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A linear sampling method for inverse
problems of diffraction gratings of mixed type

Guanghui Hua, Fenglong Qub and Bo Zhangc*†

Communicated by Andreas Kirsch

This paper is concerned with the direct and inverse problem of scattering of a time-harmonic wave by a Lipschitz
diffraction grating of mixed type. The scattering problem is modeled by the mixed boundary value problem for the
Helmholtz equation in the unbounded half-plane domain above a periodic Lipschitz surface on which a mixed Dirichlet
and impedance boundary condition is imposed. We first establish the well-posedness of the direct problem, employing the
variational method, and then extend Isakov’s method to prove uniqueness in determining the Lipschitz diffraction grating
profile by using point sources lying above the structure. Finally, we develop a periodic version of the linear sampling
method to reconstruct the diffraction grating. In this case, the far field equation defined on the unit circle is replaced by
a near field equation defined on a line above the surface, which is a linear integral equation of the first kind. Numerical
results are also presented to illustrate the efficiency of the method in the case when the height of the unknown grating
profile is not very large and the noise level of the near field measurements is not very high. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. Introduction

Diffraction gratings are widely used in many areas of science and technology and have a long history (see [1, 2] for the physical and
mathematical background). This paper is concerned with the problem of scattering of a time-harmonic (with the time variation e�i!t ,
! > 0) electromagnetic wave by a partially coated perfectly reflecting grating in an isotropic lossless medium, which is modeled by
the time-harmonic Maxwell equations together with a mixed boundary condition of perfectly conducting and conductive conditions.
In this paper, we assume the grating to be periodic in the x1-direction and constant in the other directions and consider the transverse
electric polarization case. In this case, the scattering problem is reduced to a mixed problem of Dirichlet and impedance boundary
condition for the two-dimensional Helmholtz equation, .4C k2/uD 0, where u is the third coordinate component of the electric field
E D .0, 0, u.x1, x2// and k > 0 is the wave number depending on the index of refraction of the medium. Assume that the diffraction
grating is described by a surface profile Q� :D f.x1, x2/ 2R2 : x2 D f .x1/gwith a 2�-periodic Lipschitz function f .x1/ > 0 for x1 2R and
the isotropic lossless medium is denoted by Q�D f.x1, x2/ 2R2 : x2 > f .x1/g.

The direct problem is to compute the scattered field us in Q� when the incident wave ui and the grating profile Q� with the
corresponding boundary conditions are given. There always exists a unique solution to the Dirichlet problem (see [3] for the case
when the grating surface Q� belongs to C2 and [4] for the case when the grating surface Q� is Lipschitz). It is known that the Neumann
problem is not necessarily uniquely solvable in general. In this paper, we consider the mixed problem, that is, the problem with a mixed
Dirichlet and impedance boundary condition being imposed on Q� .

We are more interested in the inverse problem of determining the grating profile Q� from the knowledge of the scattered field
measured on a straight line lying above the grating for a given wavenumber k and given incident waves ui. Note that the propagating
modes (or the ‘far field data’ in periodic case) for all incident directions are not enough to determine the grating profile uniquely;
see [5]. Uniqueness results have been obtained for the cases of Dirichlet and Neumann problems [6–12]. In the case of a lossy medium
(i.e., Im.k/ > 0), it was shown in [6] that a C2-smooth perfectly reflecting grating profile f can be uniquely determined from the scattered
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fields for one incident plane wave. In the case of a lossless medium (i.e., Im.k/ D 0), in general, global uniqueness with one incident
wave is not true for the inverse problem. It has been shown in [11] that a finite number of incident plane waves are sufficient to identify
a C2 perfectly reflecting grating profile from the total field above the structure provided a priori information on the height of the grating
surface is available. In particular, global uniqueness with one incident direction can be obtained if the wave number or the amplitude
is sufficiently small; this, however, is not true for the general case. The uniqueness results of [11] have been extended to the inverse
transmission problem in [13] with continuous total field and its normal derivative across the grating profile. Note that a uniqueness
result was established in [14] for the inverse transmission problem with general transmission conditions on the grating profile. Global
uniqueness results have been established for the inverse Dirichlet and Neumann problems with a minimal number of incident waves
for the class of grating profiles given by the graph of a piecewise linear function or a step function in [8, 9]. These results have been
extended to the case of general polygonal grating profiles in [7, 10]. It was shown in [7, 10] that without excluding the Rayleigh fre-
quencies, two different directions are sufficient to recover the Dirichlet surface, whereas four are sufficient for the case of Neumann
problems. If one excludes the Rayleigh frequencies, one incident wave is sufficient to determine the Dirichlet surface, whereas three
are sufficient for the case of Neumann surfaces. It should be remarked that local stability estimates have been obtained in [15] for an
inverse periodic medium and in [16] for an inverse transmission problem with a polygonal grating interface. A conditional (global)
stability result was established in [17] for the inverse Dirichlet problem. For an overview of inverse diffraction grating problems,
see [18].

Efficient numerical methods for the inverse problem studied in this paper are of great importance because of their wide and
important applications in many areas. However, it is challenging to design efficient numerical algorithms for such inverse problems
because they are both nonlinear and severely ill-posed. For the inverse problem of reconstructing perfectly reflecting grating profiles
(i.e., the inverse Dirichlet problem), several numerical reconstruction algorithms have been proposed, such as the conjugate gradi-
ent algorithm based on analytic continuation [19], the iterative regularization method [20], the Kirsch–Kress two-step optimization
algorithm [4, 21], and the factorization method of Kirsch [22, 23]. Note that the latter two approaches were originally developed for
bounded obstacle scattering problems and do not need the solution of the direct scattering problems (see, e.g., [24, 25] and the refer-
ences quoted there). The factorization method was also applied to the case of impedance boundary conditions [22]. The Kirsch–Kress
method proposed in [4, 21] has been extended to an inverse periodic transmission problem in [26] with continuous total field and its
normal derivative across the grating profile. A different reconstruction algorithm-based finite element and optimization techniques
was proposed in [27] for the inverse periodic transmission problem.

In this paper, we apply the linear sampling method to our inverse problem of diffraction gratings with a mixed Dirichlet and
impedance boundary condition on the grating profile. The linear sampling method was originally proposed in [28] for bounded obsta-
cle acoustic scattering and does not need the solution of the direct scattering problem as well as the physical property of the scatterer
(see also [29–31] for more details on its mathematical foundation, implementation, and other applications). In the current periodic case,
instead of plane waves, we shall use point sources lying on �b as incident waves. This is because uniqueness for the inverse problem
using these incident point sources can be guaranteed (see Theorem 3.1) and also these incident point sources have a dense range on
the grating surface � (see Lemmas 3.2 and 5.1). Furthermore, the far field equation defined on the unit circle for bounded obstacle
scattering problems is replaced by a near field equation defined on a line �b above the grating surface. This means that the evanes-
cent waves are always included in our computation so that the quality of the reconstruction can be improved. We also refer to [22] for
exploring the number of evanescent modes in order to obtain satisfactory reconstructions based on the factorization method and to
[19,21] using the scattered far field for several incident plane waves based on the optimization method. Another reason for considering
near fields in scattering by diffraction gratings is the uniqueness issue that we will address in Section 3 (see Theorem 3.1)).

This paper is organized as follows. In Section 2, the well-posedness of the direct scattering problem is established using the
variational method. The uniqueness for the inverse problem is proved in Section 3 by Isokov’s method. The linear sampling method
is proposed for the inverse Dirichlet problems in Section 4 first and then for the inverse mixed problem in Section 5. Numerical results
are presented in Section 6 to illustrate the efficiency of the method.

