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Abstract
This paper is concerned with inverse acoustic scattering problem of inferring
the position and shape of a sound-soft obstacle from phaseless far-field data. We
propose the Bayesian approach to recover sound-soft disks, line cracks and kite-
shaped obstacles through properly chosen incoming waves in two dimensions.
Given the Gaussian prior measure, the well-posedness of the posterior mea-
sure in the Bayesian approach is discussed. The Markov Chain Monte Carlo
(MCMC) method is adopted in the numerical approximation and the precon-
ditioned Crank–Nicolson (pCN) algorithm with random proposal variance is
utilized to improve the convergence rate. Numerical examples are provided to
illustrate effectiveness of the proposed method.

Keywords: inverse scattering problem, phaseless far-field pattern, Bayesian
inference, MCMC

(Some figures may appear in colour only in the online journal)

1. Introduction

Time-harmonic inverse scattering problems have attracted extensive attention due to their
numerous applications in many areas such as radar and sonar detection, geophysical prospec-
tion, medical imaging, nondestructive testing and so on. In this paper, we are interested in the
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inverse problem of reconstructing the location and shape of an acoustically sound-soft obstacle
using phaseless far-field data.

The propagation of a time-harmonic incident field uin in a homogeneous and isotropic
medium is governed by the Helmholtz equation

Δuin + k2uin = 0 in R
2, (1.1)

where k > 0 is the wavenumber. Let D ⊂ R2 be a sound-soft scatterer, which occupies a
bounded subset with C2-smooth boundary ∂D such that the exterior R2\D̄ of D is connected.
In this paper D maybe a domain or a curve, which represents an extended obstacle or a crack
in acoustics. The forward scattering problem is to find the scattered (perturbed) field usc to the
Helmholtz equation

Δusc + k2usc = 0 in R
2\D̄, (1.2)

which satisfies the Dirichlet boundary condition

usc = −uin on ∂D, (1.3)

and the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂usc

∂r
− ikusc

)
= 0, r = |x|, (1.4)

uniformly in all directions x̂ = x/|x| ∈ S := {x : |x| = 1}, x ∈ R2\D̄, and i =
√
−1 is the imag-

inary unit. The total field u is defined as u = uin + usc in R2\D̄. The Sommerfeld radiating
solution usc has an asymptotic behavior of the form

usc(x) =
eik|x|√
|x|

{
u∞(x̂) + O

(
1√
|x|

)}
, |x| →∞, (1.5)

where u∞(x̂) is called the far-field pattern at the observation direction x̂ ∈ S. Note that u∞ :
S→ C is an analytic function with phase information. The above model also appears in the TE
polarization of time-harmonic electromagnetic scattering from infinitely long and perfectly
conducting cylinders.

The uniqueness, stability and inversion algorithms for recovering ∂D from phased far-field
patterns have been extensively studied with one or many incoming plane and point source
waves. We refer to the monographs [6, 8, 23, 24, 37] for historical remarks, an overview of
recent progresses and the comparison between different approaches. In many practical appli-
cations, the phase information of the far-field pattern cannot be measured accurately compared
with its modulus or intensity. For instance, in optics it is not trivial to measure the phase of
electromagnetic waves incited at high frequencies. One of the essential difficulties in using
phaseless far-field data lies in the translation invariance property for plane wave incidence,
which we state as follows. Let u∞(x̂; D, d) be the far-field pattern corresponding to the incident
plane wave eikx·d (d ∈ S is the incident direction) and the sound-soft obstacle D. For the shifted
obstacle Dz := {x + z : x ∈ D}, the corresponding far-field pattern is given by (see [29])

u∞(x̂; Dz, d) = eikz·(d−x̂)u∞(x̂; D, d) for all x̂ ∈ S. (1.6)

Hence, we get

|u∞(x̂; Dz, d)| = |u∞(x̂; D, d)| for all d, x̂ ∈ S.
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This implies that it is impossible to recover the location of D from the phaseless far-field pattern
of a plane wave.

There has been tremendous interest in inverse scattering with phaseless data or in phase
retrieval problems in optics and other physical and engineering areas (see, e.g. [1, 2, 12, 17, 20,
25, 26, 34, 35] and the references therein). In a deterministic setting where randomness are not
taken into account, Kress & Rundell and Ivanyshyn & Kress proposed a Newton-type iterative
approach to reconstruct the shape of sound-soft obstacles from only the modulus of the far-field
pattern in [17, 20, 29]. The approach of [17, 20] was based on a pair of nonlinear and ill-posed
integral equations motivated by an inverse boundary value problem for the Laplace equation
with phase information [18, 30]; see also [12, 19, 28] for inverse scattering from sound-soft
cracks using a single far-field pattern with phase or phaseless information. Klibanov proved
unique determination of a compactly supported potential of the stationary three-dimensional
Schrödinger equation from the phaseless near-field data incited by an interval of frequencies
[25]. This was later extended in [26] to the reconstruction of a smooth wave speed in the
three-dimensional Helmholtz equation. To broke the translation invariance property, it was
recently prosed in [41] that, phaseless far-field patterns generated by infinitely many sets of
superpositions of two plane waves with different directions can be used to uniquely determine
a penetrable or impenetrable scatterer; see [42] for a fast imaging algorithm based on this idea.
Similar uniqueness results were derived by Zhang & Guo [43] where the superposition of
a fixed plane wave and some point sources was taken as incident waves and a reference ball
technique was proposed. Uniqueness and direct sampling algorithms using the superposition of
plane waves and fixed source location point sources were considered in [21]. In this paper we
propose to generate the phaseless data using the following superposition of two plane waves
(see [41])

uin
� (x) := eikx·d0 + eikx·d� , � = 0, 1, 2, . . . , L, (1.7)

and then to recover a sound-soft disk, a line crack or a kite-shaped obstacle through the
Bayesian approach. In (1.1), we fix d0 ∈ S and change d� ∈ S as incident directions, due to
the a priori information of the obstacle; see theorem 3.1 for a uniqueness proof for sound-soft
disks.

