. In the time-harmonic case, inverse source problems
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with multi-frequency data have been extensively investigated. The increasing stability analysis
in recovering spatial-dependent source terms has been carried out from both theoretical and
numerical points of view (see e.g., [3–7, 11, 31, 40]).

In the time domain, it is very natural to transform the wave scattering problem governed
by hyperbolic equations into elliptic inverse problems in the Fourier or Laplace domain with
multi-frequency data; see e.g. [24] for determining sound-hard and impedance obstacles in a
homogeneous background medium. In [7], the time-domain analysis helps for deriving an in-
creasing stability to time-harmonic inverse source problems via Fourier transform. The same
idea was used in [2, 19, 20] for recovering spatial-dependent sources as well as moving source
profiles and orbits in elastodynamics and electromagnetism. The aim of this paper is to ana-
lyze the acoustic counterpart with new uniqueness results. Specially, this paper concerns the
following four inverse problems with a single boundary surface data:

1. Simultaneous determination of sound-soft obstacles and separable source terms in an
inhomogeneous medium (Subsection 2.1).

2. Simultaneous determination of sound-soft obstacles and general time-dependent source
terms from a family of solutions (Subsection 2.2).

3. Inverse moving point source problems from the data of four receivers (Subsection 3.1) .

4. Determination of source terms which are independent of one spatial variable (Subsection
3.2) .

The Laplace (Fourier) transform will be used to handle the above inverse problems 1, 2 and
4. We highlight the novelty of this paper as follows. First, we verify the unique determination
of both embedded obstacles and spatial-dependent source terms in an inhomogeneous medium.
Although the acoustically sound-soft obstacles are considered within this paper, the proof car-
ries over to other reflecting boundary conditions for impenetrable scatterers in acoustics and
elastodynamics (see Remark 2.2). Second, the data of a family of solutions are used to recover
a general source which depends on both time and space variables; Thirdly, the data of a finite
number of receivers are proven sufficient to determine the orbit of a moving point source which
radiates periodic temporal signals. This differs from inverse moving source problems of [19],
where compactly supported temporal functions were considered and Huygens’ principle was
applied. Our uniqueness proof seems new and leads straightforwardly to a numerical algorith-
m. Finally, the argument for recovering source terms independent of one spatial variable has
simplified the corresponding proof in linear elasticity contained in [18]. Note that, although the
measurement data are taken on a spherical surface, our results carry over to other non-spherical
surfaces straightforwardly. In particular, Theorems 2.1, 2.5 and 3.3 remain valid if the data are
observed on any subset of a closed analytical surface with positive Lebesgue measure.

The remaining part of this paper is divided into three sections. In the subsequent Section
2, we consider simultaneous determination of sound-soft obstacles and source terms via the
Laplace transform. Section 3 is devoted to the unique determination of time-dependent source
terms in a homogeneous background medium, including inverse moving source problems. Some
remarks and open questions will be concluded in Section 4.

2 Simultaneous Determination of Sound-soft Obstacles and Source
Terms

Consider the time-dependent acoustic wave propagation in an inhomogeneous background medi-
um with an acoustic source outside a sound-soft obstacle modelled by (see Figure 1)

1

c2(x)
∂2
t u(x, t)−△u(x, t) = F (x, t), x ∈ R3\D, t > 0, (2.1)



136 G.H. HU, Y. KIAN, Y. ZHAO

where c(x) is the wave speed, u(x, t) denotes the wave field, D ⊂ R3 represents the region of the
sound-soft obstacle and F (x, t) is the acoustic source term. Together with the above governing
equation, we impose the homogeneous initial conditions

u(x, 0) = 0, ∂tu(x, 0) = 0, x ∈ R3\D, (2.2)

and the Dirichlet boundary condition on ∂D:

u(x, t) = 0, (x, t) ∈ ∂D × R+. (2.3)

Figure. 2.1. Radiation of a source in the exterior of a sound-soft obstacle D in two dimensions. The inverse
problem is to determine both the source term F = F (x, t) and the obstacle D from the displacement data
measured on ΓR := {x ∈ R3 : |x| = R}= ∂BR

Throughout this paper we assume that D ⊂ BR, BR\D is connected and that the source
term F (x, t) is compactly supported in (BR\D)× (0, T0). Here BR := {x ∈ R3 : |x| < R} and
R > 0, T0 > 0 are constants. We denote the boundary of BR by ΓR := {x ∈ R3 : |x| = R}. It
is also supposed that c ∈ L∞(R3) is known in advance and satisfies

c(x) ≥ c0 for some c0 > 0, (2.4)

and that supp(1−c) ⊂ BR, which means that the acoustic medium outside BR is homogeneous.
We also assume that supp(F (·, t))∩D = ∅ for all t > 0 and that D is a C3-smooth domain with
the connected exterior R3\D. Suppose that F (x, t) ∈ L2(0, T0;L

2(BR\D)). Then, the problem
(2.1)–(2.3) admits a unique solution

u ∈ C1([0,+∞);L2(R3\D)) ∩ C([0,+∞);H1(R3\D)).

The proof of this result can be carried out using the elliptic regularity properties of the Laplace
operator (see [17, 18, 33–35]).

