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Abstract. This paper is concerned with the inverse diffraction problems by a periodic curve with5
Dirichlet boundary condition in two dimensions. It is proved that the periodic curve can be uniquely6
determined by the near-field measurement data corresponding to infinitely many incident plane waves7
with distinct directions at a fixed frequency. Our proof is based on Schiffer’s idea which consists8
of two ingredients: i) the total fields for incident plane waves with distinct directions are linearly9
independent, and ii) there exist only finitely many linearly independent Dirichlet eigenfunctions10
in a bounded domain or in a closed waveguide under additional assumptions on the waveguide11
boundary. Based on the Rayleigh expansion, we prove that the phased near-field data can be uniquely12
determined by the phaseless near-field data in a bounded domain, with the exception of a finite set of13
incident angles. Such a phase retrieval result leads to a new uniqueness result for the inverse grating14
diffraction problem with phaseless near-field data at a fixed frequency. Since the incident direction15
determines the quasi-periodicity of the boundary value problem, our inverse issues are different from16
the existing results of [Htttlich & Kirsch, Inverse Problems 13 (1997): 351-361] where fixed-direction17
plane waves at multiple frequencies were considered.18
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1. Introduction. Suppose a perfectly conducting grating is illuminated by an22

incident monochromatic plane wave in an isotropic homogeneous background medium.23

For simplicity it is assumed that the grating is periodic in one surface direction x124

and independent of another surface direction x3. In the present paper, we restrict25

the discussions to the TE polarization case, where the three-dimensional scattering26

problem governed by the Maxwell equations can be reduced to a two-dimensional27

diffraction problem modeled by the scalar Helmholtz equation over the x1x2-plane.28

Accordingly, the perfect conductor boundary condition on the grating surface can29

be reduced to the Dirichlet boundary condition. This work is concerned with the30

inverse diffraction problem of recovering the periodic curve (i.e., the cross-section of31

the grating surface) with a Dirichlet boundary condition from phased and phaseless32

near-field data measured above the grating.33
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2 X.XU, G. HU, B. ZHANG, AND H. ZHANG

Denote by Γ ⊂ R2 a curve periodic in the x1-direction and bounded in the x2-34

direction which represents the cross-section of the grating surface in the x1x2-plane.35

Let the incident field be a time-harmonic plane wave of the form ui(x)e−iωt, incited36

at the angular frequency ω > 0, where the spatially dependent function ui takes the37

form38

ui(x) = eikx·d = eikx1 sin θ−ikx2 cos θ, x = (x1, x2) ∈ R2.(1.1)39

Here the incident direction d := (sin θ,−cos θ) is given in terms of the incident angle40

θ∈ (−π/2,π/2) and k :=ω/c is the wave number with c > 0 denoting the wave speed41

in the homogeneous background medium. In this paper we assume further that Γ42

satisfies one of the following regularity conditions:43

Condition (i) Γ is the graph of a 3-times continuously differentiable function;44

Condition (ii) Γ is an analytical curve.45

Denote by L > 0 the period of Γ and by Ω the unbounded connected domain above46

Γ (cf. Figure 1). The wave propagation is then modelled by the Dirichlet boundary47

value problem for the Helmholtz equation48

∆u+ k2u = 0 in Ω, u = 0 on Γ,(1.2)49

where the total field u = ui + us is the sum of the incident field ui and the scattered50

field us.51

Fig. 1. Scattering by a periodic curve with Dirichlet boundary condition.

Set α = α(k, θ) := k sin θ. Obviously, the incident field (1.1) is α-quasi-periodic52

in the sense that e−iαx1ui(x) is L-periodic with respect to x1 for all x∈Ω. In view of53

the periodicity of the structure together with the form of the incident field, we require54

the total field u to be α-quasi-periodic, that is, e−iαx1u(x) is L-periodic with respect55

to x1 for all x ∈ Ω. This implies that56

u(x1 + nL, x2) = u(x1, x2)eiαnL for any n ∈ Z.(1.3)57

The number α ∈ R will be referred to as the phase shift of the solution. Since58

the domain Ω is unbounded in the x2-direction, a radiation condition needs to be59

imposed at infinity as x2 →∞ to ensure the well-posedness of the diffraction problem.60

Precisely, we require the scattered field us to satisfy the Rayleigh expansion, that is,61

there exist Rayleigh coefficients An ∈ C (n ∈ Z) depending on k, θ and Γ such that62

us(x) =
∑
n∈Z

Ane
iαnx1+iβnx2 , x ∈ Uh := {x = (x1, x2) ∈ R2 : x2 > h}(1.4)63

where the parameters αn ∈ R and βn ∈ C for n ∈ Z are defined by64

αn = αn(k, θ, L) := α+ 2nπ/L,

βn = βn(k, θ, L) :=

{ √
k2 − (αn)2 if |αn| ≤ k,

i
√

(αn)2 − k2 if |αn| > k,

(1.5)65
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INVERSE DIFFRACTION GRATING PROBLEMS 3

for any fixed h > max{x2 : x ∈ Γ}. We note that the series (1.4) is uniformly66

convergent and bounded in Uh (see Lemma 2.1 below). It consists of a finite number67

of propagating wave modes for |αn|≤k and infinitely many surface (evanescent) wave68

modes corresponding to |αn|>k. For notational convenience we rewrite the incident69

plane wave (1.1) as70

ui(x) = Aıe
iαıx1+iβıx2 ,(1.6)71

where Aı = Aı(k, θ) := 1, αı = αı(k, θ) := k sin θ, βı = βı(k, θ) := −k cos θ. Here, the72

symbol ı denotes the index for the incident plane wave. We note that αı = α = α073

and βı = −β0.74

The well-posedness of the forward diffraction problem is presented in the following75

proposition.76

Proposition 1.1. (1) If Condition (i) holds, the diffraction problem (1.1)–(1.4)77

admits a unique α-quasi-periodic solution u ∈ C2(Ω) ∩ C(Ω).78

(2) Under Condition (ii), there exists at least one solution u ∈ C2(Ω) ∩ C(Ω)79

to the diffraction problem (1.1)–(1.4). Moreover, uniqueness of the solution remains80

true for small wave numbers or for all wave numbers excluding a discrete set with the81

only accumulating point at infinity.82

We refer to [19, 24] for the proof of the first statement when the period of the curve83

is L = 2π. Actually, it follows from a scaling argument that the statement (1) holds84

for an arbitrary period L > 0. Further, by the Fredholm alternative (see, e.g., [31,85

Theorem 2.33]) and the analytic Fredholm theory (see, e.g., [14, Theorem 8.26]), one86

can prove the second statement through a standard variational argument together with87

quasi-periodic transparent boundary conditions (see, e.g., [1, 4, 10, 35]). We remark88

that the well-posedness of the diffraction problem (1.1)–(1.4) can be established under89

weaker conditions than Conditions (i) and (ii). To be more specific, if Γ is a Lipschitz90

curve, the existence of α-quasi-periodic variational solutions in H1
0,α(Ω) can be shown,91

where92

H1
0,α(Ω) := {u ∈ H1

loc(Ω) : e−iαx1u(x) is L-periodic with respect to x1, u = 0 on Γ}.93

Further, uniqueness of solutions remains valid for any k > 0 even under the following94

weaker assumption (see [12, (4.1) and Theorem 4.1] and [11, (2.2) and Theorem 4.1]):95

(x1, x2) ∈ Ω⇒ (x1, x2 + s) ∈ Ω for all s > 0.96

Note that this geometric assumption is fulfilled if Γ is the graph of a continuous97

function.98

The inverse problem we consider in this paper is to recover a periodic curve with99

Dirichlet boundary condition from phased or phaseless near-field data corresponding100

to an infinite number of incident plane waves with different angles, where the period101

L of the curve is unknown.102

Let θn ∈ (−π/2, π/2) with n ∈ Z+ be distinct incident angles, and denote by103

u(x; θn) the total field corresponding to the diffraction problem (1.1)–(1.4) with θ =104

θn. Note that, according to Proposition 1.1, the diffraction problem (1.1)–(1.4) may105

admit multiple solutions under Condition (ii) if k is an exceptional wavenumber. If106

this happens, u(x; θn) is assumed to any one of these solutions. The main uniqueness107

result for the inverse problem considered is presented in the following theorem.108

Theorem 1.1. Assume that the unknown periodic curve Γ with Dirichlet bound-109

ary condition satisfies either Condition (i) or Condition (ii). Suppose the period110
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4 X.XU, G. HU, B. ZHANG, AND H. ZHANG

of Γ is unknown. Then Γ can be uniquely determined by either the phased data111

{u(x; θn) : x ∈ S}∞n=1, where S ⊂ Γh is a line segment parallel to the x1-axis, or112

by the phaseless data {|u(x; θn)| : x ∈ D}∞n=1, where D ⊂ Ω is a bounded domain.113

Here, Γh := {x : x2 = h} with h > max{x2 : x ∈ Γ} being an arbitrary constant.114

The proof of Theorem 1.1 will be given in Section 4 for the case of phased data and115

in Section 5 for the case of phaseless data. If the background medium is non-absorbing116

(i.e., k > 0), it is well known that the global uniqueness with phased near-field data117

corresponding to one incident plane wave is impossible (see [16]). We will show in118

Section 3 that phased near-field data corresponding to one incident plane wave cannot119

even determine the period of a grating curve. To the best of our knowledge, uniqueness120

for one incident wave was verified in the following special cases:121

(i) the background medium is lossy (i.e., Im k > 0) [6];122

(ii) the wave number or the grating height is sufficiently small [21];123

(iii) within the class of rectangular gratings [18], or within the class of polygonal124

gratings in the case that Rayleigh frequencies are excluded (i.e., βn 6= 0 for125

all n ∈ Z) [16].126

If a Rayleigh frequency occurs (i.e., βn = 0 for some n ∈ Z), the measured data for two127

incident plane waves can be used to determine a general polygonal grating [18] (see also128