In recent years, the Bayesian method has received increasing attention for inverse problems
[10, 16, 22, 31, 39], which also has been applied to the inverse scattering problems [3, 5, 14,
32, 33, 40] with phase far-field data. In particular, the authors of [5] adopt the Bayesian frame-
work of [39] to shape identification problems in inverse scattering and establish a framework
for proving well-posedness of the Bayesian formulation using a suitable shape parametrization
and the regularity of shape derivatives. The aim of this paper is to propose the Bayesian method
using a single far-field pattern without phase information. The Bayesian method provides us a
new perspective to view the inverse scattering problem in the form of statistical inferences. In
this statistical approach, all parameters are random variables and the key issue is to estimate
the posterior distribution of the unknown quantities based on the Bayes’ formula [39] and the
known prior distribution. The Bayesian method could be an alternative method to overcome
the challenges in deterministic inverse problems, although it usually leads to expensive compu-
tational cost. The advantageous over deterministic inversion schemes in inverse scattering (for
example, optimization-based iterative schemes and non-iterative sampling methods) are sum-
marized as follows. (i) Instead of deterministic reconstructions, the Bayesian approach gives
rise to statistic characteristics of the posterior distribution of unknown parameters and provides
a quantification of the uncertainties arising from the corresponding model predictions. (ii) The
Bayesian method could lead to all possible solutions of the inverse problem. For example,
using one plan wave rather than the superposition of two plane waves, the Bayesian method
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could reconstruct the shape of an unknown obstacle which is located at every possible posi-
tion due to the translation invariance (1.6). (iii) For inverse scattering problems, the theoretical
analysis and numerical methods in the Bayesian framework are only based on the deterministic
forward model. Hence, it is easy to perform theoretical analysis and numerical examples. (iv)
The Bayesian method needs less measurement data without phase information and does not
require a good initial guess. In this paper, the Markov chain Monte Carlo (MCMC) method [4,
11, 13] is proposed to accomplish the characterization of the posterior distribution, while the
preconditioned Crank–Nicolson (pCN) algorithm [9] is adopted to improve the convergence
rate in the iteration of MCMC method. Since the MCMC method and the pCN algorithm are
adopt to calculate the numerical approximation, the numerical method in this paper is insen-
sitive to the initial guess of the obstacle shape. In our numerical examples, we exhibit that
accurate reconstructions can be achieved when the number of incident waves and observation
directions is small.

This paper is organized as follows. In section 2, we adapt the Bayesian framework to
inverse scattering problems with phaseless data. In section 3, we exhibit numerical results for
recovering a disk, a line crack and a kite-shaped obstacle. Conclusions are given in section 4.

2. Bayesian framework

In this paper we want to recover an unknown sound-soft obstacle from phaseless far-field pat-
terns corresponding to a set of superposition of two plane waves. We propose the Bayesian
approach to solve this inverse scattering problem. First of all, we set a suitable parameteriza-
tion of the position and the shape of an obstacle. Then, in the Bayesian framework, we estimate
the posterior distribution of the unknown obstacle parameters. By the Bayes’ theorem [31, 39],
the posterior distribution of these parameters can be obtained from the prior distribution and
the likelihood function to be specified in this section. Numerically, we will adopt the Markov
chain Monte Carlo method (MCMC) to get an approximation of the posterior distribution.

2.1. Parameterization of the obstacle

Since the boundary of the underlying obstacle is a C2-smooth curve, we can represent or
approximate its geometrical shape by a finite set Z of variables

Z := (z1, z2, . . . , zN)� ∈ R
N , N ∈ N0. (2.1)

For example, we can use four parameters Z := (z1, z2, z3, z4)� to represent a line segment,
where (z1, z2)� and (z3, z4)� denote respectively the two ending points, or we can use
Z := (a1, b1, a2, b2, . . . , aN , bN)� to approximate a star-shaped closed curve where {(aj, bj) :
j = 1, . . . , N} stand for the Fourier coefficients in the truncated Fourier expansion.

Recalling the incident waves uin
� (x), � = 1, 2, . . . , L in the form of a set of superpositions

of two plane waves (1.7), we express the (phased) far-field patterns of the scattering model
(1.2)–(1.4) by

u∞(x̂; Z, d0, d�, k), � = 1, 2, . . . , L, x̂ ∈ S. (2.2)

Correspondingly, the phaseless far-field pattern are denoted by

|u∞(x̂; Z, d0, d�, k)|, � = 1, 2, . . . , L, x̂ ∈ S, (2.3)

where | · | is the modulus of a complex number.
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2.2. Prior distribution

By (2.1), the prior distribution of the obstacle parameters Z depends on the distribution of
zn, n = 1, 2, . . . , N. Let {zn}N

n=1 be independent variables with the prior density πn
pr and prior

measure μn
pr. Then the prior density πpr and prior measure μpr of Z are respectively given by

πpr(Z) =
N∏

n=1

πn
pr(zn), (2.4)

μpr(dZ) =
N∏

n=1

μn
pr(dzn). (2.5)

In this paper we assume that zn are random variables with the Gaussian distribution, that is,

μn
pr = N (mn, σn), n = 1, 2, . . . , N.

For simplicity, we assume that σ1 = · · · = σN = σpr, implying that μpr = N(mpr, σprI), where
mpr = (m1, m2, . . . , mN)� and I ∈ RN×N is the identity matrix.

2.3. Observation of far-field pattern

To bridge the parameterization (2.1) of the obstacle and the associated phaseless far-field data
(2.3), we define an operator F : RN → C∞(S) as

|u∞(x̂)| = F(Z), x̂ ∈ S, (2.6)

which can be regarded an abstract map from the space of obstacle parameters to the space of
observation data in the continuous sense. From the well-posedness of forward scattering, F is
continuous but highly non-linear.

Let G = (g1, g2, . . . , gM)� : C∞(S) → RM be a bounded linear observation operator with
gm : C∞(S) → R+ given by

gm(|u∞(x̂)|) = |u∞(x̂m)|, m = 1, 2, . . . , M,

where {x̂m}M
m=1 ⊂ S is the set of discrete observation directions. Then the observation at the

observation direction x̂m can be rephrased as

ym = gm(|u∞(x̂)|) + ηm = |u∞(x̂m)|+ ηm, (2.7)

where ηm represents the noise polluting the observation data at the direction x̂m.
Set Y = (y1, y2, . . . , yM)� ∈ R

M and η = (η1, η2, . . . , ηM)� ∈ R
M . Denote by G = G ◦ F

the map from the obstacle parameter space RN to observation space RM , that is,

Y = G(Z) + η, Y, η ∈ R
M , Z ∈ R

N . (2.8)

Our inverse problem in this paper is to determine the obstacle parameters Z ∈ RN from the
observation data Y ∈ RM with the noise pollution η ∈ RM .

2.4. Likelihood

We assume the observation pollution η is independent of u∞ and drawn from the Gaussian
distribution N(0,Ση) with the density ρ, where Ση ∈ R

M×M is a self-adjoint positive matrix.
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By the observation of the phaseless data with noise (2.8), we can get the relationship Y|Z ∼
N(G(Z),Ση). Define the model-data misfit function Φ(Z; Y) : RN × RM → R as

Φ(Z; Y) =
1
2
|Y − G(Z)|2Ση

, (2.9)

where | · |Ση = |Σ− 1
2

η · |. Hence, the likelihood function is given by

ρ (Y − G(Z)) =
1(

(2π)M det(Ση)
)1/2 e−Φ(Z;Y).

Furthermore, the posterior density πpost and the posterior measure μpost are connected to the
prior measure μpr through the Radon–Nikodym derivative [38], given by

dμpost

dμpr
(Z) ∝ e−Φ(Z;Y). (2.10)

2.5. Well-posedness of Bayesian framework

The well-posedness arguments of [5, 39] can be applied to deal with our inverse scattering
problem with the Bayesian approach. In our phaseless case, we are required to justify the
following assumption 2.1, relying on regularity properties of the forward operator G.

Assumption 2.1. The map G : RN → R
M satisfies

(a) For every ε > 0, there is an M̂ = M̂(ε) ∈ R such that, for all Z ∈ RN ,

|G(Z)|Ση � eε‖Z‖2
2+M̂ ,

where ‖ · ‖2 is the Euclidean norm.
(b) For every r > 0, there is a K = K(r) > 0 such that, for all Z1, Z2 ∈ RN with

max {‖Z1‖2, ‖Z2‖2} < r, it holds that

|G(Z1) − G(Z2)|Ση � K‖Z1 − Z2‖2.