2. The direct problem

In this section, we establish the well-posedness of the direct scattering problem by employing the variational method. Because of
the periodicity of the problem, it can be reduced to a problem in a single period of the grating profile. To this end, we need the
following notations:

� D fx 2R2j x2 D f .x1/, 0< x1 < 2�g,

�D fx 2R2j x2 > f .x1/, 0< x1 < 2�g,

�b D f.x1, b/j 0< x1 < 2�g,

�b D fx 2�j x2 < bg

for any b > maxff .x1/j x1 2 Rg. Suppose a plane wave given by ui D ei.˛x1�ˇx2/ with .˛,ˇ/ D k.sin � , cos �/ the incident on � from
the top, where the wave number k is a positive constant and � 2 .��=2,�=2/ is the incident angle. We assume that � has a Lipschitz
dissection � D �D [ q [ �I, where �D and �I are disjoint and relatively open subsets of � having q as their common boundary

1
0

4
8

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 1047–1066



G. HU, F. QU AND B. ZHANG

(see [32, p. 99]). Then, in the case of transverse electric polarization for the scattering of ui by the perfectly conducting diffraction
gratings with a partially coated dielectric, the total field uD u.x1, x2/, which is the sum of ui and the scattered field us, satisfies

�uC k2uD 0 in �, (2.1)

uD 0 on �D, (2.2)

@u

@�
C i�uD 0 on �I, (2.3)

where � is the unit normal of � directed into �. In the case when �I D ;, the problem becomes the Dirichlet problem (the periodic
structure is a perfectly conducting surface in the electromagnetic case or a sound-soft surface in the acoustic case). In the case when
�I ¤ ;, the structure is coated by a thin layer of material on �I and is called a partially coated surface with the surface impedance �.x/.
In this paper, we assume that � is a positive constant. We also require the total field u to be ˛-quasiperiodic in x1, which means that

u.x1C 2� , x2/D e2i˛�u.x1, x2/, (2.4)

or equivalently u.x/ exp.�i˛x1/ is 2�-periodic with respect to x1. Note that the incident field ui is ˛-quasiperiodic. Under the
assumption (2.4), the function us.x/ exp.�i˛x1/ is 2�-periodic with respect to x1 and thus can be expanded as a Fourier series:

us.x1, x2/ exp.�i˛x1/D
X
n2Z

un.x2/e
inx1 .

Because us satisfies the Helmholtz equation (2.1) in�, then applying the method of separation of variables allows us to express us as a
sum of plane waves:

us D
X
n2Z

h
Anei˛nx1Ciˇnx2 C Bnei˛nx1�iˇnx2

i
, An, Bn 2C,

where

˛n D nC ˛, ˇn D

(
.k2 � ˛2

n/
1=2 if j˛nj � k,

i.˛2
n � k2/1=2 if j˛nj> k,

with iD
p
�1. Physically, the scattered field remains bounded as x2!C1, so us is only composed of bounded outgoing waves in�,

leading to the well-known Rayleigh expansion condition:

us D
X
n2Z

Anei˛nx1Ciˇnx2 for x2 > fC D max
0<x1<2�

ff .x1/g (2.5)

with the Rayleigh coefficient An 2 C. It is clear that us in (2.5) can be split into the finite sum
P
˛n�k of outgoing plane waves and the

infinite sum
P
˛n>k of exponentially decaying waves, which are called surface or evanescent waves.

We now introduce some periodic and quasiperiodic spaces that are needed in this paper. For s 2 R, s � 0, the Sobolev space
Hs.0, 2�/ of periodic functions is defined as the completion of fujŒ0,2�� : u is a trigonometric polynomialg with respect to the inner
product

< u, v >:D
X
n2Z

.1C n2/sunvn,

where un and vn are the Fourier coefficients of u and v, respectively. Then the periodic Sobolev space Hs
p.�/ and the ˛-quasiperiodic

Sobolev space Hs.�/ can be defined, respectively, by

Hs
p.�/D fu : �!C, u.x1, f .x1// 2 Hs.0, 2�/g,

Hs.�/D fu : �!C, u.x1, f .x1// exp.�i˛x1/ 2 Hs.0, 2�/g.

For �0 � � , define

Hs.�0/ :D fuj�0 : u 2 Hs.�/g, QHs.�0/ :D fu 2 Hs.�/ : supp.u/� N�0g.

Then,

H�1=2.�0/ :D . QH1=2.�0//
0, QH�1=2.�0/ :D .H1=2.�0//

0.

Denote by < H1=2.�0/, QH�1=2.�0/ > or < QH1=2.�0/, H�1=2.�0/ >, the dual form, which, in our setting, is the extension of the inner
product of L2.�0/. Recall that H1=2.�/ is the trace space of H1.�b/ defined by

H1.�b/D fv 2 H1.�b/ : v.x1, x2/ exp.�i˛x1/ is 2�-periodic with respect to x1g.

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 1047–1066
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H1
p.�b/, Hs

p.�0/, and QHs
p.�0/ can be defined similarly as H1.�b/, Hs.�0/, and QHs.�0/, respectively, by replacing˛-quasiperiodic functions

v with 2�-periodic functions v.
The basic space we use for the direct problem is

X D fv 2 H1
p.�b/ : v D 0 on �Dg

equipped with the Sobolev norm jj.jj1. If �D ¤ ;, then, by Friedrich’s inequality, the Sobolev norm jj.jj1 is equivalent to the norm jjvjjX
defined by

jjvjjX D

Z
�b

jr˛vj2dx

where r˛ :Dr C i.˛, 0/. For convenience, we write

4˛ :Dr˛ � r˛ D4C 2i˛@1 � ˛
2, @�,˛ D

@

@�
C i˛�1.

In this paper, C may denote different positive constants in different places.
Given an incident plane wave ui D ei.˛x1�ˇx2/, our goal is to prove that the direct problem (2.1)–(2.5) is well-posed, employing the

variational method. To this end, we define the Dirichlet-to-Neumann map T : H1=2.�b/! H�1=2.�b/ on an artificial boundary �b by

Tv :D
X
n2Z

iˇnvnei˛nx1 for v.x1/D
X
n2Z

vnei˛nx1 2 H1=2.�b/.

The operator T is well defined and bounded because ˇn D ij˛nj CO.1=jnj/ as jnj !C1. Clearly,

T.usjx2Db/D
@us

@x2

ˇ̌̌̌
�b , T.uijx2Db/D iˇe�iˇbei˛x1 D�

@ui

@x2

ˇ̌̌̌
�b

.

This implies that

T.uj�b/�
@u

@�

ˇ̌̌
�b D 2iˇe�iˇbei˛x1 , (2.6)

which is equivalent to the Rayleigh expansion (2.5). Let v.x/ D u.x/e�i˛x1 . Then v 2 H1
p.�b/ satisfies 4˛v C k2v D 0 in �b with the

boundary conditions

v D 0 on �D, @�,˛vC i�v D 0 on �I, Tv �
@v

@�

ˇ̌̌
�b D 2iˇe�iˇb on �b.

Let w.x/D v.x/� e�iˇx2 . Then the problem (2.1)–(2.3) can be reformulated as follows. Find w 2 H1
p.�b/ such that

4˛wC k2wD 0 in �, (2.7)

wD g on �D, (2.8)

@�,˛wC i�wD h on �I, (2.9)

Tw �
@w

@�
D 0 on �b, (2.10)

where gD�e�i˛x1 ui 2 H1=2
p .�D/ and hD�e�i˛x1 . @ui

@�
C i�ui/ 2 H�1=2

p .�I/.

