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We present two uniqueness results for the inverse problem of determining an
index of refraction by the corresponding acoustic far-field measurement encoded
into the scattering amplitude. The first one is a local uniqueness in determining a
variable index of refraction by the fixed incident-direction scattering amplitude.
The inverse problem is formally posed with such measurement data. The second
one is a global uniqueness in determining a constant refractive index by a single
far-field measurement. The arguments are based on the study of certain non-self-
adjoint interior transmission eigenvalue problems.
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1. Introduction

This note is concerned with the inverse acoustic scattering problem of recovering the
refractive index of an inhomogeneous medium. Suppose in the homogeneous space, there
is an inhomogeneity. In order to determine the inhomogeneity, one sends a certain detecting
wave field. The propagation of the detecting wave field will be perturbed when meeting the
inhomogeneity. The perturbation is the so-called scattering in the literature. The inverse
problem is to recover the inhomogeneity by measuring the corresponding scattering wave
field. The study of inverse scattering problems lies in the core of many areas of science
and technology, such as radar and sonar, geophysical exploration, medical imaging, non-
destructive testing, and remote sensing; see [1–6] and the references therein.

Throughout, we shall take the incident field to be the time-harmonic acoustic plane
wave of the form ui (x) := eikx ·d , x ∈ R

N with N ≥ 2, where k ∈ R+ is the wave number
and d ∈ S

N−1 is the impinging direction. The optical property of the homogeneous space
is described as an index of refraction n(x), which is normalized to be 1, whereas in an open
domain � accommodating the inhomogeneity, it is assumed that n(x)−1 ≡ \ 0, x ∈ �. We
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assume that � is a bounded Lipschitz domain with R
N \� connected, and that the refractive

index n(x) ∈ L∞(�) satisfying ‖n−1‖L∞(�) ≥ ε0 > 0. The wave propagation is governed
by the following Helmholtz equation

�u(x) + k2n2(x)u(x) = 0, x ∈ R
N , (1.1)

where u(x) denotes the wave pressure. We seek a solution u ∈ H 1
loc(R

N ) such that

u(x) = ui (x) + us(x), x ∈ R
N \�. (1.2)

us(x) is called the scattered wave field, which satisfies the so-called Sommerfeld radiation
condition,

lim|x |→∞ |x | N−1
2

{
∂us(x)

∂|x | − ikus(x)

}
= 0. (1.3)

The well-posedness of the scattering system (1.1)–(1.3) is well understood (cf. [4,7]).
Particularly, us admits the following asymptotic expansion

us(x) = eik|x |

|x | N−1
2

u∞(x̂; d, k) + O
(

1

|x | N
2

)
, |x | → +∞, (1.4)

which holds uniformly in all directions x̂ := x/|x |, x ∈ R
N . u∞(x̂; d, k) is known as the

scattering amplitude. By the celebrated Rellich’s Lemma (cf. [3]), the scattering amplitude
u∞(x̂) encodes all the information of the scattered wave field us(x). The inverse scattering
problem that we consider in the present study is to recover the scatterer (�, n) by knowledge
of u∞(x̂; d, k). If one introduces an operator F which sends the scatterer (�, n) to the
corresponding scattering amplitude, then the inverse scattering problem can be abstractly
formulated as the following operator equation

F(n) = u∞(x̂; d, k). (1.5)

It is easy to verify that the operator Equation (1.5) is non-linear and also widely known to
be ill-posed (cf. [3,4]).

One of the foundational issues in the inverse scattering problem is the uniqueness/
identifiability: can one really identify the scatterer by the measurement? how many measure-
ment data one should use for the identification? Mathematically, the uniqueness issue can
be stated as follows. Let n1 and n2 be two refractive indices with the scattering amplitudes
u1∞(x̂; d, k) and u2∞(x̂; d, k). Then

u1∞(x̂; d, k) = u2∞(x̂; d, k) iff n1 = n2. (1.6)

The study on uniqueness is usually very difficult and challenging. Intensive efforts have been
devoted to the unique determination of many inverse scattering problems and quite different
technical treatments and mathematical theories are needed with different problems. Some
significant developments have been achieved for several representative inverse scattering
problems; see [1,3,4,6,8–11] and the references therein. One uniqueness result for the inverse
problem (1.5) is due to Sylvester and Uhlmann (cf. [12]; see also [3,4,13]). It is shown that
in R