We remark that there is no essential difference in proving assumption 2.1 (a) between the
phased and phaseless inverse scattering problems. The assumption 2.1 (b) follows directly from
the triangle inequality ||a| − |b|| � |a − b| for complex numbers a, b ∈ C and the correspond-
ing assumption for phased inverse scattering problems. Hence, when D is sound-soft scatterer,
assumption 2.1 can be proved following the phased arguments of [5]; see also [32, 40] for the
proofs in the case of limited aperture data and for interior scattering problems. If D is sound-
soft crack, the same results can be verified by applying the Fréchet differentiability with respect
to the boundary of the far field operator ([27, 28]). The above assumptions together with the
choice of the Gaussian prior measure (which satisfies μpr(RN) = 1) lead to well-posedness of
the Bayesian inverse problem, which is a result of application of lemma 2.8, theorems 4.1,
4.2 and 6.31 in [39]. Before stating the well-posedness (see theorem 2.1 below), we recall the
Hellinger distance defined by

dHell (μ1,μ2) :=

√√√√1
2

∫ (√
dμ1

dμ0
−
√

dμ2

dμ0

)2

dμ0, (2.11)

6
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where μ1,μ2 are two measures that are absolutely continuous with respect to μ0.

Theorem 2.1. If the operator G satisfies the assumption 2.1 and the prior measure μpr sat-
isfies μpr(RN) = 1, then the posterior measure μpost is a well-defined probability measure on
RN and absolutely continuous with respect to prior measure μpr. What’s more, the posterior
measure μpost is Lipschitz in the data Y, with respect to the Hellinger distance: if μ1

post and μ2
post

are two posterior measures corresponding to data Y1 and Y2, then there exists C = C(r) > 0
such that,

dHell(μ1
post,μ

2
post) � C‖Y1 − Y2‖2,

for all Y1, Y2 with max {‖Y1‖2, ‖Y2‖2} < r.

2.6. Preconditioned Crank–Nicolson (pCN) algorithm with random proposal variance

This subsection is devoted to the numerical approximation of the posterior distribution. We
adopt the Markov chain Monte Carlo method (MCMC) [4, 11, 13] to generate a large number
of samples subject to the posterior distribution. The numerical approximation of the poste-
rior distribution of unknown obstacle parameters can be obtained by statistic analysis on these
samples. The Metropolis-Hastings [15, 36] algorithm will be used to construct MCMC sam-
ples. To improve the convergence rate of the MCMC method, we apply the preconditioned
Crank–Nicolson algorithm [9].

According to the pCN algorithm, the new obstacle parameter X can be iteratively updated
by the old parameter (initial guess) Z through the formula

X = mpr + (1 − β2)1/2(Z − mpr) + βω, (2.12)

where β ∈ [0, 1] is the proposal variance coefficient and ω ∼ N(0,Σpcn) is a zero-mean normal
random vector with covariance matrix Σpcn ∈ RN×N . We remark that it is important and very
tricky to select a suitable β, because the value of β dominates the proposal variance in the
pCN algorithm. If β � 1 is small, the parameter Z will be updated slightly in the MCMC
sequence, leading to a time-consuming iteration process to get the ergodic in the space of
obstacle parameters. If β is big, the parameter Z may stay at one state for quite a long time
with a huge number of iterations in the MCMC method. Consequently, one cannot get enough
number of samples to approximate the posterior distribution, due to the computational cost
prohibition. To over come this difficulty, we recommend the pCN algorithm with a random
proposal variance [9] to obtain good MCMC sequences (see below for the description).

3. Numerical examples

In this section we exhibit numerical examples to demonstrate the effectiveness of the method
described in the previous section. To save computational costs, we consider three types of
acoustically sound-soft scatterers in two dimensions:

• Sound-soft disks with unknown centers and radii;
• Line cracks with unknown starting and ending points;
• Kite-shaped obstacles with unknown position and shape.

There are totally three unknown parameters for disks, four parameters for cracks and six
parameters for kite-shaped obstacle in 2D, implying that the unknown parameters always lie
in a finite space with low dimensions.

7
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Algorithm 1. pCN algorithm with random proposal variance

• Initialize Z0 ∈ R
N and β0 ∈ [0, 1].

• Repeat
1. Draw new obstacle parameter X from the old state Zj by the pCN algorithm (2.12) with the

proposal variance coefficient βj as:
X = mpr + (1 − β2

j )
1/2(Z j − mpr) + β jω, ω ∼ N(0,Σpcn); (2.13)

2. Compute Hasting ratio α(·, ·) : RN × RN → [1,∞) as:
α
(
X, Z j

)
= min{1, eΦ(Z j;Y)−Φ(X;Y)}; (2.14)

3. Accept or reject X: draw U ∼ U(0, 1) and then update Zj by the criterion

Z j+1 =

{
X, if U � α

(
X, Z j

)
,

Z j, if otherwise;
(2.15)

4. Generate new proposal variance coefficient βj+1 from β j. First we set
βnew = (1 − γ2)1/2β j + γ(ωβ − 0.5), ωβ ∼ U(0, 1), (2.16)

with γ ∈ [0, 1]. In our case we choose γ = 0.1. Then β j+1 can be updated by

β j+1 =

⎧⎨
⎩
βnew, if βnew ∈ [0, 1],
−βnew, if βnew < 0,
βnew − 1, if βnew > 1.

(2.17)

• Select Z ĵ, ĵ = J1 + (̃ j − 1)J2, j̃ = 1, 2, . . . , J3, J1, J2, J3 ∈ N0.

In the algorithm 1, the randomness of the proposal variance has the potential advantage of
including the possibility of large and small proposal variance coefficients β. The large proposal
variance coefficient β helps the pCN algorithm explore the state space efficiently, and the small
proposal variance coefficient β protects the iterations from dropping into a fixed state. Then
the random proposal variance gives rise to ergodic Markov chains. The sequence Zĵ in the
algorithm 1 is selected to approximate the posterior distribution. Here, J1 is the number of
initial states; we take every J2 sates to guarantee the selected sates are independent; J3 is the
number of the total selected states.

With the definition of the observation (2.8), we construct two types of observations. Since
the observation noise η in (2.8) is assumed to be a Gaussian random vector, the zero vector
is a special sample of the observation noise. Then in the first type observations, we consider
an ideal model where the phaseless far-field data corresponding to the exact obstacle are pol-
luted by this special sample (η = 0) of observation noise. In the second type observations, we
consider a practical model with noise-polluted far-field data, which will be used to discuss the
robustness of the numerical method in practical applications. The Hausdorf difference between
the reconstructed and exact scatterers indicates the accuracy of our numerical method.

