
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. © 2021 Society for Industrial and Applied Mathematics
Vol. 81, No. 1, pp. 25--46

INVERSE TIME-HARMONIC ELECTROMAGNETIC SCATTERING
FROM COATED POLYHEDRAL SCATTERERS WITH A SINGLE

FAR-FIELD PATTERN\ast 

GUANG-HUI HU\dagger , MANMOHAN VASHISTH\ddagger , AND JIAQING YANG\S 

Abstract. It is proved that a convex polyhedral scatterer of impedance type can be uniquely
determined by the electric far-field pattern of a nonvanishing incident field. The incoming wave is
allowed to be an electromagnetic plane wave, a vector Herglotz wave function, or a point source wave
incited by some magnetic dipole. Our proof relies on the reflection principle for Maxwell's equations
with the impedance (or Leontovich) boundary condition enforcing on a hyperplane. We prove that
it is impossible to analytically extend the total field across any vertex of the scatterer. This leads to
a data-driven inversion scheme for imaging an arbitrary convex polyhedron.
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principle, impedance boundary condition, single incident wave
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1. Introduction and main result. The propagation of time-harmonic electro-
magnetic waves in a homogeneous isotropic medium in \BbbR 3 is modeled by the Maxwell's
equations

\nabla \times E(x) - ikH(x) = 0, \nabla \times H(x) + ikE(x) = 0 for x \in \BbbR 3,(1.1)

where E and H represent the electric and magnetic fields, respectively, and k > 0
is known as the wave number. Let Ein and Hin satisfying (1.1) denote the incident
electric and magnetic fields, respectively. Consider the scattering of given incoming
waves Ein and Hin from a convex polyhedral scatterer D \subset \BbbR 3 coated by a thin
dielectric layer, which can be modeled by the impedance (or Leontovich) boundary
value problem of the Maxwell's equations (1.1) in \BbbR 3\setminus D. Then the total fields E =
Ein + Esc, H = Hin + Hsc, where Esc and Hsc denote the scattered fields, are
governed by the following set of equations:

\nabla \times E  - ikH = 0, \nabla \times H + ikE = 0 in \BbbR 3\setminus D,(1.2)

E = Ein + Esc, H = Hin +Hsc in \BbbR 3\setminus D,(1.3)

lim
| x| \rightarrow \infty 

(Hsc \times x - | x| Esc) = 0,(1.4)

\nu \times (\nabla \times E) + i\lambda \nu \times (\nu \times E) = 0 on \partial D,(1.5)

where \nu denotes the outward unit normal to \partial D and the impedance coefficient \lambda > 0
is supposed to be a constant. Equation (1.4) is known as the Silver--M\"uller radiation
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26 G. HU, M. VASHISTH, AND J. YANG

condition and is uniform in all directions \widehat x := x/| x| . For the existence and uniqueness
of the solution (E,H) to the forward system (1.2)--(1.5), we refer the reader to [10]
when \partial D is C2-smooth and to [4, 6] when \partial D is Lipschitz with connected exterior.
Moreover, the Silver--M\"uller radiation condition (1.4) ensures that scattered fields Esc

and Hsc satisfy the following asymptotic behavior (see [10]):

Esc(x) =
eik| x| 

| x| 

\biggl( 
E\infty (\widehat x) +O

\biggl( 
1

| x| 

\biggr) \biggr) 
as | x| \rightarrow \infty ,(1.6)

Hsc(x) =
eik| x| 

| x| 

\biggl( 
H\infty (\widehat x) +O

\biggl( 
1

| x| 

\biggr) \biggr) 
as | x| \rightarrow \infty ,(1.7)

where the vector fields E\infty andH\infty defined on the unit sphere \BbbS 2 are called the electric
and magnetic far-field patterns of the scattered waves Esc and Hsc, respectively. It is
well known that E\infty and H\infty are analytic functions with respect to the observation
direction \widehat x \in \BbbS 2 and satisfy the following relations:

H\infty = \nu \times E\infty , \nu \cdot E\infty = \nu \cdot H\infty = 0,(1.8)

where \nu denotes the unit normal vector to the unit sphere \BbbS 2.
Given the incoming wave (Ein, Hin) and the scatterer D \subset \BbbR 3, the direct problem

arising from electromagnetic scattering is to find the scattered fields (Esc, Hsc) and
their far-field patterns. The inverse problem to be considered in this paper consists
of determining the location and shape of D from knowledge of the far-field patterns
(E\infty , H\infty ). We assume that the incident fields Ein and Hin are nonvanishing vector
fields which are solutions to the Maxwell's equations (1.1) in a neighboring area of
the obstacle D. For instance, one can take the incident fields Ein and Hin to be one
among the following:

1. Plane waves:

Ein(x, d, p) = peikx\cdot d, Hin(x, d, p) = (d\times p)eikx\cdot d,(1.9)

where d \in \BbbS 2 is known as the incident direction and p \in \BbbS 2 with p \bot d is
known as the polarization direction.

2. Point source waves:

Ein(x) = \nabla x \times (\Phi (x, y)\vec{}a) , Hin(x) =
1

ik
\nabla \times Ein(x), x \not = y,(1.10)

where \vec{}a is a constant vector and \Phi (x, y) := 1
4\pi 

eik| x - y| 

| x - y| , x \not = y is the funda-

mental solution to \Delta + k2 in \BbbR 3.
\bigl( 
Ein, Hin

\bigr) 
given by (1.10) represent the

electromagnetic field generated by a magnetic dipole located at y, and they
solve the Maxwell's equations (1.1) for x \not = y.

3. Electromagnetic Herglotz pairs:

Ein(x) =

\int 
\BbbS 2
eikx\cdot da(d)ds(d), Hin(x) =

1

ik
\nabla \times Ein(x), x \in \BbbR 3,(1.11)

where the square integrable tangential field a \in L2
t (\BbbS 2)3 is known as the

Herglotz kernel of Ein and Hin.
The present article is concerned with a uniqueness result of determining the convex
polyhedral scatterer D appearing in the system of (1.2)--(1.5) from the knowledge
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INVERSE ELECTROMAGNETIC SCATTERING 27

of a single electric far-field pattern E\infty (\widehat x) measured over all observation directions\widehat x \in \BbbS 2. We mention that in case of plane wave incidence, the incident direction
d \in \BbbS 2, the polarization direction p \in \BbbS 2, and the wave number k > 0 are all
fixed.

We state our main result as follows.

Theorem 1.1. Let D1 and D2 be two convex polyhedral scatterers of impedance
type. Given an incident field (Ein, Hin) as mentioned above, we denote by E\infty 

j (j =
1, 2) the electric far-field patterns of the scattering problem (1.2)--(1.5) when D = Dj.
Then the relation

E\infty 
1 (\widehat x) = E\infty 

2 (\widehat x) for all \widehat x \in \BbbS 2(1.12)

implies that D1 = D2.

It is widely open how to uniquely determine the shape of a general impene-
trable/penetrable scatterer using a single far-field pattern. As in the acoustic case
[1, 2, 7, 27], quite limited progress has also been made in inverse time-harmonic elec-
tromagnetic scattering. To the best of our knowledge, global uniqueness with a single
measurement datum is proved only for perfectly conducting obstacles with restrictive
geometric shapes, such as balls [26] and convex polyhedrons [10, Chapter 7.1]. With-
out the convexity condition, it was shown in [29] that a general perfect polyhedral
conductor (the closure of which may contain screens) can be uniquely determined by
the far-field pattern for plane wave incidence with one direction and two polarizations.
We shall prove Theorem 1.1 by using the reflection principle for Maxwell's equations
with the impedance boundary condition enforcing on a hyperplane. It seems that such
a reflection principle has not been studied in prior works, although the corresponding
principle under the perfectly conducting boundary condition is well known in optics
(see, e.g., [29]). Theorem 1.1 carries over to perfectly conducting polyhedrons with
a single far-field pattern (see Corollary 4.5) and thus improves the acoustic unique-
ness result for impedance scatterers [8] where two incident directions were used. It is
also worth mentioning other works in the literature related to reflection principles for
the Helmholtz and Navier equations together with their applications to uniqueness in
inverse acoustic and elastic scattering [1, 7, 9, 13, 14, 15, 28]. We believe that the
reflection principle, as a special case of unique continuation, provides a powerful tool
for gaining new insights into inverse scattering problems. More remarks concerning
our uniqueness proof will be concluded in section 4.2.

In the second part of this paper, we shall propose a novel noniterative scheme
for imaging an arbitrary convex polyhedron from a single electric far-field pattern.
The linear sampling method in inverse electromagnetic scattering [3, 4, 5, 6] was
earlier studied with an infinite number of plane waves at a fixed energy. We are
mostly motivated by the uniqueness proof of Theorem 1.1 (see also Corollary 4.4) and
the one-wave factorization method in inverse elastic and acoustic scattering [15, 18].
The proposed scheme is essentially a domain-defined sampling approach, requiring no
forward solvers. Promising features of our imaging scheme are summarized as follows.