The goal of this section is to recover both the source term F (x, t) and the embedded obstacle
D from the boundary surface data {u(x, t) : |x| = R, t > 0} over an infinite time period. It
is important to note that uniqueness in recovering time-dependent source terms is not true in
general. A non-uniqueness example can be easily constructed in the absence of the obstacle D
(that is, D = ∅). In fact, let χ ∈ C∞

0 (BR × (0, T0)) ̸= 0 such that the function

F (x, t) :=
1

c2
∂2
t χ−△χ, (x, t) ∈ R3 × R+
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does not vanish identically. Consider the inhomogeneous source problem
1

c2(x)
∂2
t u(x, t)−△u(x, t) = F (x, t), x ∈ R3 × (0,+∞),

u(x, 0) = ∂tu(x, 0) = 0, x ∈ R3.
(2.5)

Clearly, from the uniqueness of solutions of (2.5) we conclude that u = χ is the unique solution.
However, we have

u(x, t) = 0, |x| = R, t ∈ (0,+∞),

due to the fact that supp(χ) ⊂ BR × (0, T0). This means that F ̸= 0 is a non-radiation source
and thus the surface data {u(x, t) : |x| = R, t > 0} usually do not allow the unique recovery
of general source terms F (x, t) satisfying supp(F ) ⊂ BR × (0, T0). It implies that there is no
hope to prove uniqueness with a single measurement data. Facing this obstruction, we need to
either know a certain a prior information of the source (see Subsections 2.1 and 3.2) or make
use of extra data (see subsection 2.2) for recovering both time- and spatial-dependent source
terms.

2.1 Spatial-dependent Source Terms in an Inhomogeneous Background Medium

In this section we consider source terms of the form

F (x, t) = f(x) g(t), x ∈ R3\D, t ∈ (0,∞), (2.6)

where f ∈ L2(BR\D) is the spatial-dependent source term to be determined and g ∈ L2(0, T0)
is a given temporal function. We fix also U as an open and connected set of R3 such that
U ⊂ BR.

Below we give a confirmative answer to the uniqueness issue of our inverse problem under
proper assumptions on supp(fj) and Dj .

Theorem 2.1. Let g ∈ L2(0, T0) and let c ∈ L∞(R) be such that (1 − c) is supported in BR

and (2.4) is fulfilled. For j = 1, 2, let Dj be an obstacle contained into U and fj ∈ L2(BR\Dj)

satisfy supp(fj) ⊂ BR\U and U \Dj is connected. Here we assume that f1, f2 are non-uniformly
vanishing. Denote by G the connected component of U\D1 ∪D2 which can be connected to
R3\BR. We assume that there exists an open and connected subset O ⊂ R3 such that

O ∩ (R3\BR) ̸= ∅, O ∩G ̸= ∅, O ∩ supp(f1 − f2) = ∅. (2.7)

Then, for uj solving (2.1)–(2.3) with F (x, t) = fj(x)g(t) and D = Dj, the condition

u1(x, t) = u2(x, t), x ∈ ΓR, t > 0, (2.8)

implies D1 = D2 and f1 = f2.

If f is known and c(x) ≡ 1, the unique determination of the sound-soft obstacle D can be
proved with the dynamical data over a finite time, following Isakov’s idea of using the sharp
unique continuation for hyperbolic equations with analytic coefficients; see [23, Theorem 5.1].
If the obstacle D is absent and the background medium is homogeneous, it was shown in [2, 20]
via Huygens’ principle and Fourier transform that the boundary surface data can be used to
uniquely determine f in both elastodynamics and electromagnetism. Below we shall prove
uniqueness in determining both D and f in an inhomogeneous medium. For this purpose,
we need to apply the Laplace transform in place of the Fourier transform, because the strong
Huygens’ principle is no longer valid.
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Proof of Theorem 2.1. Obviously, u1 and u2 are solutions to
1

c2(x)
∂2
t uj(x, t)−△uj(x, t) = fj(x)g(t), (x, t) ∈ (R3\Dj)× R+,

uj(x, 0) = ∂tuj(x, 0) = 0, x ∈ R3\Dj ,

uj(x, t) = 0, (x, t) ∈ ∂Dj × R+,

(2.9)

for j = 1, 2. By using standard argument for deriving energy estimates, we can prove that
uj(x, t) (j = 1, 2) has a long time behavior which is at most of polynomial type (see e.g., [18,
Proposition 9]). This allows us to define the Laplace transform of u := u1 − u2 with respect to
the time variable as following:

û(x, s) :=

∫
R
u(x, t)e−stdt, s > 0, x ∈ BR. (2.10)

Denote by D̃ the unbounded component of R3\D1 ∪D2 and set f := f1 − f2. It then follows
that 

1

c2(x)
∂2
t u(x, t)−△u(x, t) = f(x)g(t), (x, t) ∈ D̃ × R+,

u(x, 0) = ∂tu(x, 0) = 0, x ∈ D̃,

u(x, t) = 0, (x, t) ∈ ΓR × R+.

For notational convenience we set Ω1 := BR\D1, Ω2 := BR\D2 and Ω = BR ∩ D̃.

Since ∂̂2
t u(x, s) = s2û(x, s) for all s > 0 and the background wave speed c(x) is known, the

function x 7→ û(x, s) solves△û(x, s)− s2

c2(x)
û(x, s) = f(x) ĝ(s) in D̃,

û(x, s) = 0 on ∂D̃.

(2.11)

Moreover, the uniqueness of solutions to the wave equation in the unbounded domain |x| > R
with the homogeneous Dirichlet boundary condition on ΓR × (0,∞), which can be justified via
standard energy estimate (see e.g. [20] for a proof in electromagnetism), implies that u(x, t) = 0
for (x, t) ∈ (R3\BR) × (0,∞). By Laplace transform, this gives the relation û(x, s) = 0 for
(x, s) ∈ (R3\BR)× (0,∞). In view of (2.7), fixing OR = O ∩ (R3\BR), we deduce that, for all
s > 0, the restriction on O of û(·, s) solves△û(x, s)− s2

c2(x)
û(x, s) = 0, x ∈ O,

û(x, s) = 0, x ∈ OR.