[8, 9] in the case of inverse electromagnetic scattering from perfectly conducting poly-129

hedral gratings). It was proved in [25]that a general periodic curve can be uniquely130

determined by using all α-quasi-periodic incident waves {eiαnx1−iβnx2 : n ∈ Z}. Note131

that such kind of incident waves include a finite number plane waves for |αn| ≤ k and132

infinitely many evanescent waves corresponding to |αn| > k. The factorization method133

established in [5] also gives rise to the same uniqueness result. If the a priori informa-134

tion of the grating height is available, Hettlich and Kirsch [21] obtained a uniqueness135

result by using fixed-direction plane waves with a finite number of frequencies. This136

can be viewed as an extension of the idea due to Colton and Sleeman [15] from the137

case of inverse scattering by bounded sound-soft obstacles to the case of inverse scat-138

tering by periodic structures. As will be seen in subsection 4.2, the fixed-direction139

problem of [21] and the fixed-frequency problem to be investiagted here result in dif-140

ferent eigenvalue problems. Using different directions leads to a µ-eigenvalue problem141

where µ = sin θ is determined by the incidient angle θ ∈ (−π/2, π/2), which brings142

difficulites in proving the discreteness of eigenvalues. To apply the analytical Fred-143

holm theory, we shall resort on the arguments of [34] to exclude the existence of flat144

dispersion curves in a closed waveguide.145

In many practical applications, it is difficult to accurately measure the phase146

information of wave fields. This motivates us to study the inverse problem of whether147

it is possible to recover a periodic curve with Dirichlet boundary condition from148

phaseless data. However, most uniqueness results with phaseless data are confined149

to inverse scattering from bounded scatterers (see, e.g., [22, 26, 27, 28, 32, 37]).150

In particular, using the decaying property of the scattered field at infinity, explicit151

formulas for recovering phased far-field pattern from phaseless near-field data are152

derived in [32]. In this paper we also prove a phase retrieval result but based on153

the Rayleigh expansion (1.4) for diffraction grating problems. To the best of our154

knowledge, uniqueness results for identifying periodic grating curves using phaseless155

near-field data are not available so far. We refer to [2, 3, 7, 22, 29, 36, 38, 39] for156

numerical schemes to inverse scattering using phaseless data.157

This paper is organized as follows. In Section 2, we prepare several lemmas for158

later use. Section 3 is devoted to determining one grating period from the phased159
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INVERSE DIFFRACTION GRATING PROBLEMS 5

near-field data for one incident plane wave. The results in Sections 2 and 3 are160

independent of the smoothness Conditions (i) and (ii) of the periodic curve made in161

the introduction part. In Section 4, we prove uniqueness for recovering periodic curves162

with Dirichlet boundary condition using the phased near-field data corresponding to163

infinitely many incident plane waves with distinct directions. A similar uniqueness164

result based on phaseless near-field data will be established in Section 5. Finally,165

concluding remarks will be given in Section 6.166

2. Preliminary lemmata. The following lemmas are useful in the proofs of167

uniqueness results in the sequel.168

Lemma 2.1. Let Γ be a periodic curve. Set Uh := {x ∈ R2 : x2 > h} for any169

h > max{x2 :x ∈ Γ}.170

(i) The Rayleigh expansion (1.4) is uniformly bounded for x ∈Uh.171

(ii) The Rayleigh expansion (1.4) is uniformly and absolutely convergent for x ∈172

Uh.173

(iii) Let b ∈ R and let An (n ∈ Z) be given as in (1.4). Set P±(N) := {n ∈ Z :174

|αn| > k,±n > N} for N > 0. Then, for the case when b < |βn| for all n ∈ P+(N)175

the series176 ∑
n∈P+(N)

Ane
iαnx1+iβnx2+bx2(2.1)177

is uniformly and absolutely convergent for x ∈Uh. For the case when b < |βn| for all178

n ∈ P−(N), the series179 ∑
n∈P−(N)

Ane
iαnx1+iβnx2+bx2180

is uniformly and absolutely convergent for x∈Uh.181

(iv) Let N ∈ Z+, aj ∈ C and bj ∈ R\{0} for j = 1, . . . , N . Then182 ∣∣∣∣∣∣ 1

T

∫ 2T

T

N∑
j=1

aje
ibjtdt

∣∣∣∣∣∣ ≤ 2

T

N∑
j=1

|aj |
|bj |
→ 0 as T → +∞.183

Proof. Choosing σ > 0 small enough so that h − 2σ > max{x2 : x ∈ Γ}, noting184

that (1.4) also holds with h replaced by h− 2σ and applying Parseval’s equality yield185

the estimate186

2|us(x)| ≤
∑
n∈Z

2
∣∣Aneiαnx1+iβnx2

∣∣187

≤
∑
n∈Z

∣∣∣Aneiαnx1+iβn(h−σ)
∣∣∣2 +

∑
n∈Z

∣∣∣eiβn(x2−h+σ)
∣∣∣2188

≤ 1

L

∫ L

0

|us(x1, h− σ)|2dx1 +
∑
|αn|≤k

1 +
∑
|αn|>k

Ce−|n|/C(2.2)189

uniformly for all x∈Uh, where we have used the fact that σ
√

(2nπ/L+ α0)2 − k2 >190

|n|/C holds for sufficiently large |n| provided the constant C > 0 is large enough.191

Thus statement (i) holds. The estimate (2.2) also implies that statement (ii) holds.192

We now prove statement (iii). We only consider the case when b < |βn| for all193

n ∈ P+(N) since the proof of the other cases is similar. We first conclude from (2.2)194
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6 X.XU, G. HU, B. ZHANG, AND H. ZHANG

that {|Aneiαnx1+iβn(h−σ)| : n ∈ P+(N)} is uniformly bounded. Noting that in this195

case (iβn + b) < 0 for all n ∈ P+(N), we have196 ∑
n∈P+(N)

∣∣Aneiαnx1+iβnx2+bx2
∣∣ ≤ ∑

n∈P+(N)

∣∣∣Aneiαnx1+iβn(h−σ)
∣∣∣ eb(h−σ)e(iβn+b)(x2−h+σ)197

≤
∑

n∈P+(N)

Ce−|n|/C198

uniformly for all x ∈Uh, where we have used the fact that σ
√

(2nπ/L+ α0)2 − k2 −199

b > |n|/C holds for sufficiently large |n| provided the constant C > 0 is large enough.200

This implies that (2.1) is uniformly and absolutely convergent for x ∈Uh.201

Finally, noting that202 ∣∣∣∣∣ 1

T

∫ 2T

T

aje
ibjtdt

∣∣∣∣∣ =

∣∣∣∣ 1

T

aj(e
2ibjT − eibjT )

ibj

∣∣∣∣ ≤ 1

T

2|aj |
|bj |

, j = 1, . . . , N,203

it is easy to see that statement (iv) holds.204

Lemma 2.2. Let u(x; θm) be the total field corresponding to the diffraction problem205

(1.1)–(1.4) with the incident angle θ = θm ∈ (−π/2, π/2) for m = 1, . . . ,M and206

M ∈ Z+. Suppose {θm}Mm=1 are distinct incident angles. Then {u(x; θm)}Mm=1 are207

linearly independent in Ω.208

Proof. Assume that
∑M
m=1 cmu(x; θm) = 0 in Ω for some cm ∈ C, m = 1, . . . ,M .209

To indicate the dependence of us on the incident angle, we rewrite the Rayleigh210

expansion (1.4) as211

us(x; θm) =
∑
n∈Z

An(θm) eiαn(θm)x1+iβn(θm)x2 , x ∈ Uh,212

where h > max{x2 : x ∈ Γ} and αn(θm) := α(θm) + 2nπ/L with α(θm) := k sin θm213

and βn(θm) ∈ C are defined as in (1.5) with the incident angle θ = θm. Then, by214

(1.6) it follows that215

M∑
m=1

cm u(x; θm) =

M∑
m=1

cm

 ∑
n∈Z∪{ı}

An(θm) eiαn(θm)x1+iβn(θm)x2

 = 0.(2.3)216

For any m̃∈{1, 2, . . . ,M}, multiplying (2.3) by e−iβı(θm̃)x2 we obtain217 ∑
m∈Im̃

cme
iαı(θm)x1 +

∑
m∈{1,...,M}\Im̃

cme
iαı(θm)x1+i[βı(θm)−βı(θm̃)]x2218

+

M∑
m=1

cm

(∑
n∈Z

An(θm) eiαn(θm)x1+i[βn(θm)−βı(θm̃)]x2

)
= 0, x ∈ Uh,(2.4)219

where Im̃ := {m ∈ {1, . . . ,M} : βı(θm) = βı(θm̃)}.220

Next we claim that221

lim
H→+∞

1

H

∫ 2H

H

∑
m∈{1,...,M}\Im̃

cme
iαı(θm)x1+i[βı(θm)−βı(θm̃)]x2dx2 = 0,(2.5)222

lim
H→+∞

1

H

∫ 2H

H

M∑
m=1

cm

(∑
n∈Z

An(θm) eiαn(θm)x1+i[βn(θm)−βı(θm̃)]x2

)
dx2 = 0(2.6)223
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INVERSE DIFFRACTION GRATING PROBLEMS 7

for all x1 ∈R. In fact, (2.5) follows easily from Lemma 2.1 (iv). To prove (2.6), let224

m∈ {1, . . . ,M} be arbitrarily fixed. For N > 0 large enough we set J1(N) := {n ∈225

Z : |αn(θm)| > k, |n| > N} and J2(N) := {n ∈ Z : |αn(θm)| > k, |n| ≤ N}. Using226

|e−iβı(θm̃)x2 |=1, it follows from Lemma 2.1 (ii) that227

lim
N→+∞

∑
n∈J1(N)

∣∣∣An(θm) eiαn(θm)x1+i[βn(θm)−βı(θm̃)]x2

∣∣∣ = 0(2.7)228

uniformly for all x ∈ Uh. For any fixed N ∈ Z+, since J2(N) is a finite set and229

iβn(θm) < 0 for all n ∈ J2(N), we have230

lim
x2→+∞

∑
n∈J2(N)