N , N ≥ 3, u∞(x̂; d, k) with a fixed k ∈ R+ and all (x̂, d) ∈ S
N−1 × S

N−1 uniquely
determines n(x). Here, we note that the measurement data used are over-determined. Indeed,
one can easily count that the dimensions of the known (namely u∞(x̂; d, k)) and the
unknown (namely n(x)), are respectively, 2N − 2 and N . By dimension, we mean the
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number of independent variables in a set. Clearly, one has 2N − 2 > N if N ≥ 3. This
motivates us to consider the unique determination of the refractive index function n(x)

by u∞(x̂; d, k) with a fixed d ∈ S
N−1 and all (x̂, k) ∈ S

N−1 × R+. It is easily seen
that the inverse scattering problem is formally posed with such measurement data. Since
u∞(x̂; d, k) is (real) analytic with all its arguments and due to analytic continuation, the
measurement data-set could be replaced by u∞(x̂; d, k) for a fixed d ∈ S

N−1, and all
(x̂, k) ∈ �, where � is any open subset of S

N−1 × R+. To our best knowledge, there is no
uniqueness result in the literature by using such a formally determined data-set. Our study
connects to that of the non-self-adjoint interior transmission eigenvalue problems, which
was first introduced by Colton and Monk in [14], and were recently extensively studied; see
[15–18] and the references therein. We conjecture that the uniqueness can be established in
a very generic setting by using the formally determined data-set. However, in Section 2, we
shall only present a local uniqueness result in determining a variable refractive index, by
directly implementing the discreteness of interior transmission eigenvalues due to Sylvester
in [18]. Our main contribution in Section 2 is to bridge the study on uniqueness of the inverse
scattering problem and that on the interior transmission eigenvalue problems, which in our
hope might open up some new directions of research in the relevant field. In Section 3,
a much more interesting uniqueness result is derived in determining a constant refractive
index by a single far-field measurement, namely u∞(x̂; d, k) with both d and k fixed, and
all x̂ ∈ S

N−1. The uniqueness by a single far-field measurement is extremely challenging
for inverse scattering problems in the literature; see Section 4 for more discussion on this
aspect.

2. Local uniqueness in determining a variable refractive index

Throughout, we let n∗ and n∗ be two positive constants such that n∗ < n∗. Let (�, n j ),
j = 1, 2, be two inhomogeneous media as described in Section 1 satisfying n∗ ≤ n j

(x) ≤ n∗ for x ∈ �. The scattering problem (1.1)–(1.3) corresponding to (�, n j ) can be
easily formulated as the following transmission eigenvalue problem: find a pair of solutions
(u j , us

j ) ∈ H1(�) × H1
loc(R

N \�) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�u j + k2n2
j u j = 0 in �,

�us
j + k2us

j = 0 in R
N \�,

u j = us
j + ui ,

∂u j

∂ν
= ∂us

j

∂ν
+ ∂ui

∂ν
on ∂�,

lim|x |→∞ |x | N−1
2

{
∂us

j (x)

∂|x | − ikus
j (x)

}
= 0,

(2.1)

where ν denotes the exterior unit normal vector to ∂�. We let u j∞(x̂; d, k) be the scattering
amplitude of (2.1). Suppose that for a fixed d ∈ S

N−1 and a fixed k ∈ R+,

u1∞(x̂; d, k) = u2∞(x̂; d, k) for x̂ ∈ S
N−1. (2.2)

Then by Rellich’s Lemma (cf. [3]), we have

us
1(x) = us

2(x), x ∈ R
N \�, (2.3)
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By (2.1) and (2.3), it is easy to see that (u1, u2) ∈ H1(�) × H1(�) satisfies⎧⎪⎪⎨⎪⎪⎩
�u1 + k2n2

1u1 = 0 in �,

�u2 + k2n2
2u2 = 0 in �,

u1 = u2,
∂u1

∂ν
= ∂u2

∂ν
on ∂�.

(2.4)

Next, we show that (u1, u2) must be non-trivial solutions. It is easily seen that if either one
of u1 and u2 is a trivial solution, then both of them are trivial solutions to (2.4). Without
loss of generality, we suppose that u1 = 0. Then by (2.1), we have that

ui + us
1 = ∂ν(u

i + us
1) = 0 on ∂�.

Hence, by Holmgren’s Theorem (cf. [3]), one must have that ui + us
1 = 0 in R

N \�, which
contradicts with the fact that

lim|x |→∞ |us
1(x) + eikx ·d | = 1.