Theorem 2.1
For g 2 H1=2

p .�D/ and h 2 H�1=2
p .�I/, if �I ¤ ;, then the problem (2.7)–(2.10) is uniquely solvable in H1

p.�b) with the estimate

jjwjjH1
p.�b/

� C

�
jjgjj

H�1=2
p .�D/

C jjhjj
H�1=2

p .�I/

�
, (2.11)

where C is a positive constant independent of g and h.

Proof
We first prove the uniqueness of the solution. To do this, it is enough to prove that wD 0 in�b if gD 0 and hD 0. Let gD 0 and hD 0.
Then it follows from the weak formulation of the problem (2.7)–(2.10) with the test function replaced by w thatZ

�b

jr˛wj2 � k2jwj2dx � i

Z
�I

�jwj2ds�

Z
�b

wTwdsD 0.1
0

5
0
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Taking the imaginary part of the previous equation givesZ
�I

�jwj2dsD�Im

Z
�b

wTwdsD�2�
X
j˛nj�k

ˇnjcnj
2 � 0, cn D

1

2�

Z 2�

0
w.x1, b/e�inx1 dx1.

Because � > 0, it follows that wD 0 on �I, which, together with (2.9), implies that @�,˛wD 0 on �I. By Holmgren’s uniqueness theorem
and the analyticity of w, we obtain that wD 0 in�b.

We now prove the existence of the solution. From [32], it is seen that there exists aeg 2 H1=2
p .�/ such thateg is the extension of g to �

satisfying that jjegjj
H1=2

p .�/
� Cjjgjj

H1=2
p .�D/

, where C is independent of g. Consider the following Dirichlet problem:

4˛v0C k2v0 D 0 in �, v0 Deg on � , Tv0 �
@v0

@�
D 0 on �b.

Arguing similarly as in [4], it is easy to show that the aforementioned Dirichlet problem has a unique weak solution v0 2 H1
p.�b/

satisfying the estimate

jjv0jjH1
p.�b/

� Cjjegjj
H1=2

p .�/
� Cjjgjj

H1=2
p .�D/

, (2.12)

where C is a constant independent ofeg. Let w0 D w � v0. Then, the problem (2.7)–(2.10) is equivalent to the following problem. Find
w0 2 X such that

4˛w0C k2w0 D 0 in �b, (2.13)

w0 D 0 on �D, (2.14)

@�,˛w0C i�w0 Deh on �I, (2.15)

Tw0 �
@w0

@�
D 0 on �b, (2.16)

whereehD�@�,˛v0 � i�v0C h 2 H�1=2
p .�I/. Because �I is Lipschitz, then @�,˛v0 2 H�1=2

p .�I/ should be defined as follows:Z
�I

'@�,˛v0dsD

Z
�b

h
�r˛v0 � r˛' C k2v0'

i
dxC

Z
�b

'Tv0ds, 8' 2 X . (2.17)

Because w0 vanishes on �D, we can derive the following variational formulation for the problem (2.13)–(2.16):Z
�b

h
r˛w0 � r˛' � k2w0'

i
dx � i

Z
�I

�'w0ds�

Z
�b

'Tw0dsD

Z
�I

eh'ds (2.18)

for any ' 2 X . Let

a.w0,'/D

Z
�b

r˛w0 � r˛'dx �

Z
�b

'Tw0ds� i

Z
�I

�'w0ds,

b.w0,'/D�

Z
�b

k2w0'ds, L.'/D

Z
�I

eh'ds.

Then the variational problem (2.18) becomes

a.w0,'/C b.w0,'/D L.'/ 8' 2 X . (2.19)

Set

wn D
1

2�

Z 2�

0
w0.x1, b/e�inx1 dx1, U D fn 2 Z : ˇn is a real numberg.

Then, we have that, for ' 2 X ,

a.w0, w0/D

Z
�b

jr˛w0j
2dxC 2�

X
n2ZnU

jˇnjjwnj
2 � i2�

X
n2U

ˇnjwnj
2 � i

Z
�I

�jw0j
2ds

and

ja.w0, w0/j �

Z
�b

jr˛w0j
2dxC �

Z
�I

jw0j
2ds� Cjjw0jj

2
H1

p.�b/
,

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 1047–1066
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where the last inequality is derived by using Friedrich’s inequality. From the boundedness of T and the trace theorem, it is seen that

ja.w0,'/j � Cjjw0jjH1
p.�b/

jj'jjH1
p.�b/

8' 2 X .

Hence, by the Lax–Milgram theorem, the first term a.�, �/ of (2.19) gives rise to a bijective operator on X , whereas, because the embed-
ding X � L2.�b/ is compact, the second term b.�, �/ defines a compact operator on X . From (2.12) and (2.17) together with the aid of
the trace theorem and the boundedness of T , it follows that

jL.'/j �

Z
�I

j'@�,˛v0jdsC

Z
�I

j�v0'jdsC

Z
�I

jh'jds

� C

�
jjgjj

H1=2
p .�D/

C jjhjj
H�1=2

p .�I/

�
jj'jjH1

p.�b/
,

where C is a positive constant independent of g and h. The Riesz representation theorem implies that L.�/ defines a linear bounded
operator l on X with the estimate

jjljj1 D jjLjjX!R � C.jjgjj
H1=2

p .�D/
C jjhjj

H�1=2
p .�I/

/.

Then a standard argument implies that the Fredholm alternative is applicable, which, together with the uniqueness part of the theorem,
implies that the problem (2.19) has a unique solution w0 2 X satisfying the estimate

jjw0jjH1
p.�b/

� Cjjljj1 � C.jjgjj
H1=2

p .�D/
C jjhjj

H�1=2
p .�I/

/.

This yields the estimate

jjwjjH1
p.�b/

� jjw0jjH1
p.�b/

C jjv0jjH1
p.�b/

� C.jjgjj
H1=2

p .�D/
C jjhjj

H�1=2
p .�I/

/,

where C is a constant independent of g and h. The proof of the theorem is thus completed. �

For the original scattering problem (2.1)–(2.5), we have the following well-posedness result (Theorem 2.2), which is a corollary of
Theorem 2.1. To state this result, we need the free-space quasiperiodic Green function defined by

G.x, y/D
X
n2Z

i

4�ˇn
eiŒ˛n.x1�y1/Cˇnjx2�y2j� (2.20)

where x, y 2R2 with x�y ¤ n.2� , 0/, n 2 Z, and the Rayleigh frequencies fk : ˇn.k/D 0g are excluded. It is known from [3] that G.x, y/
is weakly singular at x D y and satisfies the Helmholtz equation in R2

C when x � y ¤ n.2� , 0/, n 2 Z.

Theorem 2.2
Let the incident field ui.x/D eikx�d or ui.x/D G.x, y/ for y 2�. If the impedance coefficient � > 0 on �I, then the problem (2.1)–(2.5) is
uniquely solvable in H1.�b/with the scattered field us satisfying that

jjusjjH1.�b/
� C.jjegjjH1=2.�D/

C jjehjjH�1=2.�I/
/,

whereegD�uij�D 2 H1=2.�D/, ehD�. @ui

@�
C i�ui/j�I 2 H�1=2.�I/, and C is a positive constant independent ofeg andeh.

3. The inverse problem

In this section, we consider the inverse problem of determining the diffraction grating profile from a knowledge of the scattered field
measured above the diffraction grating by using point sources lying above the grating as incident waves.

For fj 2 C0,1.0, 2�/ and �j > 0, j D 1, 2, and for the incident wave ui D G.x, z/, let us
j .x; z/ be the scattered field corresponding to

�j D fx 2R2 : x2 D fj.x1/, 0< x1 < 2�g and the parameter �j , jD 1, 2. The purpose of this section is to prove the following uniqueness
result on recovering the grating profile f and the parameter � from the knowledge of the scattered field corresponding to incident
point sources.