∣∣∣An(θm) eiαn(θm)x1+i[βn(θm)−βı(θm̃)]x2

∣∣∣ = 0(2.8)231

uniformly for all x1 ∈ R. Since J3 := {n ∈ Z : |αn(θm)| ≤ k} is also a finite set and232

βn(θm) ≥ 0 > βı(θm̃) for all n ∈ J3, it follows from Lemma 2.1 (iv) that233

lim
H→+∞

1

H

∫ 2H

H

∑
n∈J3

An(θm) eiαn(θm)x1+i[βn(θm)−βı(θm̃)]x2dx2 = 0(2.9)234

uniformly for all x1∈R. This, together with (2.7)–(2.9), implies that (2.6) holds.235

Combining (2.4)–(2.6), we arrive at236 ∑
m∈Im̃

cme
iαı(θm)x1 = 0, x1 ∈ R.(2.10)237

Multiplying (2.10) by e−iαı(θm̃)x1 we obtain238 ∑
m∈Km̃

cm +
∑

m∈Im̃\Km̃

cme
i[αı(θm)−αı(θm̃)]x1 = 0, x1 ∈ R,239

where Km̃ := {m ∈ Im̃ : αı(θm) = αı(θm̃)}. Obviously, Km̃ = {m̃}. Then it follows240

from Lemma 2.1 (iv) that cm̃=0 By the arbitrariness of m̃ it follows that cm=0 for241

all m = 1, . . . ,M , implying that {u(x; θm)}Mm=1 are linearly independent functions in242

Ω.243

Remark 2.1. By (1.6) the total field u to the diffraction problem (1.1)–(1.4) is244

given by245

u(x) =
∑

n∈Z∪{ı}

Ane
iαnx1+iβnx2 , x ∈ Uh.(2.11)246

We claim that247

u 6≡ 0 in Ω.(2.12)248

Assume to the contrary that u ≡ 0 in Ω. Then, proceeding as in the proof of Lemma249

2.2, we first multiply (2.11) by e−iβıx2 and then by e−iαıx1 to obtain that Aı = 0,250

which contradicts to the fact that Aı = 1. This implies that (2.12) holds.251

In the remaining part of this paper, we consider two periodic curves Γ(1) and Γ(2)252

with periods L1 > 0 and L2 > 0, respectively. Denote by Ωj the unbounded connected253

domain above Γ(j) for j = 1, 2. Set Γh := {x : x2 = h} for some h > max{x2 : x ∈254
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8 X.XU, G. HU, B. ZHANG, AND H. ZHANG

Γ(1) ∪ Γ(2)}. Denoted by usj(x; θ) and uj(x; θ) the scattered field and total field,255

respectively, for incident plane wave ui(x; θ) with θ ∈ (−π/2, π/2) corresponding to256

the curve Γ(j), j = 1, 2. Analogously, denote by (α
(j)
n , β

(j)
n ) the pair (αn, βn) (see (1.5)257

and (1.6)) and by A
(j)
n the Rayleigh coefficient An in (1.4) and (1.6) corresponding to258

Γ = Γ(j) for n ∈ Z ∪ {ı} and j = 1, 2.259

3. Determination of grating period from phased data. In this section we260

consider the inverse problem, that is, whether it is possible to determine the period261

of a periodic curve from phased near-field data corresponding to one incident plane262

wave. Since the total field u to the forward diffraction model (1.1)–(1.4) is required263

to be α-quasi-periodic, it is seen that e−iαx1u(x) is L-periodic with respect to x1.264

Actually, this is also implied by (1.4) and (1.6). However, the period L may not265

be the minimum period of e−iαx1u(x), as illustrated in the following remark which266

presents two diffraction grating curves with different minimum periods which can267

generate identical near-field data for one incident plane wave. Such an example was268

motivated by the classification of unidentifiable polygonal diffraction gratings using269

one incident plane wave; see [8, 9, 16, 17].270

Remark 3.1. Consider the example with u = ui + us, where271

ui(x) = ei(−x1−
√
3x2), us(x) = ei(x1+

√
3x2) − e−2ix1 − e2ix1 .(3.1)272

Obviously, ui is a plane wave defined as in (1.1) with incident angle θ = −π/6 and273

wave number k = 2, implying that α = −1. Note that, if we choose the period274

L = 2π then the Rayleigh frequency occurs (since β−1 = β3 = 0 in this case). A275

straightforward calculation shows276

u(x) = 2 cos(x1 +
√

3x2)− 2 cos(2x1) = −4 sin
3x1 +

√
3x2

2
sin
−x1 +

√
3x2

2
.(3.2)277

Therefore, the zeros of u(x) consist of two families of parallel lines:278

l(1)n := {x = (x1, x2) ∈ R2 : 3x1 +
√

3x2 = 2nπ},279

l(2)n := {x = (x1, x2) ∈ R2 : −x1 +
√

3x2 = 2nπ}280

for n ∈ Z, which form a grid in R2, as illustrated by Figure 2. It is obvious that

Fig. 2. Contour of the total field u given by (3.2). The red solid line ’-’ and the red dash-dot
line ’-.’ denote two grating curves with different minimum periods.

281

the two curves Γ(1) and Γ(2) plotted by the red solid line ’-’ and the red dashed line282

’-.’, respectively, as shown in Figure 2, lie on the above grid. The minimum period283

of Γ(1) and Γ(2) is L1 = 2π and L2 = 4π, respectively. From the above discussions284

and the formula (3.1), it can be seen that us is the scattered field to the diffraction285

problem (1.1)–(1.4) with the curve Γ = Γ(1) and the period L = L1, and satisfies the286
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Rayleigh expansion (1.4) with nonzero Rayleigh coefficients A
(1)
2 =1, A

(1)
−1 =A

(1)
3 =−1.287

However, on the other hand, it is also easily seen that us is the scattered field to the288

diffraction problem (1.1)–(1.4) with the curve Γ = Γ(2) and the period L= L2, and289

satisfies the Rayleigh expansion (1.4) with nonzero Rayleigh coefficients A
(2)
4 = 1,290

A
(2)
−2 =A

(2)
6 =−1. This example shows that it is impossible to determine the minimum291

period (also the shape) of a grating curve from phased near-field data corresponding292

to one incident plane wave.293

In general, one can only find a common period of two grating curves if their294

scattered fields coincide. This will be proved rigorously in Theorem 3.1 below, where295

the periodic curves do not need to satisfy the smoothness Conditions (i) and (ii).296

Theorem 3.1. Suppose θ ∈ (−π/2, π/2) is an arbitrarily fixed incident angle.297

Let Γ(1) and Γ(2) be two periodic curves. If the corresponding scattered fields satisfy298

us1(x; θ)=us2(x; θ) on x2 =h > max{x2 :x∈Γ(1) ∪ Γ(2)},(3.3)299

then there exists L > 0 such that L is a period of both Γ(1) and Γ(2).300

Proof. Suppose Lj > 0 is a period of the curve Γ(j), j = 1, 2. Then the corre-301

sponding scattered field usj(x; θ) satisfies the following Rayleigh expansions302

usj(x) =
∑
n∈Z

A(j)
n eiα

(j)
n x1+iβ

(j)
n x2 , x ∈ Uh := {x ∈ R2 : x2 > h}, j = 1, 2,(3.4)303

where α
(j)
n , β

(j)
n and the coefficients A

(j)
n , that depends on k, θ and Γ(j), are de-304

fined analogously to αn, βn and An with Γ replaced by Γj . Note that the following305

conditions are fulfilled:306

(i) us1 − us2 satisfies the Helmholtz equation in Uh;307

(ii) us1 − us2 = 0 on Γh := {x : x2 = h};308

(iii) supx∈Uh
|us1(x)− us2(x)| < +∞;309

(iv) us1− us2 satisfies the upward propagating radiation condition (see [13, Defini-310

tion 2.2]).311

In fact, (i) follows from (1.1) and (1.2), and (ii) follows from (3.3). (iii) and (iv) are312

implied by the Rayleigh expansions (3.4) (see Lemma 2.1 (i) and [13, pp. 1777]). By313

uniqueness to the Dirichlet boundary value problem in Uh (see [13, Theorem 3.4]), it314

follows that315

us1(x; θ) = us2(x; θ), x ∈ Uh.(3.5)316

We now consider the following two cases.317

Case 1: L1/L2 is rational.318

Let p/q = L1/L2 with reduced fraction p/q and positive integers p, q ∈ Z+. Set319

L := qL1. Then L = pL2. Thus L is a common period for both Γ(1) and Γ(2).320

Case 2: L1/L2 is irrational.321

We claim that any L> 0 is a period of both Γ(1) and Γ(2). To do this, we first322

deduce from the fact that L1/L2 is irrational that323

α(1)
m 6=α(2)

n for all (m,n)∈Z2\{(0, 0)} and α
(1)
0 =α

(2)
0 =k sin θ.(3.6)324

It follows from (3.4) and (3.5) that325 ∑
n∈Z

A(1)
n eiα

(1)
n x1+iβ

(1)
n x2 −

∑
n∈Z

A(2)
n eiα

(2)
n x1+iβ

(2)
n x2 = 0, x ∈ Uh.(3.7)326
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The proof of this case can be divided into three steps as follows.327