Hence, (u1, u2) is a pair of non-trivial solutions to (2.4). According to [14], k is an interior
transmission eigenvalue to (2.4) with u1 and u2 being the corresponding eigenfunctions.

Based on the above observation, one can show the uniqueness (1.6) with a fixed
d ∈ S

N−1 and all (x̂, k) ∈ S
N−1×R+ by absurdity as follows. If u1∞(x̂; d, k) = u2∞(x̂; d, k)

for all (x̂, k) ∈ S
N−1 × R+, then by a similar argument to derive (2.4), we know every

k ∈ R+ is an interior transmission eigenvalue with u1(x; d, k) and u2(x; d, k) being the
corresponding eigenfunctions. If one can show that the interior transmission eigenvalues
to (2.4) for certain admissible n1 and n2 are discrete, then one obviously arrives at a
contradiction. However, such discreteness of the interior transmission eigenvalues for (2.4)
is only available for certain restricted n1 and n2 in the literature. The connection discussed
above obviously bridges the study on uniqueness of the inverse scattering problem and that
on the interior transmission eigenvalue problems, which in our hope might open up some
new directions of research in the relevant field.

Next, we present a local uniqueness result in determining a refractive index by using
the fixed-incident-direction scattering amplitude.

Theorem 2.1 Let (�, n) be an inhomogeneous medium with n∗ < n(x) < n∗ for x ∈ �

and let ε(x) ∈ L∞(�). Let u∞ and v∞ denote the scattering amplitudes corresponding to
(�, n) and (�, n + ε), respectively. If there exisit two positive constants ε+ and ε−, and a
neighborhood of ∂�, neigh(∂�), such that ε+ < ε− < n∗, ε(x) ≥ −ε− for x ∈ �, and
either ε(x) ≥ ε+ or ε(x) ≤ −ε+ for x ∈ neigh(∂�).Then one cannot have that

u∞(x̂; d, k) = v∞(x̂; d, k) (2.5)

for any fixed d ∈ S
N−1, and all (x̂, k) ∈ S

N−1 × R+.

Proof Assume that (2.5) holds for a fixed d ∈ S
N−1 and all (x̂, k) ∈ S

N−1 × R+. Then,
according to our earlier discussion, we know that every k ∈ R+ is an interior transmission
eigenvalue to
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⎧⎪⎪⎨⎪⎪⎩
�u + k2n2u = 0 in �,

�v + k2(n + ε)2v = 0 in �,

u = v,
∂u

∂ν
= ∂v

∂ν
on ∂�.

(2.6)

However, in [18], it is shown that provided n and ε satisfy the assumptions stated in the
theorem, the interior transmission eigenvalue problem (2.6) possesses (at most) a discrete
set of eigenvalues, which immediately yields a contradiction.

The proof is completed. �

3. Uniqueness in determining a constant refractive index

In this section, we shall prove that an inhomogeneous medium with a constant refractive
index can be uniquely determined by a single far-field measurement. Indeed, we have

Theorem 3.1 Let (�, n) be an inhomogeneous medium with the refractive index n being
a complex-valued constant such that 
n ≥ 0 and 0 < |n| ≤ n∗, and let u∞(x̂; d, k) be the
associated scattering amplitude. Then there exists a positive constant k0, depending only
on n∗ and �, such that n is uniquely determined by u∞(x̂; d, k) with any fixed 0 < k < k0,
d ∈ S

N−1, and all x̂ ∈ S
N−1.

Remark 3.1 In Theorem 3.1, we allow n to be complex-valued. 
n is known as absorbing
or damping coefficient of the acoustic medium (�, n).

Proof As before, we shall prove the theorem by absurdity. Let (�, ñ) be another inhomoge-
neous medium with the refractive index ñ being a constant such that 
ñ ≥ 0, 0 < |̃n| ≤ n∗,
ñ �= n and

u∞(x̂; d, k) = v∞(x̂; d, k) for fixed k > 0 and d ∈ S
N−1, and all x̂ ∈ S

N−1 , (3.1)

where v∞(x̂; d, k) denote the scattering amplitude corresponding to (�, ñ). By a similar
argument to that in deriving (2.4), we know (u, v) ∈ H1(�) × H1(�) is a pair of interior
transmission eigenfunctions to the following system⎧⎪⎪⎨⎪⎪⎩

�u + k2n2u = 0 in �,

�v + k2ñ2v = 0 in �,

u = v,
∂u

∂ν
= ∂v

∂ν
on ∂�.

