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Imaging a Moving Point Source from Multifrequency Data Measured at One and
Sparse Observation Points (Part II): Near-Field Case in 3D\ast 

Guanqiu Ma\dagger , Hongxia Guo\ddagger , and Guanghui Hu\dagger 

Abstract. In this paper, we introduce a frequency-domain approach to extract information on the trajectory
of a moving point source. The method hinges on the analysis of multifrequency near-field data
recorded at one and sparse observation points in three dimensions. The radiating period of the
moving point source is supposed to be supported on the real axis and a priori known. In contrast to
inverse stationary source problems, one needs to classify observable and non-observable measurement
positions. The analogues of these concepts in the far-field regime were first proposed in the authors'
previous paper [SIAM J. Imaging Sci., 16 (2023), pp. 1535--1571]. In this paper we shall derive
the observable and non-observable measurement positions for straight and circular motions in \BbbR 3.
In the near-field case, we verify that the smallest annular region centered at an observable position
that contains the trajectory can be imaged for an admissible class of orbit functions. Using the data
from sparse observable positions, it is possible to reconstruct the \Theta -convex domain of the trajectory.
Intensive 3D numerical tests with synthetic data are performed to show effectiveness and feasibility
of this new algorithm.

Key words. inverse moving source problem, Helmholtz equation, multifrequency data, factorization method,
uniqueness, near-field data
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1. Introduction.

1.1. Time-dependent model and its inverse Fourier transform. Assume the entire space
\BbbR 3 is filled by a homogeneous and isotropic medium. We designate the sound speed of the
background medium as the constant c > 0. We consider the acoustic radiating problem incited
by a moving point source. This source traces a trajectory defined by the C1-smooth function
a(t) : [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]\rightarrow \BbbR 3, with 0< t\mathrm{m}\mathrm{i}\mathrm{n} < t\mathrm{m}\mathrm{a}\mathrm{x}. The source function S(x, t) is supposed to radiate
a wave signal at the initial time point t\mathrm{m}\mathrm{i}\mathrm{n} and stop radiating at the ending time point t\mathrm{m}\mathrm{a}\mathrm{x},
i.e., it is supported in the interval [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}] with respect to the time variable t > 0. More
precisely, the source function is supposed to take the form

S(x, t) = \delta (x - a(t))\ell (t)\chi (t),(1.1)
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1378 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

where \delta denotes the Dirac delta function, \ell (t) \in C(\BbbR ) is a real-valued function fulfilling the
positivity constraint

| \ell (t)| \geq \ell 0 > 0, t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}],(1.2)

and \chi (t) is the characteristic function over the interval [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}], defined by

\chi (t) :=

\Biggl\{ 
1, t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}],

0, t /\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}].

Denote the trajectory by \Gamma := \{ x : x= a(t), t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]\} \subset \BbbR 3. One can easily find Supp
S(\cdot , t) \subset \Gamma for all t \in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}] in the distributional sense. The propagation of the radiated
wave fields U(x, t) is governed by the initial value problem\left\{   c - 2\partial 

2U

\partial t2
=\Delta U + S(x, t), (x, t)\in \BbbR 3 \times \BbbR +,\BbbR + := \{ t\in \BbbR : t > 0\} ,

U(x,0) = \partial tU(x,0) = 0, x\in \BbbR 3.
(1.3)

The solution U can be expressed through the convolution of the fundamental solution G of
the wave equation with the source term, i.e.,

U(x, t) =G(x; t) \ast S(x, t) :=
\int 
\BbbR +

\int 
\BbbR 3

G(x - y; t - \tau )S(y, \tau )dyd\tau ,(1.4)

where

G(x; t) =
\delta (t - c - 1| x| )

4\pi | x| 
.

In this paper the one-dimensional Fourier and inverse Fourier transforms are defined by

(\scrF u)(\omega ) := 1\surd 
2\pi 

\int 
\BbbR 
u(t)e - i\omega t dt, (\scrF  - 1v)(t) :=

1\surd 
2\pi 

\int 
\BbbR 
v(k)ei\omega t d\omega ,

respectively. The inverse Fourier transform of S is thus given by

f(x,\omega ) := (\scrF  - 1S(x, \cdot ))(\omega ) = 1\surd 
2\pi 

\int 
\BbbR 
\delta (x - a(t))\ell (t)\chi (t)ei\omega t dt(1.5)

=
1\surd 
2\pi 

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\delta (x - a(t))\ell (t)ei\omega t dt.

From the expression (1.4), one deduces the inverse Fourier transform of the wave field U ,

u(x,\omega ) = (\scrF  - 1U)(x,\omega ) =
\surd 
2\pi 

\int 
\BbbR 3

(\scrF  - 1G)(x - y;\omega )(\scrF  - 1S)(y,\omega )dy

=

\int 
\BbbR 3

\Phi (x - y;\omega /c)f(y,\omega )dy.

(1.6)
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1379

Here, \Phi (x;k) is the fundamental solution to the Helmholtz equation (\Delta + k2)w= 0, given by

\Phi (x;k) =
eik| x| 

4\pi | x| 
, x\in \BbbR 3, | x| \not = 0.

Taking the inverse Fourier transform on the wave equation yields the inhomogeneous Helmholtz
equation

\Delta u(x,\omega ) +
\omega 2

c2
u(x,\omega ) = - f(x,\omega ), x\in \BbbR 3, \omega > 0.(1.7)

From (1.6) we observe that u satisfies the Sommerfeld radiation condition

lim
r\rightarrow \infty 

r
\Bigl( 
\partial ru - i

\omega 

c
u
\Bigr) 
= 0, r= | x| ,(1.8)

which holds uniformly in all directions x/| x| .

1.2. Formulation in the frequency domain and literature review. Denote by [\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x}]
an interval of frequencies on the positive real axis. From the time-domain settings we see

f(x,\omega ) = 0 for all x /\in \Gamma , \omega \in [\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x}],

implying supp f(\cdot , \omega ) = \Gamma for all \omega \in [\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x}]. For every \omega > 0, the unique solution u to
(1.7)--(1.8) is given by (1.6), i.e.,

u(x,\omega ) =

\int 
\BbbR 3

\Phi (x - y;\omega /c)f(y,\omega )dy=
1\surd 
32\pi 3

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei\omega (t+c - 1| x - a(t)| )

| x - a(t)| 
\ell (t)dt, x /\in \Gamma .(1.9)

Noting that the time-dependent source S is real-valued, we have f(x, - \omega ) = f(x,\omega ) for all
\omega > 0 and thus u(x, - \omega ) = u(x,\omega ).

In this paper we are interested in the following inverse problem (see Figure 1):
(IP): Recovery the trajectory \Gamma using the multifrequency near-field data

\{ u(x(j), \omega ) : \omega \in [\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x}], j = 1,2, . . . ,M\} , x(j) \in SR := \{ x : | x| =R\} ,

where R> supt\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}] | a(t)| .
A specific question of interest for (IP) is framed as follows:

What kind information on \Gamma can be extracted from the multifrequency near-field data
\{ u(x,\omega ) : \omega \in [\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x}]\} at a single observation point x\in SR?

The above questions are of great significance in various industrial, medical, and military
applications. This is mainly due to the fact that, in practical scenarios, the number of available
measurement positions is inherently quite limited and the multifrequency data can always be
acquired by inverse Fourier transforming the time-dependent signals.

To the best of the authors' knowledge, mathematical studies on direct and inverse scatter-
ing theory for moving targets are relatively scarce when compared to the extensive literature
dedicated to scattering by stationary objects (see the monograph [13]). Cooper and Strauss
[3, 4] and Stefanov [21] have made significant contributions to the rigorous mathematical
theory of direct and inverse scattering from moving obstacles. Recently, there has been a
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1380 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

| x(j)| = R, u(x(j), \omega )

\Gamma 

a(t\mathrm{m}\mathrm{i}\mathrm{n})

a(t\mathrm{m}\mathrm{a}\mathrm{x})

Figure 1. Imaging the trajectory \Gamma from knowledge of multifrequency near-field data measured at a finite
number of observation points | x(j)| =R, j = 1,2, . . . ,M .

growing research interest in detecting the motion of a moving point source governed by inho-
mogeneous wave equations. Several inversion algorithms have been proposed to recover the
trajectory, profile and magnitude of a moving point source---for example, the algebraic method
[19, 22, 20], the time-reversal method [6], the method of fundamental solutions [1], matched-
filter and correlation-based imaging schemes [5], the iterative thresholding scheme [18], and
the method of Bayesian inference [16, 23]. In addition, the references [17, 10, 11, 12, 14]
provide uniqueness and stability results on the identification of moving sources.

The focus of this paper is on establishing a factorization method for imaging the trajec-
tory \Gamma using multifrequency near-field data measured at sparse positions. The Factorization
method, initially proposed by Kirsch in 1998 [15], has found successful applications in various
inverse scattering problems involving multistatic data at a fixed energy (or equivalently, the
Dirichlet-to-Neumann map). Its multifrequency version was investigated in [7] and [8] for
inverse stationary source problems. Using the multifrequency data at a single observation
direction, one can reconstruct the smallest strip encompassing the support of the source and
perpendicular to the observation direction. Moreover, the data from sparse near-field ob-
servations can be used to recover the \Theta -convex polygon (i.e., a convex polygonal region with
normals aligned to observation directions) of the support. In our previous paper [9] we studied
the same kind of inverse moving source problems by using the multifrequency far-field data.
The aim of this paper is to carry over the analysis and numerics of [9] to the near-field case.

Similar to the discussions in [9], we will show that imaging the smallest annular region of
the motion from a single receiver is impossible for general orbit functions. This can be achieved
only when the observation point is observable as defined in Definition 3.7 and when the or-
bit function possesses some monotonicity properties (see Theorem 4.4(ii)). In the absence of

these conditions, one can solely obtain a slimmer annulus A
(x)
\Gamma (to be defined in (3.12)), with

a width less than the aforementioned smallest annulus. For non-observable points, the test
functions cannot lie in the range of the data-to-pattern operator as indicated in Lemma 3.12.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1381

Consequently, extracting any information on the motion of a moving source fails in principle,
although the numerical reconstructions still display partial information. Utilizing sparse ob-
servable points, we propose an indicator function for imaging the analogue of the \Theta -convex
domain related to the trajectory. Some uniqueness results are summarized in Theorem 4.4 as
a byproduct of the factorization scheme established in Theorems 4.1 and 4.3.

The remainder of the paper is structured as follows. Section 2 focuses on the factorization
of the multifrequency near-field operator \scrN (x), where | x| = R is a fixed observation point.
The factorization is based upon the data-to-pattern operator \scrL (x) and a middle operator
of multiplication form, following the approach presented in [9] and [7]. A range identity
is presented to establish a connection between the ranges of \scrN (x) and \scrL (x). Section 3 is
dedicated to the selection of appropriate test functions that effectively characterize the annulus

A
(x)
\Gamma through analysis of the range of the data-to-pattern operator \scrL (x). In section 4, we

define indicator functions by using the near-field data measured at one or sparse observable
positions. Finally, section 5 presents numerical tests performed in three dimensions, validating
the concepts discussed in the preceding sections.

2. Factorization of near-field operator. The objective of this section is to develop a
multifrequency factorization method, employed to recover the trajectory \Gamma = Suppf(\cdot , \omega )
from the near-field data measured at the point x \in SR. For this purpose, we will adopt the
approach outlined in [8] to derive a factorization of the near-field operator \scrN (x). Motivated
by [7], we introduce two key parameters: the central frequency \kappa and half of the bandwidth
of the near-field data denoted as K.

\kappa :=
\omega \mathrm{m}\mathrm{i}\mathrm{n} + \omega \mathrm{m}\mathrm{a}\mathrm{x}

2
, K :=

\omega \mathrm{m}\mathrm{a}\mathrm{x}  - \omega \mathrm{m}\mathrm{i}\mathrm{n}

2
.