Step 1. We prove that328

A
(1)
0 =A

(2)
0 ,(3.8)329

A(1)
n =0 for all n ∈ Z\{0} such that |α(1)

n | ≤ k,(3.9)330

A(2)
n =0 for all n ∈ Z\{0} such that |α(2)

n | ≤ k.(3.10)331

Let ñ∈Z be arbitrarily fixed such that |α(1)
ñ | ≤ k. Multiplying (3.7) by e−iβ

(1)
ñ x2 we332

obtain333 ∑
n∈I(1)ñ

A(1)
n eiα

(1)
n x1 +

∑
n∈Z\I(1)ñ

A(1)
n eiα

(1)
n x1+i(β

(1)
n −β

(1)
ñ )x2334

−
∑
n∈I(2)ñ

A(2)
n eiα

(2)
n x1 −

∑
n∈Z\I(2)ñ

A(2)
n eiα

(2)
n x1+i(β

(2)
n −β

(1)
ñ )x2 = 0, x ∈ Uh,(3.11)335

where I(j)ñ := {n ∈ Z : β
(j)
n = β

(1)
ñ } is at most a finite set for j = 1, 2. Analogously to336

(2.6), using |eiβ
(1)
ñ x2 | = 1, we can apply Lemma 2.1 (ii) and (iv) to obtain337

lim
H→+∞

1

H

∫ 2H

H

∑
n∈Z\I(j)ñ

A(j)
n eiα

(j)
n x1+i(β

(j)
n −β

(1)
ñ )x2dx2 = 0, j = 1, 2,338

for all x1∈R. Therefore, it follows from (3.11) that339 ∑
n∈I(1)ñ

A(1)
n eiα

(1)
n x1 −

∑
n∈I(2)ñ

A(2)
n eiα

(2)
n x1 = 0, x1 ∈ R.(3.12)340

Similarly, multiplying (3.12) by e−iα
(1)
ñ x1 we can deduce from Lemma 2.1 (iv) that341 ∑

n∈K(1)
ñ

A(1)
n −

∑
n∈K(2)

ñ

A(2)
n = 0.(3.13)342

where K(j)
ñ := {n ∈ Z : α

(j)
n = α

(1)
ñ , β

(j)
n = β

(1)
ñ }, j = 1, 2. Obviously, K(1)

ñ = {ñ}. In343

view of (3.6), we know that K(2)
ñ = {0} if ñ = 0 and K(2)

ñ = ∅ if ñ ∈ Z\{0}. These,344

together with (3.13), imply (3.8) and (3.9). By interchanging the role of us1 and us2,345

we can employ a similar argument as above to obtain (3.10).346

Step 2. We prove that347

A(1)
n =0 for all n ∈ Z such that |α(1)

n | > k,(3.14)348

A(2)
n =0 for all n ∈ Z such that |α(2)

n | > k.(3.15)349

Set P(j) :={n∈Z : |α(j)
n |>k}, j=1, 2. It follows from (3.7)–(3.10) that350 ∑

n∈P(1)

A(1)
n eiα

(1)
n x1+iβ

(1)
n x2 −

∑
n∈P(2)

A(2)
n eiα

(2)
n x1+iβ

(2)
n x2 = 0, x ∈ Uh.(3.16)351

By (1.5), we can rearrange the elements in {(1, n) : n ∈ P(1)} ∪ {(2, n) : n ∈ P(2)}352

as a sequence {(p`, q`)}`∈Z+
such that β

(p`)
q` = ib` with b` > 0 and b` ≤ b`+1 for all353

` ∈ Z+. Obviously, b`→+∞ as `→ +∞.354
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Without loss of generality, we may assume that p1 = 1 and q1 = ñ for some355

ñ ∈ P(1) and thus β
(p1)
q1 = β

(1)
ñ . Let I(j)ñ (j=1, 2) be defined as in Step 1. It is clear356

that I(j)ñ = {n ∈ P(1) : β
(j)
n = β

(1)
ñ } and is at most a finite set. Then, multiplying357

(3.16) by e−iβ
(1)
ñ x2 we obtain358 ∑

n∈I(1)ñ

A(1)
n eiα

(1)
n x1 +

∑
n∈P(1)\I(1)ñ

A(1)
n eiα

(1)
n x1+i(β

(1)
n −β

(1)
ñ )x2359

−
∑
n∈I(2)ñ

A(2)
n eiα

(2)
n x1 −

∑
n∈P(2)\I(2)ñ

A(2)
n eiα

(2)
n x1+i(β

(2)
n −β

(1)
ñ )x2 = 0, x ∈ Uh.(3.17)360

For N > 0 large enough and j = 1, 2, we set Q(j)
1 (N) := {n ∈ P(j)\I(j)ñ : |n| > N}361

and Q(j)
2 (N) := {n ∈ P(j)\I(j)ñ : |n| ≤ N}. By Lemma 2.1 (iii), we have362

lim
N→+∞

∑
n∈Q(j)

1 (N)

∣∣∣A(j)
n eiα

(j)
n x1+i(β

(j)
n −β

(1)
ñ )x2

∣∣∣ = 0, j = 1, 2,(3.18)363

uniformly for all x ∈ Uh. For any fixed N > 0, since Q(j)
2 (N) is a finite set and364

i(β
(j)
n −β(1)

ñ )<0 for all n∈Q(j)
2 (N) due to the definition of β

(1)
ñ , thus we have365

lim
x2→+∞

∑
n∈Q(j)

2 (N)

∣∣∣A(j)
n eiα

(j)
n x1+i(β

(j)
n −β

(1)
ñ )x2

∣∣∣ = 0, j = 1, 2,(3.19)366

uniformly for all x1∈R. Thus, it follows from (3.18) and (3.19) that367

lim
x2→+∞

∑
n∈P(j)\I(j)ñ

A(j)
n eiα

(j)
n x1+i(β

(j)
n −β

(1)
ñ )x2 = 0, j = 1, 2,368

for all x1 ∈R. This, together with (3.17), implies that (3.12) holds. Analogously to369

Step 1, multiplying (3.12) by e−iα
(1)
ñ x1 , we can apply Lemma 2.1 (iv) to obtain (3.13)370

and thus A
(1)
ñ =A

(p1)
q1 = 0. Taking this into (3.16), we obtain that (3.16) holds with371

P(1) replaced by P(1)\{q1}. Then using the same argument as above, we can obtain372

that A
(p2)
q2 = 0. Now, we can repeat the same argument again to obtain that A

(p`)
q` = 0373

for all ` ∈ Z+. This means that (3.14) and (3.15) hold.374

Step 3. Combining (3.8)–(3.10), (3.14) and (3.15), we arrive at375

A
(1)
0 = A

(2)
0 and A(1)

n = A(2)
n = 0 for n ∈ Z\{0}.376

Then by the Dirichlet boundary condition imposed on Γ(j) (j = 1, 2), we have377

eiα0x1−iβ0x2 = ui(x) = −usj(x) = −A(j)
0 eiα0x1+iβ0x2 , x ∈ Γ(j), j = 1, 2.378

This further implies that Γ(j) (j = 1, 2) is a straight line parallel to the x1-axis since379

A
(j)
0 is a constant. Thus, any L>0 is a common period of Γ(1) and Γ(2).380

4. Uniqueness with phased data. In this section, we prove that a periodic381

curve with Dirichlet boundary condition fulfilling Condition (i) or Condition (ii) can382

be uniquely determined by the fixed-frequency near-field data corresponding to in-383

cident plane waves with distinct angles (i.e., Theorem 1.1 with phased data). This384
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differs from [21], where fixed-direction incident plane waves with different frequencies385

are used, and this also differs from [25] which involves fixed-frequency quasi-periodic386

incident waves with the same phase shift. For the inverse problem to recover a pe-387

riodic curve from near-field data corresponding to incident plane waves with distinct388

directions, difficulties arise from the fact that the corresponding total fields have dif-389

ferent phase shifts since α = k sin θ depends on the incident angle θ. We rephrase390

Theorem 1.1 with phased data in Theorem 4.1 below, which is the main uniqueness391

result of this section. Here we shall provide a proof based on both the ideas of Schiffer392

for bounded obstacles (see [15]) and for periodic structures with multi-frequency data393

(see [21]) and the concept of dispersion relations (see, e.g., [20, 30, 34]) arising from394

the analysis of photonic crystals.395

Theorem 4.1. Let Γ(1) and Γ(2) be two periodic curves with Dirichlet boundary396

conditions. Assume both of them satisfy Condition (i) or both of them satisfy Condi-397

tion (ii). Suppose that the periods of Γ(1) and Γ(2) are unknown. If the corresponding398

total fields satisfy399

u1(x; θn) = u2(x; θn), x ∈ S, n ∈ Z+,(4.1)400

where {θn}∞n=1 are distinct incident angles in (−π/2, π/2), then Γ(1) = Γ(2). Here,401

S ⊂Γh is a line segment with Γh :={x :x2 =h} and h>max{x2 :x∈Γ(1)∪Γ(2)} being402

an arbitrary constant.403

Since u1 and u2 are analytic functions of x∈Γh, (4.1) is equivalent to u1(x; θn)=404

u2(x; θn) for all x∈Γh and n∈Z+. Therefore, us1(x; θn)=us2(x; θn) for all x∈Γh and405

n∈Z+. Analogously to (3.5), we have us1(x; θn)=us2(x; θn) for all x ∈ Uh and n ∈ Z+.406

By analyticity we arrive at407

us1(x; θn) = us2(x; θn), x ∈ Ω′, n ∈ Z+,(4.2)408

where Ω′ denotes the unbounded component of Ω1∩Ω2 which can be connected to Uh.409

By Theorem 3.1, the above relation (4.2) implies that there exists L > 0 such that410

L is a common period of Γ(1) and Γ(2). Without loss of generality, we may assume411

L= 2π in the rest of this section. Assume to the contrary that Γ(1) 6= Γ(2). We need412

to consider the following two cases:413

Case (i) : Γ(1) ∩ Γ(2) 6= ∅; Case (ii) : Γ(1) ∩ Γ(2) = ∅.414

The proofs of Theorem 4.1 for these two cases will be given in the following subsections.415

Γ
(1)

Γ
(2)

D
Γ
(1)

Γ
(2)

(a) Both Γ(1) and Γ(2) are graphs

D

Γ
(1)

Γ
(2)

(b) Neither Γ(1) nor Γ(2) is a graph

Fig. 3. The bounded domain D in Case (i): Γ(1) ∩ Γ(2) 6= ∅.