3.1. Disk

In this subsection, we assume the underlying obstacle is a sound-soft disk. The inverse problem
of recovering disks arises from, for instance, the polarization model of time-harmonic electro-
magnetic scattering from perfectly conducting cylinders whose cross-section is a disk. The
parameterization of a disk is given by

Z := (z1, z2, z3)� = (x1, x2, log r)�, (3.1)

where (x1, x2)� is the center and r is the radius of the disk. Since r > 0, we assume that r is a
lognormal random variable, i.e., z3 = logr is a Gaussian random variable.

Let the incident wave be given by the sum of two plane waves of the form (1.7). If the disk
is located at the origin, it is well-known that the corresponding far-field pattern incited by the

8
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Table 1. Mean, standard deviation and relative error of (x1, x2), r vs L and M.

L M Mean Standard deviation Relative error

32 128 (0.9976, 0.2494), 0.1199 (0.0402, 0.0173), 0.0026 (0.24%, 0.24%), 0.07%
32 32 (0.9192, 0.2804), 0.1203 (0.1893, 0.0847), 0.0100 (8.08%, 12.15%), 0.28%
32 16 (0.9222, 0.2833), 0.1209 (0.1997, 0.0808), 0.0118 (7.78%, 13.30%), 0.77%
64 128 (0.9941, 0.2514), 0.1199 (0.0278, 0.0144), 0.0016 (0.59%, 0.56%), 0.10%
32 64 (0.9934, 0.2542), 0.1200 (0.0606, 0.0287), 0.0034 (0.66%, 1.67%), 0.03%
16 32 (0.9023, 0.2794), 0.1201 (0.2207, 0.0841), 0.0112 (9.77%, 11.74%), 0.11%
64 64 (0.9934, 0.2521), 0.1198 (0.0399, 0.0204), 0.0025 (0.66%, 0.83%), 0.18%
16 64 (0.9290, 0.2660), 0.1196 (0.1857, 0.0763), 0.0104 (7.10%, 6.41%), 0.36%
8 64 (0.9127, 0.2661), 0.1187 (0.1830, 0.0828), 0.0115 (8.73%, 6.43%), 1.07%

Figure 1. Reconstructions of the center of a sound-soft disk with different L and M at the
idea setting. The red star ∗ denotes the accurate center, the green dots · are the numerical
centers and the black ◦ is the mean of the numerical centers.

plane wave uin(x) = eikx·d� is given by the convergent series

u∞(x̂; Z, d�, k) = −e−i π4

√
2
πk

[
J0(kr)

H(1)
0 (kr)

+ 2
∞∑

n=1

Jn(kr)

H(1)
n (kr)

cos(nθ�)

]
, � = 0, 1, . . . , L.

(3.2)

9
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Figure 2. Reconstructions of the radius of a sound-soft disk with different L and M at
the idea setting. The red line is the accurate radius, the black line is the mean of the
numerical radii and the green dots · are the numerical radii.

Here, θ� = ∠(x̂, d�) denotes the angle between the observation direction x̂ and the incident
direction d�, Jn(·) is the Bessel function of order n and H(1)

n (·) is the Hankel function of the
first kind of order n. If the disk is located at (x1, x2)� ∈ R2, by the translational formula (1.6)
and the linear superposition principle, the exact far-field pattern with phase information of the
scattered waves can be expressed as

u∞(x̂; Z, d0, d�, k) =− e−i π4

√
2
πk

[
J0(kr)

H(1)
0 (kr)

+ 2
∞∑

n=1

Jn(kr)

H(1)
n (kr)

cos(nθ0)

]
eik(x1,x2)�·(d0−x̂)

− e−i π4

√
2
πk

[
J0(kr)

H(1)
0 (kr)

+ 2
∞∑

n=1

Jn(kr)

H(1)
n (kr)

cos(nθ�)

]
eik(x1,x2)�·(d�−x̂),

� = 1, 2, . . . , L, x̂ ∈ S. (3.3)

Note that the first line on the right hand side of (3.3) denotes the far-field pattern corresponding
to the incoming plane wave eikx·d0 , while the second line corresponding to eikx·d� .

The following theorem states that our phaseless data set is sufficient to uniquely identify a
sound-soft disk.

10
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Figure 3. Histograms of 201 reconstruction results of the x1-component of the center
with different L and M at the idea setting.

Theorem 3.1. Let k > 0 and d0 ∈ S be fixed. Then the data {|u∞(x̂; Z, d0, d, k)| : d ∈ S}
uniquely determine a sound-soft disk (that is, the center and radius of a disk).

Proof. Suppose that D j := {z = (z1, z2)� ∈ R2 : ‖z − x( j)‖2 < r j} (j = 1, 2) are two sound-
soft disks centered at x( j) = (x( j)

1 , x( j)
2 )� ∈ R

2 with the radius rj > 0 (j = 1, 2). Set Z( j) =

(x( j)
1 , x( j)

2 , r j)� and denote by u∞(x̂; Z( j), d0, d, k) the far-field data corresponding to Dj and the
incident wave (1.1). Suppose that the phaseless far-field pattern are identical, i.e.,

|u∞(x̂; Z(1), d0, d, k)| = |u∞(x̂; Z(2), d0, d, k)| for all d, x̂ ∈ S. (3.4)

In particular, choosing d = d0 in the previous relation yields

|u∞(x̂; Z(1), d0, d0, k)| = |u∞(x̂; Z(2), d0, d0, k)| = 2|u∞(x̂; Z( j), d0, k)|, j = 1, 2,

for all x̂ ∈ S, where u∞(x̂; Z( j), d0, k) stands for the far-field pattern corresponding to the plane
wave eikx·d0 incident onto Dj. This implies that

|u∞(x̂; Z(1), d0, k)| = |u∞(x̂; Z(2), d0, k)| for all x̂ ∈ S.

11
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Figure 4. Histograms of 201 reconstruction results of the x2-component of the center
with different L and M at the idea setting.

Next, we shift the center of the disk Dj to the origin and set Z( j)
0 := (0, 0, r j)�. Recalling the

translational formula (1.6), we obtain

|u∞(x̂; Z(1)
0 , d0, k)| = |u∞(x̂; Z(2)

0 , d0, k)| for all x̂ ∈ S.

Since the shifted disks with the parameters Z( j)
0 are rotationally invariant, the far-field pattern

u∞(x̂; Z( j)
0 , d, k) only depends on the angle between the incident direction d and the observation

direction x̂. For any d ∈ S, there exist an orthogonal matrix Q such that d = Qd0. It then follows
that (see e.g., [8, chapter 5.1])

u∞(x̂; Z( j)
0 , d, k) = u∞(x̂; Z( j)

0 , Qd0, k) = u∞(Qx̂; Z( j)
0 , d0, k), ∀ x̂ ∈ S.

Combining the previous two identities yields

|u∞(x̂; Z(1)
0 , d, k)| = |u∞(x̂; Z(2)

0 , d, k)| for all x̂, d ∈ S,

which together with the translational formula implies

|u∞(x̂; Z(1), d, k)| = |u∞(x̂; Z(2), d, k)| for all x̂, d ∈ S. (3.5)

As a consequence of [41, theorem 2.2], the relations (3.4) and (3.5) lead to the coincidence of
D1 and D2, which proves theorem 3.1. �

12
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Figure 5. Histograms of 201 reconstruction results of the radius of a sound-soft disk
with different L and M at the idea setting.