(2.12)

Here we have used the assumption O∩ supp(f) = ∅ (see (2.7) ). Applying unique continuation
results for elliptic equations (e.g. [14, Theorem 1.1] and [37, Theorem 1]), we deduce that

û(x, s) = 0 for all x ∈ O.

In particular, we have
û(x, s) = 0 for all x ∈ O ∩G

and we deduce that △û(x, s)− s2

c2(x)
û(x, s) = 0, x ∈ G,

û(x, s) = 0, x ∈ O ∩G.

(2.13)
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Applying again unique continuation results for elliptic equations and the fact thatO∩(R3\BR) ̸=
∅, we deduce that

û(x, s) = 0 for all x ∈ G. (2.14)

We first prove D1 = D2. Assuming on the contrary that D1 ̸= D2, we shall derive a
contraction as follows. Without loss of generality we may assume D∗ := (U\G)\D1 ̸= ∅. Then,
using the fact that ∂G ⊂ [∂U ∪ ∂(D1 ∪D2)] it holds that

∂D∗ ⊂ [∂D1 ∪ (∂G\∂U)] ⊂ ∂D1 ∪ (∂G ∩ ∂D2).

On the other hand, from (2.14) we deduce that

û1(x, s) = û2(x, s) = 0, x ∈ ∂G ∩ ∂D2, s > 0.

Therefore, combining this with the fact that

û1(x, s) = 0, x ∈ ∂D1, s > 0,

we deduce that û1 solves the boundary value problem△û1(x, s)−
s2

c2(x)
û1(x, s) = 0, in D∗,

û1(x, s) = 0, on ∂D∗ .

On the other hand, for all s > 0, it is evident that 0 is not in the spectrum of the operator

−△+ s2

c2(x) with Dirichlet boundary condition on D∗ which is contained into
[

s2

∥c∥L∞(D∗)
,+∞

)
.

Therefore, we have û1(·, s) ≡ 0 in D∗. Applying unique continuation, we get û1(·, s) = 0 in
U\D1 for each s > 0. In the same way, applying (2.7) we deduce that û1(·, s) = 0 in O and
then that û1(·, s) = 0 on R3 \BR. Here we use the fact that (R3 \BR) ∩ O ̸= ∅.

For R1 > R, we fix Ω̃1 = BR1\D1 and Ω∗
1 = BR1\BR. Then we have

△û1(x, s)−
s2

c2(x)
û1(x, s) = f1(x) ĝ(s) in Ω̃1,

and

û1(x, s) = 0, x ∈ Ω∗
1

for every s > 0. We define L2(Ω̃1; c
−2dx) as the space of measurable functions u taking values

in R3 such that c−2u ∈ L2(Ω̃). We associate to L2(Ω̃1; c
−2dx) the inner product

⟨u, v⟩ :=
∫
Ω̃1

c−2(x)u(x)v(x)dx, u, v ∈ L2(Ω̃1).

Denote by {γl, ϕl,k(x)}l∈N+,k≤ml
the eigenvalues and an associated orthonormal basis of eigen-

functions for the operator −c2(x)△ over Ω̃1 with the Dirichlet boundary condition acting on

L2(Ω̃1; c
−2dx). Here the eigenvalues satisfy the relation 0 < γ1 < γ2 < · · · < γl < · · · and

{ϕl,k}ml

k=1 denotes the eigenspace associated with γl. In Ω̃1 we can represent the functions
c2(x)f1(x) and û1(x, s) as

c2(x)f1(x) =
∑
l∈N+

ml∑
k=1

⟨c2f1, ϕl,k⟩ϕl,k(x), ml ∈ N+,
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û1(x, s) = ĝ(s)
∑
l∈N+

ml∑
k=1

⟨c2f1, ϕl,k⟩ϕl,k(x)

s2 + γl
, s > 0. (2.15)

Note that the convergence of the series (2.15) can be understood in L2(Ω̃1; c
−2dx). Since

g ∈ L2(R+) is supported in [0, T0] and does not vanish identically, there exists an interval
I ⊂ (0,+∞) such that |ĝ(s)| > 0 for all s ∈ I. Recalling that û1(x, s) = 0 in Ω∗

1, we have for
all s ∈ I that

∑
l∈N+

ml∑
k=1

⟨c2f1, ϕl,k⟩ϕl,k(x)

s2 + γl
= 0, for a.e. x ∈ Ω∗

1.

On the other hand, the function

G(x, z) : z →
∑
l∈N+

ml∑
k=1

⟨c2f1, ϕl,k⟩ϕl,k(x)

z + γl
, z ∈ C\{−γl : l ∈ N+}

can be regarded as a holomorphic function in the variable z taking values in L2(Ω∗
1). Hence,

by unique continuation for holomorphic functions we deduce that the condition

G(x, s2) = û1(x, s)|x∈Ω∗
1
= 0, for all s ∈ I

implies that
G(x, z) = 0 for all z ∈ C\{−γl : l ∈ N+}.

It follow that

(z + γj)G(x, z) = 0, z ∈ C\{−γl : l ∈ N+}, j ∈ N+. (2.16)

Therefore, letting z → −γj in (2.16) yields

ϕj(x) :=

mj∑
k=1

⟨c2f1, ϕj,k⟩ϕj,k(x) = 0 for x ∈ Ω∗
1.