(i) It requires lower computational cost and only a single measurement datum.
The proposed domain-defined indicator function involves only inner product calcula-
tions. Since the number of sampling variables is comparable with the original linear
sampling method and factorization method [3, 10, 22], the computational cost is not
heavier than the aforementioned pointwise-defined sampling methods. (ii) It can be
interpreted as a data-driven approach because it relies on measurement data cor-
responding to a priori given scatterers (which are also called test domains in the
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28 G. HU, M. VASHISTH, AND J. YANG

literature or samples in the terminology of learning theory and data science). There
is a variety of choices on the shape and physical properties of these samples, giving
rise to quite ``rich"" a priori sample data in addition to the measurement data of the
unknown target. In this paper, we choose perfectly conducting balls (or impedance
balls) as test domains because the spectra of the resulting far-field operator admit
explicit representations. However, these test domains can also be chosen as any other
convex penetrable and impenetrable scatterers, provided the classical factorization
scheme for imaging this test domain can be verified using all incident and polariza-
tion directions. We refer the reader to [23] for the factorization method applied to
inverse electromagnetic medium scattering problems. (iii) It provides a necessary and
sufficient criterion for imaging convex polyhedrons (see Theorem 5.2) with a single
incoming wave. We prove that the wave fields cannot be analytic around any ver-
tex of D (see Corollary 4.4), excluding the possibility of analytical extension across
a vertex. Some other domain-defined sampling approaches, such as the range test
approach [24, 25] and the one-wave no-response test [31, 32], usually preassume such
extensions, leading to a sufficient condition for imaging general targets. Our approach
is closest to the no-response test for reconstructing perfectly conducting polyhedral
scatterers with a few incident plane waves [33] and is comparable with the one-wave
enclosure method by Ikehata [20, 21] for capturing singular points of \partial D. Detailed
discussions on the issue of analytic continuation tests can be found in the monograph
[36, Chapter 15] (see also [17]). If \partial D contains no singular points, only partial infor-
mation of D can be numerically recovered; see [30], where the linear sampling method
with a single far-field pattern was tested.

We organize the article as follows. In section 2, we prove Theorem 1.1 when
the incident fields are given by (1.9). In section 3, we state and prove the reflection
principle for Maxwell's equations with the impedance boundary condition on a hyper-
plane in \BbbR 3 (see Theorem 3.1). Using this reflection principle, we prove in section
4.1 the main uniqueness results for electromagnetic Herglotz waves and point source
waves. The data-driven reconstruction scheme will be described in section 5.

2. Uniqueness with a single plane wave. In this section, we prove Theorem
1.1, when the incident fields (Ein, Hin) are given by

Ein(x, d, p) = peikx\cdot d, Hin(x, d, p) = (d\times p)eikx\cdot d,

where d, p \in \BbbS 2 satisfying p \bot d and k > 0 are all fixed. Now recall from (1.12) that
E\infty 

1 (\widehat x) = E\infty 
2 (\widehat x) for all \widehat x \in \BbbS 2. Using Rellich's lemma (see [10]), we get

E1 = E2 and H1 = H2 in \BbbR 3 \setminus 
\bigl( 
D1 \cup D2

\bigr) 
.

Assuming that D1 \not = D2, we shall prove the uniqueness by deriving a contradiction.
By the convexity ofD1 andD2, we may assume that there exists a vertex O of \partial D1 and
a neighborhood VO of O such that VO\cap D2 = \emptyset . Next, using the impedance boundary
condition of E1 on \partial D1 and E1 = E2 in \BbbR 3 \setminus 

\bigl( 
D1 \cup D2

\bigr) 
, we have that \nu \times (\nabla \times E2)+

i\lambda \nu \times (\nu \times E2) = 0 on VO \cap \partial D1. Since D1 is a convex polyhedron, there exists m
(m \geq 3) convex polygonal faces \Lambda j (j = 1, 2, . . . ,m) of \partial D1, whose closures meet at O
and which can be analytically extended to infinity in \BbbR 3\setminus D2; for example, see Figure

1, where m = 4 (left) and m = 3 (right). Denote by \widetilde \Pi \supseteq \Lambda j the maximum extension
of \Lambda j in \BbbR 3\setminus D2. Using the real analyticity of E2 in \BbbR 3\setminus D2 together with the fact that
\lambda > 0 is a constant, we conclude that E2 satisfies the impedance boundary condition
on \widetilde \Pi j . Recalling (1.4) and (1.6), we have lim| x| \rightarrow \infty | \nabla \times Esc

2 | = 0, lim| x| \rightarrow \infty | Esc
2 | = 0.

D
ow

nl
oa

de
d 

01
/1

3/
21

 to
 1

17
.1

31
.2

19
.4

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSE ELECTROMAGNETIC SCATTERING 29

Hence,

\nu \times 
\bigl( 
\nabla \times Ein

\bigr) 
+ i\lambda \nu \times 

\bigl( 
\nu \times Ein

\bigr) 
= 0 on \widetilde \Pi j , j = 1, 2, . . . ,m.(2.1)

By (1.9), it follows that

ik\nu \times (d\times p) + i\lambda \nu \times (\nu \times p) = 0(2.2)

holds for any outward unit normal \nu to \widetilde \Pi j . Without loss of generality, we suppose
that p = e1, d\times p = e2, \nu = c1e1 + c2e2 + c3e3 with c21 + c22 + c23 = 1, where ej \in \BbbS 2
(j = 1, 2, 3) denotes the Cartesian coordinates in \BbbR 3. By (2.2), simple calculations
show that

 - 
\bigl( 
kc3 + \lambda (c22 + c23)

\bigr) 
e1 + \lambda c1c2e2 + (kc1 + \lambda c1c3) e3 = 0.

This gives us the equations of cj ,

kc3 =  - \lambda 
\bigl( 
c22 + c23

\bigr) 
, \lambda c1c2 = 0, kc1 =  - \lambda c1c3,

which have the following solutions for \nu = (c1, c2, c3) \in \BbbS 2:

\nu = (0, 0, - 1) if k = \lambda ,

\nu =
\Bigl( 
\pm 
\sqrt{} 
1 - (k/\lambda )2, 0, - k/\lambda 

\Bigr) 
if k < \lambda ,

\nu =
\Bigl( 
0,\pm 

\sqrt{} 
1 - (\lambda /k)2, - \lambda /k

\Bigr) 
if k > \lambda .

Hence, the relation (2.2) cannot hold for three linearly independent unit normal vec-
tors \nu . This contradiction implies that D1 = D2.

Remark 2.1. The above uniqueness proof with a single plane wave cannot be
applied to the Helmholtz equation in two dimensions under the impedance boundary
condition \partial \nu u + i\lambda u = 0. In the two-dimensional case, we deduce a corresponding
relation k\nu \cdot d + \lambda = 0, which holds for only two linearly independent unit normal
vectors if D1 \not = D2. However, this cannot lead to a contradiction when k > \lambda . It was
proved in [8] that the far-field patterns of two incident directions uniquely determine
a convex polygonal obstacle of impedance type.

The above proof relies on the form of electromagnetic plane waves and therefore
it is not applicable to the incident fields given by electromagnetic point source waves
and vector Herglotz wave functions. For these kinds of incident fields, we shall apply
the reflection principle for Maxwell's equations to prove Theorem 1.1; see section 3
and subsection 4.1 below.

3. Reflection principle for Maxwell's equations. Let \Omega \subseteq \BbbR 3 be an open
connected set which is symmetric with respect to a plane \Pi in \BbbR 3, and we define
by \gamma := \Omega \cap \Pi . Denote by \Omega + and \Omega  - the two symmetric parts of \Omega which are
divided by \Pi and by R\Pi the reflection operator about \Pi ; that is, if x \in \Omega \pm , then
R\Pi x \in \Omega \mp for x = (x1, x2, x3) \in \Omega . Throughout this article, \Omega will be assumed in
such a way that any line segment with end points in \Omega and intersected with \Pi by the
angle \pi /2 lies completely in \Omega . In other words, the projection of any line segment in
\Omega onto the hyperplane \Pi is a subset of \gamma . This geometrical condition was also used
in [12], where the reflection principle for the Helmholtz equation with the impedance

D
ow

nl
oa

de
d 

01
/1

3/
21

 to
 1

17
.1

31
.2

19
.4

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

30 G. HU, M. VASHISTH, AND J. YANG

boundary condition was verified in \BbbR n (n \geq 2). Now consider the time-harmonic
Maxwell's equations with the impedance boundary condition by

\nabla \times E  - ikH = 0, \nabla \times H + ikE = 0 in \Omega +,(3.1)

\nu \times (\nabla \times E) + i\lambda \nu \times (\nu \times E) = 0 on \gamma \subset \Pi .(3.2)

It is well known from Theorem 6.4 in [10] that a solution (E,H) of (3.1) satisfies the
vectorial Helmholtz equations with the divergence-free condition:

\Delta E + k2E = 0, \Delta H + k2H = 0, \nabla \cdot E = \nabla \cdot H = 0.(3.3)

Since (3.3) and (3.1) are rotational invariant, without loss of generality we can as-
sume that the plane \Pi mentioned above coincides with the ox1x2-plane, i.e., \Pi =
\{ (x1, x2, x3) \in \BbbR 3 : x3 = 0\} . Consequently, we have \nu = e3 := (0, 0, 1)T and
R\Pi x = (x1, x2, - x3). In this section, we study the reflection principle for solutions to
the Maxwell's equation satisfying the impedance boundary condition on \gamma . Our aim
is to extend the solution (E,H) of (3.1) from \Omega + to \Omega  - by an analytical formula.
The reflection principle is stated as follows.