Theorem 3.1
Assume that fj 2 C0,1.0, 2�/ is a partially coated diffraction grating profile with mixed sound-soft and impedance boundary conditions
on �j and �j > 0, jD 1, 2. For a fixed wave number k > 0, if the total fields u1 and u2 satisfy

u1.x; zn/D u2.x; zn/ 8 x 2 �a

1
0
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for an infinite number of point sources ui.x/ D G.x, zn/, zn 2 �a, n D 1, 2, : : :, then f1 D f2 and �1 D �2, where uj.x; zn/ D

ui.x/C us
j .x; zn/, jD 1, 2.

To prove this theorem, we need the following denseness result for incident point sources.

Lemma 3.2
Letƒbe the restriction to one period .0, 2�/of a 2�-periodic Lipschitz surface below�a. Then the set fG.�, zn/jƒ : zn 2 �a, nD 1, 2, : : :g
is complete in H1=2.ƒ/.

Proof
Let ' 2eH�1=2.ƒ/ be such that Z

ƒ
'.x/G.x, zn/ds.x/D 0, nD 1, 2, : : :

Then, to prove the lemma, it is enough to show that ' D 0 onƒ. Define

u.x/D

Z
ƒ

G.y, x/'.y/ds.y/ for x 2R2
�nƒ,

where R2
� D fx 2R

2 : 0< x1 < 2�g. Then

4uC k2uD 0 in R2
�nƒ, u.zn/D 0, nD 1, 2, : : :

and u.x/ is an �˛-quasiperiodic function satisfying the Rayleigh expansion condition above and below the grating ƒ. By the
unique continuation result for the Helmholtz equation on a line (see [33, Lemma 3.2]), we have u D 0 on �a. Consequently,
from the uniqueness result of the exterior Dirichlet problem and the analytic continuation of solutions to the Helmholtz
equation, it follows that u � 0 in �ƒ D fx 2 R2

� : x lies above ƒg, which, together with the trace theorem, implies

that uC D 0 in H1=2.ƒ/. Here, the superscripts C and � indicate the limit obtained from �ƒ and R2
�n�ƒ, respectively. By

the continuity of the single layer potential across ƒ, it is found that u�.z/ D 0 on ƒ. Thus, an application of the uniqueness
result to the region below ƒ gives that u.x/ � 0 in R2

�n�ƒ. Note that the classical layer potential theories on closed surfaces
(see [24], [32, Theorem 6.10]) can be carried over to the present periodic case (see, e.g., [34]). Thus, from the jump relation of the
normal derivative of the single layer potential u with H�1=2 density, it is obtained that ' D 0 onƒ. The proof is complete. �

Proof of Theorem 3.1
We first show that us

1.�; z/ D us
2.�; z/ in G for any z 2 Ga, where G D �1 \�2, �j D fx 2 R2 : x2 > fj.x1/, 0 < x1 < 2�g, j D 1, 2, and

Ga D fx 2 G : x2 < ag. In fact, for each z 2 Ga, we can always choose a smooth surface ƒ lying above @G but below z. By Lemma 3.2,
fG.�, zn/jƒ : zn 2 �a, n D 1, 2, : : :g is dense in H1=2.ƒ/. Thus, for an arbitrarily small " > 0, there exists a finite sequence an 2 C
such that

jjG.�, z/�
X

n

anG.�, zn/jjH1=2.ƒ/ < ".

Because both G.�, z/ and
P

n anG.�, zn/ satisfy the Helmholtz equation and the Rayleigh expansion condition below ƒ, it follows from
the well-posedness of the exterior Dirichlet boundary problem that

jjG.�, z/�
X

n

anG.�, zn/jjH1.K/ < "

for a compact subset K lying belowƒ such that �1 [ �2 � K . By Theorem 2.2, we obtain that

jjus
j .x; z/�

X
n

anus
j .x, zn/jjH1.Ga/

< C", jD 1, 2.

This, together with the fact that us
1.x; zn/D us

2.x; zn/ for x 2 Ga, yields that

us
1.x; z/D us

2.x; z/, 8x 2 G, z 2 Ga. (3.1)

We now prove, by contradiction, that f1 D f2, similarly as in the proof of Theorem 3.1 in [12]. In fact, if f1 ¤ f2, then we may assume
without loss of generality that there is a point x� 2 �1 D @�1 such that x" :D x� C �.x�/" 2 �1 \�2 and B".x�/\ �2 D ; for some
small disk B".x�/ centered at x� with radius ". Consider the following problems:

4us
j .x; x"/C k2us

j .x; x"/ D 0 in �j ,

us
j .x; x"/ D�G.x, x"/ on �jD,

@us
j .x;x"/

@�
C i�jus

j .x; x"/ D�
@G.x,x"/
@�

� i�jG.x, x"/ on �jI,

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 1047–1066
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where j D 1, 2. In the case when x� 2 �1D, us
1.x"; x"/ 	 O.ln "/, but us

2.x"; x"/ remains bounded as "! 0C, whereas in the case when
x� 2 �1I, �.x�/ � rus

1.x"; x"/ 	 O.1="/, but �.x�/ � rus
2.x"; x"/ remains bounded as " ! 0C. This is a contradiction because, by (3.1),

us
1.x; x"/D us

2.x; x"/ for x 2�1 \�2. Thus we have f1 D f2.
We next prove that �1 D �2. Let �1 D �2 D � . Then u1 D u2 and @u1=@� D @u2=@� on � . The boundary conditions

uj D 0 on �jD,
@uj

@�
C i�juj D 0 on �jI

imply that �1D \ �2I D ;, because, otherwise, u1 D @u1=@� D 0 on an open arc of � ; therefore, by Holmgren’s uniqueness theorem,
uD 0 in�, which is impossible. Thus, �1I D �2I :D �I, which yields that .�1 � �2/u1 D 0 on �I. Because u1 6D 0 in�, we have �1 D �2.
The theorem is proved. �

Remark 3.3
Our proof can be easily extended to the nonconstant impedance case, so Theorem 3.1 remains true if the impedance coefficient � is a
continuous function on �I.

4. The linear sampling method for the Dirichlet problem

In this section, we consider the linear sampling method for the case when�I D ;, that is, the Dirichlet problem. To this end, we introduce
the following operators. For g 2 L2.�a/ :D H0.�a/ and h 2 H�1=2.�/, define

.Hg/.x/D

Z
�a

G.x, y/g.y/ds.y/ x 2 � ,

.S1h/.x/D

Z
�

G.x, y/h.y/ds.y/ x 2 �a,

.S2h/.x/D

Z
�

G.x, y/h.y/ds.y/ x 2 � .

Properties of these operators are summarized in the following lemma.

Lemma 4.1

(i) H : L2.�a/! H1=2.�/ is an injective, bounded operator with dense range in H1=2.�/.
(ii) S1 : H�1=2.�/! H1=2.�a/ is an injective, compact operator with dense range in H1=2.�/.

(iii) The operator S2 : H�1=2.�/! H1=2.�/ is a norm isomorphism.

Proof

(i) For x 2 � and y 2 �a, the kernel G.x, y/ is continuous, which, together with a simple calculation of jjH'jjH1=2.�/, implies the

boundedness of H. From the proof of Lemma 3.2, it is seen that the dual operator H� : H�1=2.�/! L2.�a/ of H defined by

.H�'/.y/D

Z
�

G.x, y/'.x/ds.x/D 0, ' 2 H�1=2.�/,

is injective. Thus, the range of H is dense in H1=2.�/. The proof of Lemma 3.2 also yields that H is injective.
(ii) The compactness of S1 follows from the continuity of the kernel G.x, y/ for x 2 �a and y 2 � , whereas the injectivity and

denseness property of S1 follow from the proof of Lemma 3.2.
(iii) From [23, Lemma 2.3], it is known that S2 is a norm isomorphism.