To apply the pCN algorithm (2.12) or (2.13), we need to set the key parameters β and Σpcn.
For sound-soft disks, we set β j = β = 0.1 and let Σpcn = I be the N-by-N identity matrix. Then
the proposal is given by

X = mpr +
√

0.99(Z j − mpr) + 0.1ω, ω ∼ N(0, I). (3.6)

We describe the settings of our computational performance as follows:

• Unless otherwise specified, the wave number is always taken as k = 1;
• The incident directions are

d� = (cos θ�, sin θ�), θ� = −π

2
+

2π�
L + 1

, � = 0, 1, . . . , L; (3.7)

• The observation directions are

x̂m = (cos θm, sin θm) , θm = −π

2
+

2πm
M

, m = 1, 2, . . . , M; (3.8)

• To compute the far-field pattern (3.3), we truncate the infinite series of (3.3) by using the
Bessel and first-kind Hankel functions of order n = 0, 1, 2, . . . , 100;

• In the algorithm 1, we choose J1 = 9000, J2 = 5, J3 = 201;
• In the setting of the prior distribution πpr, we assume σpr = 1;

13
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Table 2. Mean and relative error of (x1, x2), r vs small L and M.

L M Mean Relative error

4 2 (3.0494, 0.9982), 0.2643 (2.05%, 2.99%), 1.20%
4 8 (3.0457, 0.9949), 0.2717 (2.05%, 2.98%), 1.26%
8 4 (2.9069, 1.1143), 0.2732 (1.91%, 3.46%), 1.28%

Figure 6. Reconstructions of the center (top) and radius (bottom) of a sound-soft disk
with a small number of incident waves (L) and observation directions (M) at the idea
setting. The red stars ∗ (resp. lines) are the accurate center (resp. radius); the green dots
· are the numerical reconstructions; the black dots ◦ (lines) are the mean values of the
center (resp. radius).

• For the observation Y� corresponding to the incident wave uin
� (x) in (1.7), � = 1, 2, . . . , L,

we assume the observation pollution η� = (η�1, η�2, . . . , η�M)� is an M-dimensional Gaus-
sian variable, given by

η�m = ση × |u∞(x̂m; Z, d0, d�, k)| ω�
m, (3.9)

where ω�
m ∼ N(0, 1), m = 1, 2, . . . , M and ση is the noise coefficient. In our numerical

tests we choose ση = 3%, 6%, 9%. In other words, we take η� ∼ N(0,Ση�) and the diag-

onal matrix Ση� = diag(σ�
1, σ�

2, . . . , σ�
M) with σ�

m =
(
ση × |u∞(x̂m; Z, d0, d�, k)|

)2
, m =

1, 2, . . . , M;
• Unless otherwise specified, the accurate obstacle parameters are set as Ẑ = (x̂1, x̂2, r̂)� =

(1, 0.25, 0.12)�, that is, a disk centered at (1, 0.25)� with the radius 0.12;
• We assume the initial guess is a disk centered at origin (0, 0)� with the radius 0.05. Then

the mean of the prior distribution is mpr = (0, 0, log 0.05)�.

In the first part, we adopt the ideal setting. Noting that in the formula (3.9) ω�
m ∼ N(0, 1), we

can gain a special sample of the observation noise with ω�
m = 0 and ση = 3%, � = 1, 2, . . . , L,

m = 1, 2, . . . , M. This would help us to investigate the accuracy of the numerical method and
to verify the above uniqueness result in theorem 3.1.

14
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Figure 7. The reconstructed radii with different wavenumbers k ranging from 10−10 to
1010 (top), from 10 to 100 (middle) and those from 90 to 100 (bottom). Both the blue
dots ◦ and red starts ∗ are the reconstructed radii. The blue dot ◦ represents the accurate
reconstruction, while the red start ∗ represents the inaccurate reconstruction.

At first, we discuss the accuracy of the numerical solutions for different choice of L and
M. Recall that the parameter L denotes the number of incident waves and M the number of
observation directions. In table 1, we show the mean, standard deviation and the relative error
of the reconstructed parameters with different choice of L, M. The numerical solutions of the
recovered centers and radii are shown in figures 1 and 2. The histograms of numerical solutions
of the centers and radii are shown in figures 3–5, respectively.

Based on these results, we find that the reconstructed parameters are getting more accurate
as the number of incident or observation directions become larger. The numerical solutions
with (L, M) = (32, 32), (32, 16), (16, 32), (16, 64), (8, 64) are relatively inaccurate, since the
resulted relative errors are larger than 5% in these cases. In contrast, the relative error is
less 1% if we choose L and M large enough such as (L, M) = (64, 128), (64, 64), (32, 128).
On the other hand, it can be observed from table 1 that the standard deviation decreases as
L or M increases. Table 2 and figure 6 illustrate that small L and M may lead to unreliable
reconstructions.

In the following we suppose that the location of the center (x̂1, x̂2)� = (2, 2)� is known and
the knowledge of the radius needs to be recovered. Since only one parameter of the scatter
remains unknown, we make use of minimal number of incident and observation directions by
setting L = M = 1. In our tests we set incident directions d0 = (0,−1)�, d1 = (0, 1)�, obser-
vation direction x̂1 = (0,−1)� and accurate radius r̂ = 1. The numerical approximations of
radius r vs different wave numbers k are exhibited in figure 7. For each fixed k, we plot the
phaseless far-field pattern |u∞(x̂1)| against the radius r in figure 8.

From the numerical results we conclude that an accurate approximation of the radius can be
obtained if the wave number k is less than a threshold. It is seen from figure 8 that the function
r → |u∞(x̂1)| is monotonically increasing in (0, R(k)) where R(k) → 0+ as k →+∞. This sug-
gests that for large k such as k = 97, 200, 2000, there are more than one radii corresponding
to the measured phaseless far-field pattern at x̂1. Hence, the reconstructed radii are inaccurate.
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Figure 8. Phaseless far-field pattern |u∞(x̂1)| vs radius r for different wavenumbers k.

Figure 9. Reconstruction of the center (left) and radium (right) of a disk with one sample
of observation noise at ση = 3%. The red star ∗ (resp. line) is the accurate center (radius);
the green dots · are the numerical reconstructions; the black circle ◦ (resp. line) is the
mean of the centers and radii. We choose k = 1, L = 32 and M = 64.

These findings are consistent with the uniqueness result of [34], which states that a sound-
soft disk can be uniquely determined from the phaseless far-field pattern at one observation
direction, provided the radius is sufficiently small for a fixed wave number. The monotonicity
property of the backscattered phaseless data with respect to the radius was rigorously justified
in [34].

Having verified the accuracy of our inversion scheme at the ideal setting with a special sam-
ple of the observation noise, we now consider the inverse problem with a general sample of the
observation noise at the noise coefficient ση = 3%. In the second part, we estimate the obstacle
parameters by setting k = 1, L = 32 and M = 64. We generate one sample of the observation
noise, which is a matrix with M × L elements constructed by the formula (3.9). The numeri-
cal approximations from the polluted observation data are exhibited in figures 9 and 10. The
mean of the numerical center and radius are (1.0089, 0.2527)� and 0.1211, respectively. The
standard deviations of these parameters are (0.0601, 0.0259)�, 0.0039 and the relative errors
are (0.89%, 1.08%)�, 0.92%.
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Figure 10. Histograms of the reconstructed parameters x1, x2, r with one sample of the
noisy data polluted at the level ση = 3%.