Theorem 3.1. Let \Pi := \{ (x\prime , x3) \in \BbbR 3 : x3 = 0\} with x\prime := (x1, x2), \gamma \subset \Omega \cap \Pi ,
and \Omega \pm := \{ (x1, x2, x3) \in \Omega : \pm x3 > 0\} . Assume that (E,H) satisfies (3.1) with
the boundary condition (3.2). Then (E,H) can be analytically extended to \Omega  - as a

solution to (3.1). Moreover, the extended electric field \widetilde E := ( \widetilde E1, \widetilde E2, \widetilde E3)
T is given

explicitly by

\widetilde E(x\prime , x3) =

\Biggl\{ 
E(x) if x \in \Omega + \cup \gamma ,
\scrD E(x\prime , - x3) if x \in \Omega  - ,

(3.4)

where the operator \scrD E := ((\scrD E)1, (\scrD E)2, (\scrD E)3)
T
is defined by

(\scrD E)3(x) := E3(x
\prime , x3) - 

2k2

i\lambda 

\int x3

0

e
k2

i\lambda (s - x3)E3(x
\prime , s)ds for x \in \Omega +,(3.5)

(\scrD E)j(x
\prime , x3) := Ej(x

\prime , x3) + 2i\lambda 

\int x3

0

e - i\lambda (s - x3)Ej(x
\prime , s)ds(3.6)

+
2\lambda 2

k2  - \lambda 2

\int x3

0

e - i\lambda (s - x3)\partial jE3(x
\prime , s)ds - 2k2

k2  - \lambda 2

\int x3

0

e
k2

i\lambda (s - x3)\partial jE3(x
\prime , s)ds

for j = 1, 2 and x \in \Omega +.

Obviously, the extension operator (\scrD E)3 only relies on E3 in \Omega +, whereas (\scrD E)j
(j = 1, 2) depends on both Ej and E3. The formula given by (3.4) is a ``non-point-
to-point"" reflection formula which is in contrast with the ``point-to-point"" reflection
formula for the Maxwell's equations with the Dirichlet boundary condition (see [29]).
As \lambda \rightarrow \infty , the impedance boundary condition will be reduced to the Dirichlet bound-
ary condition \nu \times E = 0 on \Pi . It is easy to observe that (\scrD E)3 \rightarrow E3 and that, by
applying integration by parts, (\scrD E)j \rightarrow  - Ej for j = 1, 2 as \lambda tends to infinity. Hence,

the reflection formula (3.4) becomes \widetilde E(x) =  - R\Pi E(R\Pi x) for x \in \Omega , which is valid
for any symmetric domain with respect to \Pi = \{ x : x3 = 0\} .

Before going to the proof of Theorem 3.1, we first state the reflection principle
for the Helmholtz equation with an impedance boundary condition. The result in the
following Lemma 3.2 has already been proved in [12].
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INVERSE ELECTROMAGNETIC SCATTERING 31

Lemma 3.2 (see [12]). Let \Omega ,\Pi ,\gamma , and \Omega \pm be defined as in Theorem 3.1. If u is
a solution to the boundary value problem of the Helmholtz equation

(3.7) \Delta u+ k2u = 0 in \Omega +, \partial \nu u+ i\lambda u = 0 on \gamma ,

then u can be extended from \Omega + to \Omega as a solution to the Helmholtz equation, with
the extended solution \widetilde u given by the formula \widetilde u := u in \Omega + \cup \gamma and

(3.8) \widetilde u(x) := u(x1, x2, - x3) + 2i\lambda e - i\lambda x3

\int  - x3

0

e - i\lambda su(x1, x2, s)ds in \Omega  - .

Our proof of Theorem 3.1 is essentially motivated by the proof of Lemma 3.2.

3.1. Proof of Theorem 3.1. From (3.1), we deduce that E is a solution to

\nabla \times (\nabla \times E) - k2E = 0 in \Omega +, e3 \times (\nabla \times E) + i\lambda e3 \times (e3 \times E) = 0 on \gamma .(3.9)

Define the vector function F and the scalar function V by

F := e3 \times (\nabla \times E) + i\lambda e3 \times (e3 \times E) =: (F1, F2, 0)
T

in \Omega +,

F1 = \partial 1E3  - \partial 3E1  - i\lambda E1, F2 = \partial 2E3  - \partial 3E2  - i\lambda E2,(3.10)

V :=
\partial 1F1 + \partial 2F2

i\lambda 
=
\partial 21E3  - \partial 231E1  - i\lambda \partial 1E1 + \partial 22E3  - \partial 232E2  - i\lambda \partial 2E2

i\lambda 
.

Now using \Delta E + k2E = 0 and \nabla \cdot E = 0 in \Omega +, we have

V =
 - \partial 23E3  - k2E3  - \partial 3 (\partial 1E1 + \partial 2E2) - i\lambda (\partial 1E1 + \partial 2E2)

i\lambda 
= \partial 3E3  - 

k2

i\lambda 
E3.

Since F1 = F2 = 0 on \gamma \subseteq \{ x \in \BbbR 3 : x3 = 0\} , we get \partial 1F1 = \partial 2F2 = 0 on \gamma and thus

\Delta E3 + k2E3 = 0 in \Omega +, \partial 3E3  - k2/(i\lambda ) E3 = 0 on \gamma .(3.11)

Applying Lemma 3.2, we can extend E3 from \Omega + to \Omega by \widetilde E3 := E3 in \Omega + \cup \gamma and

\widetilde E3(x) := E3(x
\prime , - x3) - 

2k2

i\lambda 
e

k2

i\lambda x3

\int  - x3

0

e
k2

i\lambda sE3(x
\prime , s)ds in \Omega  - ,

which gives the extension formula for E3.
To find the extension formula for Ej (j = 1, 2), we observe that Fj (j = 1, 2)

given by (3.10) satisfy the Helmholtz equation with the Dirichlet boundary condition,

\Delta Fj + k2Fj = 0 in \Omega +, Fj = 0 on \gamma .

Applying the reflection principle with the Dirichlet boundary condition (see [12]), we

can extend Fj through \widetilde Fj := Fj in \Omega +\cup \gamma and \widetilde Fj(x) :=  - Fj(x
\prime , - x3) in \Omega  - . As done

for the Helmholtz equation, we will derive the extension formula for Ej for j = 1, 2
by considering the boundary value problem of the ODE (cf. (3.10))

\partial 3 \widetilde Ej + i\lambda \widetilde Ej  - \partial j \widetilde E3 =  - \widetilde Fj in \Omega , \widetilde Ej = Ej on \gamma ,

where \widetilde Ej (j = 1, 2) denote the extended functions. Multiplying the above equation
by ei\lambda x3 and integrating between 0 to x3, we have\int x3

0

ei\lambda s
\Bigl( 
\partial s \widetilde Ej(x

\prime , s) + i\lambda \widetilde Ej(x
\prime , s)

\Bigr) 
ds - 

\int x3

0

ei\lambda s\partial j \widetilde E3(x
\prime , s)ds =  - 

\int x3

0

ei\lambda s \widetilde Fj(x
\prime , s)ds,
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which gives us

\widetilde Ej(x) = e - i\lambda x3Ej(x
\prime , 0) +

\int x3

0

ei\lambda (s - x3)\partial j \widetilde E3(x
\prime , s)ds - 

\int x3

0

ei\lambda (s - x3) \widetilde Fj(x
\prime , s)ds.

Since \widetilde Fj = Fj and \widetilde E3 = E3 in \in \Omega +, the above equation can be rewritten as

\widetilde Ej(x) = e - i\lambda x3Ej(x
\prime , 0) + e - i\lambda x3

\int x3

0

ei\lambda s\partial jE3(x
\prime , s)ds

 - e - i\lambda x3

\int x3

0

ei\lambda s (\partial jE3(x
\prime , s) - \partial sEj(x

\prime , s) - i\lambda Ej(x
\prime , s)) ds,

which can be proved to be identical with Ej in \Omega + by applying integration by parts.

Next, we want to simplify the expression of \widetilde Ej(x) in \Omega  - . Using the expression for \widetilde Fj

and \widetilde E3 (see (3.5)), we obtain

\widetilde Ej(x)

= e - i\lambda x3Ej(x
\prime , 0) +

\int x3

0

ei\lambda (s - x3) (\partial jE3(x
\prime , - s) + \partial sEj(x

\prime , - s) - i\lambda Ej(x
\prime , - s)) ds

+

\int x3

0

ei\lambda (s - x3)\partial jE3(x
\prime , - s)ds - 2k2

i\lambda 

\int x3

0

ei\lambda (s - x3)

\biggl( \int  - s

0

e
k2

i\lambda (t+s)\partial jE3(x
\prime , t)dt

\biggr) 
ds.

This gives\widetilde Ej(x)

= Ej(x
\prime , - x3) + 2i\lambda 

\int  - x3

0

e - i\lambda (s+x3)Ej(x
\prime , s)ds - 2

\int  - x3

0

e - i\lambda (s+x3)\partial jE3(x
\prime , s)ds

+
2k2

i\lambda 

\int x3

0

ei\lambda (s - x3)

\int s

0

e - 
k2

i\lambda (t - s)\partial jE3(x
\prime , - t)dtds.