�

We now take point sources G.x, y/with y 2 �a defined by (2.20) as incident waves ui
y.x/ and write us

y.x/ for the scattered solution of

the problem (2.1)–(2.3) corresponding to ui
y.x/. To derive a periodic version of the linear sampling method, we consider the following

near field equation: Z
�a

us
y.x/g.y/ds.y/D G.x, z/, x 2 �a (4.1)

for z 2R2
� . The near field operator N : H1=2.�/! H1=2.�a/ is defined by

NwD Vj�a , (4.2)

where V is the ˛-quasiperiodic solution to the exterior boundary value problem for the Helmholtz equation �V C k2V D 0 with
the Dirichlet boundary value w on � and satisfying the Rayleigh expansion condition (2.5). Note that the definition of the near

1
0

5
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field operator N here differs from that in [22, Formula (9)], which corresponds to the input–output operator. For h 2 H�1=2.�/ and
g 2 L2.�a/, define

.QSh/.x/D

Z
�

G.x, y/h.y/ds.y/, x 2R2
�n� ,

.Fg/.x/D

Z
�a

us
y.x/g.y/ds.y/, x 2 �a.

Obviously,

.QSh/.x/j� D .S2h/.x/, .QSh/.x/j�a D .S1h/.x/,

.Fg/.x/D�.NHg/.x/, .S1h/.x/D .NS2h/.x/,

which implies that

F.g/D�S1S�1
2 H.g/, Range.S1/D Range.N/. (4.3)

Clearly, the near field equation (4.1) is equivalent to

.Fg/.x/D G.x, z/, x 2 �a (4.4)

for z 2R2
� .

The region� can be characterized by the following lemma, which is a corollary of Theorems 3.3 and 3.4 in [23].

Lemma 4.2
G.�, z/j�a is in the range of N if and only if z 2R2

�n�.

Now, we present the main theorem for the Dirichlet problem.

Theorem 4.3
Assume that the incident field ui

y.x/D G.x, y/ and � is Lipschitz with �I D ;.

(i) If z 2R2
�n�, then for any " > 0, there exists g"z 2 L2.�a/ such that

kFg"z � G.�, z/kH1=2.�a/
< " and kg"zkL2.�a/

!1 as z! ��.

(ii) If z 2�, then for any " > 0 and ı > 0, there exists g",ı
z 2 L2.�a/ such that

kFg",ı
z � G.�, z/kH1=2.�a/

< "C ı and kg",ı
z kL2.�a/

!1 as ı! 0.

Proof

(i) If z 2R2
�n�, then�G.�, z/j�a D N.�G.�, z/j� / is in the range of S1. Thus, there exists hz 2 H�1=2.�/ such that .S1hz/.x/D�G.x, z/

for x 2 �a. Because S2hz 2 H1=2.�/, then, by Lemma 4.1, for any " > 0, there is g"z 2 L2.�a/ such that

kHg"z � S2hzkH1=2.�/ < ", (4.5)

kS�1
2 Hg"z � hzkH�1=2.�/ < C" (4.6)

for some constant C > 0. From the boundedness of S1 and (4.3), it follows that

kS1S�1
2 Hg"z � S1hzkH1=2.�a/

< C",

kFg"z � G.�, z/kH1=2.�a/
< C".

Because �G.x, z/ D .S1hz/.x/ D .NS2hz/.x/ for x 2 �a and �G.�, z/j�a D N.�G.�, z/j� /, we have �G.�, z/j� D S2hz . By (4.5),
we get

lim
z!��

kHg"zkH1=2.�/ � lim
z!��

kS2hzkH1=2.�/ � "

� lim
z!��

kG.�, z/kH1=2.�/ � "

D1,

which, together with the boundedness of H (Lemma 4.1 (i)), implies that

kg"zkL2.�a/
!1 as z! ��.

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 1047–1066
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(ii) If z 2 �, then, by Lemma 4.2, G.�, z/ is not in the range of N and is therefore not in the range of S1 either. This means that the
equation

S1hz D G.�, z/j�a (4.7)

has no solution in H�1=2.�/. However, because S1 : H�1=2.�/! H1=2.�a/ is compact and has a dense range in H1=2.�a/, then
for each ı > 0, we may obtain an approximate solution to the equation (4.7) by using the Tikhonov regularization:

h�.ı/z D
X

n2N

	n


.ı/C	2
n
.G.�, z/, gn/'n.

Here, .	n,'n, gn/ is a singular system of S1 and 
.ı/ is the regularization parameter chosen by the following Morozov discrepancy
principle (see [24]):

kS1h�.ı/z � G.�, z/kH1=2.�a/
D ı,

or equivalently,

X
n2N

ƒ2

.ƒC	2
n/

2
j.G.�, z/, gn/j

2 D ı2. (4.8)

From Picard’s Theorem (see [24]) and (4.8), it follows that

kh�.ı/z kH�1=2.� /!1, 
.ı/! 0, as ı! 0. (4.9)

By Lemma 4.1, it is seen that, for any " > 0, there exists g",ı
z 2 L2.�a/ such that

kS�1
2 Hg",ı

z � h�.ı/z kH1=2.�a/
< ". (4.10)

From this, it follows that

kS1S�1
2 Hg",ı

z � S1h�.ı/z kH1=2.�a/
D kFg",ı

z C S1h�.ı/z kH1=2.�a/
< C".

This, together with (4.9), implies that

kFg",ı
z � G.�, z/kH1=2.�a/

< C"C ı.

Combining (4) and (4.10) gives

kg",ı
z kL2.�/!1, kHg",ı

z kH1=2.�/!1 as ı! 0.

The proof is thus complete.

�

5. The linear sampling method for the mixed problem

In this section, we extend the linear sampling method for the Dirichlet problem to the mixed problem, that is, the case when �I 6D ;. In
this case, the near field operator N : H1=2.�D/
 H�1=2.�I/! H1=2.�a/ is defined by

N.', /D usj�a , h1 2 H1=2.�D/, h2 2 H�1=2.�I/,

where us satisfying the Rayleigh expansion (2.5) is the unique solution to

�usC k2us D 0 in �, us D ' on �D, @�us C i�us D  on �I. (5.1)

It should be pointed out that, in this section, the incident wave ui
y.x/ is taken as

ui
y.x/ :D ui.x, y/D G.y, x/,

which is different from the previous section. By the definition of G.x, y/ it is seen that such ui
y.x/ satisfies the Rayleigh expansion

condition (2.5) and therefore propagates upward and does not appear to be meaningful as incident waves. However, in the next section,
we will present the method of Arens and Kirsch [23] for generating the scattered field using the aforementioned incident waves.

We write the near field equation (4.1) as

.Fg/D�.NHg/, (5.2)

1
0

5
6

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 1047–1066



G. HU, F. QU AND B. ZHANG

where H : L2.�a/! H1=2.�D/
 H�1=2.�I/ is now defined by

.Hg/.x/D

8̂̂<̂
:̂
Z
�a

ui
y.x/g.y/ds.y/, x 2 �D,�
@

@�.x/
C i�

�Z
�a

ui
y.x/g.y/ds.y/, x 2 �I.

Lemma 5.1
The range of H is dense in H1=2.�D/
 H�1=2.�I/.

