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DIRECT AND INVERSE ACOUSTIC SCATTERING BY A
COLLECTION OF EXTENDED AND POINT-LIKE SCATTERERS∗

GUANGHUI HU† , ANDREA MANTILE‡ , AND MOURAD SINI§

Abstract. This paper concerns the acoustic scattering by an extended obstacle surrounded by
point-like obstacles. The extended obstacle is supposed to be rigid, while the point-like obstacles are
modeled by point perturbations of the exterior Laplacian. In the first part, we consider the forward
problem. Following two equivalent approaches (the Foldy formal method and the Krein resolvent
method), we show that the scattered field is a sum of two contributions: one is due to the diffusion by
the extended obstacle, and the other arises from the linear combination of the interactions between
the point-like obstacles and the interaction between the point-like obstacles with the extended one.
In the second part, we deal with the inverse problem. It consists in reconstructing both the extended
and point-like scatterers from the corresponding far-field pattern. To solve this problem, we describe
and justify the factorization method of Kirsch. Using this method, we provide several numerical
results and discuss the multiple scattering effect concerning both the interactions between the point-
like obstacles and between these obstacles and the extended one.

Key words. Foldy method, Krein resolvent method, point interactions, multiple scattering,
self-adjoint extension, inverse acoustic scattering, factorization method, multiscale
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1. Introduction. Let D be a bounded and C2-smooth simply connected set
of R3. We consider the scattering of a time-harmonic acoustic plane wave from the
obstacle D and an inhomogeneous isotropic medium with an index of refraction n =
n(x) > 0 in R3\D. It is supposed that the inhomogeneous medium occupies a bounded
domain such that n(x) = 1 for x outside of some sufficiently large ball containing D.
The time-harmonic incident plane waves take the form

uin(x; d) = exp(iκ x · d) ,
where κ is the wave number corresponding to the background medium and d ∈ S2 :=
{x : |x| = 1} denotes the propagation direction, while their evolution in time is
defined by the modulation factor: exp (−iωt). Then the total acoustic fields u satisfy
the reduced time-harmonic acoustic equation

(1.1) Δu+ κ2 n(x)u = 0 in R
3 \D ,

with the Dirichlet boundary condition

(1.2) u = 0 on ∂D .
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SCATTERING BY EXTENDED AND POINT-LIKE OBSTACLES 997

The corresponding scattered fields usc := u− uin are required to satisfy the Sommer-
feld radiation condition

(1.3) lim
|x|→∞

|x|(∇usc · x̂− iκusc) = 0 ,

uniformly in all directions x̂ := x
|x| ∈ S2, leading to the far-field patterns u∞(x̂) given

by the asymptotic behavior

(1.4) usc(x, d) =
eiκ |x|

4π |x|
{
u∞ (x̂, d) +O

(
1

|x|
)}

as |x| → ∞. The function u∞(·, ·) : S2×S2 → C2 is called the far-field pattern of usc,
and it is well known that it is an analytic function.

In this work, we assume that the inhomogeneous medium in R
3 \ D consists of

a finite number of components whose diameter is much smaller than the incidence
wavelength. Then the interaction between the incident wave and the inhomogeneous
part of the medium can be modeled as a scattering problem with a collection of point-
like obstacles located in Y = {yj}Nj=1, where Y ⊂ R3 \D and supj |yj| < ∞. As has

been suggested in [11], this corresponds to introduce a formal delta-like perturbation
of the refraction index

(1.5) (n(x) − 1) =

N∑
j=1

aj κ
2 δ(x− yj)

as a potential term in the definition of the on-shell T -matrix. The resulting model
describes a system of N -point scatterers (see also the definition in [12]) surrounding
an extended obstacle.

There is a large literature dealing with the forward problem for the case where
the extended obstacle is absent. We mention, for instance, the book [23] describing
the corresponding Foldy method. Regarding the inverse problem, which consists in
locating the point-like scatterers and reconstructing the scattering coefficients from
the far-field pattern, we mention the works [10, 13, 14, 21, 22].

The contributions of the present work are twofold. In the first part, we study
the forward problem following two equivalent approaches. As a first approach (sec-
tion 3.1), we use the Foldy’s formal method, introduced in [12], according to which
the scattered field is the sum of two contributions: one is due to the diffusion by
the extended obstacle, and the other one is a linear combination of the interactions
between the point-like obstacles and the interaction between the point-like obstacles
with the extended one through some scattering coefficients gj, j = 1, . . . , N . We ob-
tain a closed form of the solution; see (3.10) in section 3.1. To use this formulation, we
need to solve the scattering problem by the extended obstacle only, i.e., in the absence
of the point-like obstacles, and then invert the algebraic system (3.7). To obtain this
closed form we use the Green’s function of the scattering by the extended obstacle. A
slightly different strategy, still following the Foldy formal method, has been developed
in [15, 17]. The authors use only the fundamental solution of the free space and write
the scattered field as a sum of point sources, modeling the scattering by the point-like
obstacles, and the scattered field due to the extended obstacle represented by layer
potentials. The price to pay is that the coefficients and the densities appearing in
this representation are solutions of a coupled system of integral equations instead of
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998 GUANGHUI HU, ANDREA MANTILE, AND MOURAD SINI

an algebraic system, as we do here. They propose and justify an iterative method to
solve this system.

As a second approach, we model the point scatterers as (frequency-dependent)
point interactions. In section 3.2, we follow this line and look at the acoustic propaga-
tor as a point perturbation of the one modeling the scattering without the point-like
obstacles. The perturbed operator is obtained as a self-adjoint extension of the sym-
metric operator Q acting as −Δ on the domain

(1.6) D (Q) =
{
u ∈ H2 ∩H1

0

(
R

3\D) | u(yi) = 0 , yj ∈ Y
}
.

It is well known that these extensions are defined through boundary conditions occur-
ring in the points yj (e.g., in [1]). Using the boundary triples technique (e.g., in [9]),
they can be parametrized by linear operators on CN . In particular, the “local” point
interactions are those defined by using a parameter matrix α ∈ CN,N of the form
α = diag (αj), αj ∈ R. The explicit character of the model allows one to obtain a
“Krein-like” formula for the corresponding scattered field due to incident plane waves.
In section 3.2 we show that this is nothing else but the one obtained using the Foldy
method where the scattering coefficients gj are explicitly related to the parameters
αj and the boundary values of the singular sources Φsc

D (yj , yj, κ) (i.e., the scattered
fields by the extended obstacle D corresponding to point sources as incident fields)
according to (see Remark 3.6)

(1.7) gj :=

(
Φsc

D (yj , yj , κ) +
iκ

4π
− αj

)−1

, j = 1, . . . , N .

The main interest in using the theory of operator extensions to build our model
of point scatterers stands upon the fact that this approach naturally leads to an
appropriate scattering problem. More precisely, we show that the scattered field
solves the Helmholtz equation in R3\ {D ∪ Y } with a Dirichlet condition on ∂D and
impedance-like boundary conditions on Y , depending on αj (see problem (3.43)).

In the second part of our work, we investigate the inverse scattering problem of
reconstructing both the extended and point-like obstacles from the corresponding far-
field pattern with infinitely many incident directions. Based on the novel boundary
value problem (3.43) for the forward scattering, our aim is to describe and justify the
factorization method. This method was first put forward by Kirsch [18] to reconstruct
extended obstacles from the spectral data of far-field operators. It requires neither
computation of direct solutions nor initial guesses and provides a sufficient and nec-
essary condition for characterizing the shape of the extended obstacle and positions
of the point-like scatterers (see Theorem 4.10). We refer to the monograph [19] and
references therein for a detailed discussion of the various versions of the factorization
method for acoustic scattering from extended impenetrable and penetrable scatter-
ers. Using this method, we provide several numerical results and discuss the multiple
scattering effects reflecting the interactions between the point-like obstacles and also
between these obstacles with the extended one. It is worth noting that our argu-
ments for the direct and inverse problems can be both extended to the case where
the extended scatterer is a sound-hard obstacle, an impedance-type obstacle, or a
penetrable medium; see Remark 4.12(iii).

For references related to the inverse issue we mention the work [16], where a
MUSIC algorithm is used. This algorithm is designed and widely used mainly to
detect point locations of small or point-like scatterers. However, there is no guarantee
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SCATTERING BY EXTENDED AND POINT-LIKE OBSTACLES 999

that it provides correct information on the shape of extended scatterers even though
some explanation is provided in [30], for instance.

The paper is organized as follows. In section 2, we briefly recall some of the main
ideas in the modeling of point-like scatterers, namely, the Foldy and the regularization
methods, and suggest a possible link with the theory of the singular perturbations of
the Dirichlet Laplacian in R3: this leads to an alternative approach to the modeling
of point scatterers. In section 3, we study our forward problem following these two
approaches. We first provide the far-field representation using the Foldy method
in section 3.1, and then, in section 3.2, we construct a frequency-dependent point
interaction model leading to our scattering problem. In section 4, we study the inverse
problem and justify the factorization method for our problem, while in section 5 we
test this method numerically.

2. Acoustic scattering by point scatterers. We next introduce the acous-
tic scattering model in the simplest case of point-like obstacles in R3. Different ap-
proaches to this problem have been developed; see [12] and [11]. Suitable assumptions
on the scattering interaction involving point scatterers, and formal computations lead,
in these works, to similar nonperturbative representations of the scattering waves (see
(2.6) and (2.7) below). After briefly recalling the ideas underlying these methods, we
show that both can be rephrased in terms of a frequency-dependent point interaction
model.

2.1. The formal methods. The notion of point scatterer arises from the work
of Foldy [12], where the steady state scattering problem for a scalar wave of a single
frequency κ is considered in R3. Assuming the interaction to act only on the spherical
symmetric part of the incident waves (isotropy prescription), the scattered field near
a point scatterer yj behaves as

AjΦ
κ(·, yj),

where Φκ (x, y) is the fundamental solution of the three-dimensional (3D) Helmholtz
equation

(2.1) Φκ(x, y) =
eiκ|x−y|

4π |x− y| .

The total field is represented by summation according to

(2.2) u = u0 +

N∑
j=1

AjΦ
κ (·, y) ,

where the incident field, u0, is a solution of the problem
(
Δ+ κ2

)
u0 (·, κ) = 0 in R3.

The external field uj acting on a scatterer yj is then

(2.3) uj = u−AjΦ
κ(·, yj) = u0 +

∑
j′ �=j

AjΦ
κ (·, y) .

