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Topology, parity-time (PT) symmetry, and nonlinearity are at the origin of many fundamental phenomena
in complex systems across the natural sciences, but their mutual interplay remains unexplored.
We established a nonlinear non-Hermitian topological platform for active tuning of PT symmetry
and topological states. We found that the loss in a topological defect potential in a non-Hermitian
photonic lattice can be tuned solely by nonlinearity, enabling the transition between PT-symmetric and
non–PT-symmetric regimes and the maneuvering of topological zero modes. The interaction between
two apparently antagonistic effects is revealed: the sensitivity close to exceptional points and the
robustness of non-Hermitian topological states. Our scheme using single-channel control of global PT
symmetry and topology via local nonlinearity may provide opportunities for unconventional light
manipulation and device applications.

A
lthough there are numerous distinct
phenomenamediated by topology, sym-
metry, and nonlinearity, a complex sys-
tem simultaneously exhibiting all these
features is hard to find. In 2008, two

important concepts—the quantumHall edge
state and parity-time (PT) symmetry—were
introduced to photonics (1, 2), leading to the
birth of topological photonics (3) and non-
Hermitian optics (4), respectively. Topologi-
cal photonics, the use of topological ideas to
control the behavior of light, has been realized
in a variety of photonic settings (3, 5–7). PT
symmetry in optics, by contrast, is implemented
using a complex refractive index and has also
provided a plethora of alternative designs for
controlling light, aiming toward new types
of photonic devices based on non-Hermitian
physics (4, 8–10). Combining the two areas
is conceptually challenging, but experiments
have shown that topological edge states can
indeed be observed in non-Hermitian sys-
tems (11, 12). Moreover, non-Hermitian char-
acteristics give rise to intriguing topological
phenomena such as topological light steering
and funneling (13, 14). One striking develop-
ment relevant to technological applications is
the demonstration of topological insulator
lasers (15, 16), in which topology and non-
Hermiticity naturally coalesce and conspire:
Lasing is based on topologically protected

modes, and a laser system is inherently non-
Hermitian because gain and loss are present.
However, so far, non-Hermitian topological
photonics have mainly been restricted to the
linear-optics regime, and only recently has it
become clear thatmany intriguing phenomena
arise when nonlinearity is taken into account
in nonlinear non-Hermitian (NNH) topological
systems (17–21).
We demonstrate a scheme for single-channel

nonlinear control of a complex system with
underlying global dynamics driven by the
interplay among topology, non-Hermiticity,
and nonlinearity. Our experimental platform is
based on photonic Su-Schrieffer-Heeger (SSH)
(22, 23) lattices consisting of laser-written con-
tinuous (“gain”) and sectioned (“loss”) wave-
guides with an interface defect (Fig. 1A), but it
applies equally to a broad spectrum of NNH
systems that have intensity-dependent gain
or loss. The SSH lattices represent a prototyp-
ical one-dimensional topological system with
chiral symmetry (3), as is widely used for the
study of topologically protected quantum states
(24), nonlinearity-driven topological effects
(21, 25–27), and topological lasing (28), among
other things.
It is known that an active linear non-

Hermitian PT-symmetric system can be di-
rectly mapped onto a system with only loss
simply by introducing a global decay factor
(equivalent to an offset for the imaginary part
described by the gain-loss profile) (4). In such
“passive” PT-symmetric systems, non-Hermitian
PT phenomena have been demonstratedwithout
using actual material gain (8, 12). Unlike pre-
vious implementations of loss, we use a weak
continuous-wave (cw) laser to write nonlinear
non-Hermitian SSH lattices (NNH-SSHs) in a
bulk nonlinear crystal (27), as illustrated in
Fig. 1A. The continuous waveguides (red) rep-
resent the “gain” ones, whereas the sectioned
waveguides can be “lossy” (blue) or “neutral”