Proof
Let ' 
 2eH�1=2.�D/
eH1=2.�I/. To prove the lemma, it is enough to show that ' D 0 and  D 0 under the assumption that

< Hg,' 
 >:D< Hg,' >H1=2.�D/�eH�1=2.�D/
C< Hg, >H�1=2.�I/�eH1=2.�I/

D 0 (5.3)

for any g 2 L2.�a/. By (5.3), we obtain thatZ
�D

Z
�a

ui.x, y/g.y/ds.y/'.x/ds.x/C

Z
�I

�
@

@�.x/
C i�

�Z
�a

ui
y.x/g.y/ds.y/ .x/ds.x/D 0,

which gives on exchanging the order of integration thatZ
�D

ui
y.x/'.x/ds.x/C

Z
�I

.
@

@�.x/
C i�/ui

y.x/ .x/ds.x/D 0, for almost all y 2 �a.

Let

u.y/D

Z
�D

G.y, x/'.x/ds.x/C

Z
�I

�
@

@�.x/
� i�

�
G.y, x/ .x/ds.x/.

Then u.y/ is a ˛-quasiperiodic solution of the Helmholtz equation in R2
�n� with the Dirichlet condition on �a. Furthermore, u.y/

propagates upward above � satisfying the Rayleigh expansion condition (2.5) and downward below � satisfying the Rayleigh
expansion condition (2.5) with ˛ replaced by �˛. From the uniqueness of the exterior Dirichlet problem and the analyticity of u.y/,
it is found that u.y/� 0 in�. By the jump relations of the single and double layer potentials, we get

uCj�D � u�j�D D 0,

 
@uC

@�
� i�uC

! ˇ̌̌̌
�I �

�
@u�

@�
� i�u�

�ˇ̌̌̌
�I

D 0,

where the superscriptsC and� indicate the limit obtained from� and R2
�n�, respectively. Thus,

4uC k2uD 0 in R2
�n�,

u� D 0 on �D,

@u�

@�
� i�u� D 0 on �I.

A similar argument as in Section 2 can be used to show the existence of a unique solution to the aforementioned scattering problem
satisfying the Rayleigh expansion condition (2.5) with ˛ replaced by �˛. In particular, we have u � 0 in R2

�n�. By the jump relation
across � of the potential u again, we get

0D
@uC

@�
j�D �

@u�

@�
j�D D�', 0D uCj�I � u�j�I D  .

This completes the proof of the lemma. �

We now derive a periodic Green representation formula.

Lemma 5.2
If u 2 H1.�b/ for any b >maxt2R f .t/ and satisfies the Rayleigh expansion condition (2.5), then for every x 2�, we have

u.x/D

Z
�

�
u.y/

@G.x, y/

@�.y/
�
@u.y/

@�.y/
G.x, y/

�
ds.y/,

where G.x, y/ is the quasiperiodic Green function defined by (2.20).

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 1047–1066
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Proof
Fix x D .x1, x2/ 2 � and choose b > x2. Denote by B.x, ı/ the small ball centered at x with radius ı such that B.x, ı/ � �b. The
application of the second Green formula to the region�bnB.x, ı/ gives

0D

Z
@.�bnB.x,ı//

�
@u.y/

@�.y/
G.x, y/� u.y/

@G.x, y/

@�.y/

�
ds.y/

D

�
�

Z
�
C

Z
�b

C

Z
@B.x,ı/

C

Z
�0

��
@u.y/

@�.y/
G.x, y/� u.y/

@G.x, y/

@�.y/

�
ds.y/

:D I1C I2C I3C I4,

(5.4)

where � 0 D f.0, y2/ [ .2� , y2/ : f .0/ < y2 < bg. From the Rayleigh expansion condition (2.5) of u and the definition of G.x, y/, it is
seen that

I2 D

Z
�b

�
@u.y/

@�.y/
G.x, y/� u.y/

@G.x, y/

@�.y/

�
ds.y/

D

Z 2�

0

�
@u.y/

@y2
G.x, y/� u.y/

@G.x, y/

@y2

�
dy1 D 0. (5.5)

From the periodicity of f .x1/with period 2� , it follows that

I4 D

Z
�0

�
@u.y/

@�.y/
G.x, y/� u.y/

@G.x, y/

@�.y/

�
ds.y/D 0. (5.6)

Denote by H.1/0 .t/ the Hankel function of the first kind of order zero. Then ˆ.x, y/ :D .i=4/H.1/0 .kjx � yj/ is the fundamental solution
of the Helmholtz equation in R2. It has been shown in [3] that G.x, y/ has the same singularity as ˆ.x, y/ and that ˆ.x, y/ � G.x, y/ is
analytic in Œ.0, 2�/
R�
 Œ.0, 2�/
R�. Thus,

I3 D

Z
@B.x,ı/

�
@u.y/

@�.y/
G.x, y/� u.y/

@G.x, y/

@�.y/

�
ds.y/

D

Z
@B.x,ı/

�
@u.y/

@�.y/
ŒG.x, y/�ˆ.x, y/�� u.y/

@ŒG.x, y/�ˆ.x, y/�

@�.y/

�
ds.y/

C

Z
@B.x,ı/

�
@u.y/

@�.y/
ˆ.x, y/� u.y/

@ˆ.x, y/

@�.y/

�
ds.y/!�u.x/, (5.7)

as ı! 0. Combining (5.4)–(5.7) and letting ı! 0 give the required result. The proof is thus complete. �

Lemma 5.3
The near field operator N is injective and compact with dense range in H1=2.�a/.

Proof
By the well-posedness of the exterior mixed boundary problem (2.7)–(2.10), it is easy to see that N is injective and bounded. By the
definition of N, there exists a function u satisfying the Rayleigh expansion condition (2.5) such that N.', / D u.�/j�a . The near field
operator N can be decomposed into ND N1N2, where

N1 : H1=2.�D/
 H�1=2.�I/! H1=2.�/
 H�1=2.�/, N2 : H1=2.�/
 H�1=2.�/! H1=2.�a/

are defined by

N1.', /D .uj� , @�uj� /, N2.uj� , @�uj� / :D uj�a ,

respectively. From the well-poseness of the exterior mixed boundary problem, it is seen that N1 is bounded, and from Lemma 5.2, it
follows that N2 is compact. Thus, N is a compact operator.

We now prove that the range of N is dense in H1=2.�a/. To this end, let h 2eH�1=2.�a/ be such that

< N.', /, h >H1=2.�a/�eH�1=2.�a/
D 0, 8 ' 2 H1=2.�D/,  2 H�1=2.�I/. (5.8)

Then, it is sufficient to prove that hD 0. By Lemma 5.2, we have

< N.', /, h >H1=2.�a/�eH�1=2.�a/

D

Z
�a

u.x/h.x/ds.x/

D

Z
�a

�Z
�

�
u.y/

@G.x, y/

@�.y/
�
@u.y/

@�.y/
G.x, y/

�
ds.y/

�
h.x/ds.x/

D

Z
�

�
u.y/

@Vh.y/

@�.y/
�
@u.y/

@�.y/
Vh.y/

�
ds, (5.9)1
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where Vh.y/D

Z
�a

G.x, y/h.x/ds.x/, y 2R2
�n�a. Let Quh be the .�˛/-quasiperiodic radiating solution to the problem:

4QuhC k2 Quh D 0 in �, (5.10)

Quh D Vh on �D, (5.11)

@Quh

@�
C i�Quh D

@Vh

@�
C i�Vh on �I. (5.12)

From the second Green formula and the Rayleigh expansion of Quh and u, it follows thatZ
�

�
u
@Quh

@�
�
@u

@�
Quh

�
dsD

Z
�a

�
u
@Quh

@�
�
@u

@�
Quh

�
dsD 0,

which, together with (5.11) and (5.12), implies that

�

Z
�D

Vh
@u

@�
dsC

Z
�I

�
u
@Vh

@�
C i�uVh

�
dsD�

Z
�D

'
@Quh

@�
dsC

Z
�I

Quh ds.