Assuming the coefficient Aj to be proportional to the external field uj(yj) at the
scatterer yj , i.e.,

(2.4) Aj = gj (κ)uj(yj),
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1000 GUANGHUI HU, ANDREA MANTILE, AND MOURAD SINI

we derive the following linear algebraic system:

(2.5) uj (yj) = u0 +
∑
j′ �=j

gj′ (κ)uj′ (yj′)Φ
κ(yj , yj′).

Following [12], (2.2)-(2.4)-(2.5) are referred to as the fundamental equations of the
multiple scattering, while gj (κ) is referred to as “scattering coefficient” of the jth
scatterer. These coefficients are assigned physical data; they can depend both on the
frequency κ and on some other scattering parameter (see [12] for this point) and fix
the properties of the scattering interactions. Next, assume u0 to describe an incident
plane wave of wave number κ propagating in the direction d and scattering on a single
point scatterer located in y. The previous equations read as

(2.6) u = u0 + g (κ)u0 (y)Φ
κ(·, y) , u0(x) = eiκ d·x.

A physical interpretation of the Foldy coefficients, for the interaction between
classical waves and matter, has been given in [11]. In the acoustic case, the authors
define the interaction through a pointwise perturbation of the refraction index n.
Assuming n(x) = 1 + aδ (x− y), for a single point scatterer located in y, a formal
computation yields the following representation of the outgoing scattering waves:

(2.7) ψa (x, κ, d) = eiκ d·x + τ (κ, a,Λ) eiκ d·yΦκ (x, y) ,

where τ depends on the wave number κ, the coupling coefficient a, and a cutoff
momentum Λ (used in the formal regularization of the unperturbed Green’s function)
according to

(2.8) τ (κ, a,Λ) =
κ2

1/a− κ2Λ/4π − iκ3/4π
.

(We refer the reader to the equations (22) and (37) in [11]. See also [5], where this
approach is rigorously justified in the case of the Maxwell system as well). Comparing
(2.7) with (2.6) leads to the equivalence of the two models once the identity g (κ) =
τ (κ, a,Λ) is assumed for fixed values of the parameters κ, a, and Λ.

2.2. A point interaction model. In operator theory, equations similar to
(2.13) are known to represent the scattering wave functions associated to pointwise
singular perturbations of the 3D Laplacian (we refer the reader to [1] for an exhaustive
presentation of this topic). Consider as an example the case of the self-adjoint one-
point interactions centered in y ∈ R3; these are modeled by a one-parameter family
of operators Hα, α ∈ R, defined as self-adjoint extensions of the symmetric minimal
Laplacian H0,

(2.9) D(H0) =
{
u ∈ H2

(
R

3
) | u(y) = 0

}
, H0u = −Δu .

The defect spaces ker (H∗
0 − z), of the adjoint operator H∗

0 , are related to the Green’s
kernels: Gz(x) = ei

√
z|x−y|/4π |x− y| (here z ∈ C\R+ and the square root is fixed with

Im
√
z > 0). In particular, a direct computation shows that ker (H∗

0 − z) = l.c. {Gz}
(we refer the reader to [1, Chapter I.1.1] for this point), which, according to the
properties of closed symmetric operators (see [27, Chapter X]), results in

(2.10) D (H∗
0 ) = D(H0)⊕ ker (H∗

0 − i)⊕ ker (H∗
0 + i) .
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SCATTERING BY EXTENDED AND POINT-LIKE OBSTACLES 1001

Then, by (2.10), any u ∈ D (H∗
0 ) exhibits the asymptotics

(2.11) u ∼ c1
4π |x− y| + c2 + o(1) , cj=1,2 ∈ C ,

near y (see also [2, 3, 20]).
The coefficients cj=1,2 can be used to describe the extension Hα as a restriction

of H∗
0 to the set of functions satisfying the boundary conditions: αc1 = c2 (for this

point see [20] and the references therein). This yields the representation

D (Hα) = {u ∈ D (H∗
0 ) | (2.13) holds} ,(2.12)

α lim
x→y

4π |x− y|u(x) = lim
x→y

(
u(x)− limx→y 4π |x− y|u(x)

4π |x− y|
)

∀u ∈ D (Hα) .

(2.13)

According to the theory of 3D point interactions, Hα acts nontrivially only in the s-
wave (i.e., spherically symmetric states in D (Hα)), and the related s-wave scattering

length 
α depends on the parameter α according to 
α = − (4πα)
−1

(see equation
(1.4.10) in [1] and the subsequent remarks). In addition, the total field corresponding
to an incident plane wave propagating in the direction d with wave number κ has the
form (equation (1.4.11) in [1])

(2.14) Ψα (x, κ, d) = eiκ d·x + (α− iκ/4π)−1 eiκ d·yΦκ(·, y) .
Comparing this relation with (2.6) shows that the scattering waves for an acoustic
point scatterer, defined by the scattering coefficient g(κ), coincide, for each frequency
κ, with those associated to a one-center point interaction Hamiltonian Hα(κ) with the
frequency-dependent parameter α (κ):

(2.15) (α (κ)− iκ/4π)
−1

= g (κ) .

Moreover, from the comparison between (2.7)–(2.8) and (2.14) we get

(2.16) α :=
1

κ2a
− Λ

4π
.

For fixed Λ and κ, this provides a link between a pointwise perturbation of the refrac-
tion index and the scattering length 
α of the corresponding point interaction model.

In particular, from (2.16) we have 
−1
α = Λ− 4π

(
κ2a

)−1
.

Let us finish this section by showing how the scattering by a point scatterer can
be described in terms of a boundary value problem. The total field u, corresponding
to the incident wave u0 = eiκ d·x, is given in (2.6) or (2.14). Taking into account
(2.15), the scattered field usc := Ψα (x, κ, d)− eiκ d·x solves the problem

(2.17)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Δ+ κ2

)
usc(x) = 0 , in R3\ {y} ,

limx→y 4π |x− y|usc(x) = (α (κ)− iκ/4π)
−1
eiκ d·y ,

lim|x|→∞ |x| (∇usc · x̂− iκusc) = 0 ∀ x̂ ∈ S .
By straightforward computations, the condition across the scatterer y can be replaced
by the following “impedance-type condition” for the total field u,

(2.18) Γ2(u) = α (κ) Γ1(u) ,
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1002 GUANGHUI HU, ANDREA MANTILE, AND MOURAD SINI

where

Γ1(u) := lim
x→y

4π|x− y|u(x) and Γ2(u) := lim
x→y

(
u(x)− Γ1(u)

4π|x− y|
)
.

The relation (2.18) is of course nothing but (2.13). The characterization of the scat-
tered fields as a solution of the problem of type (2.17) with “impedance” boundary
condition (2.18) across the point scatterer y will be very useful in studying the inverse
problem in section 4.

3. The model for acoustic scattering by extended and point-like scat-
terers. In what follows, we adapt the methods described in sections 2.1 and 2.2 to
the case of point scatterers in the exterior domain R3 \D.

3.1. The Foldy method. Let uD denote a solution of the scattering problem
(1.1)–(1.3), when n = 1, i.e., homogeneous medium, corresponding to an incident field
uin; the scattered field uscD is defined according to

(3.1) uscD = uD − uin .

The Green’s function Φκ
D associated to this problem is the unique solution of the

boundary value problem

(3.2)

⎧⎨
⎩

(
Δ+ κ2

)
Φκ

D = −δ(·, y) in R3 \D ,

Φκ
D(·, y) = 0 in ∂D ,

such that the scattered field

(3.3) Φsc
D (·, y, κ) = Φκ

D (·, y)− Φκ (·, y) ,
with Φκ given in (2.1), satisfies the Sommerfeld radiation condition.

In what follows, we use the Foldy method to study the scattering problem from
the sound-soft obstacle D surrounded by a system of point scatterers located in Y =
{yj}Nj=1, where Y ⊂ R3 \ D and supj |yj | < ∞ (see also [12] or [23, p. 298] for the

acoustic case without extended obstacles). Proceeding as in section 2.1, the total field
is represented as

(3.4) u(x) = uD(x) +

N∑
j=1

Φκ
D(x, yj)Aj ,

where Aj are unknown constants. The field

(3.5) uj(x) = u(x)− Φκ
D(x, yj)Aj = uD(x) +

N∑
l=1
l �=j

Φκ
D(x, yl)Al

is now regarded as the external field incident on the jth scatterer in the presence of
all the other scatterers. The physical assumption in the Foldy method is that the
strength of the scattered wave from the scatterer yj is proportional to the external
field on it. In our case this is given by the assumption that

(3.6) Aj = gj uj(yj) ,
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where gj is the scattering coefficient of the scatterer yj . Evaluating (3.5) at yj , we
obtain

(3.7) uj(yj) = uD(yj) +

N∑
l=1
l �=j

glΦ
κ
D(yj , yl)ul(yl) ,

and then (3.4) becomes

(3.8) u(x) = uD(x) +

N∑
j=1

gjΦ
κ
D(x, yj)uj(yj) .

Following the seminal paper [12], we refer to (3.7)–(3.8) as the fundamental system
of multiple scattering.

In particular, (3.7) can be written as the algebraic linear system

[Γ̃]N×N [Λ]N×1 = [u]N×1 ,

with Λ := (u1(y1), u2(y2), . . . , uN (yN ))� ∈ CN×1, u := (uD(y1), . . . , uD(yN ))� ∈
CN×1, and
(3.9)

Γ̃ :=

⎛
⎜⎜⎜⎝

I −g2Φκ
D(y1, y2) −g3Φκ

D(y1, y3) · · · −gNΦκ
D(y1, yN)

−g1Φκ
D(y2, y1) I −g3Φκ

D(y2, y3) · · · −gNΦκ
D(y2, yN)

...
...

...
. . .

...
−g1Φκ

D(yN , y1) −g2Φκ
D(yN , y2) −g3Φκ

D(yN , y3) · · · I

⎞
⎟⎟⎟⎠ .

Assuming det(Γ̃) = 0 and denoting the elements of Γ̃−1 ∈ CN×N by [Γ̃−1]lj for
l, j = 1, 2, . . . , N , we deduce from (3.4) that the scattered field takes the form

(3.10) usc(x) := u(x)− uin(x) = uscD (x) +

N∑
l,j=1

gj Φ
κ
D(x, yj) [Γ̃

−1]jl uD(yl) ,

with the far-field pattern

u∞(x̂) = u∞D (x̂) +

N∑
l,j=1

gj (Φ
∞
D (x̂, yj , κ) + e−iκx̂·yj) [Γ̃−1]jluD(yl) , x̂ ∈ S

2 ,

where Φ∞
D (x̂, yj, κ) + e−iκx̂·yj is the far field corresponding to the incident source

Φκ
D(·, yj) = Φsc

D (·, yj , κ) + Φκ(·, yj) and u∞D (x̂) is the far field corresponding to the
scattered field uscD by the obstacle D.