(3.2)

Set

w := u − v

k2(̃n2 − n2)
.

It is straightforward to show that (w, u) ∈ H 1(�) × H1(�) satisfy⎧⎪⎪⎨⎪⎪⎩
�w + k2n2w = v in �,

�v + k2ñ2v = 0 in �,

w = 0,
∂w

∂ν
= 0 on ∂�.

(3.3)
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Next, multiplying both sides of the first equation in (3.3) by v and then integrating over
�, we have∫

�

|v|2 dx =
∫

�

(�w + k2n2w) · v dx (3.4)

=
∫

�

(�w + k2n2w) · v dx −
∫

�

(�v + k2ñ
2
v) · w dx (3.5)

=
∫

∂�

(
∂w

∂ν
· v − ∂v

∂ν
· w

)
ds(x) + k2(n2 − ñ

2
)

∫
�

v · w dx (3.6)

= k2(n2 − ñ
2
)

∫
�

v · w dx . (3.7)

From (3.4) to (3.5), we have made use of the second equation in (3.3); from (3.5) to (3.6),
we have made use of Green’s formula; and from (3.6) to (3.7), we have made use of the
homogeneous boundary conditions for w in (3.3). Now, by (3.4)–(3.7), we clearly have∫

�

|v|2 dx ≤ 2k2n∗2‖v‖L2(�)‖w‖L2(�). (3.8)

By Lemma 3.1 in the following, we know that provided k0 is sufficiently small,

‖w‖L2(�) ≤ C(�)‖v‖L2(�), (3.9)

where C(�) is a positive constant depending only on �. Finally, we further require that

k0 <
1√

2C(�) n∗ . (3.10)

Then, by (3.8)–(3.10), it is straightforward to show that ‖v‖L2(�) = 0, which immediately
yields a contradiction.

The proof is completed. �

Lemma 3.1 Let f ∈ L2(�) and w ∈ H1(�) satisfy

�w + k2w = f in �, w = 0 on ∂�. (3.11)

Then there exist positive constants k0 = k0(�) and C = C(�) such that

‖w‖L2(�) ≤ C(�)‖ f ‖L2(�), for all k < k0(�). (3.12)

Proof By integrating by parts, we first have∫
�

f · w dx =
∫

�

(�w + k2w) · w dx

= −
∫

�

|∇w|2 dx + k2
∫

�

|w|2 dx . (3.13)

Next, by Poincaré inequality, we have∫
�

|w|2 dx ≤ C1(�)

∫
�

|∇w|2 dx, (3.14)
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where C1(�) is a positive constant depending only on �. Then, by (3.13) and (3.14), we
further have

1

C1(�)

∫
�

|w|2 dx ≤
∫

�

|∇w|2 dx ≤ k2
∫

�

|w|2 dx + |
∫

�

f · w dx |

≤ k2
∫

�

|w|2 dx + α

∫
�

|w|2 dx + 1

4α

∫
�

| f |2 dx

≤ k2
0

∫
�

|w|2 dx + α

∫
�

|w|2 dx + 1

4α

∫
�

| f |2 dx, (3.15)

where α ∈ R+. By choosing

k0 = 1

2
√

C1(�)
(3.16)

and letting α = k2
0 in (3.15), we can compute directly that∫

�

|w|2 dx ≤ 2C1(�)2
∫

�

| f |2 dx . (3.17)

Therefore, the lemma is proved by taking C(�) = √
2C1(�). �

In the rest of this section, we present a uniqueness result in determining a spherically
symmetric refractive index by a single far-field measurement without the smallness condi-
tion on k in Theorem 3.1.

Theorem 3.2 Let (�, n) be an inhomogeneous medium with a constant refractive index
n �= 0. Suppose further that � = BR(z) := {x ∈ R

N : |x − z| = R} is a ball centered at
z ∈ R

N with radius R > 0. Then, the ball (that is, R and z) and its refractive index n can
be uniquely determined by the far-field pattern u∞(x̂; d, k) for all x̂ ∈ S

N−1 with any fixed
incident direction d ∈ S

N−1 and wave number k ∈ R+.