Changing the order of integration in the last term of the previous equation, we obtain

\widetilde Ej(x) = Ej(x
\prime , - x3) + 2i\lambda 

\int  - x3

0

e - i\lambda (s+x3)Ej(x
\prime , s)ds - 2

\int  - x3

0

e - i\lambda (s+x3)\partial jE3(x
\prime , s)ds

+
2k2

i\lambda 
e - i\lambda x3

\int t=x3

t=0

e - 
k2

i\lambda t\partial jE3(x
\prime , - t)

\int s=x3

s=t

e
k2 - \lambda 2

i\lambda sdsdt

= Ej(x
\prime , - x3) + 2i\lambda 

\int  - x3

0

e - i\lambda (s+x3)Ej(x
\prime , s)ds - 2

\int  - x3

0

e - i\lambda (s+x3)\partial jE3(x
\prime , s)ds

+
2k2

k2  - \lambda 2

\int x3

0

e - 
k2

i\lambda (s - x3)\partial jE3(x
\prime , - s)ds - 2k2

k2  - \lambda 2

\int x3

0

ei\lambda (s - x3)\partial jE3(x
\prime , - s)ds.

After combining similar terms, we get

\widetilde Ej(x) = Ej(x
\prime , - x3) + 2i\lambda 

\int  - x3

0

e - i\lambda (s+x3)Ej(x
\prime , s)ds

+
2\lambda 2

k2  - \lambda 2

\int  - x3

0

e - i\lambda (s+x3)\partial jE3(x
\prime , s)ds - 2k2

k2  - \lambda 2

\int  - x3

0

e
k2

i\lambda (s+x3)\partial jE3(x
\prime , s)ds.

This proves (3.6). Notice that the right-hand side of \widetilde Ej (j = 1, 2) depends on both
Ej and E3 in \Omega +.
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INVERSE ELECTROMAGNETIC SCATTERING 33

In order to show that \widetilde Ej given by (3.6) and (3.5) is indeed the required extension

formula for Ej , we need to verify that \Delta \widetilde Ej + k2 \widetilde Ej = 0 and \nabla \cdot \widetilde E = 0 in \Omega . For this
purpose, we shall proceed with the following three steps.

Step 1. Prove that the Cauchy data of \widetilde Ej taking from \Omega \pm are identical on \gamma . By

Lemma 3.2, this is true for the third component \widetilde E3. On the other hand, it is clear
from (3.6) that \widetilde Ej (j = 1, 2) are continuous functions in \Omega . Therefore, we only need

to show that \partial +3
\widetilde Ej = \partial  - 3

\widetilde Ej on \gamma , j = 1, 2. Simple calculations show that

\partial 3 \widetilde Ej(x) =

\left\{               

\partial 3Ej(x
\prime , x3) in \Omega +,

 - \partial 3Ej(x
\prime , - x3) + 2\lambda 2e - i\lambda x3

\int  - x3

0
e - i\lambda sEj(x

\prime , s)ds - 2i\lambda Ej(x
\prime , - x3)

 - 2i\lambda 3

k2 - \lambda 2 e
 - i\lambda x3

\int  - x3

0
e - i\lambda s\partial jE3(x

\prime , s)ds - 2\lambda 2

k2 - \lambda 2 \partial jE3(x
\prime , - x3)

 - 2k4

i\lambda (k2 - \lambda 2)e
k2

i\lambda x3
\int  - x3

0
e

k2

i\lambda s\partial jE3(x
\prime , s)ds+ 2k2

k2 - \lambda 2 \partial jE3(x
\prime , - x3) in \Omega  - ,

from which it follows that

\partial  - 3
\widetilde Ej(x

\prime , 0) =  - \partial +3 Ej(x
\prime , 0) - 2i\lambda Ej(x

\prime , 0) +
2(k2  - \lambda 2)

k2  - \lambda 2
\partial jE3(x

\prime , 0).

Recalling the relation \partial jE3(x
\prime , 0) - \partial +3 Ej(x

\prime , 0) - i\lambda Ej(x
\prime , 0) = 0 for j = 1, 2, we get

from the previous equation that \partial +3 Ej = \partial  - 3
\widetilde Ej on \gamma .

Step 2. Prove that \Delta \widetilde Ej + k2 \widetilde Ej = 0 in \Omega for j = 1, 2, 3. In view of Step 1, it

suffices to verify that \Delta \widetilde Ej + k2 \widetilde Ej = 0 in \Omega  - for j = 1, 2. From (3.6), we have

\Delta \widetilde Ej(x) = \Delta Ej(x
\prime , - x3) + I1 + I2 + I3, x \in \Omega  - ,(3.12)

where j = 1 or j = 2 is fixed and I \prime ks for k = 1, 2, 3 are given by

I1 := 2i\lambda \Delta 

\biggl( 
e - i\lambda x3

\int  - x3

0

e - i\lambda sEj(x
\prime , s)ds

\biggr) 
,

I2 :=
2\lambda 2

k2  - \lambda 2
\Delta 

\biggl( 
e - i\lambda x3

\int  - x3

0

e - i\lambda s\partial jE3(x
\prime , s)ds

\biggr) 
,

I3 :=  - 2k2

k2  - \lambda 2
\Delta 

\biggl( 
e

k2

i\lambda x3

\int  - x3

0

e
k2

i\lambda s\partial jE3(x
\prime , s)ds

\biggr) 
.

Using \Delta Ej + k2Ej = 0 for j = 1, 2, 3 in \Omega + and applying integration by parts, the
three terms Ij (j = 1, 2, 3) can be calculated as follows:

I1 =  - 2i\lambda \partial 3Ej(x
\prime , - x3) + 2i\lambda e - i\lambda x3\partial 3Ej(x

\prime , 0) + 2\lambda 2Ej(x
\prime , - x3) - 2\lambda 2e - i\lambda x3Ej(x

\prime , 0)

+ 2i\lambda 3e - i\lambda x3

\int  - x3

0

e - i\lambda sEj(x
\prime , s)ds - 2i\lambda k2e - i\lambda x3

\int  - x3

0

e - i\lambda sEj(x
\prime , s)ds

 - 2i\lambda 3e - i\lambda x3

\int  - x3

0

e - i\lambda sEj(x
\prime , s)ds - 2\lambda 2Ej(x

\prime , - x3) + 2i\lambda \partial 3Ej(x
\prime , - x3),
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34 G. HU, M. VASHISTH, AND J. YANG

I2 =  - 2\lambda 2

k2  - \lambda 2
\partial 3\partial jE3(x

\prime , - x3) +
2\lambda 2

k2  - \lambda 2
e - i\lambda x3\partial 3\partial jE3(x

\prime , 0) - 2i\lambda 3

k2  - \lambda 2
\partial jE3(x

\prime , - x3)

+
2i\lambda 3

k2  - \lambda 2
e - i\lambda x3\partial jE3(x

\prime , 0) +
2\lambda 4

k2  - \lambda 2
e - i\lambda x3

\int  - x3

0

e - i\lambda s\partial jE3(x
\prime , s)ds

 - 2\lambda 2k2

k2  - \lambda 2
e - i\lambda x3

\int  - x3

0

e - i\lambda s\partial jE3(x
\prime , s)ds - 2\lambda 4

k2  - \lambda 2
e - i\lambda x3

\int  - x3

0

e - i\lambda s\partial jE3(x
\prime , s)ds

+
2i\lambda 3

k2  - \lambda 2
\partial jE3(x

\prime , - x3) +
2\lambda 2

k2  - \lambda 2
\partial 3\partial jE3(x

\prime , - x3),

I3 =
2k2

k2  - \lambda 2
\partial 3\partial jE3(x

\prime , - x3) - 
2k2

k2  - \lambda 2
e

k2

i\lambda x3\partial 3\partial jE3(x
\prime , 0) +

2ik4

\lambda (k2  - \lambda 2)
\partial jE3(x

\prime , - x3)

 - 2ik4

\lambda (k2  - \lambda 2)
e

k2

i\lambda x3\partial jE3(x
\prime , 0) - 2k6

\lambda 2 (k2  - \lambda 2)
e

k2

i\lambda x3

\int  - x3

0

e
k2

i\lambda s\partial jE3(x
\prime , s)ds

+
2k4

k2  - \lambda 2
e

k2

i\lambda x3

\int  - x3

0

e
k2

i\lambda s\partial jE3(x
\prime , s)ds+

2k6

\lambda 2 (k2  - \lambda 2)
e

k2

i\lambda x3

\int  - x3

0

e
k2

i\lambda s\partial jE3(x
\prime , s)ds

 - 2ik4

\lambda (k2  - \lambda 2)
\partial jE3(x

\prime , - x3) - 
2k2

k2  - \lambda 2
\partial 3\partial jE3(x

\prime , - x3).

Using again the Helmholtz equation \Delta Ej + k2Ej = 0 in \Omega + and inserting expressions
of I1, I2, and I3 into (3.12), we get

\Delta \widetilde Ej(x) =  - k2
\Biggl( 
Ej(x

\prime , - x3) + 2i\lambda 

\int  - x3

0

e - i\lambda (s+x3)Ej(x
\prime , s)ds

+
2\lambda 2

k2  - \lambda 2

\int  - x3

0

e - i\lambda (s+x3)\partial jE3(x
\prime , s)ds

 - 2k2

k2  - \lambda 2
e

k2

i\lambda x3

\int  - x3

0

e
k2

i\lambda s\partial jE3(x
\prime , s)ds

\Biggr) 

+ 2i\lambda e - i\lambda x3

\Bigl( 
\partial 3Ej(x

\prime , 0) + i\lambda Ej(x
\prime , 0)

\Bigr) 
+

2\lambda 2

k2  - \lambda 2
e - i\lambda x3\partial j

\Bigl( 
\partial 3E3(x

\prime , 0) + i\lambda \partial jEj(x
\prime , 0)

\Bigr) 
 - 2k2

k2  - \lambda 2
e

k2

i\lambda x3\partial j

\biggl( 
\partial 3E3(x

\prime , 0) - k2

i\lambda 
E3(x

\prime , 0)

\biggr) 
.