3.2. A point interaction model in R3\D. As has been remarked in section 2,
scattering by point scatterers can be described in terms of point interactions models
provided that a suitable correspondence between the scattering coefficients and some
operator extension parameter is established. In what follows, we develop this approach
in the case of a set of point scatterers, located in Y = {yj}Nj=1, and surrounding an
extended sound-soft obstacle whose support, D, is assumed to fulfill the conditions
discussed in the introduction. The corresponding point interaction models, obtained
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1004 GUANGHUI HU, ANDREA MANTILE, AND MOURAD SINI

as singular perturbations of the Dirichlet Laplacian in R3\D, are defined as a self-
adjoint extension of the symmetric operator Q,

(3.11)

⎧⎨
⎩

D (Q) =
{
u ∈ H2 ∩H1

0

(
R3\D) | u(yi) = 0 , yi ∈ Y

}
,

Qu = −Δu,

and their physical properties are encoded by conditions occurring in the boundary
points yi. The extensions of symmetric operators and the related spectral properties
are the objects of a permanent interest, both from theoretical as well as practical
points of view. Focusing on the case of self-adjoint point interaction models, a large
and exhaustive introduction can be found in [1]. The case of point interactions in
bounded domains is discussed in [4].

3.2.1. The Green’s functions. Since Q ⊂ Q∗, the self-adjoint extensions of
Q identify with a class of restrictions of Q∗ fulfilling prescribed linear relations on a
“boundary space.” Following this line, we next consider the adjoint operator. Making
use of the von Neumann decomposition formula (e.g., in [27, Chapter X]), this writes
as

(3.12) D (Q∗) = D (Q)⊕Ni ⊕N−i ,

where Nz, the defect spaces of Q, are defined by

(3.13) Nz = ker (Q∗ − z) .

Then, due to the inclusion Q ⊂ Q∗, Q∗ acts as −Δ on the regular part of its domain,
while from the above definition we have

(3.14) Q∗u = ±iu as u ∈ N±i .

Next we give an explicit representation of Nz in terms the Green’s functions Φζ
D

introduced before. Let ζ ∈ C
+ and x, y ∈ R

3\D such that x = y. To be consistent
with (3.3) we write

(3.15) Φsc
D (x, y, ζ) := Φζ

D (x, y)− Φζ (x, y) ,

where

(3.16) Φζ (x, y) =
eiζ|x−y|

4π |x− y| .

Then the function Φsc
D (·, y, ζ) solves the boundary value problem

(3.17)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Δ+ ζ2

)
Φsc

D (·, y, ζ) = 0 in R3\D ,

Φsc
D (·, y, ζ) |∂D = −Φζ (·, y) |∂D ,

lim|x|→∞ |x| (x̂ · ∇x − iζ)Φsc
D (·, y, ζ) = 0 .

In what follows, Q0 denotes the Dirichlet Laplacian in the exterior domain R3\D, i.e.,

(3.18) Q0 :

⎧⎨
⎩

D (Q0) = H2
(
R

3\D) ∩H1
0

(
R

3\D) ,
Q0u = −Δu.

The Green’s function Φζ
D (x, y) enjoys the following properties.
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SCATTERING BY EXTENDED AND POINT-LIKE OBSTACLES 1005

Lemma 3.1. Let x, y ∈ R3\D.

1. For x = y, the map ζ → Φζ
D (x, y) is holomorphic in C+ and continuously

extends to the whole real axis.
2. For a fixed ζ ∈ C

+, this gives Φζ
D (·, y) ∈ L2

(
R

3\D), while for ζ ∈ C+ the

functions Φζ
D (·, y) are C∞-smooth in R3\ (D ∪ y) and satisfy the Sommerfeld

radiation condition

(3.19)

(
x

|x|∇x − iζ

)
Φζ

D (x, y) = o

(
1

|x|
)
.

Proof. From the definition (3.16), the result holds in the case of Φζ (·, y). We con-
sider next Φsc

D (·, y, ζ). Recall that it is the unique solution of the scattering problem
(3.17). This solution can be represented using the layer potentials approach (see, for
instance, [7, 24]) as follows:

(3.20) −Φsc
D (·, y, ζ) =

∫
∂D

{
∂νΦ

ζ (·, y′)− iηΦζ (·, y′)}ϕ(y′, y) ds(y′) ,
where ∂ν denotes the normal derivative oriented towards the exterior of D, while η is
fixed in R+. The potential ϕ (·, y) is the unique solution of the integral equation of
second kind,

(3.21)
(
I +K − iηS

)
ϕ(·, y) = 2Φζ(·, y) on ∂D,

where S and K are, respectively, the single- and double-layer potential operators
defined by

S(u)(x) := 2

∫
∂D

Φζ(x, y)u(y)ds(y) for x ∈ ∂D,

K(u)(x) := 2

∫
∂D

∂ν(y)Φ
ζ(x, y)u(y)ds(y) for x ∈ ∂D.

The integral operator I + K − iηS : L2(∂D) → L2(∂D) (respectively, C(∂D) →
C(∂D)) is Fredholm, and since η = 0 it is injective; see, for instance, [7, 24]. In
addition it is holomorphic in C. From the Fredholm theory, its inverse is meromorphic
in C. This implies that ϕ is also meromorphic as a function from C to L2(∂D). From
the representation (3.20), we deduce that for every x, y in R3\D, Φsc

D (x, y, ζ) is also
meromorphic in C. Next, we show that the eventual poles are located in C−. We
introduce the auxiliary function s(·, y, ζ) := Φζ(·, y)v(·), where v ∈ C∞

0 (R3) such that
v = 1 in D. Setting −ρζ = Φsc

D (·, y, ζ) + s, problem (3.17) is rephrased as

(3.22)

⎧⎨
⎩

(−Δ− ζ2
)
ρζ (·, y) = F ζ (·, y) in R3\D ,

ρζ (·, y)∣∣
∂D

= 0 , F ζ (·, y) = (−Δ− ζ2
)
s (·, y, ζ) .

Correspondingly, we denote the solution of the above problem as

(3.23) ρζ (·, y) = (
Q0 − ζ2

)−1
F ζ (·, y) .

Recall that (by the limiting absorption principle) the operator
(
Q0 − ζ2

)−1
: L2

σ(R
3\D)

→ H2
−σ(R

3\D), σ > 1, where L2
σ(R

3\D) and H2
−σ(R

3\D) are the Agmon spaces,
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1006 GUANGHUI HU, ANDREA MANTILE, AND MOURAD SINI

is well defined for ζ ∈ C+ and
(
Q0 − ζ2

)−1
: C+ → L(L2

σ(R
3\D), H2

−σ(R
3\D))

is analytic in C+ and Hölder continuous up to C+; see, for instance, [29]. Hence
ρζ (·, y) : C+ → H2

−σ(R
3\D) is also analytic in C+ and Hölder continuous up to

C+. By the continuous injection of H2
loc(R

3\D) in the space of continuous func-
tions C(R3), we deduce that for x, y in R3\D fixed, the function ρζ (x, y), and hence
Φsc

D (x, y, ζ), is analytic in C+ and Hölder continuous up to C+. The first point in

the lemma follows now since Φζ
D (x, y) = Φζ (x, y) + Φsc

D (·, y, ζ). Let us consider the

second point. Since Φζ
D (x, y) identifies with the integral kernel of

(
Q0 − ζ2

)−1
, the

absence of poles in the upper complex half-plane implies that ζ2 ∈ res (Q0) (the re-

solvent set of Q0) for any ζ in C+. Hence, for ζ ∈ C+,
(
Q0 − ζ2

)−1
is a bounded

map: L2
(
R3\D) → D (Q0) and the relation (3.23) gives ρζ (·, y) ∈ D (Q0). Taking

into account that Φζ(·, y) ∈ L2(R3), this leads to Φζ
D (·, y) ∈ L2

(
R3\D). For the

x-regularity of this function when ζ ∈ C+, let us assume, in addition to the previ-
ous conditions, s(·, y, ζ) to be defined through a smooth cutoff function v such that
supp v ⊂ R3\Bδ (y), with Bδ (y) denoting the ball of center y and radius δ small
enough. In this case, following the definition in (3.22), the function F ζ (·, y) is in-
finitely many times differentiable, and each derivative is in L2

(
R3\D). Then, by the

limiting absorption principle, we have ρζ (·, y) ∈ Hm
loc(R

3\D) for any m ∈ N. Fi-
nally, the radiation condition (3.19), holding for Φζ , also holds for the “regular part”
Φsc

D (·, y, ζ) as a direct consequence of the representation (3.20).
As in the whole space case (cf. [1]), the defect spaces Nz are N -dimensional and

can be represented in terms of the Green’s kernel of (Q0 − z)
−1

. This is shown in the
next lemma.

Lemma 3.2. Let Nz be defined according to (3.11) and (3.13). For any z ∈ C\R+,

Nz is N -dimensional and generated by the linearly independent set {Φζ
D (·, y) , y ∈ Y },

with ζ ∈ C+ and ζ2 = z.
Proof. Consider the problem u ∈ ker (Q∗ − z). Since C∞

0

(
R3\ (D ∪ Y )

)
is dense

in D (Q), this is equivalent to

(3.24)

⎧⎨
⎩

〈(Q∗ − z)u, ϕ〉 = 0 ∀ϕ ∈ C∞
0

(
R3\ (D ∪ Y )) ,

u ∈ L2
(
R3\D) .

The above equation can be written as

(3.25)

∫
R3\D

ū(x) ((−Δ− z)ϕ (x)) dx = 0 ∀ϕ ∈ C∞
0

(
R

3\ (D ∪ Y )) ,

with u ∈ L2
(
R3\D). This implies

(3.26)
(−Δ− z)u(x) = μ ∈ H−2

(
R

3\D) , where μ(ϕ) = 0 ∀ϕ ∈ C∞
0

(
R

3\ (D ∪ Y )) .
Thus, the only possible solutions of (3.24) are those u∈L2

(
R3\D) such that (−Δ−z)u

coincides with a bounded measure supported in Y . Let μ ∈ H−2
(
R3\D) be such a

measure and f ∈ H2
(
R3\D); since μ acts linearly on H2

(
R3\D) and its action on f

depends only on the boundary values of the function in Y , we have

μ (f) =
∑

cjf (yj) .
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SCATTERING BY EXTENDED AND POINT-LIKE OBSTACLES 1007

This allows one to identify μ with a linear superposition of delta measures concentrated
in Y and, according to the definition (3.15)–(3.17), we obtain dimNz = #Y = N ,
with

Nz =
{
Φζ

D (·, y) , y ∈ Y
}

for ζ2 = z ∈ C.