These notations enable us to define the linear near-field operator \scrN (x) : L2(0,K)\rightarrow L2(0,K)
by

(\scrN (x)\phi )(\tau ) :=

\int K

0
u(x,\kappa + \tau  - s)\phi (s)ds, \tau \in (0,K).(2.1)

Recall from (1.9) that u is analytic in \omega \in \BbbR . Hence the near-field operator \scrN (x) :L2(0,K)\rightarrow 
L2(0,K) is bounded. Further, it follows from (1.9) that

(\scrN (x)\phi )(\tau ) =

\int K

0

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei(\kappa +\tau  - s)(t+c - 1| x - a(t)| )

8\pi 2| x - a(t)| 
\ell (t)dt\phi (s)ds.(2.2)

Below we shall prove a factorization of the above near-field operator.

Theorem 2.1. We have \scrN (x) =\scrL \scrT \scrL \ast , where \scrL =\scrL (x) :L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x})\rightarrow L2(0,K) is defined
by

(\scrL \psi )(\tau ) :=
\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei\tau (t+c - 1| x - a(t)| )\psi (t)dt, \tau \in (0,K),(2.3)

for all \psi \in L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}). Here the middle operator \scrT : L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) \rightarrow L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) is a
multiplication operator defined by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1382 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

(\scrT \varphi )(t) := ei\kappa (t+c - 1| x - a(t)| )
\surd 
32\pi 3| x - a(t)| 

\ell (t)\varphi (t).(2.4)

Proof. We first show that the adjoint operator \scrL \ast : L2(0,K)\rightarrow L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) of \scrL can be
expressed by

(\scrL \ast \phi )(t) :=

\int K

0
e - is(t+c - 1| x - a(t)| )\phi (s)ds, \phi \in L2(0,K).(2.5)

Indeed, for \psi \in L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) and \phi \in L2(0,K), it holds that

\langle \scrL \psi ,\phi \rangle L2(0,K) =

\int K

0

\biggl( \int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei\tau (t+c - 1| x - a(t)| )\psi (t)dt

\biggr) 
\phi (\tau )d\tau 

=

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

\psi (t)

\biggl( \int K

0
e - i\tau (t+c - 1| x - a(t)| )\phi (\tau )d\tau 

\biggr) 
dt

= \langle \psi ,\scrL \ast \phi \rangle L2(t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}),

which implies (2.5). By the definition of \scrT , we have

(\scrT \scrL \ast \phi )(t) =
ei\kappa (t+c - 1| x - a(t)| )
\surd 
32\pi 3| x - a(t)| 

\ell (t)

\int K

0
e - is(t+c - 1| x - a(t)| )\phi (s)ds, \phi \in L2(0,K).

Hence, using (1.5) and (2.2),

(\scrL \scrT \scrL \ast \phi )(\tau ) =

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei\tau (t+c - 1| x - a(t)| )

\Biggl( 
ei\kappa (t+c - 1| x - a(t)| )
\surd 
32\pi 3| x - a(t)| 

\ell (t)

\int K

0
e - is(t+c - 1| x - a(t)| )\phi (s)ds

\Biggr) 
dt

=

\int K

0

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei(\kappa +\tau  - s)(t+c - 1| x - a(t)| )
\surd 
32\pi 3| x - a(t)| 

\ell (t)dt\phi (s)ds

= (\scrN (x)\phi )(\tau ).

This proves the factorization \scrN (x) =\scrL \scrT \scrL \ast .

Remark 2.2. In the subsequent sections of this paper, we shall designate the operator \scrL 
as the data-to-pattern operator associated with the orbit function a(t). It is evident that the

near-field data given by (1.9) can be represented as u(x,\omega ) = (\scrL \ell (t)\surd 
32\pi 3| x - a(t)| )(\omega ).

Denote by Range(\scrL ) the range of the data-to-pattern operator \scrL =\scrL (x) (see (2.3)) acting
on L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}).

Lemma 2.3. The operator \scrL :L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x})\rightarrow L2(0,K) is compact with dense range.

Proof. For any \psi \in L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}), it holds that \scrL \psi \in H1(0,K), which is compactly
embedded into L2(0,K). This proves the compactness of \scrL . By (2.5), (\scrL \ast \phi )(t) coincides with
the Fourier transform of \phi at t + c - 1| x - a(t)| . If the set \{ t+ c - 1| x - a(t)| : t \in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]\} 
forms an interval of \BbbR , the relation (\scrL \ast \phi )(t) = 0 implies \phi = 0 in L2(0,K) with the properties
of Fourier transform. When t+c - 1| x - a(t)| equals a constant C as t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}], (\scrL \ast \phi )(t) = 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1383

also implies \phi = 0 in L2(0,K). Hence, \scrL \ast is injective. The denseness of Range(\scrL ) in L2(0,K)
follows from the injectivity of \scrL \ast .

Within the framework of the factorization method, it is essential to connect the ranges of
\scrN (x) and \scrL . We first recall that, for a bounded operator F : Y \rightarrow Y in a Hilbert space Y , the
real and imaginary parts of F are defined respectively by

ReF =
F + F \ast 

2
, ImF =

F  - F \ast 

2i
,

which are both self-adjoint operators. Furthermore, by spectral representation we define the
self-adjoint and positive operator | ReF | as

| ReF | =
\int 
\BbbR 
| \lambda | dE\lambda if ReF =

\int 
\BbbR 
\lambda dE\lambda .

Here E\lambda represents the projection measure. The self-adjoint and positive operator | ImF | can
be defined analogously. Introduce a new operator

F\# := | ReF | + | ImF | .

Since F\# is self-adjoint and positive, its square root F
1/2
\# is defined as

F
1/2
\# :=

\int 
\BbbR +

\surd 
\lambda dE\lambda if F\# =

\int 
\BbbR +

\lambda dE\lambda .

In this paper we need the following result from functional analysis.

Theorem 2.4 (see [8]). Let X and Y be Hilbert spaces and let F : Y \rightarrow Y , L :X \rightarrow Y , T :
X\rightarrow X be linear bounded operators such that F =LTL\ast . We make the following assumptions:

(i) L is compact with dense range and thus L\ast is compact and one-to-one.
(ii) ReT and ImT are both one-to-one, and the operator T\# = | ReT | + | ImT | :X\rightarrow X is

coercive, i.e., there exists c > 0 with

\langle T\#\varphi ,\varphi \rangle \geq c | | \varphi | | 2 for all \varphi \in X.

Then the operator F\# is positive and the ranges of F
1/2
\# : Y \rightarrow Y and L :X\rightarrow Y coincide.

To apply Theorem 2.4 to our inverse problem, we set

F =\scrN (x), L=\scrL , T = \scrT , X =L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}), Y =L2(0,K),

where \scrT is the multiplication operator of (2.4). It is easy to see that

[(Re\scrT )\varphi ] (t) =
cos[\kappa (t+ c - 1| x - a(t)| )]\surd 

32\pi 3| x - a(t)| 
\ell (t)\varphi (t),

[(Im\scrT )\varphi ] (t) =
sin[\kappa (t+ c - 1| x - a(t)| )]\surd 

32\pi 3| x - a(t)| 
\ell (t)\varphi (t)
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1384 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

are both one-to-one operators from L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) onto L
2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}). The coercivity assump-

tion of \scrN (x) yields the coercivity of \scrT \#. As a consequence of Theorem 2.4, we obtain

Range [(\scrN (x))
1/2
\# ] = Range (\scrL (x)) for any x\in SR.(2.6)

Let \varphi \in L2(0,K) be a test function. We want to characterize the range of \scrL (x) through

the choice of \varphi . Denote by (\lambda 
(x)
n ,\psi 

(x)
n ) an eigensystem of the positive and self-adjoint operator

(\scrN (x))\#, which is uniquely determined by the multifrequency near-field data \{ u(x,\omega ) : \omega \in 
(\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x})\} . Applying Picard's theorem and Theorem 2.4, we obtain

\varphi \in Range(\scrL (x)) if and only if

\infty \sum 
n=1

| \langle \varphi ,\psi (x)
n \rangle | 2

| \lambda (x)n | 
<+\infty .(2.7)

To establish the factorization method, we now need to choose a proper class of test functions
which usually rely on a sample variable in \BbbR 3.

3. Range of \bfscrL (\bfitx ) and test functions. To characterize the range of \scrL (x), we need to
investigate monotonicity of the function h(t) := t+ c - 1| x - a(t)| \in C1[t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]. To achieve
this goal, we introduce the concept of division points for a continuous function defined over a
closed interval.

Definition 3.1 (see [9]). Let f \in C[t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]. The point t\in (t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) is called a division
point if

(1) f(t) = 0;
(2) there exists an \epsilon 0 > 0 such that either | f(t+ \epsilon )| > 0 or | f(t - \epsilon )| > 0 for all 0< \epsilon < \epsilon 0.

Obviously, the division points constitute a subset of the zero set of a continuous function.
However, a division point cannot be an interior point of the zero set. Given that a(t) \in 
C1[t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}], there exist a finite number of division points for the function h\prime . Let's denote
these points as t1 < t2 < \cdot \cdot \cdot < tn - 1. This process divides the interval [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}] into n sub-
intervals, namely [tj - 1, tj ] for j = 1,2, . . . , n, where we set t\mathrm{m}\mathrm{i}\mathrm{n} = t0 and t\mathrm{m}\mathrm{a}\mathrm{x} = tn. Let aj
and hj be the restrictions of a and h to [tj - 1, tj ], respectively. Let aj and hj represent the
restrictions of functions a and h to the subinterval [tj - 1, tj ], respectively. We then define

\xi 
(x)
j,\mathrm{m}\mathrm{i}\mathrm{n} := inf

t\in [tj - 1,tj ]
\{ hj(t)\} , \xi 

(x)
j,\mathrm{m}\mathrm{a}\mathrm{x} := sup

t\in [tj - 1,tj ]
\{ hj(t)\} , j = 1,2, . . . , n.

In each subinterval (tj - 1, tj), one of the following cases must hold:
\bullet h\prime j(t)> 0 for all t\in (tj - 1, tj). There holds

\xi 
(x)
j,\mathrm{m}\mathrm{i}\mathrm{n} = tj - 1 + c - 1| x - aj(tj - 1)| , \xi 

(x)
j,\mathrm{m}\mathrm{a}\mathrm{x} = tj + c - 1| x - aj(tj)| .

\bullet h\prime j(t)< 0 for all t\in (tj - 1, tj). We have

\xi 
(x)
j,\mathrm{m}\mathrm{i}\mathrm{n} = tj + c - 1| x - aj(tj)| , \xi 

(x)
j,\mathrm{m}\mathrm{a}\mathrm{x} = tj - 1 + c - 1| x - aj(tj - 1)| .

\bullet h\prime j(t) = 0 for all t\in (tj - 1, tj). Consequently,

\xi 
(x)
j,\mathrm{m}\mathrm{i}\mathrm{n} = \xi 

(x)
j,\mathrm{m}\mathrm{a}\mathrm{x} = t+ c - 1| x - aj(t)| , t\in [tj - 1, tj ].
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1385

Define

\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n} :=min

j
\xi 
(x)
j,\mathrm{m}\mathrm{i}\mathrm{n} = inf

t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]
\{ h(t)\} , \xi (x)\mathrm{m}\mathrm{a}\mathrm{x} :=max

j
\xi 
(x)
j,\mathrm{m}\mathrm{a}\mathrm{x} = sup

t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]
\{ h(t)\} ,(3.1)

which denote the minimum and maximum of h over [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}], respectively. If | h\prime j(t)| > 0,
the monotonicity of the function \xi = hj(t) for t \in [tj , tj - 1] implies the inverse function t =

h - 1
j (\xi )\in C1[\xi 

(x)
j,\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

x)
j,\mathrm{m}\mathrm{a}\mathrm{x}]. Set

J = \{ j \in \BbbN : 1\leq j \leq n,h\prime j(t)\equiv 0, t\in (tj - 1, tj)\} ,

and assume hj(t)\equiv cj \in \BbbR for j \in J . Note that it is possible that J = \emptyset .
With these notations we can rephrase the operator \scrL (x) defined by (2.3) as

(\scrL (x)\psi )(\tau ) =

n\sum 
j=1

\int tj

tj - 1

ei\tau hj(t)\psi (t)dt

=
\sum 
j /\in J

\int tj

tj - 1

ei\tau hj(t)\psi (t)dt+
\sum 
j\in J

ei\tau cj
\int tj

tj - 1

\psi (t)dt.