On the other hand, we deduce that ϕj satisfies the elliptic equation

△ϕj(x) +
γj

c2(x)
ϕj(x) = 0, x ∈ Ω∗

1,

since ϕl,k are eigenfunctions. Applying the unique continuation of the Helmholtz equation gives

mj∑
k=1

⟨c2f1, ϕj,k⟩ϕj,k(x) = 0 for x ∈ Ω̃1,

leading to the relations
⟨c2f1, ϕj,k⟩ = 0, k = 1, 2, · · · ,mj .

Finally, by the arbitrariness of j ∈ N+ and the fact that supp(f1) ⊂ Ω̃1, we obtain

f1 = c−2(c2f1) ≡ 0 for x ∈ Ω̃1,

which is a contradiction to f1 ̸= 0 in Ω̃1. Thus, we obtain D1 = D2.
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It remains to prove the coincidence of the source f1 = f2. We shall deduce f = f1 − f2 ≡ 0
from the boundary value problem (2.11) in an open set Ω̃ such that supp(f) ⊂ Ω̃ ⊂⊂ Ω.

It is easy to prove that û(x, s) vanishes in Ω̃\supp(f). Similarly to (2.15), we can represent

c2(x)f(x), û(x, s) in the form of (2.15) in Ω̃. Consequently, following similar arguments in the

first step we can obtain f = 0 in Ω̃ by making use of the vanishing of u in Ω̃\supp(f).

Remark 2.2. (i) Assuming that c ∈ C1(Rn), one can apply the local unique continuation
results of [38, Theorem 1] in order to derive a global Holmgren uniqueness theorem similar to
[27, Theorem 3.16] (see also [28, Theorem A.1.]). Combining this with the arguments used in
[18, Theorem 2] it is possible to prove Theorem 2.1 in a more straightforward way. However,
for more general coefficients c ∈ L∞(Rn), it is not clear that [38, Theorem 1] holds true and
we can not apply such arguments. In that sense, in contrast to [18, Theorem 2], the approach
considered in Theorem 2.1 can be applied to equations with less regular coefficients.

(ii) The result of Theorem 2.1 carries over to other boundary conditions of the form

∂νu− a∂tu− bu = 0 on ∂D × R+,

where a ≥ 0 and b ≥ 0. The proof can be carried out by applying the Laplace transform with
the variable s = s1 + is2 ∈ C+ such that s1, s2 > 0; we refer to [24] by Isakov where uniqueness
results for recovering impenetrable obstacles were discussed. Note that although the gap domain
D∗ between two obstacles might be cuspidal and non-lipschitzian, the regularity assumption of
∂D ensures that û(·, s) ∈ H2(BR\D) and the boundary ∂D∗ of the gap domain is piecewise
smooth. Hence, the traces û(x, s) and ∂ν û(x, s) are well defined on ∂D∗. However, it remains
unclear to us how to treat penetrable scatterers with transmission conditions on the interface.

(iii) The proof of Theorem 2.1 can be simplified if the background medium is homogeneous,
i.e., c(x) ≡ 1 in R3\D. In fact, in a homogeneous medium the uniqueness proof can be reduced
to verifying the vanishing of f1 if

△û1(x, s)− s2û1(x, s) = ĝ(s)f1(x), x ∈ Ω̃1,

û1(x, s) = ∂ν û1(x, s)(x, s) = 0, x ∈ ∂Ω̃1

for each s > 0 and for some domain Ω̃1 containing supp(f1). Multiplying both sides of (2.17)

by the test function φ(x) = esx·d with d ∈ R3, |d| = 1 and integrating by parts over Ω̃1 yield

ĝ(s)

∫
Ω̃1

f1(x)e
sx·ddx = 0 for all s ∈ R. (2.17)

Clearly, ĝ(z) and
∫
Ω̃1

f1(x)e
zx·ddx are both holomorphic functions with respect to the variable

z ∈ C. Using the assumption g ̸= 0 it is easy to prove that
∫
Ω̃1

f1(x)e
sx·ddx = 0 for all s ∈ R

and |d| = 1. This implies that the Laplace transform of f1 vanishes everywhere and hence
f1 ≡ 0.

Consider the acoustic wave equation with a homogeneous source term and inhomogeneous
initial conditions v0 and v1:

1

c2(x)
∂2
t u(x, t)−△u(x, t) = 0, x = (x1, x2, x3) ∈ R3\D, t > 0,

u(x, 0) = v0(x), ∂tu(x, 0) = v1(x), x ∈ R3\D,

u(x, t) = 0, (x, t) ∈ ∂D × R+.

(2.18)
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Applying the Laplace transform to u and noting that ∂̂2
t u(x, s) = s2û(x, s)− v1 − sv0 yield the

boundary value problem△û(x, s)− s2

c2(x)
û(x, s) =

1

c2(x)
(sv0(x) + v1(x)), in R3\D,

û(x, s) = 0, on ∂D .

Following similar arguments as those in the proof of Theorem 2.1, we can determine simultane-
ously the obstacle D, the initial displacement v0 and initial velocity v1 from the radiated field
u measured on the surface ΓR × R+.

Corollary 2.3. Let c ∈ L∞(R) be such that (1 − c) is supported in BR and (2.4) is fulfilled.
For j = 1, 2, let Dj be a sound-soft obstacle contained into U and let vj,0 ∈ H2(R3\D) and

vj,1 ∈ H1(R3\D) satisfy supp(vj,0)∪supp(vj,1) ⊂ BR\U with U \Dj connected. Here we assume
that vj,0, vj,1, j = 1, 2, are non-uniformly vanishing. Assume also that there exists O an open
and connected subset of R3 such that (2.7) is fulfilled with the last relation replaced by

O ∩ supp(v1,j − v2,j) = ∅, j = 0, 1.