4.1. Proof of Theorem 4.1 for Case (i): Γ(1)∩Γ(2) 6= ∅.. Since Γ(1)∩Γ(2) 6=∅416

and both Γ(1) and Γ(2) are 2π-periodic, there exists at least one bounded domain D417

enclosed by Γ(1) and Γ(2). In other words, ∂D⊂Γ(1)∪Γ(2). Without loss of general418

we may suppose that D ⊂ Ω1\Ω′ as shown in Figure 3. It follows from Remark419

2.1, formula (4.2) and the Dirichlet boundary condition of uj(x; θn) on Γ(j) that the420
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total field u1(x; θn) := ui(x; θn) + us1(x; θn) is a nontrivial solution to the eigenvalue421

problem422

∆u+ k2u = 0 in D, u = 0 on ∂D,423

for all n∈Z+. In other words, u1(x; θn) is a Dirichlet eigenfunction of the negative424

Laplacian in D for each n ∈ Z+. Recall from Lemma 2.2 that {u1(x; θn)}Nn=1 are425

linearly independent functions in D for any positive integer N < +∞. However, by426

a similar argument as in the proof of [14, Theorem 5.1], it follows that there are at427

most finitely many independent Dirichlet eigenfunctions of the negative Laplacian in428

H1
0 (D) corresponding to the eigenvalue k2>0. This contradiction implies that Case429

(i) does not hold.430

Remark 4.1. It should be remarked that, the proof of [14, Theorem 5.1] relies431

essentially on the a priori estimate of solutions after the Gram-Schmidt orthogonaliza-432

tion of {u1(x; θn)}n∈Z+
(see [14, the third formula on page 140]). However, if D is an433

unbounded periodic strip, as will be seen in Case (ii), it would be difficult to establish434

an analogous a priori estimate of solutions with different incident angles (or equiva-435

lently, with different phase shifts k sin θn) after the Gram-Schmidt orthogonalization.436

Hence, the aforementioned arguments cannot be used for treating Case (ii).437

4.2. Proof of Theorem 4.1 for Case (ii): Γ(1) ∩Γ(2) = ∅.. We suppose with-438

out loss of generality that Γ(2) lies entirely above Γ(1) as shown in Figure 4. Denote by

D M

Γ
(1)

Γ
(2)

(a) Both Γ(1) and Γ(2) are graphs

D M

Γ
(1)

Γ
(2)

(b) Γ(1) is not a graph and Γ(2) is a graph

Fig. 4. The unbounded periodic strip D and its one periodic cell M in Case (ii): Γ(1) ∩ Γ(2) = ∅.

439

D the unbounded 2π-periodic strip (waveguide) lying between the two curves. To in-440

vestigate the dependance of solutions on the quasi-periodic shift α = α(θn) = k sin θn,441

we set wn(x) :=e−iα(θn)x1u1(x; θn). It then follows from (1.2) and (4.2) that wn sat-442

isfies the periodic boundary value problem443 
∇α(θn) · ∇α(θn)wn + k2wn = 0 in D,
wn = 0 on Γ(1) ∪ Γ(2),
wn is 2π-periodic with respect to x1 in D,

(4.3)444

for all n ∈ Z+, where ∇α(θn) := (∂1 + iα(θn), ∂2)>. For α = kµ with µ ∈ (−1, 1), we445

consider the abstract Dirichlet boundary value problem in a closed periodic waveguide446

D:447

(BVP)


∇α · ∇αw + k2w = 0 in D,
w = 0 on Γ(1) ∪ Γ(2),
w is 2π-periodic with respect to x1 in D.

448

Definition 4.1. For any fixed k > 0, we say that µ ∈ (−1, 1) is called a µ-449

eigenvalue if the above boundary value problem (BVP) admits a nontrivial solution450

in the space H1
0,0(D) := {w ∈ H1

loc(D) : w is 2π-periodic with respect to x1, w =451

0 on ∂D}. Accordingly, the nontrivial solution is the associated eigenfunction.452
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Since u1(x; θn) 6≡0 for x∈Ω1, we conclude from (4.3) that sin θn is a µ-eigenvalue453

to (BVP) with the eigenfunction wn for all n∈Z+. On the other hand, for any fixed454

µ ∈ (−1, 1), we say that k > 0 is called a k-eigenvalue if (BVP) admits a nontrivial455

solution w ∈ H1
0,0(D). As shown in [21, Theorem 2.3], the k-eigenvalues form a456

discrete set on the positive real-axis with the only accumulating point at infinity457

and the associated eigenspace for each k-eigenvalue is of finite dimensions. It is easy458

to observe that, if w(x) solves (BVP) with µ ∈ (−1, 1) and some kj(µ), then the459

conjugate w is also a nontrivial solution corresponding to −µ. This implies the even460

symmetry of kj(µ) with respect to the line µ = 0, that is, kj(µ) = kj(−µ) for each461

µ ∈ (−1, 1).462

The α-dependent partial differential equation in (BVP) can be regarded as the463

Floquet-Bloch (FB) transform of the Helmholtz equation (∆ + k2)u = 0 in the x1-464

direction with the variable α ∈ R; see [30, 20]. The Bloch theory in one direction465

was well-summarized in [20, Section 3] for deriving physically-meaningful radiation466

conditions in a closed periodic waveguide.467

Let us now recall the dispersion relations for the 2π-periodic system (BVP), where468

the FB transform variable α ∈ R is independent of k. For each α ∈ R, there also469

exists a discrete set of numbers Kj(α) > 0 such that the boundary value problem470

(BVP) admits non-trivial solutions with k2 = Kj(α) for each j = 1, 2, . . . (see Re-471

mark 4.3 below). By [23, Chapter 7], the function α → Kj(α) is continuous and472

piecewise analytic. Further, Kj(α) is not analytic at α = α0 only if k2 = Kj(α0)473

is not a simple eigenvalue. Recall from (1.3) with L = 2π that an α-quasiperiodic474

function must also be (α + j)-quasiperiodic for any j ∈ N. It is easy to conclude475

that Kj(α) : R → R is periodic in α with the periodicity one. Restricting to one476

periodic interval [−1/2, 1/2], we also have the even symmetry Kj(α) = Kj(−α) for477

all α ∈ [−1/2, 1/2]. The α-dependent eigenvalues Kj(α) can be relabelled for j ∈ Z+478

so as to make the eigenvalues and associated eigenfunctions analytic in α ∈ R (see,479

e.g., [23, Theorem 3.9, Chapter 7] or [20, Section 3.3]). For j ∈ Z+ the curves given480

by Kj(α) : (−1/2, 1/2] → R for the relabelled indices are well known as dispersion481

relations, and the graphs of the dispersion relations define the Bloch variety [30]. Note482

that the dispersion curves are no longer periodic. Below we characterize the relation483

between the function µ 7→ k(µ) and the dispersion relation α 7→ K(α).484

Lemma 4.1. (i) The function kj(µ) : (−1, 1) → R+ must fulfill the dispersion485

relation Kj′(µkj(µ)) = k2j (µ) for some j′ ∈ Z+. Conversely, from the dispersion486

relation Kj′(µk) = k2 one can always deduce the function k = kj(µ) for some j ∈ Z+.487

(ii) If kj(µ) ≡ Const for some j ∈ Z+, then Kj′(α) ≡ Const for some j′ ∈ Z+488

and vice versa.489

Proof. (i) The first part follows straightforwardly from the definitions of kj and490

Kj′ . To prove the second part, we set F (k) := K(µk) − k2. Obviously, dF/dk =491

µK ′(µk)− 2k, where F ′(α) := dF/dα. If492

K(µk)− k2 = 0, µK ′(µk)− 2k = 0,(4.4)493

we can conclude that494

αK ′(α)− 2K(α) = 0, α = µk.495

Hence, K(α) = c α2 for some constant c ∈ R. By the 1-periodicity of K we obtain496

c = 0 and thus K ≡ 0. This further leads to k = 0 and by integration by part, any497

solution to (BVP) must vanish identically. Hence, the two relations in (4.4) cannot498
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hold simultaneously. By the implicit function theorem one can ways get the function499

k = kj(µ) for some j ∈ Z+ from the dispersion relation Kj′(α) = k2.500

(ii) The second assertion is a direct consequence of the first assertion.501

Remark 4.2. We consider a special case when D = R× (0, h) is a straight strip502

with some h > 0. By separation of variables, it was proved in [21] that the dispersion503

relation is given by504

Kn,m(α) = (α+ n)2 +
(mπ
h

)2
, n ∈ Z,m ∈ Z+,(4.5)505

when |α| < k (see [21, (3.5)]). By a same argument as in [21], (4.5) holds for all506

α ∈ R. Here, the dispersion relation {Kn,m(α)}n∈Z,m∈Z+ is the rearrangement of507

{Kj(α)}j∈Z+
mentioned above.508

For a proof of Theorem 4.1 in Case (ii), it suffices to prove that the µ-eigenvalues509

must be discrete for any fixed k > 0. To this end, we need the following proposition.510

Proposition 4.1. Suppose that Γ(1) and Γ(2) are both analytic curves or the511

graphs of 3-times continuously differentiable functions such that Γ(1)∩Γ(2) = ∅. Then512

the problem (BVP) has no flat dispersion curves, that is, Kj(α) 6≡ const for any513

j ∈ Z+.514

The result of Proposition 4.1 was essentially contained in the proof of [34, Theorem515

2.3] for general periodic partial differential equations in an open or closed waveguide.516

In a closed waveguide, both the Dirichlet and Neumann boundary conditions were517

considered there. Moreover, Proposition 4.1 applies to general 3-admissible periodic518

domains (see [34, Definition 2.2]) which can be obtained from a straight strip by a519

periodic W 3,∞-mapping/a 3-admissible mapping, including the periodic strips stated520

in Proposition 4.1. As a direct consequence of Proposition 4.1, we have the following521

result.522

Corollary 4.1. Let k > 0 be an arbitrarily fixed wave number. Under the con-523

ditions of Proposition 4.1, there exists at least one parameter µ ∈ (−1, 1) such that524

the periodic boundary value problem (BVP) admits the trivial solution only.525

Proof. Assume to the contrary that, for some k > 0 the periodic boundary value526

problem (BVP) admits nontrivial solutions for each µ ∈ (−1, 1). This implies that527

kj(µ) = k > 0 for all µ ∈ (−1, 1) and for some j ∈ Z+. By Lemma 4.1 (ii), there528

exists one flat dispersion curve Kj′(α) ≡ k2 for some j′ ∈ Z+ for the system (BVP),529

which contradicts Proposition 4.1.530

If α ∈ C and Imα > 0 sufficiently large, the strict coercivity of the sesquilinear531

form corresponding to (BVP) was justified in the proof of [34, Theorem 3.4] contained532

in [34, Section 5]. The proof was based on a suitable change of variables which reduces533

the α-eigenvalue problem over 3-admissible periodic domains to an equivalent problem534

over straight strips. This together with the perturbation theory (see e.g., [23, Chapter535