(3.2)

For j \in J , using ei\tau c =
\surd 
2\pi \scrF  - 1\delta (t - c) we can rewrite each term in the second sum as

ei\tau cj
\int tj

tj - 1

\psi (t)dt=
\surd 
2\pi \scrF  - 1\delta (t - cj)

\int tj

tj - 1

\psi (t)dt.(3.3)

For j /\in J and h\prime j(t) > 0, the integral in the first summation on the right-hand side of (3.2)
takes the form \int tj

tj - 1

ei\tau hj(t)\psi (t)dt=

\int \xi 
(x)
j,\mathrm{m}\mathrm{a}\mathrm{x}

\xi 
(x)
j,\mathrm{m}\mathrm{i}\mathrm{n}

ei\tau \xi \psi (h - 1
j (\xi )) (h - 1

j (\xi ))\prime d\xi 

=

\int \xi 
(x)
j,\mathrm{m}\mathrm{a}\mathrm{x}

\xi 
(x)
j,\mathrm{m}\mathrm{i}\mathrm{n}

ei\tau \xi \psi (h - 1
j (\xi ))| (h - 1

j (\xi ))\prime | d\xi .

Note that [h - 1
j (\xi )]\prime > 0, due to the relation h\prime j(t)[h

 - 1
j (\xi )]\prime = 1. Analogously, if h\prime j(t) < 0 for

some j /\in J , we have [h - 1
j (\xi )]\prime < 0 and thus\int tj

tj - 1

ei\tau hj(t)\psi (t)dt= - 
\int \xi 

(x)
j,\mathrm{m}\mathrm{a}\mathrm{x}

\xi 
(x)
j,\mathrm{m}\mathrm{i}\mathrm{n}

ei\tau \xi \psi (h - 1
j (\xi ))(h - 1

j (\xi ))\prime d\xi 

=

\int \xi 
(x)
j,\mathrm{m}\mathrm{a}\mathrm{x}

\xi 
(x)
j,\mathrm{m}\mathrm{i}\mathrm{n}

ei\tau \xi \psi (h - 1
j (\xi ))| (h - 1

j (\xi ))\prime | d\xi .

Now, extending h - 1
j by zero from (\xi 

(x)
j,\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
j,\mathrm{m}\mathrm{a}\mathrm{x}) to \BbbR and extending \psi \in L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) by zero

to L2(\BbbR ), we can write each term for j /\in J as\int tj

tj - 1

ei\tau hj(t)\psi (t)dt=

\int 
\BbbR 
ei\tau \xi \psi (h - 1

j (\xi ))| (h - 1
j (\xi ))\prime | d\xi .(3.4)
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1386 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

Combining (3.2), (3.3), and (3.4), we get

(\scrL (x)\psi )(\tau ) =

\int 
\BbbR 
ei\tau \xi g(\xi )d\xi ,(3.5)

with

g(\xi ) =
\sum 
j /\in J

\psi (h - 1
j (\xi )) | (h - 1

j (\xi ))\prime | +
\sum 
j\in J

\delta (\xi  - cj)

\int tj

tj - 1

\psi (t)dt.

Note that g is a generalized distribution if J \not = \emptyset and that g coincides with the Fourier transform

of \scrL (x)\psi up to some constant. Since the inverse function h - 1
j : [\xi 

(x)
j,\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
j,\mathrm{m}\mathrm{a}\mathrm{x}] \rightarrow [tj - 1, tj ] is a

bijection, we have supp h - 1
j (\xi ) = [\xi 

(x)
j,\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
j,\mathrm{m}\mathrm{a}\mathrm{x}]. Additionally, we have g(cj) \not = 0 as j \in J , and

cj belongs to the interval [\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}]. Hence, we show the support of the function g as follows:

supp(g(\xi ))\subset 

\left\{   \bigcup 
j /\in J

supp(h - 1
j )

\right\}   \bigcup \{ cj , j \in J\} = [\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}].

Summing up the above arguments, we arrive at the following lemma.

Lemma 3.2. Let \Gamma = \{ y : y = a(t), t \in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]\} \subset \BbbR 3 be a C1-smooth curve with
t\mathrm{m}\mathrm{a}\mathrm{x} > t\mathrm{m}\mathrm{i}\mathrm{n}. Then

(\scrF \scrL (x)\psi )(\xi ) =
\surd 
2\pi 

\left(  \sum 
j /\in J

\psi (h - 1
j (\xi )) | (h - 1

j (\xi ))\prime | +
\sum 
j\in J

\delta (\xi  - cj)

\int tj

tj - 1

\psi (t)dt

\right)  .(3.6)

Moreover,

supp(\scrF \scrL (x)\psi )\subset [\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}].

Below we provide a sufficient condition to ensure trivial intersections of the ranges of two
data-to-pattern operators corresponding to different trajectories.

Lemma 3.3. Let \Gamma a = \{ y : y = a(t), t \in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]\} \subset \BbbR 3 and \Gamma b = \{ y : y = b(t), t \in 
[t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]\} \subset \BbbR 3 be C1-smooth curves such that\Biggl[ 

inf
t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]

(t+ c - 1| x - a(t)| ), sup
t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]

(t+ c - 1| x - a(t)| )

\Biggr] 
\bigcap \Biggl[ 

inf
t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]

(t+ c - 1| x - b(t)| ), sup
t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]

(t+ c - 1| x - b(t)| )

\Biggr] 
= \emptyset .(3.7)

Let \scrL (x)
a and \scrL (x)

b be the data-to-pattern operators associated with \Gamma a and \Gamma b, respectively.

Then Range(\scrL (x)
a )\cap Range(\scrL (x)

b ) = \{ 0\} .
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1387

Proof. Let fa, fb \in L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) be such that (\scrL (x)
a fa)(\tau ) = (\scrL (x)

b fb)(\tau ) := Q(\tau ,x). We
need to prove Q(\cdot , x)\equiv 0. By the definition of \scrL (see (2.3)), the function

\tau \rightarrow Q(\tau ,x) =

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei\tau (t+c - 1| x - a(t)| )fa(t)dt=

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei\tau (t+c - 1| x - b(t)| )fb(t)dt

belongs to L2(0,K). Since Q(\tau ,x) is analytic in \tau \in \BbbR , the previous relation is well defined
for any \tau \in \BbbR . By Definition 3.1, we suppose that \{ tj\} n - 1

j=1 and \{ \~tj\} m - 1
j=1 are division points of

the functions ha(t) = t+ c - 1| x - a(t)| and hb(t) = t+ c - 1| x - b(t)| , respectively. Analogously
we define hj,a(t) := t + c - 1| x  - aj(t)| , hj,b(t) := t + c - 1| x  - bj(t)| , and Ja := \{ j \in \BbbN : 1 \leq 
j \leq n,h\prime j,a(t) \equiv 0, t \in (tj - 1, tj)\} , Jb := \{ j \in \BbbN : 1 \leq j \leq m,h\prime j,b(t) \equiv 0, t \in (\~tj - 1, \~tj)\} . Denote
hj,a(t)\equiv cj,a for j \in Ja and hj,b(t)\equiv cj,b for j \in Jb.

Using the formula (3.5), the function Q(\cdot , x) can be rewritten as the inverse Fourier trans-
forms

Q(\tau ,x) =

\int 
\BbbR 
ei\tau \xi ga(\xi ,x)d\xi =

\int 
\BbbR 
ei\tau \xi gb(\xi ,x)d\xi ,(3.8)

with

ga(\xi ,x) =
\sum 
j /\in Ja

fa(h
 - 1
j,a(\xi )) | (h

 - 1
j,a(\xi ))

\prime | +
\sum 
j\in Ja

\delta (\xi  - cj,a)

\int tj

tj - 1

fa(t)dt,

gb(\xi ,x) =
\sum 
j /\in Jb

fb(h
 - 1
j,b (\xi )) | (h

 - 1
j,b (\xi ))

\prime | +
\sum 
j\in Jb

\delta (\xi  - cj,b)

\int \~tj

\~tj - 1

fb(t)dt.

This implies ga(\xi ,x) = gb(\xi ,x) for all \xi \in R. On the other hand, the support sets of ga and gb
satisfy

suppga(\cdot , x)\subset 

\Biggl[ 
inf

t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]
(t+ c - 1| x - a(t)| ), sup

t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]
(t+ c - 1| x - a(t)| )

\Biggr] 
,

suppgb(\cdot , x)\subset 

\Biggl[ 
inf

t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]
(t+ c - 1| x - b(t)| ), sup

t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]
(t+ c - 1| x - b(t)| )

\Biggr] 
.

Hence, by the condition (3.7) we obtain ga(\xi ,x) = gb(\xi ,x)\equiv 0 for all \xi \in \BbbR . In view of (3.8),
we get Q(\cdot , x)\equiv 0.

Remark 3.4. A sufficient condition to ensure (3.7) is

inf
t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]

| x - b(t)| > sup
t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]

| x - a(t)| + c(t\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{i}\mathrm{n}).(3.9)

In Figure 2 we show an example of two orbit functions which satisfy the condition (3.9).

For any y \in \BbbR 3, define the parameter-dependent test functions \phi 
(x)
y \in L2(0,K) by

\phi (x)y (\omega ) =
1

| t\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{i}\mathrm{n}| 

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei\omega (t+c - 1| x - y| )dt, \omega \in (0,K).(3.10)

Here we emphasize that the test function \phi 
(x)
y depends on both the observation point x \in SR

and the sampling point y \in \BbbR 3. The Fourier transform of the aforementioned test function is
given as follows.
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1388 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

a(t)

b(t)

x = (0, 0, 0)

\mathrm{i}\mathrm{n}\mathrm{f}
t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]

| x - b(t)|  - \mathrm{s}\mathrm{u}\mathrm{p}
t\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]

| x - a(t)| 

Figure 2. Illustration of two trajectories a(t) and b(t) in the Ox1x3-plane such that Range(\scrL (x)
a ) \cap 

Range(\scrL (x)
b ) = \{ 0\} . Here we set x= (0,0,0), c= 1, a(t) = (t - 2,0,1), and b(t) = (t - 2,0,4) with t \in [1,3] (the

black segments). Since inft\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}] | x - b(t)| = 4 and supt\in [t\mathrm{m}\mathrm{i}\mathrm{n},t\mathrm{m}\mathrm{a}\mathrm{x}]
| x - a(t)| =

\surd 
2, the condition (3.9) is

fulfilled, which implies the condition (3.7).

Lemma 3.5. We have

[\scrF \phi (x)y ](\tau ) =

\biggl\{ \surd 
2\pi /| t\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{i}\mathrm{n}| if \tau \in 

\bigl[ 
t\mathrm{m}\mathrm{i}\mathrm{n} + c - 1| x - y| , t\mathrm{m}\mathrm{a}\mathrm{x} + c - 1| x - y| 

\bigr] 
,

0 otherwise.
(3.11)

Proof. Letting \tau = t+ c - 1| x - y| , we can rewrite the function \phi 
(x)
y as

\phi (x)y (\omega ) =

\int 
\BbbR 
ei\omega \tau gy(\tau ,x)d\tau ,

where

gy(\tau ,x) :=

\left\{   
1

| t\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{i}\mathrm{n}| 
if \tau \in 

\bigl[ 
t\mathrm{m}\mathrm{i}\mathrm{n} + c - 1| x - y| , t\mathrm{m}\mathrm{a}\mathrm{x} + c - 1| x - y| 

\bigr] 
,

0 otherwise.

Therefore, [\scrF \phi (x)y ](\tau ) =
\surd 
2\pi gy(\tau ,x).

In the following we present a necessary condition imposed on the observation point x and

radiating period T := t\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{i}\mathrm{n} to guarantee that the test function \phi 
(x)
y lies in the range of

the data-to-pattern operator.

Lemma 3.6. If \phi 
(x)
y \in Range(\scrL (x)) for some y \in \BbbR 3, we have \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}  - \xi 

(x)
\mathrm{m}\mathrm{i}\mathrm{n} \geq T . Here \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}

and \xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n} are defined by (3.1).