Then, for uj solving (2.18) with v0 = vj,0, v1 = vj,1 and D = Dj, the condition

u1(x, t) = u2(x, t), x ∈ ΓR, t > 0, (2.19)

implies D1 = D2, v1,0 = v2,0 and v1,1 = v2,1.

Remark 2.4. (i) Like Theorem 2.1, for c ∈ C1(Rn) one can deduce and even improve Corollary
2.3 by using an approach based on unique continuation properties with arguments borrowed
from [38, Theorem 1], [27, Theorem 3.11] and [18, Theorem 2]. However, since for c ∈ L∞(Rn),
it is not clear that [38, Theorem 1] holds true, we can not consider such approach. In that
sense, in contrast to other similar results, Corollary 2.3 can be applied to equations with less
regular coefficients c.

(ii) The results of Theorem 2.1 and Corollary 2.3 hold true with a finite time observation
data on ΓR × (0, T ) if g(0) ̸= 0. In fact, by Duhamel’s principle, we may represent uj to the
equation (2.9) as

uj(x, t) =

∫ t

0

g(t− s) vj(x, s) ds, t ∈ (0,∞), (2.20)

where vj solves the initial value problem of the homogeneous wave equation
1

c2(x)
∂2
t vj(x, t)−△vj(x, t) = 0, (x, t) ∈ R3\Dj × R+,

vj(x, 0) = 0, ∂tvj(x, 0) = fj(x), x ∈ R3\Dj ,

vj(x, t) = 0, (x, t) ∈ ∂Dj × R+.

If g(0) ̸= 0, differentiating (2.20) and then applying the Grownwall inequality could lead to the
relation v1(x, t) = v2(x, t) in {|x| > R} × (0, T ), if u1(x, t) = u2(x, t) on ΓR × (0, T ). Together
with the unique continuation for the wave equation ([12, 13]), this implies the coincidence of
the initial velocities, i.e., f1 = f2. The proof of ∂D1 = ∂D2 can be proceeded analogously. In
the case of the observation data over infinite time, one can also apply the Laplace transform to
(2.20) to prove Theorem 2.1 and Corollary 2.3.
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2.2 General Source Terms in a Family of Controllable Background Media

As mentioned at the beginning of section 2, it is in general impossible to uniquely recover a
general source term of the form F (x, t), due to the presence of time-dependent non-radiating
sources. This subsection is devoted to proving uniqueness with a family of solutions uλ(x, t)
measured on ΓR × R+.

Consider the wave equations
qλ(x)∂

2
t uλ(x, t)−△uλ(x, t) = F (x, t) in (R3\D)× R+,

uλ(x, 0) = ∂tuλ(x, 0) = 0 in R3,

uλ(x, t) = 0 on ∂D × R+,

(2.21)

where qλ(x) is the background medium function satisfying

qλ(x) =

{
λ, x ∈ BR,

1, x ∈ R3\BR.
(2.22)

Our aim is to recover the compacted supported function F from the data {uλ(x, t) : x ∈
ΓR, t > 0, λ ∈ (a, b)} for some 0 < a < b. Physically, such kind of the measurement data
can be obtained by changing the background medium artificially and locally for the purpose of
recovering a time-dependent source term which might be non-radiating for a fixed parameter λ.
Our uniqueness result below shows that any compactly supported acoustic source term cannot
be a non-radiating source for a range of parameters λ ∈ (a, b). In the following theorem, recall
again that U is a fixed open and connected set such that U ⊂ BR.

Theorem 2.5. For j = 1, 2, let Dj be a sound-soft obstacle contained into U and Fj ∈
L2((BR\Dj)× R+) be supported on (BR\Dj)× [0, T ], with T > 0, satisfy

supp(Fj(·, t)) ⊂ BR\U, t ∈ (0, T ) (2.23)

and U \ Dj is connected. Here we assume that F1, F2 are non-uniformly vanishing. Assume
also that there exists O an open and connected subset of R3 such that (2.7) is fulfilled with the
last relation replaced by

O ∩ supp(F1(·, t)− F2(·, t)) = ∅, for all t > 0.

Then, for uj,λ solving (2.21) with λ ∈ (a, b), F = Fj and D = Dj, the condition

u1,λ(x, t) = u2,λ(x, t), x ∈ ΓR, t > 0, λ ∈ (a, b) (2.24)

implies D1 = D2 and F1 = F2. Here a and b are two positive constants satisfying a < b.

Proof. By our assumption, the function uj,λ (j = 1, 2) satisfies
qλ(x)∂

2
t uj,λ(x, t)−△uj,λ(x, t) = Fj(x, t), (x, t) ∈ R3\Dj × R+,

uj,λ(x, 0) = ∂tuj,λ(x, 0) = 0, x ∈ R3\Dj ,

uj,λ(x, t) = 0, (x, t) ∈ ∂Dj × R+.

(2.25)

We first prove D1 = D2. If D1 ̸= D2, suppose without loss of generality that D∗ :=
(U\G)\D1 ̸= ∅ where G denotes the connected component of U\(D1 ∪ D2) which can be
connected to |x| > R. As done in the proof of Theorem 2.1, one can prove that

û1,λ(x, s) = 0, x ∈ R3 \BR, s > 0, λ ∈ (a, b). (2.26)
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For R1 > R, we fix Ω̃1 = BR1\D1 and Ω∗
1 = BR1\BR. Then, in a similar way to Theorem 2.1

we can prove that, for all s > 0, we have

−△û1,λ(x, s) + λs2û1,λ(x, s) = F̂1(x, s) x ∈ Ω̃1\Ω∗
1, λ ∈ (a, b),

and

û1,λ(x, s) = 0, x ∈ Ω∗
1, λ ∈ (a, b).