This together with (3.6) and the boundary conditions

\partial 3E3(x
\prime , 0) - k2

i\lambda 
E3(x

\prime , 0) = 0, \partial jE3(x
\prime , 0) - \partial 3Ej(x

\prime , 0) - i\lambda Ej(x
\prime , 0) = 0

leads to the relation \Delta \widetilde Ej + k2 \widetilde Ej = 0 in \Omega  - .
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INVERSE ELECTROMAGNETIC SCATTERING 35

Step 3. Prove that \nabla \cdot \widetilde E = 0 in \Omega . It follows from Step 1 that \widetilde E \in C1(\Omega ). Hence,
we only need to show the divergence-free condition in \Omega  - . For x \in \Omega  - , we see

\nabla \cdot \widetilde E(x) = \partial 1E1(x
\prime , - x3) + \partial 2E2(x

\prime , - x3) - \partial 3E3(x
\prime , - x3)

+ 2i\lambda 

\int  - x3

0

e - i\lambda (s+x3) (\partial 1E1 + \partial 2E2) (x
\prime , s)ds

+
2\lambda 2

k2  - \lambda 2

\int  - x3

0

e - i\lambda (s+x3)
\bigl( 
\partial 21E3 + \partial 22E3

\bigr) 
(x\prime , s)ds

 - 2k2

k2  - \lambda 2

\int  - x3

0

e
k2

i\lambda (s+x3)
\bigl( 
\partial 21E3 + \partial 22E3

\bigr) 
(x\prime , s)ds

+
2k4

\lambda 2

\int  - x3

0

e
k2

i\lambda (s+x3)E3(x
\prime , s)ds+

2k2

i\lambda 
E3(x

\prime , - x3).

Now using \nabla \cdot E = 0 and \Delta Ej + k2Ej = 0 for 1 \leq j \leq 3 in \Omega +, we have

\nabla \cdot \widetilde E(x) =  - 2\partial 3E3(x
\prime , - x3) - 2i\lambda 

\int  - x3

0

e - i\lambda (s+x3)\partial sE3(x
\prime , s)ds\underbrace{}  \underbrace{}  

J1

 - 2\lambda 2

k2  - \lambda 2

\int  - x3

0

e - i\lambda (s+x3)\partial 2sE3(x
\prime , s)ds\underbrace{}  \underbrace{}  

J2

 - 2\lambda 2k2

k2  - \lambda 2

\int  - x3

0

e - i\lambda (s+x3)E3(x
\prime , s)ds

+
2k2

k2  - \lambda 2

\int  - x3

0

e
k2

i\lambda (s+x3)\partial 2sE3(x
\prime , s)ds\underbrace{}  \underbrace{}  

J3

+
2k4

k2  - \lambda 2

\int  - x3

0

e
k2

i\lambda (s+x3)E3(x
\prime , s)ds

+
2k4

\lambda 2

\int  - x3

0

e
k2

i\lambda (s+x3)E3(x
\prime , s)ds+

2k2

i\lambda 
E3(x

\prime , - x3).

(3.13)

Using integration by parts, we can rewrite J1, J2, and J3 as

J2 =
2\lambda 2

k2  - \lambda 2
\partial 3E3(x

\prime , - x3) - 
2\lambda 2

k2  - \lambda 2
e - i\lambda x3\partial 3E3(x

\prime , 0) +
2i\lambda 3

k2  - \lambda 2
E3(x

\prime , - x3)

 - 2i\lambda 3

k2  - \lambda 2
e - i\lambda x3E3(x

\prime , 0) - 2\lambda 4

k2  - \lambda 2
e - i\lambda x3

\int  - x3

0

e - i\lambda sE3(x
\prime , s)ds

+
2\lambda 2k2

k2  - \lambda 2
e - i\lambda x3

\int  - x3

0

e - i\lambda sE3(x
\prime , s)ds,

J1 = 2i\lambda E3(x
\prime , - x3) - 2i\lambda e - i\lambda x3E3(x

\prime , 0) - 2\lambda 2e - i\lambda x3

\int  - x3

0

e - i\lambda sE3(x
\prime , s)ds,

J3 =
2k2

k2  - \lambda 2
\partial 3E3(x

\prime , - x3) - 
2k2

k2  - \lambda 2
e

k2

i\lambda x3\partial 3E3(x
\prime , 0) +

2ik4

\lambda (k2  - \lambda 2)
E3(x

\prime , - x3)

 - 2ik4

\lambda (k2  - \lambda 2)
e

k2

i\lambda x3E3(x
\prime , 0) - 2k6

\lambda 2 (k2  - \lambda 2)
e

k2

i\lambda x3

\int  - x3

0

e
k2

i\lambda sE3(x
\prime , s)ds.

Inserting them into (3.13), applying integration by parts, and rearranging terms, we
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36 G. HU, M. VASHISTH, AND J. YANG

get

\nabla \cdot \widetilde E(x) = 2e - i\lambda x3

\Biggl[ \biggl( 
i\lambda +

i\lambda 3

k2  - \lambda 2

\biggr) 
E3(x

\prime , 0) +
\lambda 2

k2  - \lambda 2
\partial 3E3(x

\prime , 0)

\Biggr] 

+
2k2

k2  - \lambda 2
e

k2

i\lambda x3

\biggl( 
 - \partial 3E3(x

\prime , 0) +
k2

i\lambda 
E3(x

\prime , 0)

\biggr) 
.

Recalling \partial 3E3(x
\prime , 0) - k2

i\lambda E3(x
\prime , 0) = 0, we finally get \nabla \cdot \widetilde E = 0 in \Omega  - .

So far we have proved that the function \widetilde E with components given by (3.4)--(3.6)
is the extension of the solution E of the Maxwell's equations.

4. Applications of the reflection principle. The main purpose of this sec-
tion is to prove the uniqueness result for recovering convex polyhedral scatterers of
impedance type, which was stated in Theorem 1.1 when the incident fields are given
by either (1.10) or (1.11). This part also gives a new proof for electromagnetic plane
waves.

Assuming two of such different scatterers generate identical far-field patterns,
we shall prove via the reflection principle that the scattered electric field could be
analytically extended into the whole space, which is impossible. Similar ideas were
employed in [16, 20, 15] for proving uniqueness in inverse conductivity and elastic
scattering problems. Later we shall remark why our approach cannot be applied
to nonconvex polyhedral scatterers and compare our arguments with the uniqueness
proof of [8] in the Helmholtz case. The corollaries below follow straightforwardly from
Theorem 3.1.

Corollary 4.1. Let (E,H) be a solution to the Maxwell's equations (3.1) in
x3 > 0 fulfilling the impedance boundary condition (3.2) on \Pi = \{ x \in \BbbR 3 : x3 = 0\} .
Then (E,H) can be extended from the upper half-space x3 \geq 0 to the whole space.

Moreover, the extended electric field \widetilde E is given by

\widetilde E(x) =

\biggl\{ 
E(x) if x3 \geq 0,
\scrD E(x\prime , - x3) if x3 < 0,

where \scrD is the operator defined in Theorem 3.1.

Corollary 4.2. Let \Omega = \Omega + \cup \gamma \cup \Omega  - be the domain defined in Theorem 3.1.
Given a subset D \subset \Omega  - , suppose that (E,H) is a solution to the Maxwell's equations
(3.1) in \Omega \setminus D fulfilling the impedance boundary condition (3.2) on \gamma . Then (E,H)
can be analytically extended onto D.

The above results will be used in the proof of Theorem 1.1 to be carried out
below.

4.1. Proof of Theorem 1.1 for electromagnetic Herglotz waves and
point source waves. First, we proceed with the same arguments for electromag-
netic plane waves. Assume that there are two different convex polyhedrons D1 and
D2 which generate the same electric far-field pattern. We assume without loss of
generality that there exists a vertex O of \partial D1 and a neighborhood VO of O such that
VO \cap D2 = \emptyset ; see Figure 1. Denote by \Lambda j \subset \partial D1 (j = 1, 2, . . . ,m) the m \geq 3 convex

polygonal faces of \partial D1 whose closure meet at O and by \widetilde \Pi j \supseteq \Lambda j their maximum
analytical extension in \BbbR 3\setminus D2. Then we get

\nu \times (\nabla \times E2) + i\lambda \nu \times (\nu \times E2) = 0 on \widetilde \Pi j , j = 1, 2, . . . ,m

due to the analyticity of E2 in the exterior of D2.
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G

O

O1

D2 

D1 

O 

Fig. 1. Illustration of two different convex polyhedral scatterers. Left: D2 is a cube, and D1 is
the interior of D2 \cup G, where G denotes the gap domain between D1 and D2. There are four faces
of D1 around the vertex O; none of them extends to an entire plane in \BbbR 3\setminus D2. Right: D1 and D2

are both cubes. There are three faces of D1 around the vertex O; only one of them can be extended
to an entire plane in \BbbR 3\setminus D2.

Proof of Theorem 1.1 for electromagnetic Herglotz waves. In this case, E2 satis-
fies the Maxwell's equation in \BbbR 3\setminus D2. We consider two cases.