Proof. If \phi 
(x)
y \in Range(\scrL (x)), there exists a function \psi \in L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}) such that \phi 

(x)
y =

\scrL (x)\psi in L2(0,K). Since both \phi 
(x)
y and \scrL (x)\psi are analytic functions over \BbbR , it holds that

\phi 
(x)
y (\omega ) = (\scrL (x)\psi )(\omega ) for all \omega \in \BbbR . Then their support sets must be identical, i.e.,

supp(\scrF \phi (x)y ) = supp(\scrF \scrL (x)\phi ) \subset [\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}], where we have used Lemma 3.2. Hence, the

length of supp(\scrF \phi (x)y ), which can be seen from Lemma 3.5, must be less than or equal to that

of [\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}], i.e.,
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1389

\xi (x)\mathrm{m}\mathrm{a}\mathrm{x}  - \xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n} \geq t\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{i}\mathrm{n} = T.

From the above lemma we conclude that \phi 
(x)
y /\in Range(\scrL (x)) for all y \in \BbbR 3 if \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x} - \xi (x)\mathrm{m}\mathrm{i}\mathrm{n} <T .

Inspired by this fact, we introduce the concept of observable points.

Definition 3.7. Let \xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n} and \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x} be the maximum and minimum of the function h(t) =

t+ c - 1| x - a(t)| \in C1[t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}] (see (3.1)), respectively. The measurement position x\in \BbbR 3\setminus \Gamma 
is called an observable point if \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}  - \xi 

(x)
\mathrm{m}\mathrm{i}\mathrm{n} \geq T . The measurement position x\in \BbbR 3\setminus \Gamma is called

non-observable if \xi 
(x)
\mathrm{m}\mathrm{a}\mathrm{x}  - \xi 

(x)
\mathrm{m}\mathrm{i}\mathrm{n} <T .

In this paper observable and non-observable points always mean measurement positions
that are away from the trajectory. We remark that the set of observable points is uniquely
determined by the orbit function a(t) in conjunction with the starting and terminal time
points t\mathrm{m}\mathrm{i}\mathrm{n} and t\mathrm{m}\mathrm{a}\mathrm{x}. In the case of non-observable points x, our approach does not yield any
information about the orbit function, a fact that will be elucidated in the second assertion of
Theorem 4.1. For an observable point x satisfying (x - a(t)) \cdot a\prime (t)\leq 0 for all t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}], we
will show that it is possible to reconstruct the smallest annulus encompassing the trajectory
and centered at x. However, in cases in which (x - a(t)) \cdot a\prime (t)\leq 0 for all t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}] is not
fulfilled, one can only except to image a slimmer annulus centered at the observable point x.
In the subsequent sections, we proceed with the observable points/positions for orbit functions
defined by a straight line (see Figure 3) and a semicircle (see Figure 4) in three dimensions.
In both examples, we assume c= 1.

Example 1: A straight line segment in \BbbR \bfthree . Consider an acoustic point source which is
moving along a straight line.

x1

x3

 - 8  - 6  - 4  - 2 2 4 6 8

 - 8

 - 6

 - 4

 - 2

2

4

6

8

a(t\mathrm{m}\mathrm{i}\mathrm{n})

a(t\mathrm{m}\mathrm{a}\mathrm{x})

x3 = 3

x3 = 6

Figure 3. Illustration of observable (green arc) and non-observable (dotted arc) points for the trajectory
a(t) = (0,0,2t) for t\in [1,2] in the Ox1x3-plane.
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x1

x2

 - 2  - 1 1 2

 - 2

 - 1

1

2

a(t\mathrm{m}\mathrm{i}\mathrm{n}) a(t\mathrm{m}\mathrm{a}\mathrm{x})

\Gamma 

Figure 4. Illustration of the observable points (green area excluding the trajectory \Gamma ) and non-observable
points (red area excluding the trajectory \Gamma ) for the trajectory a(t) = (0.5cos t,0.5 sin t,0) with t \in [\pi ,2\pi ] in the
Ox1x2-plane.

Lemma 3.8. Define the orbit function a(t) := (0,0,2t) \in \BbbR 3 for t \in [1,2]. Then the point

x= (x1, x2, x3)\in \BbbR 3, | x| = 6, is observable if x3 \in [ - 6, 3 - 
\surd 
33

2 ]
\bigcup 
[3,6].

Proof. From the expression of the orbit function a(t), we have

h(t) = t+ | x - a(t)| = t+
\sqrt{} 
x21 + x22 + (x3  - 2t)2 = t+

\sqrt{} 
(2t - x3)2 + 36 - x23,

h\prime (t) = 1+ | x - a(t)| \prime = 1+
2(2t - x3)\sqrt{} 

(2t - x3)2 + 36 - x23
.

We notice that h\prime (t) \geq 0 as t \geq t0 and h\prime (t) < 0 as t < t0, where t0 :=
x3

2  - 
\sqrt{} 

3 - x2
3

12 . Hence,

there are three cases for the relationship between t0 and [1,2].

Case (i): If t0 \leq 1, then x3  - 2 \leq 
\sqrt{} 

12 - x2
3

3 , which means x3 \in [ - 6, 3+
\surd 
33

2 ]. In this case,

h(t) is monotonically increasing in [1,2]. So, if x is observable, we have

h(2) - h(1)\geq 1,

that is,

(4 - x3)
2 \geq (2 - x3)

2.

Thus, x\in S6 is an observable point if x3 \in [ - 6,3].

Case (ii): If t0 \in [1,2], then x3 - 4\leq 
\sqrt{} 

12 - x2
3

3 \leq x3 - 2, which means x3 \in [3+
\surd 
33

2 ,3+
\surd 
6].

In this case, h(t) is monotonically decreasing in [1, t0] and monotonically increasing in [t0,2].
We notice that

max\{ h(1), h(2)\}  - h(t0)< 1

for all x3 \in [3+
\surd 
33

2 ,3 +
\surd 
6].
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1391

Case (iii): If t0 \geq 2, then x3  - 4 \geq 
\sqrt{} 

12 - x2
3

3 , which means x3 \in [3 +
\surd 
6,6]. In this case,

h(t) is monotonically decreasing in [1,2]. So, if x is observable, we have

h(1) - h(2)\geq 1,

that is, \sqrt{} 
(2 - x3)2 + 36 - x23  - 

\sqrt{} 
(4 - x3)2 + 36 - x23 \geq 2.

Thus, x\in S6 is an observable point if x3 = 6.
To sum up, we deduce that an observable point x\in \BbbR 3, | x| = 6 should fulfill the relation

x3 \in [ - 6,3]
\bigcup 

\{ 6\} .

Example 2: A semicircle in \BbbR \bfthree . Suppose that an acoustic point source moves along a
semicircle centered at z = (z1, z2, z3)\in \BbbR 3.

Lemma 3.9. Let the orbit function be a(t) = (0.5cos t + z1,0.5 sin t + z2, z3) \in \BbbR 3 for t \in 
[\pi ,2\pi ]. Then x= (x1, x2, x3) /\in \Gamma is observable if x1 \leq z1.

Proof. From the expression of the orbit function a(t), we have

h(t) = t+ | x - a(t)| = t+
\sqrt{} 

(x1  - z1  - 0.5cos t)2 + (x2  - z2  - 0.5 sin t)2 + (x3  - z3)2.

It is obvious that | a\prime (t)| < 1. Then we get h\prime (t)> 0 for all t\in [\pi ,2\pi ], that is, the function h(t)
is monotonically increasing in [\pi ,2\pi ]. Hence,

\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n} = \pi +

\sqrt{} 
(x1  - z1 + 0.5)2 + (x2  - z2)2 + (x3  - z3)2,

\xi (x)\mathrm{m}\mathrm{a}\mathrm{x} = 2\pi +
\sqrt{} 

(x1  - z1  - 0.5)2 + (x2  - z2)2 + (x3  - z3)2.

If x is observable, we have

\xi (x)\mathrm{m}\mathrm{a}\mathrm{x}  - \xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n} = \pi +

\sqrt{} 
(x1  - z1  - 0.5)2 + (x2  - z2)2 + (x3  - z3)2

 - 
\sqrt{} 

(x1  - z1 + 0.5)2 + (x2  - z2)2 + (x3  - z3)2

\geq T = \pi ,

that is,

(x1  - z1  - 0.5)2 \geq (x1  - z1 + 0.5)2.

One can find x1 \leq z1 through simple calculations.

Given the trajectory \Gamma = \{ y : y= a(t), t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]\} , the set

\Lambda \Gamma :=

\biggl\{ 
y \in \BbbR 3 : inf

z\in \Gamma 
| x - z| \leq | x - y| \leq sup

z\in \Gamma 
| x - z| 

\biggr\} 
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x1

x3

 - 3  - 2  - 1 1 2 3

 - 3

 - 2

 - 1

1

2

3

\Gamma 

R
(x)
\Gamma 

x = (2, 0, - 1)

\mathrm{s}\mathrm{u}\mathrm{p}
z\in \Gamma 

| x - z| 

\mathrm{i}\mathrm{n}\mathrm{f}
z\in \Gamma 

| x - z| 

Figure 5. Illustration of the annulus A
(x)
\Gamma (blue area) with x = (2,0,1) in the Ox1x3-plane. The wave

propagates with a speed of unity. Here the curve a(t) = ( - 1,0,4 - t), t\in [1,6], denotes the orbit (the red segment)
of a point source moving from below to above. There holds | x - a(t\mathrm{m}\mathrm{a}\mathrm{x})| =

\surd 
10, | x - a(t\mathrm{m}\mathrm{i}\mathrm{n})| = 5, infz\in \Gamma | x - z| =

3, supz\in \Gamma | x - z| = 5. In this case the annulus A
(x)
\Gamma is a subset of \{ y \in \BbbR 3 : infz\in \Gamma | x - z| \leq | x - y| \leq supz\in \Gamma | x - z| \} .

represents the smallest annulus encompassing \Gamma and centered at the point x. Intuitively, it is
reasonable to anticipate recovering this annulus utilizing multifrequency data collected at a
single observation point. If x is an observable point, we define the annulus (see Figure 5)

A
(x)
\Gamma :=

\Bigl\{ 
y \in \BbbR 3 : c

\Bigl( 
\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}  - t\mathrm{m}\mathrm{i}\mathrm{n}

\Bigr) 
\leq | x - y| \leq c

\Bigl( 
\xi (x)\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{a}\mathrm{x}

\Bigr) \Bigr\} 
\subset \BbbR 3.(3.12)

Remark 3.10. If the point source remains stationary at z \in \BbbR 3, that is, \Gamma = \{ z\} , then every

point x \in \BbbR 3\setminus \{ z\} is observable. In such a scenario, the annulus A
(x)
\Gamma is reduced to the sphere\bigl\{ 

y \in \BbbR 3 : | x - y| = | x - z| 
\bigr\} 
, since \xi 

(x)
\mathrm{m}\mathrm{i}\mathrm{n} = t\mathrm{m}\mathrm{i}\mathrm{n} + c - 1| x - z| and \xi (x)\mathrm{m}\mathrm{a}\mathrm{x} = t\mathrm{m}\mathrm{a}\mathrm{x} + c - 1| x - z| . This

signifies that the set of non-observable points is caused by the motion of the point source.