Therefore, we get {
−△û1,λ(x, s) + λs2û1,λ(x, s) = F̂1(x, s), in Ω̃1,

û1,λ(x, s) = 0, x ∈ Ω∗
1.

(2.27)

From now on we fix s > 0. Denote by ⟨·, ·⟩ the inner product in L2(Ω̃1), i.e.,

⟨u, v⟩ :=
∫
Ω̃1

u(x)v(x)dx, u, v ∈ L2(Ω̃1).

Denote by {γl,s, ϕl,k,s(x)}l∈N+,k≤ml
the eigenvalues and an associated orthonormal basis of

eigenfunctions of the operator −s−2△ over Ω̃1 with the Dirichlet boundary condition acting
on L2(Ω̃1). Here the eigenvalues satisfy the relation 0 < γ1,s < γ2,s < · · · < γl,s < · · · and

{ϕl,k,s}ml

k=1 denotes the eigenspace associated with γl,s. In Ω̃1 we can represent the function
û1(x, s) as

û1,λ(s, x) =
∑
l∈N+

ml∑
k=1

⟨s−2F̂1(·, s), ϕl,k,s⟩ϕl,k,s(x)

λ+ γl,s
, λ ∈ (a, b).

Following the proof Theorem 2.1 and combining this representation with the fact that

û1,λ(x, s) = 0, x ∈ Ω∗
1, λ ∈ (a, b),

we deduce that F̂1(·, s) = 0. This last identity holds true for any s > 0 and the injectivity
of the Laplace transform implies that F1 ≡ 0, which is a contradiction to the non-vanishing
condition imposed on F1. Hence we have D1 = D2. In a similar manner we can prove F1(x, t) =
F2(x, t).

Remark 2.6. The existence of the connected open subset O (see (2.7)) can be guaranteed if
BR\(supp(F1(·, t)) ∪ supp(F2(·, t)) is connected uniformly for all t > 0. Under the additional
assumption that BR\(supp(Fj(·, t)) (j = 1, 2) are both connected, the domain Ω∗

1 in (2.27) can

be chosen to be a neighboring area of supp(F̂1(·, s)) independent of the parameter s > 0. Then

the vanishing of F1 simply follows by multiplying es
√
λx on both sides of the equation in (2.27)

and then using integration by parts over Ω∗
1. Note that the Cauchy data of û1,λ vanish on ∂Ω∗

1

in this case.

Remark 2.7. Consider the time-harmonic acoustic wave equation with a wave-number-dependent
source term modelled by

△uλ + κ2qλ(x)uλ = f(x, κ), x ∈ R3, (2.28)
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where supp f(·, k) ⊂ BR for each k > 0 and qλ(x) is specified by (2.22). Further, we suppose
that uλ(x) fulfills the Sommerfeld radiation condition

r(∂ruλ − ikuλ) → 0, as r = |x| → ∞,

uniformly in all x̂ = x/|x|. The proof of Theorem 2.5 implies that the data {uλ(x, κ) : x ∈
ΓR, λ ∈ (a, b), κ ∈ (κmin, κmax)} uniquely determine f(x, κ) for all x ∈ BR and κ > 0. Here,
0 < κmin < κmax.

3 Determination of Other Time-dependent Source Terms

This section is devoted to the unique determination of other two time-dependent source terms.
For simplicity we suppose that the background medium is homogeneous and isotropic without
embedded obstacles. In particular, we are interested in the inverse problem of detecting of the
track of a moving point source.

3.1 Moving Point Sources

Consider the acoustic wave propagation incited by a moving point source in a homogeneous
medium modelled by{

∂2
t u(x, t)−△u(x, t) = δ(x− a(t)) cos(ωt), (x, t) ∈ (R3 × R+)\{(a(t), t) : t ∈ R+},

u(x, 0) = ∂tu(x, 0) = 0, x ∈ R3.
(3.1)

In (3.1), the symbol δ is the Dirac delta distribution in space, the function a(t) : [0,+∞) → R3

models the orbit function of a moving source starting from the origin and cos(ωt) is a cosine
signal emitting from the moving source where ω > 0 denotes the frequency. Note that in
this subsection the temporal function is not compactly supported in R+, differing from the
other inverse problems of this paper. Physically, this means that the moving source radiates
periodic signals continuously. It should be remarked that the relation between the orbit a(t)
and the signal u(x, t) is non-linear and that the forward model cannot be understood in the
time-harmonic sense. We state our inverse moving source problem as follows.
Inverse Problem: Determine the orbit function {a(t) : t ∈ (0, T0)} from the radiated wave
field u detected at a finite number of receivers lying on the surface ΓR over the finite time
period (0, T ) for some sufficiently large T > T0 > 0.

In the following uniqueness result we assume that |a(t)| < R1 for some 0 < R1 < R and all
t > 0, that is, the moving source does not enter into the exterior of BR1 .

Theorem 3.1. Assume a(t) ∈ C2(0,+∞), |a′(t)| < 1 and a(0) = O. Let x(j) ∈ ΓR (j =
1, · · · , 4) be four receivers which do not lie on one plane. Then the orbit function over a finite
interval of time {a(t) : t ∈ (0, T0)} can be uniquely determined by the data {u(x(j), t)} : j =
1, · · ·, 4, t ∈ (0, T ) for some T > R+R1 + T0.

Proof. Our proof relies on the distance function t 7→ |x−a(t)| between the receiver x ∈ ΓR and
the source point a(t) characterized by an ordinary differential equation with respect to t > 0.