This, together with (5.9), yields

< N.' 
 /, h >H1=2.�a/�H�1=2.�a/

D

Z
�D

�
'
@Vh

@�
�
@u

@�
Vh

�
dsC

Z
�I

�
u
@Vh

@�
C i�uVh

�
ds�

Z
�I

 Vhds

D

Z
�D

'

�
Vh

@�
�
@Quh

@�

�
dsC

Z
�I

 .Quh � Vh/ds.

From this equation, it can be seen that the dual operator of N is given by

N�hD

 
@Vh

@�
�
@Quh

@�
, Quh � Vh

!
2eH�1=2.�D/
eH1=2.�I/.

From (5.8), we see that N�hD 0, so

@Vh

@�
D
@Quh

@�
on �D, Quh D Vh on �I. (5.13)

Combining (5.11), (5.12), and (5.13) gives that @Vh=@� D @Quh=@� and Quh D Vh on � . Thus, by Holmgren’s uniqueness theorem, Quh D Vh
in �a. Because Quh D Vh on �a and both Quh.x/ and Vh.x/ satisfy the .�˛/-quasiperiodic Rayleigh expansion condition for x2 > a, it
follows from the uniqueness result of the exterior Dirichlet problem that Quh D Vh for x2 > a. Now, in view of the fact that Quh is analytic
in�, we have by the jump relation of @Vh.y/=@�.y/ as y! ��a that

hD
@VCh
@�

ˇ̌̌̌
�a �

@V�h
@�

ˇ̌̌̌
�a

D
@QuCh
@�

ˇ̌̌̌
�a �

@Qu�h
@�

ˇ̌̌̌
�a

D 0,

which completes the proof of the lemma. �

We are now ready to analyze the near field equation (5.2). Combining Lemmas 5.1 and 5.3, the linear sampling method for the mixed
problem can be proved, similarly as in the case of Dirichlet problems.

Theorem 5.4
Assume that �I ¤ ; and assume that us

y.x/ is the unique scattered solution corresponding to the incident wave ui
y.x/ D G.y, x/,

y 2 �a.

(i) If z 2R2
�n�, then for any " > 0, there exists g"z 2 L2.�a/ such that

kFg"z � G.�, z/kH1=2.�a/
< ", kg"zkL2.�a/

!1 as z! ��.

(ii) If z 2�, then for any " > 0 and ı > 0, there exists g",ı
z 2 L2.�a/ such that

kFg",ı
z � G.�, z/kH1=2.�a/

< "C ı, kg",ı
z kL2.�a/

!1 as ı! 0.
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Proof

(i) Let z 2R2
�n�. In this case,�G.�, z/j�a D N.h1, h2/with h1 D�G.�, z/j�D and h2 D�

�
@

@�
C i�

�
G.�, z/j�I . By Lemma 5.1, there is

g"z 2 L2.�a/ satisfying that

kHg"z � .h1, h2/kH1=2.�D/�H�1=2.�I/
< ".

By the boundedness of N, we have

kNHg"z � N.h1, h2/kH1=2.�a/
< C",

that is,

kFg"z � G.�, z/kH1=2.�a/
< C".

Further, when z! ��, we get

lim
z!��

kHg"zkH1=2.�/�H�1=2.�I/
� lim

z!��
k.h1, h2/kH1=2.�/�H�1=2.�I/

� "D1,

which implies that kg"zkL2.�a/
!1 as z! ��.

(ii) If z 2 � then, by Lemma 4.2, G.�, z/ is not in the range of N, so N.h1, h2/ D G.�, z/j�a has no solution in H1=2.�D/ 
 H�1=2.�I/.

However, because N : H1=2.�D/
 H�1=2.�I/! H1=2.�a/ is compact and has a dense range in H1=2.�a/, then for every ı > 0, we

may solve N.h�.ı/1 , h�.ı/2 / D G.�, z/j�a by the Tikhonov regularization with the parameter 
 D 
.ı/ determined by the Morozov
discrepancy principle such that

kN
�

h�.ı/1 , h�.ı/2

�
� G.�, z/kH1=2.�a/

< ı, (5.14)

k
�

h�.ı/1 , h�.ı/2

�
kH1=2.�D/�H�1=2.�I/

!1, 
.ı/! 0, as ı! 0. (5.15)

It follows from Lemma 5.3 that for any " > 0, there exists g",ı
z 2 L2.�a/ such that

kHg",ı
z �

�
h�.ı/1 , h�.ı/2

�
kH1=2.�D/�H�1=2.�I/

< ", (5.16)

which implies that

kNHg",ı
z � N

�
h�.ı/1 , h�.ı/2

�
kH1=2.�a/

D jjFg",ı
z C N

�
h�.ı/1 , h�.ı/2

�
kH1=2.�a/

< C".

This, together with (5.14) and (5.16), gives

kFg",ı
z � G.�, z/kH1=2.�a/

< C"C ı.

Combining (5.16) and (5.15), we obtain that

kg",ı
z kL2.�/!1, as ı! 0.

The theorem is thus proved.

�

6. Numerical experiments

As mentioned in Section 4, the incident waves ui
y.x/ D G.y, x/ are not of physical relevance because they propagate away from the

surface. Thus, the scattered field us
y.x/ corresponding to ui

y.x/ cannot be generated directly. We now use the method of Arens and
Kirsch [23] to generate us

y.x/. Note first that for y 2 �a and x 2�a,

G.x, y/� G.y, x/

D
i

4�k

8<:X
˛n�k

1

ˇn
efi.˛n.x1�y1/�ˇnjx2�y2j/gC

X
˛n�k

1

ˇn
efi.˛n.x1�y1/Cˇnjx2�y2j/g

9=;
:D�.U/.x, y/C�.D/.x, y/. (6.1)

1
0

6
0
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It is clear that�.U/.x, y/ and�.D/.x, y/ are upwards and downwards propagating modes, respectively. Seteui
y.x/D G.x, y/��.D/.x, y/.

Theneui
y.x/ is propagating downwards towards the scattering surface. Denote byeus.x, y/ the corresponding scattered field with respect

to the boundary value problem (2.7)–(2.10). Then, it is seen from (6.1) and the boundary value ofeus.x, y/ that

.eus.�, y/C�.U/.�, y//
ˇ̌
�D D eus.�, y/

ˇ̌
�D
C G.�, y/

ˇ̌̌
�D � G.y, �/

ˇ̌̌
�D
��.U/.�, y/

ˇ̌
�D

D�G.y, �/j�D .

Similarly, we have

�
@

@�
C i�

�
.eus.�, y/C�.U/.�, y//

ˇ̌
�I

D

�
@

@�
C i�

�
.eus.�, y/C G.�, y/��.U/.�, y//

ˇ̌
�I �

�
@

@�
C i�

�
.G.y, �//

ˇ̌
�I

D�

�
@

@�
C i�

�
.G.y, �//

ˇ̌
�I .
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Figure 1. Example 6.1: two Fourier, perfectly reflecting grating profiles to be reconstructed and their numerical reconstructions from exact data (i.e., ı D 0).
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Then by the uniqueness of the direct problem, it follows that us
y.x/Deus.x, y/C�.U/.x, y/ for x 2�a. Thus, the scattered field us

y.x/ can

be exactly generated using the incident fieldeui
y.x/.