Remark 3.3. Take ζ, ζ′ ∈ C\R and α ∈ R+. Since (−Δ+α)(Φζ
D (·, yj)−Φζ′

D (·, yj))
= (ζ2 + α)Φζ

D (·, yj) − ((ζ′)2 + α)Φζ′
D (·, yj) with a homogeneous boundary condition

on ∂D, and since both Φζ′
D (·, yj) and Φζ′

D (·, yj) are in L2(R3\D), we deduce from the
elliptic regularity that

(3.27) Φζ
D (·, yj)− Φζ′

D (·, yj) ∈ H2(R3\D) ∩H1
0

(
R

3\D) .
Then the decomposition (3.12) can be rephrased asD (Q∗) = H2(R3\D)∩H1

0

(
R3\D)

⊕Nz, with z ∈ C\R+.

3.2.2. Extensions of Q and point interaction operators in the exterior
domain. Next we focus on point perturbations of the Dirichlet Laplacian in R3\D
describing physical interactions localized in the points yj ∈ Y . To this aim we con-
sider the extensions of the symmetric operator Q. These are parametrized through
boundary conditions, occurring in the interaction points and generalizing those given
in (2.13). Let us introduce the maps Γi=1,2 : D (Q∗) → CN ,

(3.28) (Γ1u)j = lim
x→yj

4π |x− yj|u(x) ; (Γ2u)j = lim
x→yj

(
u(x)− (Γ1u)j

4π |x− yj|
)
,

and

(3.29) γ−1(z) = Γ1|Nz
, q(z) = Γ2 ◦ γ(z) ,

where Γ1|Nz
is the restriction of Γ1 to the defect space Nz. According to the results

in [8], the functions z → γ(z) and z → q(z) exist as holomorphic bounded oper-
ators valued maps: C\R → L (CN , L2

(
R3 \D)) and C\R → L (CN ,CN

)
, respec-

tively. Moreover, they allow analytic continuations to the resolvent set res (Q0) of
the Dirichlet Laplacian in the exterior domain (3.18). In this framework, the Dirichlet
LaplacianQ0, introduced in (3.18), plays the role of a “reference extension” ofQ; since
u ∈ D (Q0) is continuous in R3\D (being D (Q0) ⊂ H2

(
R3\D)), Q0 can be equiv-

alently defined as the restriction of Q∗ to the functions in H2
(
R3\D ∪ Y ) fulfilling

the boundary condition: Γ1u = 0. Let us consider the couples (A,B) ∈ L (CN ,CN
)

such that

AB∗ = BA∗ ,(3.30)

the N ×N matrix (AB) has maximal rank.(3.31)

The next theorem characterizes all the self-adjoint extensions of Q and provides us
with a Krein-like resolvent formula.

Theorem 3.4. Given any self-adjoint extension Q̃ of the operator Q, there exists
a couple (A,B) ∈ L (CN ,CN

)
, fulfilling the conditions (3.30)–(3.31), such that

(3.32) D
(
Q̃
)
= {u ∈ D (Q∗) | AΓ1u = BΓ2u} .
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1008 GUANGHUI HU, ANDREA MANTILE, AND MOURAD SINI

For all z ∈ res
(
Q̃
) ∩ res (Q0), the resolvent

(
Q̃ − z

)−1
satisfies the relation

(3.33)
(
Q̃− z

)−1

− (Q0 − z)
−1

= −γ(z)
[
(Bq(z)−A)

−1
B
]
γ∗(z̄) .

In particular, σess
(
Q̃
)
coincides with [0,+∞), while z ∈ C\R+ belongs to σ

(
Q̃
)
iff

0 ∈ σ (Bq(z)−A).
Sketch of the proof. The representation (3.32) and the formula (3.33) follow

from Propositions 4 and 5 and Theorem 1 in [26], once it is observed that the triple{
CN ,Γ1,Γ2

}
defined by the maps (3.28) forms a boundary triple for the adjoint op-

erator Q∗ (see the definition in [26]). Since σ (Q0) = [0,+∞) and the left-hand side
(l.h.s.) of (3.33) is of finite rank, the spectral properties of Q̃ follow by using this gen-
eralized Krein formula and Weyl’s essential spectrum theorem (see Theorem XIII.14
in [28]).

Explicit expressions for the operators γ(·, z) and q(z) appearing on the right-hand
side (r.h.s.) of (3.33) are obtained by fixing a particular basis of the defect spaces. As
has been shown in Lemma 3.2, a possible representation of Nz is given in terms of the
Green’s functions of the operator (Q0 − z). Let {ej}Nj=1 denote the standard basis in

C
N , and consider the action of the linear map γ(z) on ej . Setting z = ζ2, ζ ∈ C

+, a

direct computation gives γ(ζ2) (ej) = Φζ
D (·, yj), and

(3.34)
(
q(ζ2)

)
n,j

=

⎧⎨
⎩

Φζ
D (yn, yj) , n = j ,

Φsc
D (yj , yj , ζ) +

iζ
4π , n = j .

As already noticed in section 3.1, the notion of point scatterers, given according to
Foldy’s definition, basically describes systems of independent scatterers, in the sense
that the strength of the scattered wave from the jth scatterer depends only on the
value of the external field in yj. In the mathematical modeling, the independence
of point interactions corresponds to assuming separated boundary conditions at each
point yj (cf. [1, Appendix G]). Using the parametrization (3.32), this is equivalent to
taking

(3.35) Bn,j = δn,j , An,j = αnδn,j , (α1 , . . . , αN ) ∈ R
N ,

where the diagonal coefficients αj are related to the inverse of the scattering length
of the jth point interaction.

3.2.3. Direct acoustic scattering by extended and point scatterers. We
consider the scattering problem for a self-adjoint extension ofQ modeling independent
point interactions. Let α ∈ RN and consider the operator Qα obtained from (3.32) by

fixing A and B as in (3.35). Denoting with Φζ
α,D the Green’s kernel of

(
Qα − ζ2

)−1
,

the resolvent formula (3.33) can be explicitly formulated as

(3.36) Φζ
α,D(x, y) = Φζ

D(x, y)−
N∑

n,j=1

(q(ζ2)− diag (α))−1
n,jΦ

ζ
D(x, yn)Φ

ζ
D(y, yj) ,

where (diag (α))n,j = αnδn,j. According to the result of Lemma 3.1, Φζ
α,D is holo-

morphic with respect to (w.r.t.) ζ in C+ and continuously extends to C+, provided
that the limits of (q(ζ2)− diag (α))−1 exist as ζ2 → κ2 ∈ R∗

+. Formula (3.36) models
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SCATTERING BY EXTENDED AND POINT-LIKE OBSTACLES 1009

the total field corresponding to point sources Φκ(·, y) as incident waves. To derive the
total field corresponding to incident plane waves, we need only take the source point
y tending to infinity in the following way. The far-field pattern of the point source
Φκ(x, y), with respect to the second argument, is given by e−iκŷ·x, ŷ := y

|y| . Precisely,
we have

(3.37) lim
|y|→∞

4π|y| exp(−iκ|y|)Φκ(x, y) = eiκx·d =: uin(x, κ, d), d := −ŷ .

Correspondingly, from (3.36) we obtain the relation

(3.38) u(x, d) = uD(x, d)−
N∑

i,j=1

(M (κ, α))−1
i,j Φκ

D(x, yi)uD(yj , d) ,

where the matrix-valued function M (κ, α) is defined on R+×R
N according to

(3.39) lim
z→κ2+i0

(q(z)− diag (α)) = M (κ, α) .

In this setting, uD(·, d) is the total field for the scattering of the incident plan wave
eiκx·d by the obstacleD, while the function u(·, d) denotes the total field corresponding
to the incident plan wave eiκx·d scattered by D ∪ Y . The far-field patterns are

u∞D (x̂, d) = lim
|x|→∞

4π|x|e−iκ|x| (uD(x, d) − eiκx·d
)
,

u∞(x̂, d) = lim
|x|→∞

4π|x|e−iκ|x| (u(x, d)− eiκx·d
)
.

Using (3.15) and (3.38), the second identity rephrases as

u∞(x̂, d) = u∞D (x̂, d)

− lim
|x|→∞

4π|x|e−iκ|x|

⎛
⎝ N∑

i,j=1

(M (κ, α))−1
i,j (Φκ (x, yi) + Φsc

D (x, yi, κ)) uD(yj , d)

⎞
⎠ .

(3.40)

Let uD = uscD + uin and Φ∞
D (x̂, y, κ) = lim|x|→∞ 4π|x|e−iκ|x|Φsc

D (x, y, κ); using (3.37)
we have

u∞(x̂, d) = u∞D (x̂, d)

−
⎛
⎝ N∑

i,j=1

(M (κ, α))−1
i,j

(
e−iκyi·x̂ +Φ∞

D (x̂, yi, κ)
) (
eiκyj·d + uscD (yj , d)

)⎞⎠ .(3.41)

The total field uD satisfies the scattering problem

(3.42)

⎧⎨
⎩

(
Δ+ κ2

)
uD = 0 in R3\D,

uD = 0 on ∂D,
uD := uin + uscD , (∂r − iκ)uscD (x, d) = o(1/r) for r = |x| → ∞ .

It is well known that (3.42) admits a unique solution which is C∞ (
R

3 \D) w.r.t. x
(e.g., in [7]). In the next proposition, we show that u is the solution of the scattering
problem

(3.43)

⎧⎨
⎩

(
Δ+ κ2

)
u = 0 in R3\D ∪ Y ,

u|∂D = 0 , Γ2u = diag (α) Γ1u ,
u := uin + usc, (∂r − iκ)usc(x, d) = o(1/r) for r = |x| → ∞ .
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1010 GUANGHUI HU, ANDREA MANTILE, AND MOURAD SINI

Proposition 3.5. Let Sα denote the subset

(3.44) Sα = {κ ∈ R | detM (κ, α) = 0} ,
and let uD(·, d) be the solution of problem (3.42). Then, for κ ∈ R\Sα, problem (3.43)
has one and only one solution, and it is given by (3.38).

Proof. Since the direction of the incident wave does not play a role in this proof,
the dependence of the scattering functions from d is omitted. From Rellich’s lemma
and the weak unique continuation property, it follows that the solution of (3.43) is
unique. Regarding the existence issue, we next show that the function (3.38) solves
problem (3.43). The terms uD (yj , d), Φ

κ
D (·, yi) on the r.h.s. of (3.38) are well-defined

smooth functions of x. Then, for any κ ∈ R\Sα, the r.h.s. of (3.38) exists. According
to the definition of uD and Φκ

D (·, yj), the function on the r.h.s. of (3.38) solves the
equation

(−Δ− κ2
)
u = 0 in R3\ (D ∪ Y ), fulfilling the Dirichlet condition on ∂D.