If h\prime (t)> 0 for t\in (t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}), we have

A
(x)
\Gamma = \{ y \in \BbbR 3 : | x - a(t\mathrm{m}\mathrm{i}\mathrm{n})| \leq | x - y| \leq | x - a(t\mathrm{m}\mathrm{a}\mathrm{x})| \} ,

which is a subset of \Lambda \Gamma . Moreover, A
(x)
\Gamma coincides with \Lambda \Gamma when (x - a(t)) \cdot a\prime (t) \leq 0 for all

t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}], because

| x - a(t)| \prime = - x - a(t)

| x - a(t)| 
\cdot a\prime (t)\geq 0 for all t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}],

implying that

\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n} = t\mathrm{m}\mathrm{i}\mathrm{n} + c - 1| x - a(t\mathrm{m}\mathrm{i}\mathrm{n})| , \xi (x)\mathrm{m}\mathrm{a}\mathrm{x} = t\mathrm{m}\mathrm{a}\mathrm{x} + c - 1| x - t\mathrm{m}\mathrm{a}\mathrm{x}| ,
| x - a(t\mathrm{m}\mathrm{i}\mathrm{n})| = inf

z\in \Gamma 
| x - z| , | x - a(t\mathrm{m}\mathrm{a}\mathrm{x})| = sup

z\in \Gamma 
| x - z| .
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1393

If h\prime (t)< 0 for t\in (t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}), there holds

A
(x)
\Gamma = \{ y \in \BbbR 3 : | x - a(t\mathrm{m}\mathrm{a}\mathrm{x})| + cT \leq | x - y| \leq | x - a(t\mathrm{m}\mathrm{i}\mathrm{n})|  - cT\} ,

which is also a subset of \Lambda \Gamma ; see Lemma 3.11 below.

Lemma 3.11. Let x\in SR be an observable point. We have

inf
z\in \Gamma 

| x - z| \leq | x - y| \leq sup
z\in \Gamma 

| x - z| for all y \in A(x)
\Gamma .

Proof. Suppose that

\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n} = t1 + c - 1| x - a(t1)| , \xi (x)\mathrm{m}\mathrm{a}\mathrm{x} = t2 + c - 1| x - a(t2)| for some t1, t2 \in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}].

Therefore,

c
\Bigl( 
\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}  - t\mathrm{m}\mathrm{i}\mathrm{n}

\Bigr) 
= ct1 + | x - a(t1)|  - ct\mathrm{m}\mathrm{i}\mathrm{n} \geq | x - a(t1)| \geq inf

z\in \Gamma 
| x - z| ,

c
\Bigl( 
\xi (x)\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{a}\mathrm{x}

\Bigr) 
= ct2 + | x - a(t2)|  - ct\mathrm{m}\mathrm{a}\mathrm{x} \leq | x - a(t2)| \leq sup

z\in \Gamma 
| x - z| .

This implies that for y \in A(x)
\Gamma ,

| x - y| \leq c
\Bigl( 
\xi (x)\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{a}\mathrm{x}

\Bigr) 
\leq sup

z\in \Gamma 
| x - z| , | x - y| \geq c

\Bigl( 
\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}  - t\mathrm{m}\mathrm{i}\mathrm{n}

\Bigr) 
\geq inf

z\in \Gamma 
| x - z| .

If x\in SR is observable, we shall prove that the test function \phi 
(x)
y defined by (3.10) lies in

the range of \scrL (x) if and only if y \in A(x)
\Gamma . This together with (2.6) establishes a computational

criterion for imaging A
(x)
\Gamma from the multifrequency near-field data u(x,\omega ) with \omega \in [\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x}].

We also need to discuss non-observable points.

Lemma 3.12.
(i) If x is non-observable, we have \phi 

(x)
y /\in Range(\scrL (x)) for all y \in \BbbR 3.

(ii) If x is an observable point, we have \phi 
(x)
y \in Range(\scrL (x)) if and only if y \in A(x)

\Gamma .

Proof.
(i) The first assertion follows directly from Lemma 3.6 and the Definition 3.7 for non-

observable points.

(ii) If x is an observable point, we have \xi 
(x)
\mathrm{m}\mathrm{a}\mathrm{x} - \xi (x)\mathrm{m}\mathrm{i}\mathrm{n} \geq T . If \phi 

(x)
y \in Range(\scrL (x)), one can find

a function \phi satisfying \phi 
(x)
y = \scrL (x)\phi . Then their support sets must fulfill the relation

supp(\scrF \phi (x)y ) = supp(\scrF \scrL (x)\phi )\subset [\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}] by Lemma 3.3. Using Lemma 3.5 yields\bigl[ 

t\mathrm{m}\mathrm{i}\mathrm{n} + c - 1| x - y| , t\mathrm{m}\mathrm{a}\mathrm{x} + c - 1| x - y| 
\bigr] 
\subset [\xi 

(x)
\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}].

Hence, t\mathrm{m}\mathrm{i}\mathrm{n} + c - 1| x - y| \geq \xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n} and t\mathrm{m}\mathrm{a}\mathrm{x} + c - 1| x - y| \leq \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}, leading to

c(\xi 
(x)
\mathrm{m}\mathrm{i}\mathrm{n}  - t\mathrm{m}\mathrm{i}\mathrm{n})\leq | x - y| \leq c(\xi (x)\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{a}\mathrm{x}).

This proves y \in A(x)
\Gamma .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

5/
24

 to
 2

21
.2

38
.2

45
.2

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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To prove the reverse direction, we set \eta \mathrm{m}\mathrm{i}\mathrm{n} = t\mathrm{m}\mathrm{i}\mathrm{n}+c
 - 1| x - y| and \eta \mathrm{m}\mathrm{a}\mathrm{x} = t\mathrm{m}\mathrm{a}\mathrm{x}+c

 - 1| x - y| .
If y \in A(x)

\Gamma , we have

[\eta \mathrm{m}\mathrm{i}\mathrm{n}, \eta \mathrm{m}\mathrm{a}\mathrm{x}] =
\bigl[ 
t\mathrm{m}\mathrm{i}\mathrm{n} + c - 1| x - y| , t\mathrm{m}\mathrm{a}\mathrm{x} + c - 1| x - y| 

\bigr] 
\subset [\xi 

(x)
\mathrm{m}\mathrm{i}\mathrm{n}, \xi 

(x)
\mathrm{m}\mathrm{a}\mathrm{x}].

Setting

\psi y(t) :=
| h\prime (t)| 
T

\chi y(t)\in L2(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}),

where

\chi y(t) =

\Biggl\{ 
1, t\in Y,
0, t /\in Y,

and

Y :=
\bigl\{ 
t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}] : h(t)\in [\eta \mathrm{m}\mathrm{i}\mathrm{n}, \eta \mathrm{m}\mathrm{a}\mathrm{x}], h(t) \not = h(\~t) for all \~t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t)

\bigr\} 
,

one can find that h(t) : Y \rightarrow [\eta \mathrm{m}\mathrm{i}\mathrm{n}, \eta \mathrm{m}\mathrm{a}\mathrm{x}] is a bijection. Then,

(\scrL (x)\psi y)(\omega ) =

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei\omega (t+c - 1| x - a(t)| )\psi y(t)dt

=

\int 
Y
ei\omega h(t)

| h\prime (t)| 
T

dt

=

\int \eta \mathrm{m}\mathrm{a}\mathrm{x}

\eta \mathrm{m}\mathrm{i}\mathrm{n}

ei\omega \xi 
1

T
d\xi = \phi (x)y (\omega ).

Therefore, \phi 
(x)
y (\omega )\in Range(\scrL (x)).

Remark 3.13. The proof of Lemma 3.12(ii) corrects a mistake made in Lemma 3.11 of [9].

4. Indicator functions and uniqueness. If x is an observable point, by Lemma 3.12 and

(2.6), the test functions \phi 
(x)
y can be effectively employed to define the characteristics function

of A
(x)
\Gamma . Introduce the indicator function

W (x)(y) :=

\left[  \infty \sum 
n=1

| \langle \phi (x)y ,\psi 
(x)
n \rangle | 2L2(0,K)

| \lambda (x)n | 

\right]   - 1

, y \in \BbbR 3.(4.1)

Combining Theorem 2.4, Lemma 3.12, and the Picard theorem, we obtain the following the-
orem.

Theorem 4.1 (single observable point). If x is an observable point, it holds that

W (x)(y) =

\Biggl\{ 
0 if y /\in A(x)

\Gamma ,

finite positive number if y \in A(x)
\Gamma .

If x is non-observable, we have W (x)(y) = 0 for all y \in \BbbR 3.

Therefore, for observable points, the values of W (x) within the annulus A
(x)
\Gamma are expected

to be larger compared to those in other regions. However, if x is non-observable, the values
of W (x) will identically vanish in \BbbR 3.
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1395

Remark 4.2. The trajectory \Gamma cannot be uniquely determined by one observable point x.
For example, let \Gamma 1 = \{ z1\} and \Gamma 2 = \{ z2\} be given by two stationary points such that

z1 \not = z2, | x - z1| = | x - z2| .

Then, by Remark 3.10, we have A
(x)
\Gamma 1

=A
(x)
\Gamma 2

= \{ y \in \BbbR 3 : | x - y| = | x - zj | , j = 1,2\} .

In the case of sparse observable points \{ x(j) \in SR : j = 1,2, . . . ,M\} , we shall make use of
the following indicator function:

W (y) =

\left[  M\sum 
j=1

1

W (x(j))(y)

\right]   - 1

=

\left[  M\sum 
j=1

\infty \sum 
n=1

| 
\Bigl\langle 
\phi 
(x(j))
y ,\psi 

(x(j))
n

\Bigr\rangle 
| 2L2(0,K)

| \lambda (x
(j))

n | 

\right]   - 1

, y \in \BbbR 3.(4.2)

Define the domain D\Gamma associated with the observable points \{ x(j) : j = 1,2, . . . ,M\} as

D\Gamma :=
\bigcap 

j=1,2,\cdot \cdot \cdot ,M
A

(x(j))
\Gamma .(4.3)

We can reconstruct D\Gamma from the multifrequency near-field data measured at sparse observable
points.

Theorem 4.3 (finite observable points). It holds that 0 < W (y) < +\infty if y \in D\Gamma and
W (y) = 0 if y /\in D\Gamma .

Proof. If y \in D\Gamma , it means that y \in A(x(j))
\Gamma for j = 1,2, . . . ,M . By Theorem 4.1,

\infty \sum 
n=1

\bigm| \bigm| \bigm| \Bigl\langle \phi (x(j))
y ,\psi 

(x(j))
n

\Bigr\rangle \bigm| \bigm| \bigm| 2
L2(0,K)

| \lambda (x
(j))

n | 
<+\infty for all j = 1,2, . . . ,M.(4.4)

Then the finite sum over the index j must fulfill the relation 0<W (y)<+\infty .

If y /\in D\Gamma , we may suppose without loss of generality that y /\in A(x(1))
\Gamma . By Theorem 4.1,

[W (x(1))(y)] - 1 =

\infty \sum 
n=1

\bigm| \bigm| \bigm| \Bigl\langle \phi (x(1))
y ,\psi 

(x(1))
n

\Bigr\rangle \bigm| \bigm| \bigm| 2
L2(0,K)

| \lambda (x
(1))

n | 
=\infty .

Together with the definition of W , this gives

W (y)<

\left[    \infty \sum 
n=1

\bigm| \bigm| \bigm| \Bigl\langle \phi (x(1))
y ,\psi 

(x(1))
n

\Bigr\rangle \bigm| \bigm| \bigm| 2
L2(0,K)

| \lambda (x
(1))

n | 

\right]    
 - 1

= 0.

Consequently, we arrive at the following uniqueness results, which seem unknown in the
literature.
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1396 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

Theorem 4.4 (uniqueness). Denote by \Gamma = \{ a(t) : t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}]\} the trajectory of a moving
point source where a\in C1[t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}].

(i) The domain D\Gamma associated with all observable points x\in SR (see (4.3)) can be uniquely
determined by the multifrequency data \{ u(x,\omega ) : x\in SR, \omega \in (\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x})\} .

(ii) Let x\in SR be an arbitrarily fixed observable point. Then the annulus A
(x)
\Gamma (see (3.12))

can be uniquely determined by the multifrequency data \{ u(x,\omega ) : \omega \in (\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x})\} .
In particular, the annulus \Lambda \Gamma can be uniquely recovered if (x - a(t)) \cdot a\prime (t) \leq 0 for all
t\in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}].

Remark 4.5. Physically, the condition (x  - a(t)) \cdot a\prime (t) \leq 0 in the second assertion of
Theorem 4.4 means that the function h(t) = t+ c - 1| x - a(t)| is monotonically increasing and
the function | x - a(t)| is monotonically non-decreasing in [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}].