Case (i): One of \widetilde \Pi j coincides with some hyperplane \Pi in \BbbR 3\setminus D2 (see Figure 1,
right). Since D2 is convex, it must lie completely on one side of the plane \Pi . By
Corollary 4.1, the electric field E2 can be analytically extended to \BbbR 3 as a solution to
the Maxwell's equation. This implies that Esc

2 is an entire radiating solution to the
Maxwell's equation. Consequently, we get Esc

2 \equiv 0, and thus the total field E2 = Ein

satisfies the impedance boundary condition on \partial D2.
Case (ii): None of \widetilde \Pi j coincides with an entire hyperplane in \BbbR 3\setminus D2 (see Figure

1, left). Denote by \Pi j \supset \widetilde \Pi j the hyperplane in \BbbR 3 containing \Lambda j . We shall prove via
the reflection principle that E2 satisfies the impedance boundary condition on each
\Pi j , which again leads to the relation E2 = Ein by repeating the same arguments in
Case (i).

Without loss of generality, we take j = 1 and consider the plane \Pi 1 \supset \widetilde \Pi 1 \supset \Lambda 1.
Recall that \Lambda 1 \subset \partial D1 is a convex polygonal face and that the total field E2 is analytic
near the corner O of \partial \Lambda 1. It suffices to prove that E2 is analytic on \partial \Lambda 1. Let O1 \in \partial \Lambda 1

be a neighboring corner of O, which is also a vertex of D2. By the convexity of D2,
there exists at least one face \Lambda j\prime with j\prime \not = 1 such that the finite line segment OO1

lies completely on one side of the hyperplane \Pi j\prime and the projection of OO1 onto \Pi j\prime ,

which we denote by L, is a subset of \widetilde \Pi j\prime (\subset \Pi j\prime ). See Figure 2 for an illustration of

the proof in two dimensions. Since D2 does not intersect with \widetilde \Pi j\prime , one can always
find a symmetric domain \Omega \subset \BbbR 3\setminus D2 with respect to \Pi j such that OO1 \subset \Omega and

L \subset (\Omega \cap \widetilde \Pi j\prime ). Recall that E2 fulfills the impedance boundary condition on \widetilde \Pi j\prime .
Now applying Corollary 4.2 with D = OO1 to E2, we find that E2 must be analytic
on OO1, and in particular, E2 is analytic near O1. Here we have used the fact
that the reflection of OO1 with respect to \Pi j\prime lies completely in \BbbR 3\setminus D2 and E2 is
real-analytic in \BbbR 3\setminus D2. Analogously, one can prove the analyticity of E2 at another
neighboring corner point O2 to O \in \partial \Lambda 1 and also the analyticity on the line segment
OO2 \subset \partial \Lambda 1. Applying the same arguments to O1 and O2 in place of O, we can
conclude that E2 is analytic on the closure of \Lambda 1. This implies that E2 satisfies the
impedance boundary condition on the entire plane \Pi 1 \supset \widetilde \Pi 1 and thus E2 = Ein in
\BbbR 3.
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D2

O

O1

G

Fig. 2. Illustration of two different convex polygonal scatterers: D2 is a square, and D1 is the
interior of D2 \cup G, where G denotes the gap domain between D1 and D2. There are two sides of
D1 around the corner O; both of them cannot be extended to a straight line in \BbbR 2\setminus D2.

To continue the proof, we recall from Cases (i) and (ii) that Esc \equiv 0 and the
incident field Ein satisfies the following boundary value problem in D2:

\nabla \times 
\bigl( 
\nabla \times Ein

\bigr) 
 - k2Ein = 0 in D2,

\nu \times 
\bigl( 
\nabla \times Ein

\bigr) 
+ i\lambda \nu \times 

\bigl( 
\nu \times Ein

\bigr) 
= 0 on \partial D2.

Taking the inner product with Ein, integrating over D2, and using integration by
parts, we obtain\int 

D2

| \nabla \times Ein| 2  - k2| Ein| 2 dx+ i\lambda 

\int 
\partial D2

| \nu \times Ein| 2ds = 0.

Taking the imaginary parts in the above integral gives \nu \times Ein = 0 on \partial D2, which to-
gether with the impedance boundary condition implies further that \nu \times (\nabla \times Ein) = 0
on \partial D2. Finally, using the analogue of Holmgren's theorem for Maxwell's equations
(see, e.g., [10, Theorem 6.5 ]), we get Ein \equiv 0, which is a contradiction. Therefore, we
have D1 = D2. This proves Theorem 1.1 for incident fields given by electromagnetic
Herglotz waves.

Proof of Theorem 1.1 for electromagnetic point source waves. Suppose that Ein =
Ein(x, y) is an electric point source incited by a magnetic dipole located at y \in \BbbR 3\setminus Dj

(j = 1, 2). By the previous proof for electromagnetic Herglotz waves, one can always
find m \geq 3 entire planes \Pi j (j = 1, 2, . . . ,m) meeting at the vertex O \in \partial D1 such
that E2 fulfills the impedance boundary condition on \Pi j , j = 1, 2, . . . ,m. Further,
for each j = 1, 2, . . . ,m, \Pi j does not pass through the source position y, and the
convex polyhedron D2 lies in one side of \Pi j . Repeating the same arguments in Case
(ii) of the proof for plane waves, one can prove that E2 is analytic on the closure of
each face of D2. In particular, E2 fulfills the impedance boundary condition on the
entire plane \Pi \Lambda , which extends a face \Lambda of \partial D2. By the arbitrariness of \Lambda , we can
always find a face \Lambda \prime \subset \partial D2 such that the reflection of y with respect to \Pi \Lambda \prime belongs
to \BbbR 3\setminus D2. By the reflection principle (see Corollary 4.2), E2 must be analytic at y,
which is a contradiction to the singularity of E2 at the source position.

4.2. Remarks and corollaries. Below we present several remarks concerning
the proof of Theorem 1.1.

Remark 4.3. (i) Using the reflection principle for the Helmholtz equation (see
Theorem 3.1 or [8]), the idea in the proof of Theorem 1.1 can be used to prove unique
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INVERSE ELECTROMAGNETIC SCATTERING 39

determination of a convex polyhedral or polygonal scatterer of acoustically impedance
type with a single incoming wave; see Figure 2 for an illustration of the uniqueness
proof in two dimensions. This improves the result of [8], where two incident directions
were used in two dimensions. (ii) For nonconvex polyhedral scatterers, one cannot
find a vertex O around which the total field is analytic under the assumption (1.12).
Hence, our uniqueness proof to inverse electromagnetic scattering does not apply to
nonconvex polyhedrons of impedance type. However, this might be possible if one can
establish a reflection principle by removing the geometrical assumption of \Omega made in
Theorem 3.1 (see, e.g., [15] in the elastic case).

As a consequence of the proof of Theorem 1.1, we have the following corollaries.
In particular, the ``singularity"" of Esc at vertices motivates us to design a data-driven
scheme (see section 5 below) to locate all vertices of D so that the position and shape
of D can be recovered from a single measurement datum.

Corollary 4.4. Let D \subset \BbbR 3 be a convex polyhedron, and let E = Ein + Esc

be the solution to (1.2)--(1.5). Then E cannot be analytically extended from \BbbR 3\setminus D to
the interior of D across a vertex of \partial D, or, equivalently, E cannot be analytic on the
vertices of D.

Corollary 4.5. Let D be a perfectly conduction polyhedron such that \BbbR 3\setminus D is
connected. Suppose that E = Ein +Esc is a solution to (1.2)--(1.4) with the boundary
condition \nu \times E = 0 on \partial D. If Ein is an incident Herglotz wave, we suppose addi-
tionally that k2 is not the eigenvalue of the operator \nabla \times \nabla \times over D with the bound-
ary condition of vanishing tangential components on \partial D. Then \partial D can be uniquely
determined by a single electric far-field pattern E\infty over all observation directions.
Moreover, E cannot be analytically extended from \BbbR 3\setminus D to the interior of D across
a vertex of \partial D.

Proof. Let Ein be an incident plane wave with the incident direction d \in \BbbS 2 and
polarization direction p \in \BbbS 2. Suppose that two perfect polyhedral conductors D1

and D2 generate identical electric far-field patterns but D1 \not = D2. Combining the
path arguments of [29] and the uniqueness proof in Theorem 1.1 for incoming waves
given by electromagnetic Herglotz waves, one can always find a perfectly conducting
hyperplane \Pi \subset \BbbR 3 such that Dj (j = 1 or j = 2) lies completely on one side of \Pi . In
fact, such a plane \Pi can be found by applying the point-to-point reflection principle
with the perfectly conducting boundary condition. This implies that the total electric
field E can be analytically extended into the whole space, leading to Esc \equiv 0 in \BbbR 3

and thus \nu \times Ein = 0 on \partial Dj . Hence, we get \nu \times p = 0 for any normal direction on
\partial D, which is impossible.

If Ein is an electric Herglotz function, by the assumption of k2 one can also get
the vanishing of Ein. In the case that Ein = Ein(x, y) is an electric point source wave
emitting from the source position y \in \BbbR 3\setminus Dj , one can prove that E2 satisfies the
Dirichlet boundary condition on the entire plane, which extends a face of D2; see the
previous section in the impedance case. Using the point-to-point reflection principle
together with the path argument, this could lead to the analyticity of E2 at x = y,
which is a contradiction to the singularity of E2 at the source position; see [19] in the
acoustic case.

The impossibility of analytical extension across a vertex can be proved analo-
gously.

Note that the perfectly conducting polyhedron in Corollary 4.5 is allowed to be
nonconvex but cannot contain two-dimensional screens on its closure. The incident
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40 G. HU, M. VASHISTH, AND J. YANG

wave appearing in Corollaries 4.4 and 4.5 can be a plane wave, a Herglotz wave
function, or a point source wave.