Proof We carry out the proof following the argument in [3, Theorem 5.4] for the unique
determination of sound-soft balls. Let (�̃, ñ) be another spherically symmetric medium
with the constant refractive index ñ, where �̃ = BR̃(z̃). Denote by ũ∞(x̂; d, k) the far-
field pattern corresponding to �̃ incited by the plane wave ui = exp(ikx · d). Assuming
ũ∞(x̂; d, k) = u∞(x̂; d, k) for all x̂ ∈ S

N−1 (N = 2, 3), we shall prove z = z̃, R = R̃ and
n = ñ. By Rellich’ s Lemma, the scattered waves us(x; BR(z)) and ũs(x, BR̃(z̃)) coincide
in R

N \BR(z) ∪ BR̃(z̃).
We first prove z = z̃, i.e. the centers of � and �̃ coincide. Similar to the proof of

[3, Theorem 5.4], we claim that the scattered field us(x; BR(z)) can be analytically extended
from R

3\� into R
3\{z}. In fact, this can be derived from the explicit expression of us in

terms of k, n, R and z. Without loss of generality we suppose N = 3. We make an ansatz
on the scattered field us(x; BR(z)) and the transmitted wave u(x; BR(z)) that

us(x; BR(z)) =
∞∑

m=0

im(2m + 1) Am h(1)
m (k|x − z|)Pm(cos θ), Am ∈ C, |x | > R, (3.18)

u(x; BR(z)) =
∞∑

m=0

im(2m + 1) Bm jm(kn|x − z|)Pm(cos θ), Bm ∈ C, |x | < R,



1266 G. Hu et al.

where h(1)
m denotes the Hankel function of the first kind of order m, jm the Bessel functions

of order m, Pm the Legendre polynomials and θ the angle between d and x − z. Recalling
the Jacobi-Anger expansion (see e.g. [3, (2.46)])

eikx ·d = eikz·deik(x−z)·d = eikz·d
∞∑

m=0

im(2m + 1) jm(k|x − z|) Pm(cos θ), x ∈ R
3,

and taking into account the transmission conditions between u and us on |x | = R, we obtain
the following algebraic equations for Am and Bm :(

h(1)
m (t) − jm(tn)

t h(1)
m

′(t) −tn j ′m(tn)

)(
Am

Bm

)
= −eikz·d

(
jm(t)

t j ′m(t)

)
, t := k R.

Simple calculations show that

An = −eikz·d j ′m(t) jm(tn) − njm(t) j ′m(tn)

h(1)
m

′(t) jm(tn) − n h(1)
m (t) j ′m(tn)

.

By the asymptotic behavior of the spherical Bessel and Hankel functions as n → ∞ and
their differential formulas (see, e.g. [3, Chapter 2.4]), we have

jm(t) = tm

(2m + 1)!!
(

1 + O
(

1

m

))
, j ′m(t) = ntm−1

(2m + 1)!!
(

1 + O
(

1

m

))
,

h(1)
m (t) = (2m − 1)!!

i tm+1

(
1 + O

(
1

m

))
, h(1)

m
′(t) = − (m + 1) (2m − 1)!!

i tm+2

(
1 + O

(
1

m

))
,

where m!! = 1 · 3 · 5 . . . m for any odd number m ∈ N
+. Inserting the previous asympotics

into the expression of An leads to the estimate

Am = O
(

t2m+1

(2m + 1)!! (2m + 1)!!
)

as m → ∞,

and thus

(2m + 1)Amh(1)
m (k|x − z|) = O

(
R2m+1km

|x − z|m+1(2m + 1)!!
)

.

This implies that the scattered field us(x, BR(z)) converges uniformly in any compact subset
of R

3\{z}. Analogously, ũs(x, BR̃(z̃)) has an extension from R
3\BR̃(z̃) into R

3\{z̃}. Now,
we assume z �= z̃. Defining us(x, BR(z))|x=z := ũs(z, BR̃(z̃)), we obtain an entire function
us(x, BR(z)) that satisfies the Helmholtz equation and the Sommerfeld radiation condition,
leading to us(x, BR(z)) = 0 in R

3. This contradiction indicate that one must have z = z̃.
From the series (3.18), one readily concludes that u∞ and ũ∞ depend only on the angle

θ between the incident direction d and the observation direction (x − z)/|x − z|. Hence,
the relation ũ∞(x̂; d, k) = u∞(x̂; d, k) for one incident direction implies the coincidence
of far-field patterns for all incident directions. Consequently, we have R = R̃ and n = ñ
due to the uniqueness in the inverse medium problem using all incident and observation
directions; see e.g. [3, Chapter 10.2] where the refractive index is allowed to be piecewise
continuous. This completes the proof in 3D.