The second assertion of Theorem 4.4 provides insight into the nature of information that
can be extracted from multifrequency data obtained at a single observable point. However,
in the absence of any prior information on the orbit function, it remains unknown to classify
observable and non-observable points.

5. Numerical implementation. In this section, we will perform a series of numerical ex-
periments to validate our algorithm in 3D. In practical scenarios, time-domain data is often
inverse Fourier transformed to yield multifrequency data. However, to streamline the numeri-
cal procedures for simulation purposes, we will exclusively conduct computational tests within
the frequency domain only. Our primary objective is to extract information on the trajectory
of a moving point source. This aim is accomplished through the utilization of multifrequency
near-field data recorded at either a single observation point or sparsely distributed observation
points.

Assuming a wave-number-dependent source term f(x,k), as defined in (1.5), we can syn-
thesize the near-field pattern using (1.9) by

u(x,\omega ) =

\int t\mathrm{m}\mathrm{a}\mathrm{x}

t\mathrm{m}\mathrm{i}\mathrm{n}

ei\omega (t+c - 1| x - a(t)| )
\surd 
32\pi 3| x - a(t)| 

\ell (t)dt, x\in SR , \omega \in (\omega \mathrm{m}\mathrm{i}\mathrm{n}, \omega \mathrm{m}\mathrm{a}\mathrm{x}),(5.1)

where SR = \{ x \in \BbbR 3 : | x| = R\} . The strength function \ell (t) of the signal is defined as
\ell (t) = (t+ 1)2, which obviously fulfills the positivity constraint (1.2). Below we will describe
the process of inversion algorithm. The frequency interval (0,K) can be discretized by defining

\omega n = (n - 0.5)\Delta \omega , \Delta \omega :=
K

N
, n= 1,2, . . . ,N.

To approximate the integral in (2.1), we adopt 2N  - 1 samples u(x,\kappa + \omega n), n = 1,2, . . . ,N,
and u(x,\kappa  - \omega n), n= 1,2, . . . ,N  - 1, of the near field and apply the midpoint rule. Therefore,
we have

(\scrN (x)\phi )(\tau n)\approx 
N\sum 

m=1

u(x,\kappa + \tau n  - sm)\phi (sm)\Delta \omega ,(5.2)
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1397

where \tau n := n\Delta \omega and sm := (m - 0.5)\Delta \omega , n,m= 1,2, . . . ,N . The Toeplitz matrix provides a
discrete approximation of the near-field operator \scrN (x):

\scrN (x) :=\Delta k

\left(       
u(x,\kappa + \omega 1) u(x,\kappa  - \omega 1) \cdot \cdot \cdot u(x,\kappa  - \omega N - 2) u(x,\kappa  - \omega N - 1)
u(x,\kappa + \omega 2) u(x,\kappa + \omega 1) \cdot \cdot \cdot u(x,\kappa  - \omega N - 3) u(x,\kappa  - \omega N - 2)

...
...

...
...

u(x,\kappa + \omega N - 1) u(x,\kappa + \omega N - 2) \cdot \cdot \cdot u(x,\kappa + \omega 1) u(x,\kappa  - \omega 1)
u(x,\kappa + \omega N ) u(x,\kappa + \omega N - 1) \cdot \cdot \cdot u(x,\kappa + \omega 2) u(x,\kappa + \omega 1)

\right)       ,

(5.3)

where \scrN (x) is an N \times N complex matrix. For any point y \in \BbbR 3 we define the test function

vector \phi 
(x)
y \in \BbbC N from (3.10) by

\phi (x)y :=

\biggl( 
1

tmax  - tmin

\int tmax

tmin

ei\tau 1(t+c - 1| x - y| )dt, . . . ,
1

tmax  - tmin

\int tmax

tmin

ei\tau N (t+c - 1| x - y| )dt

\biggr) 
.

(5.4)

Denoting by \{ (\~\lambda (x)n ,\psi 
(x)
n ) : n= 1,2, . . . ,N\} an eigensystem of the matrix \scrN (x) (5.3), then one

deduces that an eigensystem of the matrix (\scrN (x))\# := | Re\scrN (x))| + | Im(\scrN (x))| is \{ (\lambda (x)n ,\psi 
(x)
n ) :

n = 1,2, . . . ,N\} , where \lambda (x)n := | Re(\~\lambda (x)n )| + | Im(\~\lambda 
(x)
n )| . We truncate the indicator function

W (x) (4.1) by

W (x)(y) :=

\left[     
N\sum 

n=1

\bigm| \bigm| \bigm| \bigm| \phi (x)y \cdot \psi (x)
n

\bigm| \bigm| \bigm| \bigm| 2
| \lambda (x)n | 

\right]     
 - 1

, y \in \BbbR d,(5.5)

where \cdot denotes the inner product in \BbbR 3 and N is consistent with the dimension of the Toeplitz
matrix (5.3).

The visualization of the annulus A
(x)
\Gamma is attainable through the plot of W (x)(y). This

visualization carries crucial information about the source trajectory, particularly when using
the data from an observable. Such visualizations can be used to describe the trajectories of
moving point sources, no matter whether they are characterized by straight lines or arcs. In
the following figures, the original trajectory will be highlighted by the red solid line. Unless
otherwise specified, we assume k\mathrm{m}\mathrm{i}\mathrm{n} = 0 for the sake of simplicity. The bandwidth can be
extended from (0, \omega max) to ( - \omega \mathrm{m}\mathrm{a}\mathrm{x}, \omega \mathrm{m}\mathrm{a}\mathrm{x}) by u(x, - \omega ) = u(x,\omega ). Then, one deduces from
these new measurement data with \omega min =  - \omega max that \kappa = 0 and K = \omega max. The frequency
band is represented by the interval (0,6) with \omega \mathrm{m}\mathrm{a}\mathrm{x} = 6, N = 10, and \Delta \omega = 3/5.

5.1. One observation point. In this subsection, the search domain is selected as a cube
of the form [ - 2,2] \times [ - 2,2] \times [ - 2,2] and the observation points are chosen from the set
\{ x \in \BbbR 3 : | x| = 2\} . The observation points are then set on a sphere with a radius of 2, such
that x= (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) for \theta \in [0,2\pi ] and \varphi \in [0, \pi ]. Figures below illustrate
the slices at y1 = 0 or y2 = 0.
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1398 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

Example 1: A straight line segment in \BbbR \bfthree . We examine a straight line segment from
Example 1, outlined in section 3. Suppose that the trajectory of the moving point source
is given by a(t) = (0,0, t  - 2), where t \in [1,3] and x \in S2 = \{ x \in \BbbR 3 : | x| = 2\} represent
the observation points. As the first step, we must classify the observable and non-observable
points. According to the orbit function, we have

h(t) = t+ | x - a(t)| = t+
\sqrt{} 
x21 + x22 + (x3  - (t - 2))2,

h\prime (t) = 1 - x - a(t)

| x - a(t)| 
\cdot a\prime (t) = 1+

t - 2 - x3\sqrt{} 
x21 + x22 + (x3  - (t - 2))2

.

As the second term on the right-hand side of the above equation always falls in the range
[ - 1,1], it is evident that h\prime (t) > 0 for all t \in [1,3], indicating that the function h(t) is

monotonically increasing over [1,3]. Consequently, \xi 
(x)
min = h(1) and \xi 

(x)
max = h(3) as described

in (3.1). We know that the points satisfying h(3) - h(1) \geq 3 - 1 are all observable points as
illustrated in Definition 3.7. By simple calculations similar to the proof of Lemma 3.8, x3 \leq 0
can be obtained. Consequently, the observation points x = (x1, x2, x3) /\in \Gamma satisfying x3 \leq 0
are all observable. Furthermore, if (x - a(t)) \cdot a\prime (t) = x3 - (t - 2)\leq 0, then x3 \in [ - 2, - 1]. Thus,

the smallest annulus \Lambda 
(x)
\Gamma centered at x and containing the trajectory can be fully recovered

if and only if the observable points x satisfy  - 2\leq x3 \leq  - 1. If not, one can only get a slimmer

annulus A
(x)
\Gamma \subset \Lambda 

(x)
\Gamma . Moreover, all observation points x where x3 > 0 are non-observable. The

corresponding numerical results are presented in Figures 6, 7, and 8.
In Figure 6, we examine various observable points x, where \theta \in [0,2\pi ] and \varphi \in [2\pi /3, \pi ].

Specifically, we restrict \varphi to the range [2\pi /3, \pi ], which corresponds to  - 2 \leq x3 \leq  - 1. We
observe that (x - a(t)) \cdot a\prime (t) \leq 0 for all t \in [1,3]. Consequently, our theoretical predictions
ensure that the trajectory of the moving point source can be fully enclosed within the smallest

annulus \Lambda 
(x)
\Gamma centered at x. It is worth noting that our numerical examples demonstrate that

A
(x)
\Gamma =\Lambda 

(x)
\Gamma .

In Figure 7, we collect data at the observable points x= (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ),
where \theta \in [0,2\pi ] and \varphi \in [\pi /2,2\pi /3), such that  - 1 < x3 \leq 0. However, we note that
(x  - a(t)) \cdot a\prime (t) \leq 0 no longer holds for all t \in [1,3]. Even though these observation points

x belong to the observable set, the corresponding annulus A
(x)
\Gamma turns out to be slimmer than

the smallest annulus that encloses the trajectory of the moving source and is centered at x.

This discrepancy arises due to the relationship A
(x)
\Gamma \subset \Lambda 

(x)
\Gamma , as established by Lemma 3.11.

The observation points x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) are non-observable when
\theta \in [0,2\pi ] and \varphi \in [0, \pi /2). Numerical results in Figure 8 indicate that the corresponding
indicator values are consistently much smaller than 10 - 5. This is consistent with the outcome
of Theorem 4.1, which implies that it is not possible to reconstruct the annulus centered at
x which contains partial or whole information on the trajectory of the moving source. The
further the non-observable points are from the observable region, the lower the corresponding
indicator values. Figure 8 shows that partial information on the trajectory can still be retrieved
by our indicator function even at non-observable points, which is an intriguing observation
that requires further investigation.
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1399

(a) θ = 0, ϕ = 6π/9 (b) θ = π/4, ϕ = 7π/9

(c) θ = 2π/4, ϕ = 8π/9 (d) θ = 3π/4, ϕ = 6π/9

(e) θ = 4π/4, ϕ = 7π/9 (f) θ = 5π/4, ϕ = 8π/9

(g) θ = 6π/4, ϕ = 6π/9 (h) θ = 7π/4, ϕ = 7π/9

(i) θ = 8π/4, ϕ = 9π/9

Figure 6. Reconstruction from a single observable point x= (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in [0,2\pi ]

and \varphi \in [2\pi /3, \pi ] for a straight line segment a(t) = (0,0, t - 2), where t\in [1,3]. Here it holds that A
(x)
\Gamma =\Lambda 

(x)
\Gamma .
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1400 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

(a) θ = 0, ϕ = π/2 (b) θ = π/5, ϕ = 9π/17

(c) θ = 2π/5, ϕ = 8π/15 (d) θ = 3π/5, ϕ = π/2

(e) θ = 4π/5, ϕ = 9π/17 (f) θ = 5π/5, ϕ = 8π/15

(g) θ = 6π/5, ϕ = π/2 (h) θ = 7π/5, ϕ = 9π/17

(i) θ = 8π/5, ϕ = 8π/15

Figure 7. Reconstruction from a single observable point x= (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in [0,2\pi ]

and \varphi \in [\pi /2,2\pi /3) for a straight line segment a(t) = (0,0, t - 2), where t\in [1,3]. Here it holds that A
(x)
\Gamma \subset \Lambda 

(x)
\Gamma .
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1401

(a) θ = 0, ϕ = 0 (b) θ = π/4, ϕ = 2π/8

(c) θ = 2π/4, ϕ = 3π/8 (d) θ = 3π/4, ϕ = π/8

(e) θ = 4π/4, ϕ = 2π/8 (f) θ = 5π/4, ϕ = 3π/8

(g) θ = 6π/4, ϕ = π/8 (h) θ = 7π/4, ϕ = 2π/8

(i) θ = 8π/4, ϕ = 3π/8

Figure 8. Reconstruction from a single non-observable point x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with
\theta \in [0,2\pi ] and \varphi \in [0, \pi /2) for a straight line segment a(t) = (0,0, t - 2) with t\in [1,3].
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1402 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

Example 2: An arc in \BbbR \bfthree . As demonstrated in Example 2 of section 3, we consider the
trajectory of the moving point given by a(t) = (0, cos t, sin t), where t \in [0, \pi ]. From the orbit
function, we obtain

h(t) = t+ | x - a(t)| = t+
\sqrt{} 
x21 + (x2  - cos t)2 + (x3  - sin t)2,

h\prime (t) = 1 - x - a(t)

| x - a(t)| 
\cdot a\prime (t) = 1 -  - x2 sin t+ x3 cos t

| x - a(t)| 
.