(green) depending on the gap size introduced
between sections. An NNH-SSH that is real-
ized in the passive PT-symmetric regime may,
under the action of self-focusing nonlinearity
experienced by a probe beam at the interface,
change into a non-PT “gain” system, as self-
focusing reduces diffraction loss and leakage
in the center waveguide. Likewise, under the
action of self-defocusing nonlinearity, it may
turn into a non-PT “loss” system, because in
this case the nonlinearity enhances the leak-
age and entails more loss in the waveguide. In
this way, nonlinear excitation of a single chan-
nel (i.e., the interface waveguide) can locally
affect the properties of thewhole lattice, leading
to transition from PT-symmetric to non–PT-
symmetric regimes. Because all three NNH-
SSHs (“gain,” “loss,” and “neutral”) can be
initially implemented in experiment, our ex-
plored platform enables a convenient approach
to achieving nonlinearity-induced switching be-
tween different non-Hermitian lattices. Interest-
ingly, the Hamiltonians of these NNH-SSHs
are inherently related (29), and the underlying
connection directly affects corresponding com-
plex eigenvalue spectra across the exceptional
point (EP)—a special kind of degeneracy with
coalesced eigenvalues and eigenstates unique
to non-Hermitian Hamiltonians (30).
Our experimental method to establish the

NNH-SSHs is illustrated in Fig. 1B, where the
writing beam is either a uniform stripe beam
(for writing the “gain” waveguides) or a pe-
riodically modulated beam (for writing the
sectioned “loss” and “neutral”waveguides). The
waveguides are written sideways one by one in
a biased photorefractive (SBN:61) crystal (27).
In the entire writing process, the bias field is
E0 = 160 kV/m, the writing beam has a power
of ~200 mW, and the probing beam has a
power of ~2.5 mW. [See (29) for other experi-
mental details.] A passive PT-symmetric SSH
system requires precise control of loss. To
achieve this, we keep the same total number of
waveguide sections (with section length l) in
each channel (17 sections in the 20-mm-long
crystal), but we make the spacing between ad-
jacent sections (i.e., the gap lengthm) smaller
in the “neutral” waveguide than in the “loss”
waveguides. A superimposed writing beam
pattern is shown in Fig. 1C, consisting of al-
ternating continuous and sectioned stripes
relative to the center defect channel. A typical
NNH-SSHwritten this way is shown in Fig. 1D,
forwhich strong andweak coupling correspond
to smaller and larger channel separation, respec-
tively. Figure 1E plots the normalized inten-
sity transmission ratio (defined as y = Iout/I0,
where Iout and I0 are the output intensity of
the same probe beam from a sectioned and a
continuous waveguide, respectively) as a func-
tion of the gap ratio (defined as x =m/l, which
controls thewaveguide loss). As the gap length
increases, the loss in the waveguide increases,
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and thus the transmission decreases (Fig. 1E,
insets). The loss coefficient g is determined from
the intensity transmission Iout = I0 exp(–2gL),
where L = 20 mm corresponds to the crystal
length (29). This plot serves as the basis for
determining the parameters for the writing
beams in the experiment. For example, the
“gain” waveguide (g = 0) corresponds to the
red dot at (x, y) = (0, 1), because it is con-
tinuous (m = 0) and lossless. The “neutral”
waveguide, marked by the green dot at (x, y) =
(0.40, 0.70), corresponds to a gap ratio of 0.40
and a transmission ratio of 0.70, which yields
g = 8.93m–1. From this, we can in turn find the
parameters for the “loss” waveguides, marked
by the blue dot at (x, y) = (0.56, 0.49), and ob-
tain the desired loss 2g. The NNH-SSH estab-
lishedwith such judiciously introduced losses
fulfills the requirement for PT symmetry.
Before presenting the experimental results,

we examine theoretically the topological states
in a corresponding active PT-symmetric SSH
lattice with an interface defect, as illustrated in
Fig. 2A. Under the tight-binding approxima-
tion, the linear coupled mode equations are