Table 3. The mean, standard deviation and relative error of (x1, x2), r vs noise
coefficient ση .

ση Mean Standard deviation Relative error

3% (0.9917, 0.2520), 0.1199 (0.0077, 0.0039), 0.0005 (0.83%, 0.79%), 0.10%
6% (0.9914, 0.2519), 0.1199 (0.0137, 0.0065), 0.0009 (0.86%, 0.77%), 0.10%
9% (0.9918, 0.2517), 0.1199 (0.0199, 0.0095), 0.0013 (0.82%, 0.69%), 0.10%

To demonstrate the robustness of the numerical scheme, we generate 1000 samples of the
observation noise. For each sample of the observation noise, one can gain a corresponding
reconstruction of the parameters x1, x2, r. Hence, we can perform statistical analysis over totally
1000 reconstructions of x1, x2, r. In our tests, we pollute the phaseless data at different levels
ση = 3%, 6%, 9% and exhibit the numerics in table 3, figure 11 and 12. From these recon-
structed parameters we conclude that the mean and relative error are robust against the noise
pollution, but the standard deviation is very sensitive to the noisy level. Further, the phaseless
data with less noise give rise to a more reliable reconstruction result.

3.2. Line cracks

A crack or an open arc can be used to model the defects inside elastic and solid bodies such as
bridge structures, aircraft engines and wings etc. Detection of such scatterers is important in
safety and health assessment and is one of the fundamental topics in ultrasonic non-destructive
testing. In this subsection, we want to recover a sound-soft crack of line-segment-type with the
starting point at x = (x1, x2)� ∈ R2 and the ending point y = (y1, y2)� ∈ R2. Hence, such line
cracks can be characterized by N = 4 parameters:

Z := (z1, z2, z3, z4)� = (x1, x2, y1, y2)�. (3.10)

Unlike the scattering from disks, we do not have an analytical expression of the far-field
pattern corresponding to a line crack. Below we describe the integral equation method to solve
the forward scattering problem, following the numerical scheme of [28] for general cracks.
Denote by Γ ⊂ R2 an open arc of class C3 in 2D, which can be parameterized as

Γ = {z(s) : s ∈ [−1, 1]} . (3.11)
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Figure 11. Reconstructions of the center (top) and radius (bottom) of a disk at different
noise levels ση = 3% (left), 6% (middle), 9% (right). The red star ∗ (resp. line) is the
accurate center (resp. radius), the green dots · are the numerical reconstructions with
each sample of observation noise and the black ◦ (resp. line) is the mean of reconstructed
centers (resp. radii) with 1000 samples of observation noise.

Using the integral equation method, the solution usc to the Helmholtz equation (1.2) in R2\Γ
can be expressed as a single-layer potential ([8])

usc(x) =
∫
Γ

Φ(x, y)ϕ(y) ds(y), x ∈ R
2\Γ, (3.12)

where Φ(x, y) is the fundamental solution to the Helmholtz equation in two dimensions given
by

Φ(x, y) :=
i
4

H(1)
0 (k|x − y|), x, y ∈ R

2, x �= y. (3.13)

Due to the Dirichlet boundary condition (1.3) on Γ, the unknown density function ϕ is sought
as a solution to the integral equation

∫
Γ

Φ(x, y)ϕ(y) ds(y) = f (x), x ∈ Γ, f = −uin. (3.14)

Once ϕ is calculated from (3.14), the far-field pattern could be expressed in the form

u∞(x̂) =
eiπ/4

√
8πk

∫
Γ

e−ikx̂·yϕ(y) ds(y), x̂ ∈ S. (3.15)
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Figure 12. Histogram of 1000 numerical reconstructions of x1, x2, r with each sample of
observation noise at different noise levels ση = 3% (top), ση = 6% (middle), ση = 9%
(bottom).

To describe the numerical scheme of [28], we first introduce two functions defined on R× R

as follows

H1(t, τ ) :=

{
J0

(
k|z(cos t) − z(cos τ )|

)
− 1, t �= τ ,

0, t = τ ,
(3.16)

and

H2(t, τ ) :=

⎧⎪⎪⎨
⎪⎪⎩

π

i
H(1)

0

(
k|z(cos t) − z(cos τ )|

)
− {1 + H1(t, τ )} ln

(
4
e2

[cos t − cos τ ]2

)
, t �= τ ,

π

i
+ 2C + 2 ln

{
ke
4
|z′(cos t)|

}
, t = τ.

(3.17)

Here, C ≈ 0.577 216 is the Euler’s constant. Then the integral equation (3.14) can be rephrased
as

1
2π

∫ 2π

0
K(t, τ )ψ(τ ) ds(τ ) = g(t), g(t) := − 2 f (z(cos t)), (3.18)

for t ∈ [0, 2π]. Here,

K(t, τ ) =

{
1 + sin2 t − τ

2
K1(t, τ )

}
ln

(
4
e

sin2 t − τ

2

)
+

1
2

H2(t, τ ), (3.19)
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Figure 13. Trace of the iterations in the MCMC method with one sample of the
observation noise at ση = 3%. The accurate line crack is (x̂1, x̂2, ŷ1, ŷ2)� = (2, 3, 4, 5)�.

Figure 14. Histogram (center, right) and scatterer plot (left) of the reconstructions of
starting point (top) and ending point (bottom) of a line crack with the idea setting. The
red star ∗ denotes the accurate point, the green dots · are the numerical points, and the
black ◦ is the mean of numerical points.

K1(t, τ ) =

⎧⎪⎨
⎪⎩

H1(t, τ )
sin2

(
(t − τ )/2

) , t �= τ ,

−k2 sin2 (t) |z′(cos t)|2, t = τ ,
(3.20)

K2(t, τ ) =
1
2

H2(t, τ ). (3.21)

The quadrature method [7] can be employed to discretize the integral equation (3.18), based
on the trigonometric interpolation with 2n equidistant nodal points t j := jπ

n , j = 0, 1, . . . , 2n −
1. Then the unknown solution ψ to the integral equation (3.18) can be approximated by
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Figure 15. Histogram (center, right) and scatterer plot (left) of reconstructions of starting
point (top) and ending point (bottom) of a line crack with one sample of observation noise
at ση = 3%. The red star ∗ denotes the accurate point, the green dots · are the numerical
points, and the black ◦ is the mean of numerical points.

Table 4. The mean, standard deviation and relative error of x1, x2, y1, y2 vs noise
coefficient ση .