7, Theorems 7.1.10, 7.1.9] or [33, Chapter 8, Theorem 86]) and Lemma 4.1 also implies536

Corollary 4.1. Now, we state the discreteness of the µ-eigenvalues for any fixed k > 0537

and complete the proof of Theorem 4.1 in Case (ii).538

Lemma 4.2. Under the conditions of Proposition 4.1, the µ-eigenvalues of (BVP)539

form at most a discrete set in (−1, 1) without any accumulating point on the real axis.540

Proof. We carry out the proof following the ideas in the proof of [21, Theorem541

2.3], where the k-eigenvalue problem was investigated when µ is fixed. Let w be542
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a solution to the problem (BVP). Let M := {x ∈ D : 0 < x1 < 2π} be one 2π-543

periodic cell (see Figure 4 for the geometry of M) and let H be the completion of544

{ϕ ∈ C1
p(M) : ϕ = 0 on ∂D ∩M} with respect to H1-norm, where C1

p denotes the545

space of differentiable functions which are 2π-periodic with respect to x1. Note that546

M may be disconnected. Then we can apply Green’s theorem to obtain that for any547

function ψ ∈ H,548 ∫
M

∇w · ∇ψdx+ µ

∫
M

(
−2ik∂1wψ

)
dx+ (µ2 − 1)

∫
M

k2wψdx = 0.(4.6)549

Let 〈·, ·〉H denote the inner product of the Hilbert space H, which is given by550

〈ϕ,ψ〉H :=

∫
M

∇ϕ · ∇ψdx, ϕ, ψ ∈ H.551

By Poincare’s inequality, it is known that 〈·, ·〉H is equivalent to the ordinary inner552

product in H1(M). Then with the aid of Riesz’ representation theorem, there exist553

B,C ∈ L(H) such that554 ∫
M

(
−2ik∂1ϕψ

)
dx = 〈Bϕ,ψ〉H , ϕ, ψ ∈ H,555 ∫

M

k2ϕψdx = 〈Cϕ,ψ〉H , ϕ, ψ ∈ H,556

where L(H) denotes the space of bounded linear operators from H into itself. Thus557

the formula (4.6) is equivalent to the operator equation558

w + µBw + (µ2 − 1)Cw = 0, w ∈ H.(4.7)559

Further, it is easily verified that B and C are compact operators in L(H). On the560

other hand, let A : C → L(H) be an operator valued function given by A(µ) :=561

µB + (µ2 − 1)C. Then it is obvious that A(µ) is analytic in C and compact for each562

µ ∈ C. Thus we can apply Corollary 4.1 and the analytic Fredholm theory (see, e.g.,563

[14, Theorem 8.26]) to obtain that (I + A(µ))−1 exists for all µ ∈ C\S where S is a564

discrete subset of C with the only accumulating point at infinity. This together with565

the equivalence of the problem (BVP) with the equation (4.7) implies the statement566

of this lemma.567

Recall from (4.3) that sin θn are µ-eigenvalues to (BVP) for all n∈Z+. Since θn∈568

(−π/2, π/2) are distinct angles, these µ-eigenvalues must have a finite accumulating569

point on the real-axis, which contradicts to Lemma 4.2. This implies that Case (ii)570

does not hold.571

Finally, the relation Γ(1) = Γ(2) follows by combining Case (i) and Case (ii). This572

finishes the proof of Theorem 4.1.573

We end up this section by two remarks.574

Remark 4.3. By setting u = weiαx1 with α ∈ R, the periodic boundary value575

problem (4.3) can be rewritten as576  ∆u+ k2u = 0 in D,
u = 0 on ∂D,
e−iαx1u is 2π-periodic with respect to x1 in D.

577
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Multiplying u on both sides of the equation and integrating over M , we deduce from578

the quasi-periodicity of u that579

0 =

∫
M

(
|∇u|2 − k2|u|2

)
dx.580

By Poincaré’s inequality (see [31, Lemma 3.13]), it follows from the Dirichlet boundary581

condition of u on ∂D∩M that 0 ≥ (C − k2)‖u‖2L2(M) for a constant C > 0. Hence,582

w = e−iαx1u = 0 provided k > 0 is small enough. Proceeding as in the proof of Lemma583

4.2, we can conclude from the analytic Fredholm theory (see, e.g., [14, Theorem 8.26])584

that, for any α ∈ R, (4.3) admits only the trivial solution for all k2 ∈ C\E(α) where585

E(α) is a discrete subset of C. Therefore, the eigenvalues {Kj(α)}j≥1 are contained586

in E(α) and thus accumulate only at infinity. Moreover, the associated eigenspace for587

each eigenvalue Kj(α) is of finite dimensions due to the compactness of corresponding588

operators.589

Remark 4.4. In [14, Theorem 5.1], it was proved that a sound-soft scatterer can590

be uniquely determined by the far-field patterns from a finite number of incident plane591

waves with a fixed wave number, under the assumption that the scatterer is contained592

in a ball. We note that it is interesting to extend this result to the case of periodic593

curves. This may require a further investigation of properties of the µ-eigenvalues594

with respect to domains and is thus beyond the scope of this paper. For analogous595

results with finitely many wave numbers and a fixed incident angle, we refer to [21,596

Theorem 3.2].597

5. Uniqueness with phaseless data. In contrast to the inverse problem with598

phase information, this section is devoted to uniqueness for recovering the periodic599

curve from phaseless near-field data (i.e., Theorem 1.1 with phaseless data). We600

rephrase Theorem 1.1 with phaseless data as follows.601

Theorem 5.1. Let Γ(1) and Γ(2) be two periodic curves with Dirichlet boundary602

conditions. Assume both of them satisfy Condition (i) or both of them satisfy Condi-603

tion (ii). Suppose that the periods of Γ(1) and Γ(2) are unknown. If the corresponding604

phaseless total fields satisfy605

|u1(x; θn)| = |u2(x; θn)|, x ∈ D, n ∈ Z+,(5.1)606

where {θn}∞n=1 are distinct incident angles in (−π/2, π/2), then Γ(1) = Γ(2). Here,607

D⊂Ω is a bounded domain.608

To prove Theorem 5.1, we will apply Rayleigh expansion (1.4) to show that the609

phaseless near-field data corresponding to one incident plane wave uniquely determine610

the total field with phase information except for a finite set of incident angles.611

Theorem 5.2 (Phase retrieval). Let Γ(1) and Γ(2) be two periodic curves satis-612

fying the conditions in Theorem 5.1. Assume the periods of Γ(1) and Γ(2) are L1 > 0613

and L2 > 0, respectively. Let uj(x; θ) (j = 1, 2) be the total field for the incident plane614

wave defined by (1.1) corresponding to the periodic curve Γ(j) and let θ ∈ (−π/2, π/2)615

satisfies k sin θLj/π /∈ Z (i.e. αLj/π /∈ Z) for j = 1, 2. Suppose the corresponding616

total fields satisfy617

|u1(x; θ)| = |u2(x; θ)|, x ∈ Uh,(5.2)618

for some h>max{x2 : x∈Γ(1)∪Γ(2)}. Then u1(x; θ)=u2(x; θ), x∈Uh.619
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18 X.XU, G. HU, B. ZHANG, AND H. ZHANG

To prove Theorem 5.2, we need several auxiliary lemmata. Let αn and βn be620

defined by (1.5) with some θ ∈ (−π/2, π/2), and let ı be the index for the incident621

plane wave (see (1.6)).622

Lemma 5.1. If αL/π /∈ Z, then αn 6= −αı for all n ∈ Z ∪ {ı}.623

Proof. We assume to the contrary that αn =−αı for n∈Z ∪ {ı}. Obviously, we624

have n 6= ı, since if otherwise there holds αı=0, which contradicts αL/π /∈Z. If n∈Z625

and α+n2π/L=−αı =−α, we can get αL/π =−n ∈ Z, which also contradicts the626

assumption that αL/π /∈Z.627

In the following, we retain the notations introduced in the proof of Theorem 3.1.628

Lemma 5.2. Suppose Γ(1) and Γ(2) are two grating curves with the periods L1 > 0629

and L2 > 0, respectively. Assume that αLj/π /∈ Z for j = 1, 2. Then the following630

statements hold.631

(i) For any fixed m̃ ∈ Z, if632

(α
(1)
m̃ − αı, β

(1)
m̃ − βı) = (α(2)

m − α(2)
n , β(2)

m − β
(2)
n ),(5.3)633

for some m,n∈Z∪{ı}, then (α
(1)
m̃ , β

(1)
m̃ ) = (α

(2)
m , β

(2)
m ) and n = ı.634

(ii) For any fixed m̃ ∈ Z, if635

(α
(1)
m̃ − αı, β

(1)
m̃ − βı) = (α(1)

m − α(1)
n , β(1)

m − β
(1)
n ),636

for some m,n ∈ Z ∪ {ı}, then (α
(1)
m̃ , β

(1)
m̃ ) = (α

(1)
m , β

(1)
m ) and n = ı.637

Proof. We only prove statement (i) since statement (ii) is a consequence of state-638

ment (i) for the special case when Γ(1) =Γ(2).639

We consider the following two cases:640

Case 1: β
(1)
m̃ ∈ R.641

Noting that β
(1)
m̃ − βı > 0, we conclude from (5.3) that β

(2)
m , β

(2)
n ∈ R. Hence,642

the points (αı, βı), (α
(1)
m̃ , β

(1)
m̃ ), (α

(2)
m , β

(2)
m ) and (α

(2)
n , β

(2)
n ) are all located on the circle643

x21 +x22 = k2 in the x1x2-plane. From this and the relation (5.3), it follows easily that644

there holds either645

(α(2)
m , β(2)

m ) = (α
(1)
m̃ , β

(1)
m̃ ) and (α(2)

n , β(2)
n ) = (αı, βı)(5.4)646

or647

(α(2)
m , β(2)

m ) = −(αı, βı) and (α(2)
n , β(2)

n ) = −(α
(1)
m̃ , β

(1)
m̃ ).(5.5)648

By Lemma 5.1 and the assumption αL2/π /∈Z, the relations in (5.5) cannot be true.649