It is evident that | a\prime (t)| = 1; thus h\prime (t)\geq 0 for all t \in [0, \pi ], which indicates that the function

h(t) monotonically increases over [0, \pi ]. Subsequently, we have \xi 
(x)
min = h(0) and \xi 

(x)
max = h(\pi ).

According to Definition 3.7, observable points are those that satisfy h(\pi ) - h(0)\geq \pi  - 0. By
simple calculations similar to the proof of Lemma 3.9 one can infer that x2 \geq 0. Therefore,
the observation points x= (x1, x2, x3) /\in \Gamma that satisfy x2 \geq 0 are all observable. Furthermore,
the statement (x - a(t)) \cdot a\prime (t) = - x2 sin t+ x3 cos t\leq 0 is equivalent to

 - x2 sin t+ x3 cos t=
\sqrt{} 
x22 + x23

\Biggl( 
x3\sqrt{} 
x22 + x23

cos t - x2\sqrt{} 
x22 + x23

sin t

\Biggr) 
=
\sqrt{} 
x22 + x23 sin(\alpha  - t)\leq 0,

where sin\alpha = x3\surd 
x2
2+x2

3

and cos\alpha = x2\surd 
x2
2+x2

3

. If it holds that  - x2 sin t + x3 cos t \leq 0 for all

t \in [0, \pi ], then it is evident that \alpha = 2n\pi ,n = 0,\pm 1,\pm 2, . . ., meaning x3 = 0. The smallest

annulus \Lambda 
(x)
\Gamma , centered at x and containing the trajectory of the moving source, is recoverable

only when the observable points x satisfy x3 = 0. Otherwise, a slimmer annulus A
(x)
\Gamma \subset \Lambda 

(x)
\Gamma 

can be obtained. Additionally, all observation points x with x2 < 0 are non-observable. The
numerical results are presented in Figures 9, 11, and 12.

Figure 9 demonstrates the reconstruction of an arc from observable points x= (2sin\varphi cos\theta ,
2 sin\varphi sin\theta ,2cos\varphi ) with \theta \in [\pi ,2\pi ] and \varphi = \pi /2. We conclude that the trajectory of the
moving point source perfectly lies in the smallest annulus centered at x and containing its
trajectory. This is due to the selection of observable points x with x3 = 0 and x2 \geq 0, such that

(x - a(t)) \cdot a\prime (t)\leq 0. Here, we have A
(x)
\Gamma =\Lambda \Gamma . This effectively demonstrates the effectiveness

of our algorithm for imaging an arc in \BbbR 3. It is worth noting that although the arc trajectory
of the moving source lies in the annulus depicted in subfigures (a), (b), (c), (g), (h), and (i),
they cannot be seen clearly since the slice is set at y1 = 0. Therefore, corresponding isosurfaces
of the reconstruction are plotted in Figure 10, showing the trajectory of the moving source
perfectly located between the isosurfaces as predicted by our theory.

Figure 11 displays the reconstructed annulus A
(x)
\Gamma , which is slimmer than \Lambda 

(x)
\Gamma . This is

due to our selection of observable points x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in [0, \pi ]
and \varphi = [0, \pi /2) \cup (\pi /2, \pi ] implying x2 \geq 0 and x3 \not = 0, making it unsuitable to apply

(x - a(t)) \cdot a\prime (t)\leq 0 for all t\in [0, \pi ]. This results in A
(x)
\Gamma \subset \Lambda 

(x)
\Gamma , limiting the retrieval of partial

trajectory information. Since h\prime (t)> 0 for t \in [0, \pi ], it is possible to capture the starting and

ending points of the trajectory by A
(x)
\Gamma = \{ y \in \BbbR 3 : | x - a(t\mathrm{m}\mathrm{a}\mathrm{x})| \leq | x - y| \leq | x - a(t\mathrm{m}\mathrm{i}\mathrm{n})| \} . It

should be noted that the size of the annulus depends on the location of the observation points.
The numerical results presented in Figure 11 are in agreement with our theory predictions.
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1403

(a) θ = 0, ϕ = π/2 (b) θ = 1π/8, ϕ = π/2

(c) θ = 2π/8, ϕ = π/2 (d) θ = 3π/8, ϕ = π/2

(e) θ = 4π/8, ϕ = π/2 (f) θ = 5π/8, ϕ = π/2

(g) θ = 6π/8, ϕ = π/2 (h) θ = 7π/8, ϕ = π/2

(i) θ = 8π/8, ϕ = π/2

Figure 9. Reconstruction from a single observable point x= (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in [0, \pi ]

and \varphi = \pi /2 for an arc a(t) = (0, cos t, sin t), where t\in [0, \pi ]. Here it holds that A
(x)
\Gamma =\Lambda 

(x)
\Gamma .
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1404 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

(a) θ = 0, ϕ = π/2 (b) θ = π/8, ϕ = π/2

(c) θ = 2π/8, ϕ = π/2 (d) θ = 6π/8, ϕ = π/2

(e) θ = 7π/8, ϕ = π/2 (f) θ = 8π/8, ϕ = π/2

Figure 10. Isosurfaces of reconstruction from a single observable point x= (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi )

with \theta \in [0, \pi ] and \varphi = \pi /2 for an arc a(t) = (0, cos t, sin t), where t\in [0, \pi ]. Here it holds that A
(x)
\Gamma =\Lambda 

(x)
\Gamma .

Figure 12 presents indicator functions for various non-observable points x= (2sin\varphi cos\theta ,
2 sin\varphi sin\theta ,2cos\varphi ) with \theta \in (\pi ,2\pi ) and \varphi \in [0, \pi ], i.e., x2 < 0. It can be observed that the
values of the indicator functions are significantly smaller than 10 - 5.

5.2. Sparse observation points. In this subsection, we extend Examples 1 and 2 to in-
clude multifrequency near-field data measured at sparse points. To truncate the indicator
function (4.2), we introduce the following expression:

W (y) :=

\left[     
M\sum 
j=1

N\sum 
n=1

\bigm| \bigm| \bigm| \bigm| \phi (x(j))
y \cdot \psi (x(j))

n

\bigm| \bigm| \bigm| \bigm| 2
| \lambda (x

(j))
n | 

\right]     
 - 1

, y \in \BbbR 3.(5.6)
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1405

(a) θ = 0, ϕ = 0 (b) θ = π/5, ϕ = π/4

(c) θ = 2π/5, ϕ = π/4 (d) θ = 3π/5, ϕ = π/4

(e) θ = 4π/5, ϕ = π/4 (f) θ = π/5, ϕ = 3π/4

(g) θ = 2π/5, ϕ = 3π/4 (h) θ = 3π/5, ϕ = 3π/4

(i) θ = 4π/5, ϕ = 4π/4

Figure 11. Reconstruction from a single observable point x= (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in [0, \pi ]

and \varphi = [0, \pi /2)\cup (\pi /2, \pi ] for an arc a(t) = (0, cos t, sin t), where t\in [0, \pi ]. Here it holds that A
(x)
\Gamma \subset \Lambda 

(x)
\Gamma .
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1406 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

(a) θ = 5π/4, ϕ = π/4 (b) θ = 5π/4, ϕ = 2π/4

(c) θ = 5π/4, ϕ = 3π/4 (d) θ = 6π/4, ϕ = π/4

(e) θ = 6π/4, ϕ = 2π/4 (f) θ = 6π/4, ϕ = 3π/4

(g) θ = 7π/4, ϕ = π/4 (h) θ = 7π/4, ϕ = 2π/4

(i) θ = 7π/4, ϕ = 3π/4

Figure 12. Reconstruction from a single non-observable point x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with
\theta \in (\pi ,2\pi ) and \varphi \in [0, \pi ] for an arc a(t) = (0, cos t, sin t), where t\in [0, \pi ].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1407

In this definition, M > 0 denotes the number of sparse observation points distributed on S2.

Also, the test function \phi 
(x(j))
y has the same definition as in (5.4), and \{ (\lambda (x

(j))
n ,\psi 

(x(j))
n ) : n =

1, . . . ,N\} denotes an eigensystem of the operator (\scrN (x(j)))\#. Notably, x(j) (j = 1,2, . . . ,M)
may contain both observable and non-observable points. To eliminate the terms similar to

\~uj =

N\sum 
n=1

\bigm| \bigm| \bigm| \bigm| \phi (x(j))
y \cdot \psi (x(j))

n

\bigm| \bigm| \bigm| \bigm| 2
| \lambda (x

(j))
n | 

, j = 1,2, . . .W,

from the sum in (5.6), we set a threshold M \prime > 0. Precisely, if min(\~uj(y))>M
\prime , the point x(j)

can be categorized as a non-observable point through the second assertion of Theorem 4.1.
First, assume that all the selected observation points are observable, and that the angle

between the vector connecting these observable points and the trajectory points, and the
velocity vector of the moving point source, lies within the range of [\pi /2,3\pi /2], implying
(x - a(t)) \cdot a\prime (t)\leq 0. For every observation point, it is possible to extract the smallest annulus
centered at the observation point and containing the trajectory of the moving point source.
In Figures 13 and 14, we use 13 observation points to reconstruct a straight line segment
a(t) = (0,0, t  - 2) with t \in [1,3] in Example 1 and 9 observation points to reconstruct an
arc a(t) = (0, cos t, sin t) with t \in [0, \pi ] in Example 2, respectively. The reconstructed slices
and isosurface are shown in Figures 13 and 14, where it is evident that the trajectories are

enclosed by the intersections of the smallest annulus \Lambda 
(xj)
\Gamma centered at xj and containing their

own trajectories. However, since we have only chosen a partial set of observation points, we
are not able to reconstruct the trajectories perfectly.

Next, assume that all the selected observation points may contain both observable and
non-observable points. In the presented numerical examples below, we set the threshold
value as M \prime = 105. Figures 15 and 16 present the reconstructed trajectory for orbit functions
a(t) = (0,0, t - 2) with t\in [1,3] using different sparse observation points and different frequency
bandwidths. Although sparse observation points data M = 4,6,12 are used, the trajectory

(a) A slice at y2 = 0 (b) Iso-surface level = 1× 10−3

Figure 13. Reconstruction from sparse observation points x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in 
[0,2\pi ) and \varphi \in [2\pi /3, \pi ] for a straight line segment a(t) = (0,0, t - 2), where t \in [1,3]. Here M = 13 denotes
the number of the observation points, and we take \theta = (j  - 1)\pi /2, j = 1, . . . ,4, and \varphi = (j +5)\pi /9, j = 1, . . . ,4,

such that A
(xj)

\Gamma =\Lambda 
(xj)

\Gamma .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

5/
24

 to
 2

21
.2

38
.2

45
.2

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1408 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

(a) A slice at y1 = 0 (b) Iso-surface level = 1× 10−3

Figure 14. Reconstruction from sparse observation points x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in 
[0, \pi ] and \varphi = \pi /2 for an arc a(t) = (0, cos t, sin t), where t \in [0, \pi ]. Here M = 9 denotes the number of the

observation points, and we take \theta = (j  - 1)\pi /8, j = 1, . . . ,M , and \varphi = \pi /2 such that A
(xj)

\Gamma =\Lambda 
(xj)

\Gamma .