ση Mean Standard deviation (10−3) Relative error (%)

3% 1.9994, 3.0055, 3.9992, 5.0029 3.5, 4.4, 3.4, 5.1 0.03, 0.18, 0.02, 0.06
6% 1.9989, 3.0056, 4.0013, 5.0133 6.2, 7.7, 6.1, 8.8 0.06, 0.19, 0.03, 0.27
9% 1.9936, 2.9994, 3.9968, 5.0081 8.6, 11.4, 8.9, 12.5 0.32, 0.02, 0.08, 0.16

the 2n discrete nodal values {ψ j = ψ(t j)}2n−1
j=0 . Since ψk = ψ2n−k, k = 1, 2, . . . , n − 1 with

ψ j = | sin(t j)| |z′(cos(t j))|ϕ(z(cos(t j))), it suffices to compute the n + 1 discrete nodal values
{ψ j}n

j=0 from the following (n + 1) × (n + 1) algebraic system

2n−1∑
j=0

ψ j

{
R|k− j| + F|k− j|K1

(
tk, t j

)
+

1
2n

K2
(
tk, t j

)}
= g (tk) , k = 0, 1, . . . , n,

(3.22)

with

R j :=
1

2n

{
c0 + 2

n−1∑
m=1

cm cos
m jπ

n
+ (−1) jcn

}
, cm := − 1

max{1, |m|} , (3.23)
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Figure 16. Reconstructions of starting point (top) and ending point (bottom) of the line
crack at different noise levels ση = 3% (top), ση = 6% (middle), ση = 9% (bottom).
The red star ∗ denotes the accurate point, the green dots · are the numerical reconstruc-
tions with each sample of observation noise, and the black ◦ is the mean of numerical
reconstructions with 1000 observation noises.

F j :=
1

2n

{
γ0 + 2

n−1∑
m=1

γm cos
m jπ

n
+ (−1) jγn

}
, γm :=

1
4

(
2cm − cm+1 − cm−1

)
.

(3.24)

Note that there are totally n + 1 unknown discrete nodal values {ψ j}n
j=0 in (3.22), because

ψj = ψn−|n−j| for all j = 0, 1, . . . , 2n − 1. Now the far-field pattern can be approximated by

u∞(x̂) =
eiπ/4

√
8πk

∫ 2π

0
e−ikx̂·z(cos τ ) ψ(τ )dτ ≈ πeiπ/4

n
√

8πk

2n−1∑
j=0

e−ikx̂·z(cos t j)ψ j, x̂ ∈ S.

(3.25)

If the right hand side of (3.22) (or (3.14)) is given by the incident wave (1.7), we obtain the
far-field pattern u∞(x̂; Z, d0, d�, k) where Z denotes the crack parameter (3.10).

To set the parameters β and Σpcn, we let Σpcn = I be the identity matrix, which is the same
as the case of sound-soft disks. However, in this section the proposal variance coefficient β is
not a fixed number, but is taken as a random variable. This suggests that a random proposal
variance is adopted to reconstruct line cracks. Then the proposal takes the form

X = mpr + (1 − β2
j )

1/2(Z j − mpr) + β jω, ω ∼ N(0, I), (3.26)

and the proposal variance coefficientsβj need to be updated by the formulas (2.16) and (2.17). It
should be noted that, the MCMC method with a fixed proposal variance coefficient converges
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Figure 17. Histogram of 1000 numerical reconstructions of x1, x2, y1, y2 with each sam-
ple of the observation noise at the noise level ση = 3% (top), ση = 6% (middle),
ση = 9% (bottom).

slowly or even does not converge after a large number of iterations, which is in contrast to
the efficient MCMC method for recovering disks. This could partly be due to the number of
reconstructed parameters, which is four in the line crack case while three for a disk. The trace
of the iterations of MCMC (shown in figure 13) verifies the efficiency of the random proposal
variance. In the first 10 000 iteration steps, the trace converges fast but always drops into some
fixed states, when the proposal variance coefficientsβj are not appropriately updated. Numerics
show that the trace can converge to and oscillate around the accurate state only after a large
number of iterations.

As in the previous subsection, we set some computational parameters as follows:

• The wave number k, the incident directions d�, � = 0, 1, . . . , L, the observation directions
x̂m, m = 1, 2, . . . , M, σpr of the prior distribution and the observation pollution η�, � =
1, . . . , L are given as same as those for recovering disks;

• We choose L = M = 40;
• In the algorithm 1, we choose J1 = 18 000, J2 = 5, J3 = 401;
• The accurate obstacle is Ẑ = (x̂1, x̂2, ŷ1, ŷ2)� = (2, 3, 4, 5)�, that is, a line segment with the

starting point (2, 3)� and the ending point (4, 5)�;
• We assume the initial guess is a line segment with the starting point (0, 0)� and the ending

point (1, 1)�. Then the mean of the prior distribution is mpr = (0, 0, 1, 1)�.

Unfortunately we do not have the uniqueness result analogous to theorem 3.1 for recovering
cracks. A local uniqueness result for general cracks was proved in [27] using a single far-
field pattern with information. In the idea setting (ω�

m = 0 and ση = 3%, � = 1, 2, . . . , L, m =
1, 2, . . . , M), the numerical approximations of the crack parameters are exhibited in figure 14.
The mean solutions of the starting and ending points are (2.0012, 3.0005), (3.9990, 4.9992),Q2
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Table 5. Reconstruction and Hausdorff distance (HD) vs L(M = L).

L Reconstruction HD

5 −0.6441, 0.6287, 1.0013, 0.6460, 1.4934, −0.0051 3.6185
25 −0.6488, −3.0037, 1.0047, 0.6479, 1.5030, −0.0043 0.0021
50 −0.6499, −3.0001, 1.0000, 0.6503, 1.4998, −0.0009 1.30 × 10−4

100 −0.6497, −2.9995, 1.0000, 0.6508, 1.4999, 0.0006 6.98 × 10−5

Figure 18. Reconstructions of a kite-shaped obstacle at the idea setting with different
L(M = L). The red star ∗ denotes the exact boundary and the black circle ◦

√
i denotes

the reconstructed boundary.

the standard deviations are (0.0139, 0.0164), (0.0129, 0.0170) and the relative errors are
(0.06%, 0.02%), (0.02%, 0.02%).

Setting the noise coefficient ση = 3%, we generate one general sample of the observa-
tion noise by the formula (3.9), which takes the form of an M × L matrix. The numerical
approximations from the polluted observations is exhibited in figure 15. The mean solutions of
the numerical starting and ending points are (2.0052, 3.0031), (3.9958, 4.9986), the standard
deviations are (0.0135, 0.0155), (0.0130, 0.0184) and the relative errors are (0.26%, 0.10%),
(0.10%, 0.03%). Besides, the trace of the iterations in MCMC are shown in figure 13.

As done for recovering disks, we also demonstrate the robustness of the numerical scheme
with 1000 samples of the observation noise at different levels ση = 3%, 6%, 9%. For each
sample of the observation noise, one can gain a corresponding reconstruction of the parameters
x1, x2, y1, y2. Hence, we can perform statistical analysis over totally 1000 reconstructions of
x1, x2, y1, y2. The corresponding results are exhibited in table 4, figures 16 and 17. From these
reconstructed parameters, we can draw almost the same conclusions as those for determining
a sound-soft disk. The mean and relative error are robust against the noise pollution, but the
standard deviation is very sensitive to the noisy level. It follows that the phaseless data with
less noise give rise to a more reliable reconstruction result.