Firstly, we express the solution u to the acoustic wave equation (3.1) in terms of the Green’s
function as

u(x, t) =

∫ ∞

0

∫
R3

δ(t− s− |x− y|)
4π|x− y|

δ(y − a(s)) cos(ωs)dyds

=

∫ ∞

0

δ(t− s− |x− a(s)|)
4π|x− a(s)|

cos(ωs)ds. (3.2)
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Define f(t) := t+ |x− a(t)| ∈ C2(0,+∞) for some fixed receiver x ∈ ΓR. Since |a′(t)| < 1, it is
easy to see

f ′(t) = 1 + |x− a(t)|′ = 1− (x− a(t)) · a′(t)
|x− a(t)|

> 0, t > 0.

Note that |x − a(t)| ̸= 0 for all t > 0, due to the assumption |a(t)| < R1 < |x| = R. Hence,
f(t) > f(0)= |x| = R for all t > 0. From (3.2) we obtain

u(x, f(t)) =

∫ ∞

0

δ(f(t)− f(s))

4π|x− a(s)|
cos(ωs)ds. (3.3)

Change the variable by setting τ = f(s) in (3.3). Since f is monotonically increasing in R+, its
inverse f−1 exists. Consequently, we obtain

u(x, f(t)) =

∫ ∞

R

{
δ(f(t)− τ)

4π|x− a(s)|
cos(ωs)

f ′(s)

∣∣∣
s=f−1(τ)

}
dτ

=
1

4π|x− a(s)|
cos(ωs)

f ′(s)

∣∣∣
s=t

=
cos(ωt)

4π|x− a(t)|
1

1 + |x− a(t)|′
. (3.4)

Here we have used once again the fact that f(t) > R for t > 0. Denote the distance function
between the receiver x and the source position at the time point t by g(t) := |x − a(t)| =
f(t)− t ∈ C2(0,+∞). It follows from (3.4) that g(t) fulfills the ordinary differential equation

g′(t) =
Sx(t, g(t))

4π g(t)
− 1, t ∈ (0, T0], g(0) = R, (3.5)

where the function

Sx(t, g(t)) :=
cos(ωt)

u(x, t+ g(t))
, t > 0 (3.6)

is uniquely determined by the wave field measured at the receiver x ∈ ΓR. The equation (3.5)
characterizes a relation between the radial speed of the moving source at t > 0 and the causal
signal u(x, t+ g(t)). Note that we have the upper bound t+ g(t) < T0 +R+R0 and by (3.4),
|Sx(t, g(t))| < 8π(R+R0) and for all t ∈ (0, T0).

To investigate the well-posedness of (3.5), we introduce the function

F (t, τ) =
Sx(t, τ)

4π τ
− 1, (t, τ) ∈ D := {[0, T0]× [R−R1, R+R1]}.

Combining (3.6) and (3.4), we have

Sx(t, τ) =
cos(ωt)

u(x, t+ τ)
,

and

u(x, t) =
cos(ωb(t))

4π(t− b(t))

1

f ′(b(t))
, t > R, b(t) := f−1(t).

Note that t ̸= b(t) and f ′(t) ̸= 0 for all t > 0. This implies the expression

Sx(t, τ) = 4π
cos(ωt)

cos(ωb(t+ τ))
(t+ τ − b(t+ τ)) f ′(b(t+ τ)).



Uniqueness to Inverse Source Problems 147

Here we restrict the variables (t, τ) to a subset of D:

(t, τ) ∈ D∗ := D ∩ {(t, τ) : t+ τ > R, |Sx(t, τ)| < 8π(R+R0)}.

Since the orbit function a(t) is of C2-smooth, the function b(t) ∈ C2 and f ′ ∈ C1. This implies
that the function (t, τ) → Sx(t, τ) is C1-smooth on D∗. Further, one can prove that

dF (t, τ)

d τ
=

1

4π

{
−Sx(t, τ)

τ2
+

1

τ

d Sx(t, τ)

d τ

}
≤ L, for all (t, τ) ∈ D∗.

Hence, the dynamical system (3.5) admits a unique solution in D∗. This implies that the
distance function |x− a(t)| for 0 < t < T0 can be uniquely determined by u(x, t) for t ∈ (0, T )
where T = T0 + R + R1. Hence, the orbit function {a(t) : t ∈ (0, T0)} is uniquely determined
by the wave fields {u(x(j), t) : j = 1, 2, 3, 4, t ∈ (0, T )} detected at four receivers x(j) which do
not lie on a plane.

Remark 3.2. The proof of Theorem 3.1 implies that for each t0 > 0, we can get the distance
|a(t0) − x(j)| = gj(t0), where gj(t) solves the equation (3.5) with x = x(j) ∈ ΓR, j = 1, 2, 3, 4.
This automatically gives an inversion scheme for calculating a(t).

3.2 Source Terms Independent of One Spatial Variable

In this subsection we consider an inhomogeneous source term which does not depend on one
spatial variable. Without loss of generality we suppose that F (x, t) = f̃(x̃, t)h(x3), where the

function f̃ is compactly supported in B̃R0 × [0, T0] and h is supported in (−R0, R0) for some

R0 < R/
√
2. Here x̃ := (x1, x2) and B̃R0 := {x̃ ∈ R2| |x̃| < R0}. Our aim is to recover f̃ ,

assuming that h ∈ L1(R) is known in advance. In particular, f̃(x̃, t) can be a moving source
with the orbit lying on the ox1x2-plane and h(x3) can be regarded as a function approximating
the delta distribution δ(x3). Now, we consider the wave equation{

∂2
t u(x, t)−△u(x, t) = f̃(x̃, t)h(x3) in R3 × R+,

u(x, 0) = ∂tu(x, 0) = 0 in R3.
(3.7)

Throughout this subsection, the symbol ·̂ will denote the Fourier transform with respect to the
time variable t.