For the two-dimensional case, the determination of the center of the disc BR(z) can be
shown in a completely manner to the 3D case. As soon as the center of BR(z) is recovered,
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the uniqueness in determining R and n directly follows from the uniqueness in determining
a potential for the 2D Schrödinger equation in [19]; see also [20] and [21].

The proof is completed. �

By the invariance of the Helmholtz equation under rotations, it is easily verified that
for an inhomogeneous medium (BR(z), n(|x − z|)), knowing the scattering amplitude for
a fixed incident direction is equivalent to knowing the scattering amplitude for all incident
directions. Hence, by a completely similar argument to the proof of Theorem 3.2, we have

Theorem 3.3 Let � := BR(z) be a ball of radius R > 0 centered at z in R
N . Let (�, n)

be an inhomogeneous medium with the refractive index n := n(|x − z|) ∈ L∞(�) being a
complex-valued function of |x −z|. It is supposed that the center z is known in advance. Then
the refractive index n can be uniquely determined by the associated scattering amplitude
u∞(x̂; d, k) with any fixed k ∈ R+, d ∈ S

N−1 and all x̂ ∈ S
N−1.

4. Concluding remarks

One of the classical inverse scattering problems is the so-called obstacle problem. Let D be a
bounded Lipschitz domain such that R

N \D is connected. Consider the following scattering
problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

�u + k2u = 0 in R
N \D,

u = ui + us in R
N \D,

u = 0 on ∂ D,

lim|x |→∞ |x | N−1
2

{
∂us (x)
∂|x | − ikus(x)

}
= 0.

(4.1)

The scattered field in (4.1) possesses the same asymptotic expansion as that in (1.4). The
inverse obstacle scattering problem is to recover D by knowledge of u∞(x̂; d, k). D is
known as a sound-soft obstacle in the physical literature. It has been long conjectured
that D can be uniquely determined by a single far-field measurement, namely u∞(x̂; d, k)

for all x̂ ∈ S
N−1, but fixed k ∈ R+ and d ∈ S

N−1. We note that the inverse obstacle
problem is formally posed by a single far-field measurement. The first uniqueness result is
due to Schiffer (cf. [22]), where the uniqueness was established by infinitely many far-field
measurements, namely u∞(x̂; d, k) with all x̂ ∈ S

N−1, and either i). a fixed d ∈ S
N−1

and infinitely many k’s; or ii). a fixed k ∈ R+ and infinitely many d’s. The corresponding
proof is based on an absurdity argument, and the essential ingredient is the discreteness of
the Dirichlet eigenvalues for the negative Laplacian in a bounded domain. In this sense,
our argument in Section 2 on uniquely determining a generic inhomogeneous medium
can be taken as a counterpart to Schiffer’s argument on uniquely determining a generic
sound-soft obstacle. However, in order to establish the uniqueness of determining a generic
inhomogeneous medium, one has to deal with the more challenging interior transmission
eigenvalue problems (2.4). We conjecture that a generic refractive index n(x) can be
uniquely determined the formally-determined fixed-incident-direction scattering amplitude.
A possible way to achieve this goal is to study the discreteness of the interior transmission
eigenvalues of (2.4), but one needs to peel off the ‘singular regions’ where n1 = n2 from
exterior. We shall present such a study in the future. Moreover, it is interesting to point out
that our proposed inverse scattering problem is closely connected to the coefficient inverse
problems by a single dynamical measurement; see [8,9,23–26].
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By using the fact that there exists a lower bound on the Dirichlet eigenvalues, Colton
and Sleeman established the uniqueness with a single far-field measurement for the inverse
obstacle problem provided the obstacle is sufficiently small (see [27]). Our uniqueness
in Section 3 on uniquely determining a constant refractive index by a single far-field
measurement can be taken as a counterpart to that uniqueness due to Colton and Sleeman.
In order to prove Theorem 3.1, we actually have shown that there is a lower bound for the
positive interior transmission eigenvalues of (3.1). The lower bound of positive interior
transmission eigenvalues was also considered in [28]. However, our approach works in a
more general setting than that was considered in [28]. Finally, we note that there are some
significant progresses in uniquely determining a generic obstacle by using a single far-
field measurement even without the smallness condition; see [10,29–31] and the references
therein. We believe that a generic constant refractive index can also be uniquely determined
by a single far-field measurement without the smallness condition posed in Theorem 3.1.
Indeed, Theorems 3.2 and 3.3 cast some light on this conjecture.
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