Hence, the relations in (5.4) implies the desired result of this lemma.650

Case 2: β
(1)
m̃ /∈ R.651

Observing that Re(β
(1)
m̃ −βı)>0 and Im(β

(1)
m̃ −βı)>0, we deduce from (5.3) that652

Re(β
(2)
m −β(2)

n )>0 and Im(β
(2)
m −β(2)

n )>0.653

If β
(2)
m /∈ R, then β

(2)
m /i ∈ R. This, together with Re(β

(2)
m −β(2)

n ) > 0, implies654

Re(−β(2)
n )> 0. This is possible only if n = ı, since Reβ

(2)
n ≥ 0 for all n ∈ Z. Again655

using (5.3), we find (α
(1)
m̃ , β

(1)
m̃ ) = (α

(2)
m , β

(2)
m ), which yields the desired result of this656

lemma.657
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Now suppose that β
(2)
m ∈ R, we shall derive a contradiction as follows. Taking658

the real and imaginary parts of (5.3) gives β
(2)
m =−βı and β

(2)
n = β

(1)
m̃ . Noting that659

(α
(2)
m )2+(β

(2)
m )2 =k2 =(αı)

2+(βı)
2, we deduce from β

(2)
m =−βı that |α(2)

m |= |αı|. Then660

by αL2/π /∈Z and Lemma 5.1 we obtain α
(2)
m =αı. Inserting this equality into (5.3)661

gives662

α
(1)
m̃ − αı = α(2)

m − α(2)
n = αı − α(2)

n .(5.6)663

Similarly, noting that (α
(2)
n )2+(β

(2)
n )2 =k2 =(α

(1)
m̃ )2+(β

(1)
m̃ )2, we deduce from β

(2)
n =β

(1)
m̃664

that |α(1)
m̃ |= |α

(2)
n |. If α

(1)
m̃ =α

(2)
n , then it follows from (5.6) that α

(1)
m̃ =αı =α

(2)
n and665

thus β
(2)
n ∈ {±βı} ⊂ R. This contradicts β

(2)
n = β

(1)
m̃ /∈ R. If α

(1)
m̃ =−α(2)

n , then from666

(5.6) we deduce αı = 0, which contradicts the assumption αL2/ /∈ Z. The proof for667

Case 2 is complete.668

With the aid of Lemma 5.2, now we can prove Theorem 5.2.669

Proof of Theorem 5.2. Recalling (1.6) and (3.4), we deduce from (5.2) that670

I
(1)
1 (x)I

(1)
2 (x) + I

(1)
2 (x)I

(1)
1 (x) + |I(1)1 (x)|2 + |I(1)2 (x)|2671

−I(2)1 (x)I
(2)
2 (x)− I(2)2 (x)I

(2)
1 (x)− |I(2)1 (x)|2 − |I(2)2 (x)|2 = 0, x ∈ Uh,(5.7)672

where673

I
(j)
1 (x) =

∑
m∈T (j)

1

A(j)
m eiα

(j)
m x1+iβ

(j)
m x2 , I

(j)
2 (x) =

∑
n∈T (j)

2

A(j)
n eiα

(j)
n x1+iβ

(j)
n x2674

with T (j)
1 :={n∈Z : |α(j)

n |>k} and T (j)
2 :={n∈Z∪{ı} : |α(j)

n |≤k}, j=1, 2.675

The proof can be divided into two steps as follows.676

Step 1. We will prove that for any m̃ ∈ T (1)
2 \{ı} there holds677 {

A
(1)
m̃ = A

(2)
m if there exists m∈Z such that α

(2)
m = α

(1)
m̃ ,

A
(1)
m̃ = 0 if α

(2)
m 6= α

(1)
m̃ for all m ∈ Z,

(5.8)678

and for any m̃∈T (2)
2 \{ı} there holds679 {

A
(2)
m̃ = A

(1)
m if there exists m∈Z such that α

(1)
m =α

(2)
m̃ ,

A
(2)
m̃ = 0 if α

(1)
m 6= α

(2)
m̃ for all m ∈ Z.

(5.9)680

First, we deduce (5.8) for m̃ ∈ T (1)
2 \{ı}. Multiplying (5.7) by e−i(β

(1)
m̃ −βı)x2 we681

obtain for x ∈ Uh that682

0 =
{
I
(1)
1 (x)I

(1)
2 (x) + I

(1)
2 (x)I

(1)
1 (x) + |I(1)1 (x)|2

}
e−i(β

(1)
m̃ −βı)x2(5.10)683

+
∑

(m,n)∈U(1)
m̃

A(1)
m A

(1)
n ei(α

(1)
m −α

(1)
n )x1 −

∑
(m,n)∈U(2)

m̃

A(2)
m A

(2)
n ei(α

(2)
m −α

(2)
n )x1684

+
∑

(m,n)∈(T (1)
2 ×T (1)

2 )\U(1)
m̃

A(1)
m A

(1)
n ei(α

(1)
m −α

(1)
n )x1+i[(β

(1)
m −β

(1)
n )−(β(1)

m̃ −βı)]x2685

−
{
I
(2)
1 (x)I

(2)
2 (x)+I

(2)
2 (x)I

(2)
1 (x) + |I(2)1 (x)|2

}
e−i(β

(1)
m̃ −βı)x2686

−
∑

(m,n)∈(T (2)
2 ×T (2)

2 )\U(2)
m̃

A(2)
m A

(2)
n ei(α

(2)
m −α

(2)
n )x1+i[(β

(2)
m −β

(2)
n )−(β(1)

m̃ −βı)]x2687
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where U (j)
m̃ := {(m,n) ∈ T (j)

2 ×T (j)
2 : β

(j)
m −β(j)

n = β
(1)
m̃ −βı}, j = 1, 2. Since T (j)

2 is a688

finite set, we know that U (j)
m̃ is at most a finite set, j = 1, 2. Using |e−i(β

(1)
m̃ −βı)x2 | = 1,689

it follows from Lemma 2.1 (i) that690 ∣∣∣{I(j)1 (x)I
(j)
2 (x) + I

(j)
2 (x)I

(j)
1 (x) + |I(j)1 (x)|2

}
e−i(β

(1)
m̃ −βı)x2

∣∣∣ ≤ C|I(j)1 |, x ∈ Uh,691

where C > 0 is a constant. Thus, by similar arguments as in the proofs of (2.7) and692

(2.8), we have |I(j)1 (x)|→0 as x2→+∞ and thus693

lim
H→+∞

1

H

∫ 2H

H

{
I
(j)
1 (x)I

(j)
2 (x) + I

(j)
2 (x)I

(j)
1 (x) + |I(j)1 (x)|2

}
e−i(β

(1)
m̃ −βı)x2dx2 = 0694

uniformly for all x1∈R and j=1, 2. Moreover, it follows easily from Lemma 2.1 (iv)695

that696

lim
H→+∞

1

H

∫ 2H

H

∑
(m,n)∈(T (j)

2 ×T (j)
2 )\U(j)

m̃

A(j)
m A

(j)
n ei(α

(j)
m −α

(j)
n )x1+i[(β

(j)
m −β

(j)
n )−(β(1)

m̃ −βı)]x2dx2 = 0697

uniformly for all x1∈R and j=1, 2. Combining (5.10)–(5.11), we arrive at698 ∑
(m,n)∈U(1)

m̃

A(1)
m A

(1)
n ei(α

(1)
m −α

(1)
n )x1 −

∑
(m,n)∈U(2)

m̃

A(2)
m A

(2)
n ei(α

(2)
m −α

(2)
n )x1 = 0, x1 ∈ R.699

Similarly, multiplying (5.11) by e−i(α
(1)
m̃ −αı)x1 , we can employ Lemma 2.1 (iv) to700

obtain701 ∑
(m,n)∈V(1)

m̃

A(1)
m A

(1)
n −

∑
(m,n)∈V(2)

m̃

A(2)
m A

(2)
n = 0,(5.11)702

where V(j)
m̃ := {(m,n) ∈ U (j)

m̃ : α
(j)
m − α(j)

n = α
(1)
m̃ −αı}, j = 1, 2. By Lemma 5.2 we703

have V(1)
m̃ = {(m̃, ı)} and V(2)

m̃ = {(m, ı) : m ∈ Z s.t. α
(2)
m = α

(1)
m̃ }. Thus, noting that704

V(2)
m̃ is perhaps an empty set and A

(1)
ı = 1 =A

(2)
ı , we can apply (5.11) to obtain that705

(5.8) holds for m̃ ∈ T (1)
2 \{ı}.706

Secondly, by interchanging the role of |u1(x; θ)| and |u2(x; θ)|, we can employ a707

similar argument as above to obtain (5.9) holds for any m̃ ∈ T (2)
2 \{ı}.708

Step 2. We will prove that (5.8) holds for any m̃∈T (1)
1 and (5.9) holds for any709

m̃∈T (2)
1 .710

By A
(1)
ı =A

(2)
ı =1, it follows from (5.7) and the result in Step 1 that711

I
(1)
1 (x)I

(1)
2 (x) + I

(1)
2 (x)I

(1)
1 (x) + |I(1)1 (x)|2712

−I(2)1 (x)I
(2)
2 (x)− I(2)2 (x)I

(2)
1 (x)− |I(2)1 (x)|2 = 0, x ∈ Uh.(5.12)713

Let (p1, q1) be an element in B := {(1,m) : m ∈ T (1)
1 } ∪ {(2,m) : m ∈ T (2)

1 } such714

that |β(p1)
q1 | ≤ |β

(j)
m | for all (j,m)∈B. Without loss of generality, we assume p1 = 1.715

Multiplying (5.12) by e−i(β
(1)
q1
−βı)x2 we obtain for x ∈ Uh that716 [

I
(1)
1 (x)e−iβ

(1)
q1
x2

] [(
I
(1)
2 (x) + I

(1)
1 (x)