Moreover, the scattered field

(3.45) usc(x, d) = uscD (x, d)−
N∑

i,j=1

(M−1 (k, α)
)
ij
uD (yj , d) Φ

κ
D (·, yi)

satisfies the Sommerfeld radiation condition since both uscD (x, d) and Φκ
D(x, yi) do.

Let us now show that Γ2u = diag (α) Γ1u. To this aim, we notice that the regularity
of the unperturbed total field implies uD (yj) = (Γ2uD)j . Thus, we can also write
(3.38) as

(3.46) u(·, d) = uD (·, d)−
N∑

i,j=1

(M−1 (κ, α)
)
i,j

(Γ2uD (·, d))j Φκ
D (·, yi) .

Set u(·, d) = φ− ψ with

φ = uD (·, d) ,(3.47)

ψ =
N∑

i,j=1

(M−1 (κ, α)
)
i,j

(Γ2uD (·, d))j Φκ
D (·, yi) .(3.48)

The function ψ can be pointwisely approximated by elements of the defect spaces Nz

as z → κ2 + i0. Let ψz be given by

(3.49) ψz =
N∑

i,j=1

(
(q(z)− diag (α))−1

)
i,j

(Γ2φ)j Φζ
D (·, yi) .

For ζ ∈ C+, z = ζ2, this function is well defined and belongs to Nz , while it results in

(3.50) lim
z→κ2+i0

ψz = ψ ,

provided that M−1 (κ, α) exists. Since uD is C1
x-continuous in R, we have Γ1φ = 0

and the following relation holds:

M (κ, α) Γ1 (φ− ψ) = −M (κ, α) Γ1ψ = − lim
z→κ2+i0

(q(z)− diag (α)) Γ1ψz

= − lim
z→κ2+i0

(Γ2γ(·, z)− diag (α)) Γ1ψz = − lim
z→κ2+i0

(Γ2 − diag (α) ◦ Γ1)ψz

= (−Γ2 + diag (α) ◦ Γ1)ψ .(3.51)
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SCATTERING BY EXTENDED AND POINT-LIKE OBSTACLES 1011

The nth component of the vector on the l.h.s. of (3.51) writes as

(M (κ, α) Γ1 (φ− ψ))n = (−M (κ, α) Γ1ψ)n

= −
N∑

i,j=1

(M−1 (κ, α)
)
ij
(Γ2uD (·, d))j (M (κ, α) Γ1Φ

κ
D (·, yi))n .

Recalling that Γ1Φ
κ
D (·, xi) = ei, we get

(M (κ, α) Γ1 (φ− ψ))n = −
N∑

i,j=1

(M (κ, α))ni
(M−1 (κ, α)

)
ij
(Γ2φ)j = − (Γ2φ)n ,

which implies

(3.52) M (κ, α) Γ1 (φ− ψ) = −Γ2φ .

From (3.51), (3.52), and (3.46), the interface condition Γ2u = diag (α) ◦ Γ1u fol-
lows.

Remark 3.6. The explicit form of M (κ, α), obtained by using (3.34) and the
definition (3.39), is given by

(3.53) (M (κ, α))n,j =

⎧⎨
⎩

Φκ
D (yn, yj) , n = j ,

Φsc
D (yj , yj, κ) +

iκ
4π − αj , n = j .

Let us consider the expression of the total field obtained in (3.10) with Foldy’s ap-
proach. With the above notation, this can be written as

(3.54) u(x, d) = uD(x, d) +

N∑
i,j=1

(
[Γ̃−1] diag (g)

)
i,j

Φκ
D(x, yi)uD(yj , d) ,

where the vector g = (g1, . . . , gn) fixes Foldy’s scattering coefficients. Comparing this
formula with (3.38), we deduce a condition for the equivalence of the two models:

(3.55) diag

(
1

g

)
Γ̃ = M (κ, α) .

Then, using (3.9) and (3.53), it follows that

(3.56) gj =

(
Φsc

D (yj , yj, κ) +
iκ

4π
− αj

)−1

, j = 1, . . . , N.

Under this condition, the representation of the total field, due to the obstacles D ∪Y
using the Foldy approach with scattering coefficients gj , is nothing but the one ob-
tained using a multiple-point interaction model with independent points and choosing
frequency-dependent parameters αj according to (3.56).

In order to use formula (3.38) it is important to characterize the set Sα where
this representation fails. We next show that the inverse matrix M−1 (κ, α) is defined
on R outside a discrete set.

Lemma 3.7. The r.h.s. of (3.38) is well defined a.e. w.r.t. κ ∈ R, with the only
possible exception being a discrete set of points.
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1012 GUANGHUI HU, ANDREA MANTILE, AND MOURAD SINI

Proof. Let us introduce the matrix-valued function Q(ζ):

(3.57) (Q(ζ))n,j =

⎧⎨
⎩

Φζ
D (yn, yj) , n = j ,

Φsc
D (yj , yj , ζ) +

iζ
4π , n = j .

Taking into account the definition of Φζ
D (equation (3.15)) and the properties of its

regular part Φsc
D (·, y, ζ) (see the proof of Lemma 3.1), it follows that Q(ζ) is analytic

in C+ and meromorphic in C, while, according to the definition (3.34), the identity

(3.58) q(ζ2) = Q(ζ) ,

holds for ζ ∈ C+. Thus, the map

Fα (ζ) = det (Q (ζ)− diag (α))
−1

is analytic in C+ and meromorphic in the whole complex plane. Moreover, from the
definition (3.39) and the identity (3.58), we get

(3.59) M (κ, α) = lim
ζ→κ,
Im ζ>0

(Q (ζ)− diag (α)) .

Therefore, Sα (see the definition (3.44)) identifies with the discrete set of the possible
poles of the meromorphic function Fα (ζ) on the real axis.

Remark 3.8. The previous lemma says that for a fixed configuration of the
extended as well as the point-like scatterers, the set of the singular points of the
matrix M (κ, α) is at most discrete. In this remark, we provide a condition linking all
the parameters of the scattering model, namely, the configuration of the scatterers,
the frequency κ, as well as the coefficients α, under which the matrix M (κ, α) is
diagonally dominant and hence invertible. This condition is

(3.60) C
N − 1

d
max

j=1,...,N

∣∣∣∣Φsc
D (yj , yj, κ) +

iκ

4π
− αj

∣∣∣∣
−1

< 1 ,

where d := minj �=m |yj − ym| and C is the constant (depending on D) appearing in
the known estimates |ΦD(x, y)| ≤ C|x − y|−1, x, y ∈ R3 \D. Let us finally mention
the following behavior of the function Φsc

D (yj , yj) in terms of yj in the two regimes:
1. yj ’s are far away from the extended scatterer D. In this case we have

|Φsc
D (yj , yj , κ)| ≤ Cd−1(yj , D), where the constant C depends on D. Here

d(yj , D) is the Euclidean distance between yj and D. In this case, the condi-
tion (3.60) behaves like CN−1

d maxj=1,...,N | iκ4π−αj |−1 < 1, which reflects only
the multiple scattering between the point-like scatterers; i.e., the interaction
between the point-like scatterers and the extended one is neglected.

2. yj ’s are close to the extended scattererD. In this case we have Φsc
D (yj , yj, κ) =

1
4π d(yj,D)+O(ln(d(yj , D))), where the constant appearing in the second term

of the expansion depends on D; see, for instance, Proposition 3.2 of [25]. In
this case, the condition (3.60) is mostly satisfied. Here, the effect of the
interaction between each point-like scatterer and the extended one dominates
the effect of the interaction between the point-like scatterers.
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SCATTERING BY EXTENDED AND POINT-LIKE OBSTACLES 1013

4. The inverse scattering by extended and point-like scatterers. In this
section we turn to studying the inverse problem of detecting the shape of the extended
sound-soft obstacle and positions of the point-like scatterers from the far-field data
corresponding to all incident plane waves at a fixed frequency. Our goal is to establish
the factorization method by Kirsch for the two-scale model under consideration.

Let uin be a time-harmonic incident wave. The classical scattering theory in the
absence of the point-like scatterers is devoted to finding the scattered field uscD ∈
H1

loc(R
3\D) satisfying

(I)

⎧⎨
⎩

(Δ + κ2)uscD = 0 in R
3\D,

uscD = −uin on ∂D,
∂uscD/∂r − iκuscD = o(1/r) as r → ∞, r = |x|.

If the obstacle consists of both extended and point-like scatterers, we have seen in
the previous sections that the corresponding model is to look for the scattered field
usc ∈ H1

loc(R
3\D) such that

(II)

⎧⎪⎪⎨
⎪⎪⎩

(Δ + κ2)usc = 0 in R3\{D ∪ Y },
usc = −uin on ∂D,
(Γ2u)j = αj(Γ1u)j , αj ∈ C, j = 1, 2, . . . , N,
∂usc/∂r − iκusc = o(1/r) as r → ∞, r = |x|,

where u = usc + uin denotes the total field and the operators Γ1,Γ2 are defined as in
(3.28).

We review several symbols employed in sections 2 and 3. If uin is a plane
wave with the incident angle d ∈ S2 = {x : |x| = 1}, i.e., uin(x) = exp(iκx ·
d), we denote by uscD (x, d), uD(x, d), u∞D (x̂, d), respectively, usc(x, d), u(x, d), u∞(x̂, d),
the scattered field, total field, and far-field pattern to problem (I), respectively,
(II). Analogously, if the incident wave is a point source, i.e., uin = Φκ(x, y) for
some y ∈ R3 \D, we employ the symbols Φsc

D (x, y),Φκ
D(x, y),Φ∞

D (x̂, y), respectively,
Φsc

α,D(x, y),Φκ
α,D(x, y),Φ∞

α,D(x̂, y) to denote the corresponding quantities.

The well-posedness of (II) is described in the following lemma, where uin is allowed
to be either a plane wave or a point source wave.

Lemma 4.1. Let uD = uin+uscD , where uscD is the unique solution to problem (I).
Then the unique solution to problem (II) is given by

(4.1) usc(x) = uscD (x) −
N∑

m,j=1

{
[M−1(κ, α)]m,j [(Γ2uD)j − αj(Γ1uD)j ] Φ

κ
D(x, ym)

}
,

where the matrix M(κ, α) is defined as in (3.53). In particular, if Γ1uD = 0, then
the expression (4.1) reduces to

(4.2) usc(x) = uscD (x) −
N∑

m,j=1

{
[M−1(κ, α)]m,j (Γ2uD)j Φ

κ
D(x, ym)

}
.