Theorem 3.3. Assume that h ̸= 0 is given. Then f̃(x̃, t) can be uniquely determined by
{u(x, t) : x ∈ ΓR, t ∈ (0, T )}, where T1 = T0 +R+R0.

Proof. It suffices to prove that f̃(x̃, t) = 0 if u(x, t) = 0 for x ∈ ΓR and t ∈ (0, T ). By the
strong Huygens’ principle, it holds that u(x, t) = 0 for |x| < R and t > T (see [20]). Then,
applying the Fourier transform in time to u in (3.7) yields{

△û(x, κ) + κ2û(x, κ) =
̂̃
f(x̃, κ)h(x3) in BR,

û(x, κ) = ∂ν û(x, κ) = 0 on ΓR,
(3.8)

where the Fourier transform of u(x, t), given by

û(x, κ) =

∫
BR

u(x, t)e−iκtdt, κ > 0,

satisfies the Sommerfeld radiation condition for any κ > 0 (see [20]). Here
̂̃
f(x̃, κ) denotes the

Fourier transform of f̃(x, t) with respect to the time variable. Define the test functions

φ(x;κ1) := eiκ1x̃·d̃e
√

κ2
1−κ2x3 , d̃ ∈ R2, |d̃| = 1, κ1 > κ.
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Then it is easy to verify that φ satisfies the Helmholtz equation

△φ+ κ2φ = 0 in R3.

Multiplying both sides of (3.8) by φ and using integration by parts over BR yield∫
BR

̂̃
f(x̃, κ)h(x3)φ(x)dx =

(∫
B̃R

̂̃
f(x̃, κ)eiκ1x̃·d̃dx̃

)(∫ R

−R

h(x3)e
√

κ2
1−κ2x3dx3

)
= 0.

Since h does not vanish identically, for κ > 0 we can always find an interval I such that∫ R

−R
h(x3)e

√
κ2
1−κ2x3dx3 ̸= 0 for all κ1 ∈ I and κ1 > κ, implying that∫

B̃R

̂̃
f(x̃, κ)eiκ1x̃·ddx̃ = 0 (3.9)

for such κ1. Given f(x̃, t), denote by F(f)(ξ) (ξ ∈ R3) the Fourier transform of f with respect
to the variable (x̃, t) ∈ R3, i.e.,

F(f)(ξ) =

∫
R3

f(x̃, t)e−iξ·(x̃,t)dx̃dt, ξ ∈ R3.

Then the relation (3.9) gives that

F(f)(κ1d̃, κ) = 0

for all κ1 > κ > 0 and |d̃| = 1. Since F(f) is analytic in R3 and {(κ1x̃, κ)|κ1 > κ, |d̃| = 0}
is an open set in R3, we have F(f)(ξ) = 0 for all ξ ∈ R3, leading to f(x, t) = 0. The proof is
complete.

Remark 3.4. Let f̃(x, t) = f̃(x̃− ã(t)) be a moving source with the orbit ã(t) : [0,+∞) → B̃R

lying on the ox1x2-plane. The proof of Theorem 3.3 implies the unique determination of the
orbit ã(t). We refer to [19] for more discussions concerning inverse moving source problems in
electromagnetism.

Based on the uniqueness proof of Theorem 3.3, one can obtain a log-type stability estimate
under strong a priori assumptions of f̃ and h. The proof for the more complicated elastody-
namical system was carried out in [18]. Below we only formulate the stability result and omit
the proof for simplicity.

Theorem 3.5. Let R >
√
2R0, T1 = T0+R+R0 and suppose f̃ ∈ H3(R2×R+)∩H4(0, T ;L2(R2))

satisfies

f̃(x̃, 0) = ∂tf̃(x̃, 0) = ∂2
t f̃(x̃, 0) = ∂3

t f̃(x̃, 0) = 0, x̃ ∈ R2.

Assume also that h is non-uniformly vanishing with a constant sign (h ≥ 0 or h ≤ 0) and that
there exists M > 0 such that

∥f̃∥H3(R2×R) + ∥f̃∥H4(0,T ;L2(R2)) ≤ M.

Then, there exists C > 0 depending on M,R, T, ∥h∥L1(R) such that

∥f̃∥L2((0,T )×B̃R) ≤ C
(
∥u∥H3(0,T ;H3/2(∂BR)) +

∣∣ ln (∥u∥H3(0,T ;H3/2(∂BR))

)∣∣−1)
.
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4 Concluding Remarks

This paper is mainly concerned with a Fourier-Laplace approach to inverse acoustic source
problems using boundary dynamical data over an infinite time interval. In situations where
the Huygens’ principle does not hold (e.g., the inhomogeneous background medium considered
in Section 2), we apply the Laplace transform in place of the Fourier transform. The Fourier
transform was used in the proof of Theorem 3.3. It is worthwhile to investigate the unique-
ness of recovering obstacles and source terms simultaneously using the data over a finite time
interval without any other assumptions on the source term at t = 0. This seems to be more
realistic, but our approach of applying the Laplace transform cannot be applied. The increas-
ing stability issue for time-domain inverse source problems with respect to exciting frequencies
would be interesting. However, existing results are all justified in the time-harmonic regime
only. The stability results in the time-domain will provide deep insights into the resolution
analysis of inverse scattering problems modeled by hyperbolic equations. Finally, radiating and
non-radiating time-dependent sources deserve to be rigorously characterized and classified. We
hope to be able to address these issues and report the progress in the future.
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