3.3. Kite-shaped obstacle

In this subsection, we consider the following kite-shaped sound-soft obstacle D1,

∂D1 =
{

x(t) = (−0.65 + cos t + 0.65 cos(2t), −3 + 1.5 sin t)�, 0 � t � 2π
}

,

(3.27)
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Figure 19. Reconstruction of a kite-shaped obstacle with L = M = 50 at the idea
setting.

which is a benchmark acoustically impenetrable scatterer in inverse scattering problems.
Obviously, the boundary of D1 can be parameterized by six parameters

Z := (z1, z2, . . . , z6)�. (3.28)

Suppose that the exact parameters are given by Ẑ = (̂z1, ẑ2, . . . , ẑ6)� =
(−0.65,−3, 1, 0.65, 1.5, 0)�. To calculate numerical solutions of the forward problem,
we adopt the MATLAB code given by [37, chapter 8]. Since there are six unknown parame-
ters, the random proposal variance is adopted as same as in recovering line cracks. As in the
previous subsections, we set the computational settings as follows.

• The wave number is k = 2;
• The directions of plane incident waves are

d� = (cos θ�, sin θ�)�, θ� = 2π�/(L + 1), � = 0, 1, . . . , L; (3.29)

• The observation directions are

x̂m = (cos θm, sin θm)�, θm = −π + 2π(m − 1)/M, m = 1, 2, . . . , M;

(3.30)

• Unless otherwise specified, we choose L = M = 50;
• In the algorithm 1, we choose J1 = 180 000, J2 = 20, J3 = 1001;
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Figure 20. Histogram of the selected 1001 states with L = M = 50 at the idea setting.

Table 6. Numerical solutions vs ση with L = M = 50.

ση Mean of reconstructions Mean of HD SD of HD

3% −0.6496, −2.9988, 0.9988, 0.6506, 1.4988, 0.0010 0.0039 0.0035
6% −0.6493, −2.9978, 0.9975, 0.6514, 1.4975, 0.0020 0.0062 0.0054
9% −0.6482, −2.9960, 0.9959, 0.6517, 1.4962, 0.0031 0.0088 0.0073

Figure 21. Reconstructions of a kite-shaped obstacle with L = M = 50 at ση = 3%
(left), 6% (center), 9% (right).
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Figure 22. Histogram of these 1000 reconstructions of the six obstacle parameters of
the kite-shaped obstacle with L = M = 50 at ση = 3% (left), 6% (center), 9% (right).

• Since the initial guess is assumed to be a unit circle centered at the origin, the mean of the
prior distribution πpr is mpr = (0, 1, 0, 0, 1, 0)�. In this example, we also assume σpr = 1;

• The observation pollution η�, � = 1, . . . , L, are given as same as those for recovering disks.

Since the sixth exact obstacle parameter ẑ6 is 0, we can not use the relative error to evaluate
the accuracy of numerical results in this example. Instead, the Hausdorff distance (HD) is
chosen to compute the distance between reconstructed and exact boundaries. Recall that the
Hausdorff distance between two obstacles ∂D2 and ∂D3 is defined by

dH(∂D2, ∂D3) := max

{
sup

x∈∂D2

inf
y∈∂D3

|x − y|, sup
y∈∂D3

inf
x∈∂D2

|y − x|
}
. (3.31)

In the first part, we consider the ideal setting (ω�
m = 0 and ση = 3%, � = 1, 2, . . . , L, m =

1, 2, . . . , M) of observations to investigate the accuracy of our numerical method. As done
for recovering disks, we discuss the accuracy of numerical solutions for different choice of
L(M = L). In table 5 and figure 18, we exhibit the numerical reconstructions and the Hausdorff
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distances (HD) between the numerical reconstructions and the exact boundaries. We find that
the reconstructed parameters are getting more accurate as the number of incident waves and
observation directions becomes larger. The Hausdorff distance is less than 0.001 if we choose
L = M = 50, 100. The numerical solution with L = M = 5 is unreliable as illustrated in the
figure 18.

To show that this method is not sensitive to initial guess, we exhibit the initial guess, the
exact boundary and numerical reconstruction in figure 19, where we set L = M = 50. We can
obtain an accurate numerical solution with the Hausdorff distance (HD) being 1.30 × 10−4,
even if the initial guess of the obstacle is separated from the exact one.

We draw the histogram of the selected 1001 sates with L = M = 50 in the figure 20, which
are used to construct the posterior density. From figure 20, we conclude that the posterior
density is a Gaussian distribution and the mean of the posterior density approaches the exact
obstacle parameters.

Then we consider the practical setting with noise-polluted phaseless far-field data. As done
for recovering disks and line cracks, we also demonstrate robustness of the numerical scheme
with 1000 samples of the observation noise at different noise levels ση = 3%, 6%, 9% with
L = M = 50. For every sample of the observation noise, one can gain a corresponding recon-
struction of the parameters z1, z2, . . . , z6, and then gain the corresponding Hausdorff distance
(HD) between the numerical reconstruction and the exact boundary. Then we can use standard
statistical tools to analyze these 1000 reconstructions to discuss robustness of our numerical
scheme. In table 6, we exhibit the mean of reconstructions, the mean and standard deviation
(SD) of Hausdorff distances (HD) at different noise levels. In figure 21, we describe the 1000
reconstructions at different noise levels ση . In figure 22, we show the histogram of these 1000
reconstructions, which correspond to the 1000 samples of the observation noise. We can find
that the mean and standard deviation (SD) of Hausdorff distances (HD) become larger as the
noise level ση is getting bigger. However, our inversion scheme is still robust against the noise
pollution, since the mean and standard deviation (SD) of Hausdorff distances (HD) are very
small as shown in table 6. Further, the phaseless data with less noise give rise to a more reliable
reconstruction result.

4. Conclusion

In this paper, we propose the Bayesian approach to inverse acoustic scattering from sound-soft
disks, line cracks and kite-shaped obstacles with phaseless far-field data. Motivated by [41],
the incoming waves are properly chosen in order to break the translational invariance of the
far-field patten. Uniqueness of the inverse solution is proven for recovering a disk. When the
Gaussian prior measure is given, we discuss well posedness of the posterior measure based
on regularity properties of the deterministic direct scattering problem. Our numerics verify the
efficiency of the preconditioned Crank–Nicolson algorithm with the random proposal variance.
Further, increasing the number of incident and observation directions would lead to more accu-
rate and reliable reconstructions. It is shown that the Bayesian method is robust for phaseless
inverse scattering problems with respect to the observation noise. In this paper the obstacle
boundary can be easily parameterized in a finite dimensional space.Our future efforts will be
devoted to recovering the shape and physical properties of more general acoustic obstacles
with a large number of unknown parameters from phaseless far-field patterns. Noe that in this
paper the number of unknown obstacle parameters is not larger than six, which has reduced
the computational cost. For more complex scatterers, the increased computational cost of the
Markov chain Monte Carlo method needs to be improved, for example, by combining the Gibbs
sampling method and the stochastic surrogate model of the forward solver. Besides the idea
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of using superposition of two plane wave, one can also make use of a single spherical inci-
dent wave within the Bayesian framework. Research outcomes along these directions will be
reported in our forthcoming publications.
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