The proof of (4.1) can be carried out analogously to the proof of (3.46) in section
3.2.3, where (4.2) is justified under the assumption Γ1uD = 0. Note that Γ1uD = 0 if
uin is continuous at yj , e.g., u

in is a plane wave. However, Γ1uD = 0 if uin = Φκ
D(x, yj)

for some yj ∈ Y . By the definition of the far-field pattern, we get from (4.2) the far
field of usc for incident plane waves.
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1014 GUANGHUI HU, ANDREA MANTILE, AND MOURAD SINI

Corollary 4.2. If uin(x) = exp(iκx·d), then the far-field pattern of the scattered
field corresponding to (II) can be formulated as

u∞(x̂, d) = u∞D (x̂, d)

−
N∑

m,j=1

{
[M−1(κ, α)]m,j (e

iκyj ·d + uscD (yj , d)) (e
−iκx̂·ym +Φ∞

D (x̂, ym))
}
.(4.3)

We are interested in the following inverse problem.
(IP): Recover ∂D and yj (j = 1, 2, . . . , N) from the far-field data u∞(x̂, d) over all

observation points x̂ ∈ S2 corresponding to all incident directions d ∈ S2.
The following lemma generalizes the reciprocity relation for an extended obstacle

to the two-scale model.
Lemma 4.3. It holds that
(i) u∞(x̂, d) = u∞(−d,−x̂) for all x̂, d ∈ S2;
(ii) usc(y,−d) = Φ∞

α,D(d, y) for all d ∈ S2, y /∈ D ∪ Y .
Proof. We have

u∞(−d,−x̂) = u∞D (−d,−x̂)

−
N∑

m,j=1

{
[M−1(κ, α)]m,j (e

−iκyj ·x̂ + uscD (yj ,−x̂)) (eiκd·ym +Φ∞
D (−d, ym))

}
.

Comparing this identity with (4.3) and making use of the reciprocity relations for the
extended obstacle D,

(4.4) u∞D (x̂, d) = u∞D (−d,−x̂), uscD (x, d) = Φ∞
D (−d, x), Φ∞

D (x, y) = Φ∞
D (y, x),

for all x = y, x, y ∈ R3\D, we finish the proof of the first assertion. The second
assertion follows from the equations

usc(y,−d) = uscD (y,−d)−
N∑

m,j=1

{
[M−1(κ, α)]m,j (e

−iκyj ·d + uscD (yj ,−d))Φκ
D(y, ym)

}
,

Φ∞
α,D(d, y) = Φ∞

D (d, y)−
N∑

m,j=1

{
[M−1(κ, α)]m,j Φ

κ
D(yj , y)(e

−iκym·d +Φ∞
D (d, ym))

}

and the last two identities in (4.4).

4.1. Data-to-pattern operator. Given f ∈ H1/2(∂D) and c = (c1, c2, . . . , cN )
∈ CN , we consider the problem of finding v ∈ H1

loc(R
3\(D ∪ Y )) such that

(III)

⎧⎪⎪⎨
⎪⎪⎩

(Δ + κ2)v = 0 in R
3\{D ∪ Y },

v = f on ∂D,
(Γ2v)j − αj(Γ1v)j = cj , j = 1, 2, . . . , N,
∂v/∂r − iκv = o(1/r) as r → ∞, r = |x|.

By Lemma 4.1, problem (III) is uniquely solvable with the solution taking the
form

v(x) = uscf (x)−
N∑

m,j=1

{
[M−1(κ, α)]m,j [(Γ2u

sc
f )j − cj ] Φ

κ
D(x, ym)

}
,
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SCATTERING BY EXTENDED AND POINT-LIKE OBSTACLES 1015

where uscf denotes the unique solution to (I) with the Dirichlet data uscf = f on ∂D.

The far-field data v∞ of v defines the data-to-pattern operator G̃ : H1/2(∂D)×C
N →

L2(S2) as

G̃(f, c) := v∞(x̂)(4.5)

= u∞f (x̂)−
N∑

m,j=1

{
[M−1(κ, α)]m,j [(Γ2u

sc
f )j − cj ] (e

−iκx̂·ym +Φ∞
D (x̂, ym))

}
,

with u∞f being the far-field pattern of uscf .

Remark 4.4. If f = −uin|∂D, cj = −(Γ2u
in)j +αj(Γ1u

in)j , then v coincides with
usc given in (4.1).

The set D ∪ Y of extended and point-like obstacles can be characterized by the
ranges of G̃. Recall that the far-field pattern of the free-space fundamental solution
is given by φy(x̂) := e−iκx̂·y.

Lemma 4.5. The function φy belongs to the range R(G̃) of G̃ iff y ∈ D ∪ Y .
Proof. Assume first that y ∈ D ∪ Y . Set f = Φκ(x, y)|∂D and c = {cj} ∈ CN

with

cj := (Γ2Φ
κ(x, y))j − αj(Γ1Φ

κ(x, y))j(4.6)

=

⎧⎨
⎩

Φκ(yj , y) if y ∈ D,
Φκ(yj , ym) if y = ym ∈ Y,m = j,
iκ/(4π)− αj if y = yj ∈ Y.

Then we see the unique solution to problem (III) is v = Φκ(x, y) and hence G̃(f, c) =
v∞ = φy .

Now suppose that φy = G̃(f̃ , c̃) for some f̃ ∈ H1/2(∂D) and c̃ ∈ CN . Let ṽ be

the solution to (III) with f = f̃ and c = c̃ so that ṽ∞ = φy. Applying Rellich’s
identity and the unique continuation of solutions to the Helmholtz equation, we get
ṽ(x) = Φκ(x, y) for all x /∈ D ∪ Y . If y ∈ ∂D or y ∈ R3\(D ∪ Y ), one can readily
derive a contraction from the boundedness of the limit ṽ(x) → ṽ(y) as x→ y and the
singularity of Φκ(x, y) at x = y. This implies y ∈ D ∪ Y .

However, the above characterization cannot be numerically implemented, since
knowledge of the data-to-pattern operator is not available from our measurement
data. The essence of the factorization method is to connect the ranges of G̃ with the
far-field operator F̃ : L2(S2) → L2(S2) defined as

(F̃ g)(x̂) =

∫
S2

u∞(x̂, d) g(d) ds(d), g ∈ L2(S2).(4.7)

To do this we shall factorize F̃ in terms of G̃ in the subsequent section. It is obvi-
ous that the spectrum of F̃ can be straightforwardly extracted from u∞(x̂, d) for all
x̂, d ∈ S2. Below we show some properties of G̃ which will be used in section 4.4 for
establishing the relation between R(G̃) and R(F̃ ).

Lemma 4.6. Assume that κ2 is not a Dirichlet eigenvalue of −Δ in D. Then the
data-to-pattern operator G̃ is one-to-one, compact with dense range in L2(S2).

Proof. Define G : H1/2(∂D) → L2(S2) as the data-to-pattern operator in the
absence of the point-like scatterers. It is seen from (4.5) that the compactness of
G̃ follows from the compactness of G, shown in [19, Lemma 1.13], since Γ2u

sc
f is

smoothing. The injectivity and denseness can be proved in the same way as in [19,
Lemma 1.13] for G.
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4.2. Factorization of the far-field operator. Introduce the Herglotz wave
function

(Hg)(x) :=

∫
S2

eiκx·dg(d) ds(d), g ∈ L2(S2).

The far-field operator F̃ defined in (4.7) is nothing else but the far-field pattern of
the scattered field to problem (II) with the incident wave uin(x) = (Hg)(x). Define
the bounded operator H̃ : L2(S2) → H1/2(∂D)× CN as

H̃g :=
(
Hg|∂D, (c1, . . . , cN )

)
, cj := (Γ2Hg)j − αj(Γ1Hg)j = (Hg)(yj).

Then the factorization

F̃ = −G̃H̃
holds. Introduce the single-layer potentials

S(ϕ)(x) :=

∫
∂D

Φκ(x, y)ϕ(y)ds(y), x ∈ R
3,

J(ϕ)(x) :=

∫
∂D

Φκ(x, y)ϕ(y)ds(y), x ∈ ∂D,(4.8)

for ϕ ∈ H−1/2(∂D) and the function

(K(b))(x) :=
N∑
j=1

bj Φ
κ(x, yj), x = yj , b = (b1, b2, . . . , bN) ∈ C

N .

Clearly, the sum S(ϕ) + K(b) =: S̃(ϕ,b) is a radiating solution to the Helmholtz
equation in R3\(D∪Y ). Define the operator S : H−1/2(∂D)×CN → H1/2(∂D)×CN

as

(4.9) S(ϕ,b) := (
S̃(ϕ,b))|∂D , {cj}Nj=1

)
, cj := (Γ2S̃(ϕ,b))j − αj(Γ1S̃(ϕ,b))j .

Then the unique solution to problem (III) with (f, c) = S(ϕ,b) is given by

v(x) = S̃(ϕ,b)(x), x ∈ R
3\(D ∪ Y ).

This implies that, for any (ϕ,b) ∈ H−1/2(∂D)× CN ,

G̃S(ϕ,b) = v∞(x̂) =

∫
∂D

e−iκx̂·yϕ(y)ds(y) +
N∑
j=1

e−iκx̂·yjbj = H̃∗(ϕ,b),

where the last equality is derived from the definition of H̃ . Hence, we get H̃ = S∗G̃∗

and

F̃ = −G̃S∗ G̃∗.(4.10)

Remark 4.7. In the absence of the point-like scatterers, i.e., Y = ∅, there holds
H̃ = H , G̃ = G, and S = J ; see [19]. If there is no extended obstacle, i.e., D = ∅,
then the factorization (4.10) can be reduced to the case of the MUSIC algorithm as
considered in [6] or [19, Chapter 4].
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4.3. Properties of the middle operator. Define the entries of the matrix
Θ(κ, α) = [Θ]m,j in the following way:

Θm,j = Θm,j(κ, α) :=

{
Φκ(ym, yj) if m = j,
iκ/4π − αj if m = j.