(a) M = 4 (b) M = 6

(c) M = 12

Figure 15. Reconstruction from sparse observation points x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in 
[0,2\pi ) and \varphi \in [0, \pi ] for a straight line segment a(t) = (0,0, t - 2), where t\in [1,3]. Here M denotes the number
of the observation points. (a) \theta = (j  - 1) \ast 2\pi /4, j = 1, . . . ,4, and \varphi = \pi /2; (b) \varphi = 0; \theta = (j  - 1) \ast 2\pi /4,
j = 1, . . . ,4, and \varphi = \pi /2; \varphi = \pi ; (c) \theta = (2j  - 1) \ast \pi /4, j = 1, . . . ,4, \varphi = \pi /3; \theta = (j  - 1) \ast 2\pi /4, j = 1, . . . ,4,
\varphi = \pi /2; \theta = (4j  - 3) \ast \pi /8, j = 1, . . . ,5, \varphi = 2\pi /3.

cannot be fully determined from Figures 15 and 16. The reason is that there consistently

exist observation points xj that satisfy A
(xj)
\Gamma \subset \Lambda 

(xj)
\Gamma , just as what is depicted in Figure 7.

Furthermore, for these specific observation points, the reconstructed annular A
(xj)
\Gamma might be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1409

(a) M = 4 (b) M = 6

(c) M = 12

Figure 16. Reconstruction from sparse observation points x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in 
[0,2\pi ) and \varphi \in [0, \pi ] for a straight line segment a(t) = (0,0, t - 2), where t\in [1,3]. Here M denotes the number
of the observation points. (a) \theta = (j  - 1) \ast 2\pi /4, j = 1, . . . ,4, and \varphi = \pi /2; (b) \varphi = 0; \theta = (j  - 1) \ast 2\pi /4,
j = 1, . . . ,4, and \varphi = \pi /2; \varphi = \pi ; (c) \theta = (2j  - 1) \ast \pi /4, j = 1, . . . ,4, \varphi = \pi /3; \theta = (j  - 1) \ast 2\pi /4, j = 1, . . . ,4,
\varphi = \pi /2; \theta = (4j  - 3) \ast \pi /8, j = 1, . . . ,4, \varphi = 2\pi /3. We take kmin = 1 and kmax = 6.

(a) M = 4 (b) M = 6

Figure 17. Reconstruction from sparse observation points x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in 
[0,2\pi ) and \varphi \in [0, \pi ] for a straight line segment a(t) = (0, cos t, sin t), where t \in [0, \pi ]. Here M denotes the
number of the observation points. (a) \theta = (j  - 1) \ast 2\pi /4, j = 1, . . . ,4, and \varphi = \pi /2; (b) \theta = (j  - 1) \ast 2\pi /4,
j = 1, . . . ,4, and \varphi = \pi /2; \varphi = 0; \varphi = \pi .

excessively slim. Consequently, the intersections of the annular A
(\^xj)
\Gamma can only reconstruct

the starting and ending points of the moving point source's trajectory. Figures 17 and 18
further illustrate visualizations of the reconstructed trajectory pertaining to orbit functions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1410 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

(a) M = 4 (b) M = 6

Figure 18. Reconstruction from sparse observation points x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta \in 
[0,2\pi ) and \varphi \in [0, \pi ] for a straight line segment a(t) = (0, cos t, sin t), where t \in [0, \pi ]. Here M denotes the
number of the observation points. (a) \theta = (j  - 1) \ast 2\pi /4, j = 1, . . . ,4, and \varphi = \pi /2; (b) \theta = (j  - 1) \ast 2\pi /4,
j = 1, . . . ,4, and \varphi = \pi /2; \varphi = 0; \varphi = \pi . We take kmin = 1 and kmax = 6.

Figure 19. 40 uniformly distributed points on a sphere with a radius of 2.

a(t) = (0, cos t, sin t) with t \in [0, \pi ], employing sparse observation points. These visualizations
enable the determination of the starting and ending points of the arc-shaped trajectory. Due
to the lack of low-frequency data \{ u(x,\omega ), k \in (0,1)\} , the inversion results in Figures 16 and 18
with \omega \in (1,6) are not as accurate as those in Figures 15 and 17 with \omega \in (0,6).

Finally, our goal is to reconstruct the trajectories of a straight line segment and an arc
using uniformly distributed observation points situated on a sphere with a radius of 2. We
explore sets of 20, 30, and 40 points for this purpose. The positioning of the 40 uniformly
distributed points is presented in Figure 19. With the increasing number of observation
points, Figures 20 and 21 illustrate that the starting and ending points of the trajectories can

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1411

(a) M = 20 (b) M = 30

(c) M = 40

Figure 20. Reconstruction from sparse uniformly distributed observation points on a sphere with a radius
of 2 for a straight line segment a(t) = (0,0, t - 2), where t\in [1,3]. Here we take different numbers of observation
points M .

(a) M = 20 (b) M = 30

(c) M = 40

Figure 21. Reconstruction from sparse uniformly distributed observation points on a sphere with a radius
of 2 for an arc a(t) = (0, cos t, sin t), where t\in [0, \pi ]. Here we take different numbers of observation points M .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1412 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

be obtained. This limitation stems from the characteristics of the observation points within

the observable set, where A
(x)
\Gamma \subset \Lambda 

(x)
\Gamma .

5.3. Noisy test. We evaluate sensitivity with respect to the noisy data by selecting Exam-
ple 1, which involves a line segment recovery. The near-field data are corrupted with Gaussian
noise, as shown below:

u\delta (x,\omega ) := Re [u(x,\omega )] (1 + \delta \gamma 1) + iIm[u(x,\omega )] (1 + \delta \gamma 2),

where \delta > 0 represents the noise level and \gamma j \in [ - 1,1] (j = 1,2) denote Gaussian random
variables.

To accomplish this test, we assigned \delta = 0\%,10\%,20\%,30\% and plot the indicator func-
tions in Figures 22 and 23 using one and sparse observation points, respectively. The images
are clearly getting distorted at higher noise levels, but the starting and the ending points
of the trajectory of the moving source using the data measured at sparse points can still be
captured for \delta = 0,10\%,20\%. Figures 22(d) and 23(d) show that the method doesn't seem to
work well with 30\% multiplicative noise.

(a) δ = 0% (b) δ = 10%

(c) δ = 20% (d) δ = 30%

Figure 22. Reconstruction of a straight line segment a(t) = (0,0, t  - 2), t \in [1,3], from noisy data with
different levels \delta measured at a single observable point x = (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta = \pi and
\varphi = 5\pi /6.
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IMAGING MOVING POINT SOURCE BY MULTIFREQUENCY DATA 1413

(a) δ = 0% (b) δ = 10%

(c) δ = 20% (d) δ = 30%

Figure 23. Reconstruction of a straight line segment a(t) = (0,0, t - 2), t\in [1,3], from noisy data with differ-
ent levels \delta measured at sparse observable points x= (2sin\varphi cos\theta , 2 sin\varphi sin\theta , 2cos\varphi ) with \theta = 0, \pi /2, \pi ,3\pi /2,
and \varphi = \pi /2.

REFERENCES

[1] B. Chen, Y. Guo, F. Ma, and Y. Sun, Numerical schemes to reconstruct three-dimensional time-
dependent point sources of acoustic waves, Inverse Problems, 36 (2020), 075009.

[2] M. Cheney and B. Borden, Imaging moving targets from scattered waves, Inverse Problems, 24 (2008),
035005.

[3] J. Cooper, Scattering of plane waves by a moving obstacle, Arch. Ration. Mech. Anal., 71 (1979),
pp. 113--149.

[4] J. Cooper and W. Strauss, Scattering of waves by periodically moving bodies, J. Funct. Anal., 47
(1982), pp. 180--229.

[5] J. Fournier, J. Garnier, G. Papanicolaou, and C. Tsogka, Matched-filter and correlation-based
imaging for fast moving objects using a sparse network of receivers, SIAM J. Imaging Sci., 10 (2017),
pp. 2165--2216, https://doi.org/10.1137/17M112364X.

[6] J. Garnier and M. Fink, Super-resolution in time-reversal focusing on a moving source, Wave Motion,
53 (2015), pp. 80--93.

[7] R. Griesmaier and C. Schmiedecke, A factorization method for multifrequency inverse source
problem with sparse far field measurements, SIAM J. Imaging Sci., 10 (2017), pp. 2119--2139,
https://doi.org/10.1137/17M111290X.

[8] H. Guo and G. Hu, Inverse wave-number-dependent source problems for the Helmholtz equation, SIAM J.
Numer. Anal., 62 (2024), pp. 1372--1393.

[9] H. Guo, G. Hu, and G. Ma, Imaging a moving point source from multifrequency data measured at
one and sparse observation directions (part I): Far-field case, SIAM J. Imaging Sci., 16 (2023),
pp. 1535--1571, https://doi.org/10.1137/23M1545045.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

5/
24

 to
 2

21
.2

38
.2

45
.2

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/17M112364X
https://doi.org/10.1137/17M111290X
https://doi.org/10.1137/23M1545045


1414 GUANQIU MA, HONGXIA GUO, AND GUANGHUI HU

[10] G. Hu, Y. Kian, P. Li, and Y. Zhao, Inverse moving source problems in electrodynamics, Inverse
Problems, 35 (2019), 075001.

[11] G. Hu, Y. Kian, and Y. Zhao, Uniqueness to some inverse source problems for the wave equation in
unbounded domains, Acta Math. Appl. Sin. Engl. Ser., 36 (2020), pp. 134--150.

[12] G. Hu, Y. Liu, and M. Yamamoto, Inverse moving source problem for fractional diffusion(-wave)
equations: Determination of orbits, in Inverse Problems and Related Topics, J. Cheng, S. Lu, and
M. Yamamoto, eds., Springer, Singapore, 2020, pp. 81--100.

[13] V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1989.
[14] H. A. Jebawy, A. Elbadia, and F. Triki, Inverse moving point source problem for the wave equation,

Inverse Problems, 38 (2022), 125003.
[15] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press,

Oxford, UK, 2008.
[16] Y. Liu, Y. Guo, and J. Sun, A deterministic-statistical approach to reconstruct moving sources using

sparse partial data, Inverse Problems, 37 (2021), 065005.
[17] Y. Liu, G. Hu, and M. Yamamoto, Inverse moving source problem for time-fractional evolution equa-

tions: Determination of profiles, Inverse Problems, 37 (2021), 084001.
[18] Y. Liu, Numerical schemes for reconstructing profiles of moving sources in (time-fractional) evolution

equations, RIMS Kokyuroku, 2174 (2021), pp. 73--87.
[19] E. Nakaguchi, H. Inui, and K. Ohnaka, An algebraic reconstruction of a moving point source for a

scalar wave equation, Inverse Problems, 28 (2012), 065018.
[20] T. Ohe, H. Inui, and K. Ohnaka, Real-time reconstruction of time-varying point sources in a three-

dimensional scalar wave equation, Inverse Problems, 27 (2011), 115011.
[21] P. D. Stefanov, Inverse scattering problem for moving obstacles, Math. Z., 207 (1991), pp. 461--480.
[22] O. Takashi, Real-time reconstruction of moving point/dipole wave sources from boundary measurements,

Inverse Probl. Sci. Eng., 28 (2020), pp. 1057--1102.
[23] S. Wang, M. Karamehmedovi\'c, and F. Triki, Localization of moving sources: Uniqueness, stability

and Bayesian inference, SIAM J. Appl. Math., 83 (2023), pp. 1049--1073.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

5/
24

 to
 2

21
.2

38
.2

45
.2

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y


	Introduction
	Time-dependent model and its inverse Fourier transform
	Formulation in the frequency domain and literature review

	Factorization of near-field operator
	Range of <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	L(x)?></0:tex-math></0:inline-formula> and test functions
	Example 1: A straight line segment in <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	R3?></0:tex-math></0:inline-formula>
	Example 2: A semicircle in <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	R3?></0:tex-math></0:inline-formula>

	Indicator functions and uniqueness
	Numerical implementation
	One observation point
	Example 1: A straight line segment in <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	R3?></0:tex-math></0:inline-formula>
	Example 2: An arc in <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	R3?></0:tex-math></0:inline-formula>
	Sparse observation points
	Noisy test

	References