)
eiβıx2

]
+
[
I
(1)
2 (x)eiβıx2

] [
I
(1)
1 (x)e−iβ

(1)
q1
x2

]
(5.13)717

−
[
I
(2)
1 (x)e−iβ

(1)
q1
x2

] [(
I
(2)
2 (x) + I

(2)
1 (x)

)
eiβıx2

]
+
[
I
(2)
2 (x)eiβıx2

] [
I
(2)
1 (x)e−iβ

(1)
q1
x2

]
718

= 0.719
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Note that β
(j)
m =−β(j)

m and
∣∣∣β(1)
q1

∣∣∣< ∣∣∣β(j)
m −β(j)

n

∣∣∣ for all m,n∈T (j)
1 with j=1, 2. Thus,720

similarly to the proof of Theorem 3.1, we can apply Lemma 2.1 to obtain that for all721

j=1, 2 and x1∈R,722

lim
x2→+∞

I
(j)
1 (x)e−iβ

(1)
q1
x2 =

∑
m∈T (j)

1 s.t. β
(j)
m =β

(1)
q1

A(j)
m eiα

(j)
m x1 ,723

lim
x2→+∞

I
(j)
1 (x)e−iβ

(1)
q1
x2 =

∑
n∈T (j)

1 s.t. β
(j)
n =β

(1)
q1

A
(j)
n e−iα

(j)
n x1 ,724

lim
x2→+∞

∣∣∣I(j)1 (x)
∣∣∣2 e−i(β(1)

q1
−βı)x2 = 0725

726

and727

lim
H→+∞

1

H

∫ 2H

H

I
(j)
2 (x)eiβıx2dx2 =

∑
m∈T (j)

2 s.t. β
(j)
m =−βı

A(j)
m eiα

(j)
m x1 ,728

lim
H→+∞

1

H

∫ 2H

H

I
(j)
2 (x)eiβıx2dx2 =

∑
n∈T (j)

2 s.t. β
(j)
n =βı

A
(j)
n e−iα

(j)
n x1 .729

730

These together with (5.13) imply for x1 ∈ R that731 ∑
(m,n)∈U(1)

(1,q1)

A(1)
m A

(1)
n ei(α

(1)
m −α

(1)
n )x1 =

∑
(m,n)∈U(2)

(1,q1)

A(2)
m A

(2)
n ei(α

(2)
m −α

(2)
n )x1 ,(5.14)732

where U (j)
q1 := {(m,n) ∈ T (j)

1 × T (j)
2 : β

(j)
m = β

(1)
q1 , β

(j)
n = βı} ∪ {(m,n) ∈ T (j)

2 × T (j)
1 :733

β
(j)
m = −βı, β(j)

n = β
(1)
q1 } for j = 1, 2. It is clear that U (j)

q1 = {(m,n) ∈ (Z ∪ {ı})2 :734

β
(j)
m − β(j)

n = β
(1)
q1 − βı} for j = 1, 2. Note that U (1)

q1 and U (2)
q1 are at most finite sets.735

Then multiplying (5.14) by e−i(α
(1)
q1
−αı)x1 , we can apply Lemma 2.1 (iv) to obtain736 ∑

(m,n)∈V(1)
q1

A(1)
m A

(1)
n =

∑
(m,n)∈V(2)

q1

A(2)
m A

(2)
n ,(5.15)737

738

where V(j)
q1 := {(m,n) ∈ U (j)

q1 : α
(j)
m −α(j)

n = α
(1)
q1 −αı} for j = 1, 2. By Lemma 5.2, we739

have V(1)
q1 = {(q1, ı)} and V(2)

q1 = {(m, ı) : m ∈ Z s.t. α
(2)
m = α

(1)
q1 }. Now we can apply740

(5.15) and A
(1)
ı = 1 = A

(2)
ı to obtain that (5.8) holds for m̃=q1.741

To proceed further, we distinguish between the following two cases.742

Case 2.1: there exists q2 ∈ Z such that α
(2)
q2 = α

(1)
q1 . It is clear that A

(1)
q1 =A

(2)
q2743

and q2∈T (2)
1 , thus we have (5.9) holds for m̃=q2. These, together with A

(1)
ı =A

(2)
ı =1744

and the result in step 1, imply that Î
(1)
2 (x) = Î

(2)
2 (x) in x ∈ Uh, where745

Î
(j)
2 (x) =

∑
n∈T (j)

2 ∪{qj}

A(j)
n eiα

(j)
n x1+iβ

(j)
n x2 , j = 1, 2.746

Thus, it follows from (5.2) that747

Î
(1)
1 (x)Î

(1)
2 (x) + Î

(1)
2 (x)Î

(1)
1 (x) + |Î(1)1 (x)|2748

−Î(2)1 (x)Î
(2)
2 (x)− Î(2)2 (x)Î

(2)
1 (x)− |Î(2)1 (x)|2 = 0, x ∈ Uh,749
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where750

Î
(j)
1 (x) =

∑
m∈T (j)

1 \{qj}

A(j)
m eiα

(j)
m x1+iβ

(j)
m x2 , j = 1, 2.751

Let (p3, q3) be an element in C :=B\{(1, q1), (2, q2)} s.t. |β(p3)
q3 |≤|β

(j)
m | for all (j,m)∈C.752

Then using similar arguments as above, we can obtain that (5.8) holds for m̃= q3 if753

p3 =1 and (5.9) holds for m̃=q3 if p3 =2.754

Case 2.2: α
(2)
m 6= α

(1)
q1 for all m ∈ Z. In this case, A

(1)
q1 = 0. Thus, similarly to755

Case 2.1, it follows from (5.2) and the result in Step 1 that756

Î
(1)
1 (x)I

(1)
2 (x) + I

(1)
2 (x)Î

(1)
1 (x) + |Î(1)1 (x)|2757

−I(2)1 (x)I
(2)
2 (x)− I(2)2 (x)I

(2)
1 (x)− |I(2)1 (x)|2 = 0, x ∈ Uh,758

where Î
(1)
1 (x) is given as in case 2.1. Let (p4, q4) be an element in E :=B\{(1, q1)} s.t.759

|β(p4)
q4 | ≤ |β

(j)
m | for all (j,m) ∈ E . Then using similar arguments as above again, we760

can obtain that (5.8) holds for m̃ = q4 if p4 = 1 and (5.9) holds for m̃ = q4 if p4 = 2.761

For both two cases, we can repeat similar arguments again to obtain that (5.8)762

holds for any m̃∈T (1)
1 and (5.9) holds for any m̃∈T (2)

1 .763

Finally, noting that A
(1)
ı =A

(2)
ı = 1 and combining the results in step 1 and step764

2, we have u1(x; θ)=u2(x; θ) for x∈Uh.765

Remark 5.1. The proof for Theorem 5.2 depends only on the Rayleigh expansion766

(1.4) of the scattered fields. Therefore, the phase retrieval result in Theorem 5.2767

remains valid under other boundary conditions.768

Now we are ready to prove Theorem 5.1.769

Proof of Theorem 5.1. For j = 1, 2, denote the period of the unknown grating770

curve Γ(j) by Lj > 0 and define the set A = {θn : n ∈Z+ s.t. k sin θnLj/π /∈ Z for j =771

1, 2}, where {θn}∞n=1 are the incident angles from the assumption of Theorem 1.1. By772

the analyticity of x 7→ |uj(x; θ)|2 in Ω and Theorem 5.2, we have u1(x; θn) = u2(x; θn),773

x∈Uh, for any θn ∈ A. Obviously, {θ∈ (−π/2, π/2) : k sin θLj/π ∈ Z for j = 1, 2} is774

a finite set and thus A is still an infinite set. Therefore, it follows from Theorem 4.1775

that Γ(1) = Γ(2).776

Remark 5.2. Assume that the conditions presented in Theorem 5.1 hold true.777

Assume further that the grating periods L1 and L2 are known in advance and L1 =L2,778

then the conclusion of Theorem 5.1 can be proved in a very simple way. In fact, let D779

be the bounded domain defined in Subsection 4.1 if Γ(1) ∩Γ(2) 6= ∅ or the unbounded780

periodic strip defined in Subsection 4.2 if Γ(1)∩Γ(2) = ∅. Then, due to the analyticity781

of the total fields and the Dirichlet boundary conditions on Γ(1) and Γ(2), we can782

easily deduce from (5.1) that either {u1(x; θn)}n∈Z+ or {u2(x; θn)}n∈Z+ satisfy the783

Helmholtz equation in D with wave number k and vanish on ∂D. This, together with784

the same arguments as in Section 4, gives that Γ(1) = Γ(2).785

6. Conclusion. In this paper, we have established uniqueness results for in-786

verse diffraction grating problems for identifying the period, location and shape of a787

periodic curve with Dirichlet boundary condition. Under the a priori smoothness as-788

sumption, we proved that the unknown grating curve can be uniquely determined by789

the near-field data corresponding to infinitely many incident plane waves with differ-790

ent angles at a fixed wave number. If the phase information are not available and the791
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measurement data are taken in a bounded domain above the grating curve, we proved792

that the phase information can be uniquely determined by phaseless data provided793

the incident angle θ and the grating period L satisfy the relation k sin θL/π /∈ Z. Our794

phase retrieval result (see Theorem 5.2) carries over to other boundary or transmis-795

sion conditions. However, the proof of Theorem 4.1 for the case Γ(1) ∩ Γ(2) 6= ∅ does796

not apply to the Neumann boundary condition, due to the same difficulty for inverse797

scattering problems by bounded obstacles (see [14, Page 143] for details). In addition,798

the case that Γ(1)∩Γ(2) = ∅ brings extra difficulties for treating the discreteness of the799

so-called µ-eigenvalues in a closed waveguide. The uniqueness with distinct incident800

angles for recovering penetrable gratings also remains open. Thus it requires new801

mathematical theory to establish analogues of Theorem 4.1 under other boundary802

conditions.803
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