Our reconstruction algorithm consists of the following steps:

Step 1. Select a mesh of sampling points in a computing region˙a D fx 2 R2 : 0 < x2 < a, 0 < x1 < 2�g, which contains the grating
surface.

Step 2. Make use of the Tikhonov regularization and the Morozov discrepancy principle to compute an approximate solution g"z to
the near field equation (4.1) or (5.2).

Step 3. Consider kg"zkL2.�a/
as an indicator function of sampling points z and get the contour plot of the function z! ln.kg"zkL2.�a/

/.

To implement Step 2, one needs to calculate the ˛-quasiperiodic Green function G.x, z/ for x D .x1, x2/ 2 �a, zD .z1, z2/ 2˙a. In this
paper, we apply Ewald’s method (see, e.g, [35, 36]) to accelerate the evaluation of the Green’s function G.x, z/. In order to illustrate the
performance of the aforementioned reconstruction algorithm, we now present some numerical examples.

In the following experiments, we always assume that the unknown profile lies between the lines x2 D 0 and x2 D 2 and that both the
incident point sources and the detecting positions are located at �a D f.x1, 2/ : x1 2 .0, 2�/g, that is, aD 2. The incident angle is always

k=π, δ=0, γ=10−20

0 1 2 3 4 5 6
0

0.5

1

1.5

0 1 2 3 4 5 6
0

0.5

1

1.5

0 1 2 3 4 5 6
0

0.5

1

1.5

0 1 2 3 4 5 6
0

0.5

1

1.5

y=1+0.4sin(x)+0.3cos(2x)

k=π, δ=0.03

k=π, δ=0.05

Figure 2. Example 6.2: a Fourier, perfectly reflecting grating profile to be reconstructed (top) and its numerical reconstructions from exact data (ı D 0) and noise

data with different noise levels (ı D 0.03, 0.05).
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taken as � D 0. We plot the function z! ln.kg"zkL2.�a/
/ over a 200
60 grid lying on the region Œ0, 2��
Œ0, 1.95�. Each of the reconstruc-

tions discussed later can be finished within 50 s on one MATLAB work station provided the near field data us
y.x1, a/, 0 < x1 < 2� for all

incident point sources y 2 �a can be obtained in advance. We use 257 incident point sources ui
y.x/with the source point y equivalently

distributing on �a. It should be noted that the right-hand side of (4.1) is becoming singular as z moves to �a so the values of kg"zkL2.�a/

at the sampling points near �a are always larger than those at other sampling points.
In Examples 6.1 and 6.2, we will consider the reconstruction of smooth perfectly reflecting grating profiles by assuming that �I D ;.

Example 6.1 (Reconstruction of Fourier gratings using exact data)
Suppose the grating profile � D fx : x2 D f .x1/g is given by the graph of a trigonometric polynomial (Figure 1):

f .x1/ D f1.x1/D 1.25� 0.25 cos.2x1/, x1 2R,

or f .x1/ D f2.x1/D 1C 0.4 sin.x1/� 0.4 sin.2x1/, x1 2R.

The height of f1 is 0.5, whereas that of f2 is greater than 1. The wave number is set as k D 6.45, which implies that each incident
point source has 13 incoming plane waves and that each scattered field has 13 outgoing modes. The near field measurements for each
incident point source are generated by solving the direct problem using the discrete collocation method proposed in [37]. We get an
approximate solution to the equation (4.1) using unperturbed near field data on �a with the regularization parameter 
 D 10�20. The
results are shown in Figure 1. The reconstruction of f1 is satisfactory, but the reconstruction on the downward convex part of f1 is not
very good.

Example 6.2 (Reconstruction of Fourier gratings using noisy data)
Here we perform a numerical experiment for the profile function discussed in [22] (see the top picture in Figure 2):

f .x1/D 1C 0.4 sin.x1/C 0.3 cos.2x1/, x1 2R.

The exact near field data are perturbed with the following random errors:

us
y.tj , a/C ı us

y.tj , a/ !j ,

0 1 2 3 4 5 6
0
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1.5

0 1 2 3 4 5 6
0

0.5

1

1.5

k=π, δ=0, γ=10−20

0 1 2 3 4 5 6
0

0.5

1

1.5

k=π, δ=0.03

Figure 3. Example 6.3: a piecewise linear two-tower, mixed-type grating profile of fixed height 0.7 to be reconstructed (top) and its reconstructions from exact

data (ı D 0) and noise data (ı D 0.03). An impedance condition is imposed on the dashed line part, and a Dirichlet condition is imposed on the remaining part.
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where ı � 0 is the noise level, tj is an equidistant partition of Œ0, 2��, and !j are random values between �1 and 1. The wave number
is set as k D � , where the incident point source (respectively the scattered field) involves seven incoming (outgoing) plane waves. We
choose the regularization parameter 
 D 10�20 for the unperturbed data (i.e., ı D 0) and determine 
 by the Morozov discrepancy
principle. Figure 2 shows the contour plot of ln.jjgzjjL2.�a/

/ as a function of z for different noise levels ı D 0, ı D 0.03, and ı D 0.05.
Noisy data with a noise level of ı D 3% still produces acceptable results except for the downmost part, but the reconstruction with
ı D 5% turns out to be blurred; see Figure 2.

Example 6.3 (Reconstruction of piecewise linear gratings)
Consider a piecewise linear two-tower profile of fixed height 0.7 given by the top picture in Figure 3. We impose the Robin boundary
condition with the impedance coefficient � D 0.05 on the dashed line part and the Dirichlet boundary condition on the remaining
part of the grating surface. The scattering data are obtained by the numerical solution of the direct scattering problem using the
adaptive finite element method with perfectly matched layers proposed in [38, 39]. In our computation, the perfectly matched layer is
chosen to lie between x2 D 2 and x2 D 3. Our computation on the inverse problem is carried out using both unperturbed and noisy
data, with the results shown in Figure 3. Reconstruction of the bottom part is still not satisfactory, but the topmost part can always be
perfectly identified.

Example 6.4 (Reconstruction of binary gratings)
We finally consider a perfectly conducting binary grating profile, which consists of only a finite number of horizontal and vertical line
segments. The periodic profile is shown by the top picture in Figure 4 with a fixed height 0.5. Note that the binary grating profile is
not the graph of any 2�-periodic continuous function. However, one can still carry over the linear sampling method for the inverse
problem and the well-posedness result for the direct problem to this case. The computational results with exact and noisy data are
presented in Figure 4. We find that the reconstruction in this case is rather sensitive to the noise level. Even 1% perturbation of the
exact data (i.e., noise data with a noise level of ı D 1%) can lead to a large deviation of the original profile. We have also tried to select
the regularization parameter by trial, but this gives no improvement in the noise case.
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Figure 4. Example 6.4: a step, perfectly reflecting grating profile to be reconstructed (top) and its reconstructions from exact data (ı D 0) and noise data

(ı D 0.01).
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7. Conclusions

We study the direct and inverse problem of scattering of a time-harmonic incident point source wave by a Lipschitz diffraction grating
of mixed type. The linear sampling method proposed for bounded obstacle scattering problems is generalized to the periodic case.
We presented numerical examples for reconstructing three kinds of grating profiles: (i) smooth Fourier gratings; (ii) piecewise linear
gratings; and (iii) binary gratings. The computational results indicate that acceptable results can be achieved provided the height of
the probed diffraction grating profile is not very large and the noise level of the near field measurements is not very high. A numerical
example for diffraction gratings of mixed type is also presented. Further work is still required to investigate the performance of the
inversion algorithm depending on the wavenumber, the incident angle, the detecting position, and the amplitude of the gratings.
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