(4.11)

Note that Θ(κ, α) differs from M(κ, α) only in the diagonal terms. Let Bε(yj) := {x :
|x − yj | = ε} for some ε > 0. Assume that f(x) is a continuous function at x = yj .
Using the mean value theorem, one can easily prove that

lim
ε→0

∫
Bε(yj)

∂νΦ
κ(x, ym)f(x)ds(x) =

{ −f(yj) if m = j,
0 if m = j,

(4.12)

where the normal ν on Bε(yj) is directed into the region |x− yj | > ε, and

Aj,m,l(ε) :=

∫
Bε(yj)

Φ
κ
(x, yl)∂νΦ

κ(x, ym)ds(x)(4.13)

=

⎧⎨
⎩

o(ε) if m = j,

−Φ
κ
(yj , yl) + o(ε) if m = j = l,

(iκ− 1/ε)/(4π) if m = j = l,

where o(ε) → 0 as ε→ 0.
The properties of the middle operator S are shown below.
Lemma 4.8. Assume that κ2 is not a Dirichlet eigenvalue of −Δ in D and that

the matrix Θ is invertible. Then the following hold:
(i) The operator S : H−1/2(∂D)× CN → H1/2(∂D)× CN is an isomorphism.
(ii) We have

Im 〈(ϕ,b),S(ϕ,b)〉 < 0

for all (ϕ,b) ∈ H−1/2(∂D)× C
N , ϕ = 0, |b| = 0, provided Imαj ≤ 0 for all

j = 1, 2, . . . , N .
(iii) There exists a self-adjoint and coercive operator S0 : H−1/2(∂D) × CN →

H1/2(∂D) × CN such that S − S0 : H−1/2(∂D) × CN → H1/2(∂D) × CN is
compact.

Proof. (i) From (4.6) and the definitions of Γm(m = 1, 2), K(b), and Θ, we see

(Γ2S(ϕ))j − αj(Γ1S(ϕ))j = (Γ2S(ϕ))j , {(Γ2K(b))j − αj(Γ1K(b))j}j=N
j=1 = Θb.

This enables us to rewrite the operator S in (4.9) as the matrix form

S(ϕ,b) =
(
J K

Γ2S Θ

)(
ϕ
b

)
.(4.14)

If κ2 is not a Dirichlet eigenvalue of −Δ in D, the single-layer operator J is an
isomorphism from H−1/2(∂D) to H1/2(∂D). Since Θ : CN → CN is invertible and
K : CN → H1/2(∂D), Γ2S : H−1/2(∂D) → C

N are compact operators, it can be
concluded that S is a Fredholm operator with index zero. Consequently, S is an
isomorphism, provided it is injective.

Suppose that S(ϕ,b) = 0 and that S̃(ϕ,b) is the unique solution to problem
(III) with (f, c) = S(ϕ,b). The uniqueness of solutions to (III) gives S̃(ϕ,b) = 0 in
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R3\(D ∪ Y ). Again using the fact that κ2 is not a Dirichlet eigenvalue of −Δ in D,
we see that S̃(ϕ,b) = 0 in D. Then ϕ = 0 follows from the jump relations of S̃(ϕ,b)
over ∂D. Inserting ϕ = 0 into (4.14) and using S(ϕ,b) = 0, we arrive at Θb = 0.
Finally we get |b| = 0 as a consequence of the invertibility of Θ. This together with
the Fredholm alternative yields the unique solvability of S(ϕ,b) = (φ, c) for any
(φ, c) ∈ H1/2(∂D)× CN .

(ii) From (4.14) and (4.9),

(4.15) Im 〈(ϕ,b),S(ϕ,b)〉 = Im 〈ϕ, S̃(ϕ,b)|∂D〉+ Im 〈b, (Γ2S)ϕ+ Θb〉.
The first term on the r.h.s. (4.15) will be calculated as follows. Set w(x) = S̃(ϕ,b)(x),
x ∈ R3\(D ∪ Y ). Choose R > 0 sufficiently large and ε > 0 sufficiently small. Using
the jump relations of w over ∂D and integration by parts, we get

〈ϕ, S̃ (ϕ,b) |∂D〉 =
∫
∂D

(
∂w−

∂ν
− ∂w+

∂ν

)
w ds

=

∫
D∪DR,ε

|∇w|2 − κ2|w|2dx−
∫
BR(O)

w
∂w

∂ν
ds+

N∑
j=1

∫
Bε(yj)

w
∂w

∂ν
ds,(4.16)

where DR,ε := {x : x ∈ R
3\D, |x| < R, |x − yj | > ε, j = 1, 2, . . . , N}. In view that

w(x) = S(ϕ) +K(b), using (4.12) we find that
∫
Bε(yj)

w
∂w

∂ν
ds =

∫
Bε(yj)

{
Sϕ

∂K(b)

∂ν
+K(b)

∂K(b)

∂ν

}
ds+ o(ε) as ε→ 0,

since S(ϕ) is continuous at each yj. From (4.12) and the definition of K(b), it follows
that

∫
Bε(yj)

Sϕ
∂K(b)

∂ν
ds =

N∑
m=1

bm

∫
Bε(yj)

Sϕ
∂Φκ(x, ym)

∂ν
ds = −bj Sϕ(yj) + o(ε)

as ε→ 0. By (4.13), it holds that

∫
Bε(yj)

K(b)
∂K(b)

∂ν
ds =

N∑
l,m=1

bl bmAj,m,l(ε) =
|bj |2
4π

(
iκ− 1

ε

)
−

N∑
l=1,l �=j

bl bj Φ(yj , yl).

Hence, summarizing over j and recalling the definitions of Γ2 and Θ,

(4.17)

N∑
j=1

∫
Bε(yj)

w
∂w

∂ν
ds = −〈b,Γ2Sϕ〉 − 〈b,Θb〉 − |b|2/(4πε)−

N∑
j=1

αj |bj|2 + o(ε).

Since w satisfies the Sommerfeld radiation condition, letting R → ∞ we get

(4.18)

∫
BR(O)

w
∂w

∂ν
ds = iκ

∫
|x|=R

|w|2ds+ o(R) =
iκ

(4π)2
||w∞||2L2(S2) + o(1/R),

where w∞ denotes the far-field pattern of w. Inserting (4.17), (4.18) back to (4.16),
taking the imaginary part, and letting R → ∞, ε→ 0, we get
(4.19)

Im 〈ϕ, S̃(ϕ,b)|∂D〉 = −Im 〈b, (Γ2S)ϕ+Θb〉 − κ/(4π)2||w∞||2L2(S2) +

N∑
j=1

|bj |2Imαj .
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Now, it is seen from (4.15) and (4.19) that

Im 〈(ϕ,b),S(ϕ,b)〉 = −κ/(4π)2||w∞||2L2(S2) +

N∑
j=1

|bj |2 Imαj ≤ 0

under the assumption that Imαj ≤ 0 for j = 1, 2, . . . , N .
If Im 〈(ϕ,b),S(ϕ,b)〉 = 0, then we have w∞ = 0, and by Rellich’s lemma, w(x) =

S̃(ϕ,b)(x) = 0 for x ∈ R3\(D ∪ Y ). Arguing the same as in the proof of assertion (i)
we obtain ϕ = 0,b = 0. This implies that Im 〈(ϕ,b),S(ϕ,b)〉 < 0 for all ϕ = 0 and
|b| = 0.

(iii) Denote by J0 the single-layer operator defined as in (4.8) with the κ = i. It
was proved in [19, Lemma 1.14] that J0 is a self-adjoint and coercive operator from
H−1/2(∂D) to H1/2(∂D), i.e.,

〈ϕ, J0ϕ〉 ≥ c0||ϕ||2H−1/2(∂D), ϕ ∈ H−1/2(∂D),

for some positive constant c0. Moreover, J − J0 is compact from H−1/2(∂D) to
H1/2(∂D). To prove (iii), we define the operator S0 : H−1/2(∂D)×C

N → H1/2(∂D)×
CN as

S0(ϕ,b) = (J0ϕ, c0 b), ϕ ∈ H1/2(∂D), b ∈ C
N .

Then S0 is coercive, i.e.,

〈(ϕ,b),S0(ϕ,b)〉 ≥ c0 (||ϕ||2H−1/2(∂D) + |b|2).
With such a choice, the difference

(S − S0)(ϕ,b) =
(
(J − J0)ϕ+K(b)|∂D, Γ2Sϕ+Θb− c0 b

)
is compact, since J − J0,K,Γ2S, and the multiplication operator by Θ or c0 are all
compact.

4.4. Uniqueness and inversion algorithms. The properties of the data-to-
pattern operator G̃ and the operator S (see Lemmas 4.6 and 4.8) put us in a position
where we can directly apply the following range identity (see [19, Theorem 2.5.1]) to
the factorization of the far-field operator established in (4.10). Recall that the real
and imaginary parts of the operator F over a Hilbert space are given by

ReF := (F + F ∗)/2, ImF := (F − F ∗)/(2i).

Obviously, both ReF and ImF are self-adjoint operators.
Lemma 4.9 (range identity). Let X ⊂ Y ⊂ X∗ be a Gelfand triple with Hilbert

space Y and reflexive Banach space X such that the embedding is dense. Furthermore,
let Y be a second Hilbert space, and let F : Y → Y , G : X → Y , and T : X∗ → X
be linear and bounded operators with F = GTG∗. Suppose further that the following
hold:

(a) G is compact and has dense range.
(b) There exists t ∈ [0, 2π] such that Re [exp(it)T ] has the form Re [exp(it)T ] =

T0+T1 with some compact operator T1 and some coercive operator T0 : X
∗ →

X; i.e., there exists c > 0 with

〈ϕ, T0ϕ〉 ≥ c‖ϕ‖2 ∀ ϕ ∈ X∗.(4.20)
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(c) ImT is nonnegative on R(G∗) ⊂ X∗, i.e., 〈ϕ, Im Tϕ〉 ≥ 0 for all ϕ ∈ R(G∗).
(d) Re [exp(it)T ] is one-to-one or ImT is strictly positive on the closure R(G∗)

of R(G∗); i.e., for all ϕ ∈ R(G∗) with ϕ = 0 it holds that 〈ϕ, Im Tϕ〉 > 0.
Then the operator F� := |Re exp(it)F |+ |ImF | is positive definite and the ranges

of G : X → Y and F
1/2
� : Y → Y coincide.

To apply Lemma 4.9, we set

t = π, F = F̃ , G = G̃, T = −S∗, T0 = S0, T1 = Re (S − S0),

Y = L2(S2), X = H−1/2(∂D)× C
N .

In our settings, all the conditions in Lemma 4.9 are satisfied. In fact, conditions (a)
and (b) follow from Lemmas 4.6 and 4.8(iii), respectively. Conditions (c) and (d) are
guaranteed by Lemma 4.8(i) and (ii) under the assumption that Imαj ≤ 0 for all
j = 1, 2, . . . , N . Combining Lemmas 4.5 and 4.9, we conclude the following.