4.3. Green's tensor to the Maxwell's equations in a half-space with
the impedance boundary condition. As another application of the reflection
principle, we derive Green's tensor GI(x, y) \in \BbbC 3\times 3 for the Maxwell's equations in
the half-space \BbbR 3

+ := \{ x : x3 > 0\} with the impedance boundary condition enforcing
on \Pi := \{ x : x3 = 0\} ; that is, for any constant vector \vec{}a \in \BbbR 3,

\nabla \times (\nabla \times GI(x, y)\vec{}a) - k2GI(x, y)\vec{}a = \delta (x - y)\vec{}a in x3 > 0,

\nu \times (\nabla \times GI(x, y)\vec{}a) + i\lambda \nu \times (\nu \times GI(x, y)\vec{}a) = 0 on x3 = 0.
(4.1)

For this purpose, we need the free-space Green's tensor given by

G(x, y) := \Phi (x, y)I+
1

k2
\nabla y\nabla y\Phi (x, y), x \not = y,

where I is the 3 \times 3 identity matrix and \nabla y\nabla y\Phi (x, y) is the Hessian matrix for \Phi 
defined by

(\nabla y\nabla y\Phi (x, y))l,m =
\partial 2\Phi (x, y)

\partial yl
\partial ym

, 1 \leq l,m \leq 3, y = (y1, y2, y3) \in \BbbR 3.

Note that here \Phi (x, y) := 1
4\pi 

eik| x - y| 

| x - y| is the fundamental solution to the Helmholtz

equation in three dimensions.
Following the arguments from [15, Corollary 2.2]), we can prove the following.

Lemma 4.6. Denote by R\Pi the reflection with respect to the plane \Pi and by \scrD x

the action with respect to x of the operator \scrD := (\scrD 1,\scrD 2,\scrD 3) defined in (3.5) and
(3.6). Then the impedance Green's tensor GI(x, y) can be represented as

GI(x, y) = G(x, y) +\scrD xG(R\Pi x, y), x \not = y, x, y \in \BbbR 3
+.

Here the action of \scrD x on the tensor G is understood columnwisely.

5. A data-driven imaging scheme. The aim of this section is to establish
a data-driven inversion scheme for imaging arbitrarily convex polyhedral scatterers.
Motivated by the one-wave factorization method in inverse elastic scattering [15],
we shall propose a domain-defined indicator functional to characterize an inclusion
relationship between a test domain and our target; see also [18] in the acoustic case.
Being different from other domain-defined sampling approaches [24, 25, 31, 32, 33]
arising from inverse scattering, our scheme will be interpreted as a data-driven method
because it relies on measurement data corresponding to a priori given test domains.
In this paper, we shall take for simplicity perfectly conducting balls with different
centers and radii as test domains. Similar techniques were used in the extended linear
sampling method [30] for extracting information of a sound-soft obstacle from a single
far-field pattern.

Consider the scattering of an incident plane wave Ein = ik (d\times p)\times deikx\cdot d by a
ball Bh(z) := \{ x \in \BbbR 3 : | x - z| < h\} with h > 0, z \in \BbbR 3, where d \in \BbbS 2 is the incident
direction and p \in \BbbR 3 is a polarization vector. Then the total field E = Ein + Esc

satisfies \left\{     
\nabla \times (\nabla \times E) - k2E = 0 in | x - z| > h,

(\nu \times E)\times \nu = 0 on | x - z| = h,

lim| x| \rightarrow \infty 
\bigl( 
Esc \times \widehat x+ 1

ik\nabla \times Esc
\bigr) 
| x| = 0, \widehat x = x

r .

(5.1)
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It is well known that (5.1) has a series solution E(\widehat x; d, p, h, z) for a given Ein(x; d, p)
[35]. For notational convenience, we will omit the dependence of solutions on d, p,
and k (all of them are fixed in our arguments) and only indicate the dependence on
the center z \in \BbbR 3 and radius h > 0 of the ball Bh(z). Denote by E\infty (\widehat x;h, z) the
electric far-field pattern of the scattered electric field Esc. We expand E\infty (\widehat x;h, z)
into a series by using vector spherical harmonics. For any orthonormal system Y m

n ,
m =  - n, . . . , n of spherical harmonics of order n > 0, the tangential fields defined on
the unit sphere

Um
n (\widehat x) := 1\sqrt{} 

n (n+ 1)
GradY m

n (\widehat x), V m
n (\widehat x) := \widehat x\times Um

n (\widehat x)
are called vector spherical harmonics of order n. By coordinate translation, it is easy
to check that E\infty can be expanded into the convergent series [11, 35]

E\infty (\widehat x;h, z)eikz\cdot \widehat x = 4\pi 
\infty \sum 

n=1

n\sum 
m= - n

\Bigl( 
u(h)n [Um

n (\widehat x) \cdot p]Um
n + v(h)n [V m

n \cdot p]V m
n

\Bigr) 
,(5.2)

where

u(h)n :=
\psi \prime 
n(kh)

(\zeta 
(1)
n )\prime (kh)

\in \BbbC , v(h)n :=  - \psi (kh)

\zeta 
(1)
n (kh)

\in \BbbC ,

with \psi n(t) := tjn(t) and \zeta 
(1)
n (t) := th

(1)
n (t). Here jn is the spherical Bessel function of

order n, and h
(1)
n is the spherical Hankel function of first kind of order n. Denote the

far-field operator F (z,h) : T (\BbbS 2) \mapsto \rightarrow T (\BbbS 2) by\Bigl( 
F (z,h)g

\Bigr) 
(\widehat x) := \int 

\BbbS 2
E\infty (\widehat x, d, g(d), h, z)ds(d),(5.3)

where T (\BbbS 2) := \{ g \in L2(\BbbS 2)3 : g(\widehat x) \cdot \widehat x = 0 for all \widehat x \in \BbbS 2\} denotes the tangential space
defined on \BbbS 2. The expression (5.2) shows that F (z,h) is diagonal in the basis

\widetilde U (z)
m,n(\widehat x) := e - ikz\cdot \widehat xUm

n (\widehat x), \widetilde V (z)
m,n(\widehat x) := e - ikz\cdot \widehat xV m

n (\widehat x).
It can be verified that (4\pi u

(h)
n , 4\pi v

(h)
n ) and (\widetilde U (z)

m,n, \widetilde V (z)
m,n) are eigenvalues and the asso-

ciated eigenvectors of F (z,h). Note that the eigenvalues depend on the radius h only
and the eigenfunctions depend on the location z only. We refer to [11] for detailed
analysis when the ball is located at the origin. The general case can be easily justified
via coordinate translation.

To proceed, we suppose that w\infty \in T (\BbbS 2) is the electric field pattern of some
radiating electric field wsc in | x| > b for some b > 0 sufficiently large. Introduce the
function

Iw\infty (z, h) :=
1

4\pi 

\infty \sum 
n=0

n\sum 
m= - n

\Biggl( 
| \langle w\infty , \widetilde U (z)

m,n\rangle | 2

| u(h)n | 
+

| \langle w\infty , V
(z)
m,n\rangle | 2

| v(h)n | 

\Biggr) 
,(5.4)

where z \in \BbbR 3 and h > 0 will be referred to as sampling variables in this paper.
Equation (5.4) can be regarded as a functional defined on the test domain Bh(z). If
the above series is convergent, we shall prove below that the radiated electric field
wsc can be analytically extended at least to the exterior of the test domain Bh(z).
For simplicity, we still denote by wsc the extended solution.
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Lemma 5.1. Suppose that k2 is not the Dirichlet eigenvalue (that is, the tangential
component of the electric field vanishes) of the operator curlcurl over the ball Bh(z).
We have Iw\infty (z, h) <\infty if and only if w\infty is the far-field pattern of the radiating field
wsc which satisfies

(5.5) \nabla \times (\nabla \times wsc) - k2wsc = 0 in | x - z| > h, \nu \times wsc \times \nu \in H
 - 1/2
curl (\partial Bh(z)).

Here H
 - 1/2
curl (\partial D) denotes the trace space of

H (curl,D) = \{ \phi \in (L2(D))3 : \nabla \times \phi \in (L2(D))3\} 

of a bounded Lipschitz domain D \subset \BbbR 3, given by

H
 - 1/2
curl (\partial D) :=

\biggl\{ 
u \in 

\Bigl( 
H - 1/2(\partial D)

\Bigr) 3
: \nu \cdot u = 0,\nabla \times u \in 

\Bigl( 
H - 1/2(\partial D)

\Bigr) 3
on \partial D

\biggr\} 
.

Proof. Without loss of generality, we may assume that Bh(z) is located at the

origin, so that \widetilde U (z)
m,n = Um

n and \widetilde V (z)
m,n = V m

n . Since the assumption on the wave number
k ensures that (see [37, Chapter 5] for related discussions)

jn(t) \not = 0 and jn(t) + tj\prime n(t) \not = 0 for t = kh, n = 1, 2, . . . ,

we have | u(h)n | \not = 0 and | v(h)n | \not = 0 for all n. By [10, equation (6.73)], it follows that
wsc can be expressed as

wsc(x) =

\infty \sum 
n=1

1

n(n+ 1)

n\sum 
m= - n

\Bigl[ 
amn q

m
n (x) + bmn \nabla \times qmn (x)

\Bigr] 
in | x| > b,

with the coefficients amn , b
m
n \in \BbbC , and qmn (x) := \nabla \times \{ xh(1)n (k| x| )Y m

n (\widehat x)\} . Correspond-
ingly, the far-field pattern w\infty is given by (see equation (6.74) on p. 219 in [10])

w\infty (\widehat x) = i

k

\infty \sum 
n=1

1

in+1

n\sum 
m= - n

(ikbmn U
m
n (\widehat x) - amn V

m
n (\widehat x)) .