Theorem 4.10. Assume that κ2 is not a Dirichlet eigenvalue of −Δ in D, the
matrix Θ(α) is invertible, and Imαj ≤ 0 for all j = 1, 2, . . . , N . Then

(i) the function φy(x̂) belongs to R(F̃
1/2
� ) iff y ∈ D ∪ Y ;

(ii) the far-field data u(x̂, d) for all x̂, d ∈ S2 uniquely determine the shape of the
extended obstacle and positions of the point-like scatterers.

Note that the uniqueness described in Theorem 4.10(ii) is only a corollary of the
first assertion. By Picard’s theorem (see, e.g., [7, Theorem 4.8]), the set D ∪ Y can
be characterized through the eigensystem of the far-field operator as follows.

Corollary 4.11. Suppose the assumptions in Theorem 4.10 hold. Let (λj , ψj)

be an eigensystem of the (positive) operator F̃� := |Re F̃ | + |Im F̃ |. We have the
following characterization of D ∪ Y :

(4.21) y ∈ D ∪ Y ⇐⇒ W (y) :=

⎡
⎣ ∞∑
j=1

|(φy , ψj)L2(S2)|2
λj

⎤
⎦
−1

> 0,

where φy(x̂) := exp(−iκx̂ · y) for x̂ ∈ S2.
Thus, the function W (y) on the r.h.s. (4.21) can be regarded as an indicator

function for the unknown scatterer D∪Y, where the variable y is the sampling point.
The values of W for y ∈ D∪Y should be much larger than those for y ∈ R3\{D∪Y }.
We complete this section with the following remarks.

Remark 4.12.

(i) Note that the matrix Θ(κ, α) is the same as the matrix M(κ, α) in section 2
(see Remark 3.8) when the extended obstacle is absent. Hence a condition
similar to that in Remark 3.8 is enough to invert Θ(κ, α). Precisely, if

(4.22)
N − 1

d
max

j=1,...,N

∣∣∣∣ iκ4π − αj

∣∣∣∣
−1

< 1 ,

then Θ(κ, α) is diagonally dominant and hence invertible. Note that we took
the constant C appearing in Remark 3.8 to be C = (4π)−1 and h = 0 since
D = ∅, and hence |ΦD(x, y)| = |Φκ(x, y)| = (4π)−1|x − y|−1. Actually, in
the case of absence of extended obstacles, we have a weaker condition than
(4.22) to ensure the invertibility of Θ(κ, α). Namely, there exists a positive
constant a0 such that if

(4.23)
maxj=1,...,N | iκ4π − αj |−1

d
< a0 and min

j �=m
cos(κ|yj − ym|) ≥ 0,
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then Θ(κ, α) is invertible. Note that this last condition is independent of
the number of obstacles N . Such a condition is derived in the framework of
scattering by many small obstacles in [6], where the coefficients | iκ4π − αj |−1

are replaced by the diameters of the small obstacles.
(ii) The condition Im αj = 0 is needed to have the self-adjointness of the scatter-

ing operators in section 2. Indeed, we know that (Qα)
∗ = Qα, and hence we

need α∗ = α, which implies that Im αj = 0 if we take α := diag(α1, . . . , αN ).
(iii) Our arguments apply to the case where the extended scatterer D is of sound-

hard or impedance type, or is a penetrable medium. For the forward problem,
the waves uscD , uD, and Φκ

D in (4.1) should be redefined according to the un-
derlying extended scattererD. Concerning the inverse problem, our approach
in section 4 extends to these cases with an additional complexity from how to
factorize the far-field operator with an appropriate middle operator and then
to justify the conditions in Lemma 4.9. We believe that this can be achieved
taking into account the various versions of the factorization method in [19]
for extended penetrable or impenetrable scatterers only.

5. Numerical results and discussions. This section is devoted to reporting
numerical examples for testing the accuracy and validity of the factorization method
in R

2. We first list the necessary changes for carrying over the mathematical analysis
of the direct and inverse scattering from three to two dimensions. The free space
fundamental solution to the Helmholtz equation (Δ + κ2)u = 0 in two dimensions is
given by

Φκ(x, y) =
i

4
H

(1)
0 (κ|x− y|), x = y,

where H
(1)
0 (t) denotes the Hankel function of the first kind and of order zero. In R2,

the Sommerfeld radiation condition has to be replaced by

lim
r→∞

√
r(∂ru− iκu) = 0, r = |x|,

uniformly for all directions x/|x|. With some normalization we defined the far-field
pattern as

u(x) = γ
eiκ|x|√|x|

{
u∞ (x̂) +O

(
1

|x|
)}

, γ =
eiπ/4√
8πκ

.

The operators Γj (j = 1, 2) introduced in (3.28) have to be replaced by
(5.1)

(Γ1u)j = lim
x→xj

− 2π

ln |x− xj |u(x) , (Γ2u)j = lim
x→xj

(
u(x) +

1

2π
ln |x− xj | (Γ1u)j

)
.

Then, using the expansion of Φκ(x, yj) (see, e.g., [7, Chapter 3.4]), we see

(Γ1Φ
κ(x, yj))j = 1, (Γ2Φ

κ(x, yj))j =
i

4
− 1

2π
ln
κ

2
− C

2π
=: η ,

where C denotes Euler’s constant. Consequently, we define the matrix

[M(κ, α)]m,j =

{
Φκ

D(ym, yj) if m = j,
Φsc

D (yj , yj) + η − αj if m = j,
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Reconstruction of a kite and N point-like obstacles lying on a line segment. In (a) and
(b), N = 4; in (c) and (d), N = 6; and in (e) and (f), N = 8.

in place of the one given in Lemma 4.1. Then the well-posedness of the forward
scattering and the factorization method for the inverse scattering can be established
in the same manner as for three dimensions.

In the following experiments, unless otherwise stated we always set the wave
number κ = 1. The far-field operator F is discretized by 64 incident directions and
64 observation directions equivalently distributed in the unit disk.

Experiment 1. We use the inversion algorithm (4.21) to reconstruct a kite-shaped
obstacle and a finite number N of point-like obstacles equivalently lying on the line
segment {(x1, x2) ∈ R2 : x1 = −6, x2 ∈ [−3, 3]}. The numerical results are shown
in Figure 1. We take αj = 1. The number N is set as N = 4, 6, 8 in Figures 1(a),
1(c), and 1(e), respectively, where the plots of the indicator functions are visualized
from the direction (0, 0, 1). Figures 1(b) and 1(d) show the recovery of the point-
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(a) (b)

(c)

Fig. 2. Reconstruction of a kite and one point-like obstacle located at (a, a). We set a = 8, 4, 1.5
in (a), (b), and (c), respectively.

like obstacles corresponding to Figures 1(a) and 1(c) from the viewpoint (−1, 0, 0),
while Figure 1(f) is the view of (e) from the point (1,−3, 0.5). We conclude from
Figure 1 that the factorization method works well only if the point-like scatterers are
well separated. When the number N increases, neither the positions of the point-
like obstacles nor the shape of the extended obstacle can be precisely retrieved; see
Figures 1(e) and 1(f), where the minimum distance between the pointwise scatterers
is less than the wavelength. In the well-separated case, e.g., Figures 1(a) and 1(b),
the point-like scatterers that are closer to the extended obstacle are less resolved than
those further away from the extend obstacle (see also Figure 1(c)).

Experiment 2. We show the sensitivity of the factorization method to the distance
between the point-like and extended obstacles. The recovery of a fixed kite and one
point-like obstacle with different locations at (8, 8), (4, 4), (1, 5, 1, 5) are illustrated in
Figures 2(a), 2(b), and 2(c), respectively. We set α = αj = 1 in each test. The shape
of the extended obstacle can be identified only if the point-like obstacle keeps some
distance from it (see Figure 2(a)). In Figure 2(c), neither of them is well reconstructed
since they are getting too closed. The location of the point-like obstacle in Figure 2(a)
or 2(b) can be visualized from the XY-plane rather than from the direction (0, 0, 1).

Experiment 3. Figure 3 illustrates the sensitivity of the factorization method to
the values of αj . We fix the kite as in Experiment 2 and also the position of the point-
like obstacle at (2.5, 2.5). We set α = αj = 10, 1, 0.05 in Figures 3(a), 3(c), and 3(e),
respectively. These figures are visualized from the direction (0, 1, 0) in Figures 3(b),
3(d), and 3(f), respectively. If α is big, e.g., in Figures 3(a) and 3(b), the position of
the point-like obstacle cannot be located. If α is too small, e.g., in Figures 3(e) and
3(f), the reconstruction of the extend obstacle becomes distorted and unreliable. It
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Reconstruction of a kite and one point-like obstacle located at (2.5, 2.5). In (a) and
(b), α = 10; in (c) and (d), α = 1; and in (e) and (f), α = 0.05.

can also be observed that the values of the indicator function around the point-like
obstacle grow as the value of α decreases, i.e., the point-like obstacle is more visible
for small α.

Experiment 4. The factorization method can be applied to the case where only
partial far-field data are available, i.e., u∞(x̂, d) for x̂, d ∈ S̃2 ⊂ {x : |x| = 1}. For
details we refer the reader to [19, Chapter 2.3]. In this experiment, we consider the
reconstruction from limited aperture data S̃2 = {(cos θ, sin θ) : θ ∈ [−π/2, π/2]}.
This implies that the obstacles are illuminated by incident plane waves only from the
r.h.s., and the far-field data are measured on the same side. To make the numerical
results comparable to the case where the full far-field data are used, we discretize the
corresponding far-field data by 32 incident directions and 32 observation directions
equivalently distributed in the right half of the unit disk. We put N point-like ob-
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Reconstruction of a kite and N point-like obstacles lying on a half-circle using limited
aperture data. In (a), N = 0. In (b) and (c), N = 3 and 5, respectively, and αj = 0.3. In (d), (e),
and (f), we set αj = 2, 0.75, and 0.3, respectively, and N = 4.

stacles equivalently lying on the half-circle {(x1, x2) : x1 = cosβ − 3, x2 = sinβ, β ∈
[π/2, 3π/2]}.

Figure 4(a) illustrates the recovery of the extended obstacle in the absence of
the point-like scatterers (i.e., N = 0). It can be observed how the reconstruction
of the unlighted (left half) part of the kite deteriorates due to the limited incident
directions from the r.h.s. The shadow part can be well reconstructed in Figures 4(c)
and 4(f) by virtue of the multiple scattering effect between the point-like and extend
obstacles. In Figures 4(d), 4(e), and 4(f), we fix the number of point-like obstacles
(i.e., N = 4) and change the value of the coefficients αj . It is seen that the visibility
of the unilluminated part also depends on αj . However, numerical experiments show
poor reconstructions for αj less than 0.2.
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