Inserting the above expression into (5.4), we get

Iw\infty (o, h) =
1

4\pi 

\infty \sum 
n=1

n\sum 
m= - n

\Biggl( 
| bmn | 2

| u(h)n | 
+

| amn | 2

| v(h)n | 

\Biggr) 
, o = (0, 0, 0).(5.6)

To analyze the convergence of the above series, we need the asymptotic behavior of

u
(h)
n and v

(h)
n as n\rightarrow +\infty . Using the asymptotics of special functions for large orders,

it is easy to observe that

1

| u(h)n | 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Bigl( 
\zeta 
(1)
n

\Bigr) \prime 
\psi \prime 
n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Bigl( 
th

(1)
n (t)

\Bigr) \prime 
(tjn(t))

\prime 

\bigm| \bigm| \bigm| \bigm| \bigm| 
t=kh

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sim 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Bigl( 
h
(1)
n

\Bigr) \prime 
(kh)

j\prime n(kh)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sim 
C1

| n| 

\bigm| \bigm| \bigm| \bigm| \Bigl( h(1)n

\Bigr) \prime 
(kh)

\bigm| \bigm| \bigm| \bigm| 2 ,
1

| v(h)n | 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \zeta (1)n (kh)

\psi n(kh)

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| h(1)n (kh)

jn(kh)

\bigm| \bigm| \bigm| \bigm| \bigm| \sim C2 | n| | h(1)n (kh)| 2
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as n\rightarrow \infty , where C1, C2 \in \BbbC are fixed constants. Thus, it follows from (5.6) that

Iw\infty (o, h) \sim 
\infty \sum 

n=1

n\sum 
m= - n

\Biggl( 
C1| bmn | 2| h(1)n

\prime (kh)| 2

| n| 
+ C2| amn | 2| n| | h(1)n (kh)| 2

\Biggr) 
.(5.7)

On the other hand, it is seen from the expression of wsc that on | x| = h,

(\widehat x\times wsc \times \widehat x) = \infty \sum 
n=1

n\sum 
m= - n

\biggl\{ 
bmn
h

\Bigl( 
th(1)n (t)

\Bigr) \prime \bigm| \bigm| \bigm| 
t=kh

Um
n (\widehat x) - amn h

(1)
n (kh)V m

n (\widehat x)\biggr\} .
By definition of the H

 - 1/2
curl (\partial Bh(z)) norm (see, e.g., [37, Chapter 5] and [35, Chapter

9.3.3]), we obtain

\| \widehat x\times wsc \times \widehat x\| 
H

 - 1/2
curl (\partial Bh(z))

=
\infty \sum 

n=1

n\sum 
m= - n

\Biggl( 
1\sqrt{} 

n (n+ 1)

| bmn | 2

| h| 2

\biggl[ \Bigl( 
th(1)n (t)

\Bigr) \prime \bigm| \bigm| \bigm| 
t=kh

\biggr] 2
+
\sqrt{} 
n (n+ 1)| amn | 2| h(1)n (kh)| 2

\Biggr) 

\sim 
\infty \sum 

n=1

n\sum 
m= - n

\biggl( 
1

n
| bmn | 2| h(1)n

\prime (kh)| 2 + n| amn | 2| h(1)n (kh)| 2
\biggr) 
.

(5.8)

Obviously, (5.7) and (5.8) have the same convergence. In the same manner, one can
prove that (5.7) has the same convergence with | | \nu \times wsc| | 

H
 - 1/2
div (\partial Bh(z))

, where

H
 - 1/2
div (\partial D) := \{ u \in 

\Bigl( 
H - 1/2(\partial D)

\Bigr) 3
: \nu \cdot u = 0 on \partial D and (Div u) \in H - 1/2(\partial D)\} .

Using the relation

| | \nu \times wsc| | L2(\partial Bh(z)) + | | \nu \times wsc \times \nu | | L2(\partial Bh(z))

\leq C
\Bigl( 
| | \nu \times wsc| | 

H
 - 1/2
div (\partial Bh(z))

+ | | \nu \times wsc \times \nu | | 
H

 - 1/2
curl (\partial Bh(z))

\Bigr) 
,

we conclude that the tangential components of wsc on \partial Bh(z) are convergent in the
L2-sense if Iw\infty (o, h) < \infty . This together with [10, Theorem 6.27] implies that wsc

is a solution to the Maxwell's equation in | x| > h. The proof of Lemma 5.1 is thus
complete.

Combining Lemma 5.1 and Corollary 4.4, we may characterize an inclusion rela-
tion between D and Bh(z) through the measurement data E\infty of our target and the
spectra of the far-field operator F (z,h) corresponding to the test ball.

Theorem 5.2. Let E\infty be the electric far-field pattern of a convex polyhedral
scatterer D with a constant impedance coefficient. Suppose that k2 is not the Dirichlet
eigenvalue of the operator curlcurl over the ball Bh(z). It holds that

IE\infty (z, h) <\infty if and only if D \subset Bz(h).

Hence, we have

D =

(z,h)\bigcap 
IE\infty (z,h)<\infty 

Bh(z).
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Table 1
Data-driven scheme for imaging convex polyhedral scatterers.

Step 1 Collect the measurement data E\infty (\widehat x) for all \widehat x \in \BbbS 2, and suppose that D \subset BR := \{ x :
| x| < R\} for some large R > 0.

Step 2 Choose sampling variables zj \in \{ x : | x| = R\} and hi \in (0, 2R) to get the spectra of

the far-field operator F (z,h) corresponding to testing balls Bhj
(zj) \subset BR.

Step 3 Calculate the domain-defined indicator function IE\infty (zj , hi) by (5.4) with w\infty = E\infty .
In particular, it follows from Theorem 5.2 that

hi < max
y\in \partial D

| zj  - y|  - \rightarrow IE\infty (zj , hi) = \infty ,

hi \geq max
y\in \partial D

| zj  - y|  - \rightarrow IE\infty (zj , hi) < \infty .

Step 4 Image D as the intersection of all test balls Bhi
(zj) such that IE\infty (zj , hi) < \infty .

Proof. If D \subset Bz(h), then the scattered electric field Esc is well defined in \{ x :
| x - z| > h\} , which lies in the exterior of D. Hence, Esc satisfies (5.5), and by Lemma
5.1 it holds that IE\infty (z, h) <\infty . On the other hand, suppose that IE\infty (z, h) <\infty but
the relation D \subset Bz(h) does not hold. Since D is a convex polyhedron, there must
exist at least one vertex O of \partial D such that | O  - z| > h. Again using Lemma 5.1, we
conclude that Esc can be extended from \BbbR 3\setminus D to the exterior of Bh(z). This implies
that Esc is analytic at O, which contradicts Corollary 4.4.

By Theorem 5.2, the function h\rightarrow IE\infty (z, h) for fixed | z| = R will blow up when
h \geq maxy\in \partial D | y - z| , indicating a rough location of D with respect to z \in \BbbR 3. In Table
1, we describe an inversion procedure for imaging an arbitrary convex polyhedron D
by taking both z \in \partial BR and h as sampling variables. The mesh for discretizing
h \in (0, 2R) should be finer than the mesh for z \in \partial BR. To avoid the assumption that
k2 is not a Dirichlet eigenvalue of curl curl over Bh(z), one may use coated balls by a
thin dielectric layer (which can be modeled by the impedance boundary condition) as
test domains in place of our choice of perfectly conducting balls. We refer the reader to
[11, section 3.1] for a description of the spectra of the far-field operator corresponding
to such coated balls centered at the origin. If the impedance coefficient is a positive
constant, one can prove that k2 cannot be an impedance eigenvalue of curl curl over
any boundary Lipschitz domain. It should be remarked that the test domains can
also be taken as penetrable balls under the assumption that k2 is not an interior
transmission eigenvalue. Both Theorem 5.2 and Lemma 5.1 can be carried over to
these test domains. Finally, it is worth mentioning that a regularization scheme should

be employed to truncate the series (5.6) because the eigenvalues u
(h)
n and v

(h)
n decay

very fast and the calculation of the inner product between E\infty and the eigenfunctions

(\widetilde U (z)
n,m, \widetilde V (z)

n,m) is usually polluted by data noise and numerical errors. We refer the
reader to [34] for numerical examples in inverse acoustic scattering. Numerical tests
for Maxwell's equations will be reported in our forthcoming publications.

Remark 5.3. In [33], the no-response test was discussed for reconstructing convex
perfectly conducting polyhedrons with two or a few incident electromagnetic plane
waves. In comparison with [33], our inversion scheme uses only a single incoming
wave within a more general class of plane waves, Herglotz wave functions, and point
source waves. Although both of them belong to the class of domain-defined sampling
methods, the computational criterion explored here (see (5.4) and Theorem 5.2) in-
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volves simple inner product calculations and new sampling schemes due to the special
choice of testing balls.

Acknowledgments. The authors would like to thank the three anonymous ref-
erees for their comments and suggestions which help improve the original manuscript.
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