�i
@

@z
ϕn ¼ b�ϕn þ c1ϕn�1 þ c2ϕnþ1;

n ¼ 2; 4; ::: or�1; �3; ::: ð1aÞ

�i
@

@z
ϕn ¼ bϕn þ c2ϕn�1 þ c1ϕnþ1;

n ¼ 1; 3; ::: or�2; �4; ::: ð1bÞ

�i
@

@z
ϕ0 ¼ b0ϕ0 þ c2ϕ1 þ c2ϕ�1; n ¼ 0 ð1cÞ

(11, 12), whereϕndenotes themodal amplitude
in the nth waveguide, b = a + ig (a and g are
the real and imaginary parts of the waveguide
potential), c1 and c2 are the strong and weak
coupling coefficients, and b0 denotes the po-
tential of the center defect waveguide at n = 0.
If g = 0 for all waveguides, the non-Hermitian
SSH collapses to the Hermitian model that
supports topologically protected mid-gap
(zero-mode) states (25). Even when the loss or
gain is introduced (g ≠ 0), the non-Hermitian
SSH lattice described above still supports a
PT-symmetric topological state, provided that
there is no gain or loss at the dimerization de-
fect (12)—that is, b0 = a, g0 = 0. In our model,
we assume that the lattice is terminated at the
weak-coupling bond (c2) such that no edge
states are present on either side (23).The re-
sults are summarized in Fig. 2B, showing how
a topological interface state is affected by non-
Hermiticity and nonlinearity. The above equa-

tions can be expressed in a matrix form, and
the relations between the HamiltoniansHG,
HL, andHN (corresponding to the three lat-
tices) are given in Fig. 1A (29).
Our lattices consist of 33 waveguides with

c1 = 4, c2 = 1. The linear propagation constant
for all waveguides is set as a = 0, g = 1, except
for n = 0. In the linear regime, a is the same
for all waveguides, and a typical PT-symmetric
mid-gap interface state is represented by point
A in Fig. 2B. As seen from the top left panel
of Fig. 2B, all eigenmodes have only real
eigenvalues, because the lattice is in the PT
symmetry–unbroken regime (12). In the non-
linear regime, the propagation constant is
intensity-dependent: b(I) = a(I) + ig(I), where
I is the intensity of the excitation beam. As
such, the eigenvalue of the topological state
can be moved away from its initial mid-gap
position by the action of the nonlinearity
(25, 27). Because a probe beam excites only
the center defect channel while it experiences
an overall loss in a passive NNH-SSH, it is
reasonable to model the system with non-
linearity present only in the defect channel:
b0(I) = a0(I) + ig0(I). If the nonlinearity only
changes the real part of the potential while
keeping g0 = 0, the eigenvalue of the zero
mode is shifted away from the center of the
gap, moving upward (or downward) as a con-
sequence of the self-focusing (or -defocusing)
effect to point B (or C) in Fig. 2B. The eigen-
mode profiles remain as symmetric as that
of the mid-gap mode because the lattice
overall still preserves the PT symmetry. In
contrast, if the nonlinearity also changes
the imaginary part of the potential g0, PT
symmetry is destroyed. This scenario corre-
sponds to results marked by points D and E,
where the imaginary part of the eigenvalues
is shifted away from the zero-mode posi-
tion. In this non-PT regime, the eigenmode
profiles become asymmetric, as more en-
ergy of the modes flows to the “loss” (D) or
“gain” (E) waveguides depending on the sign
of the nonlinearity. Thus, the observation of
nonlinearity-induced asymmetric mode pro-
files in the NNH-SSHs serves as a signature
for the change of the imaginary part of the
defect potential, indicating whether PT sym-
metry is present or not.
With the NNH-SSHs implemented by cw-

laser writing (Fig. 1), we experimentally dem-
onstrated this nonlinear tuning of the zero
mode by launching a probe beam into the de-
fect channel (Fig. 3, bottom row). Starting from
linear propagation (i.e., without the bias field),
a symmetric topological interface state (corre-
sponding to point A in Fig. 2B) is observed in
the “neutral” lattice (Fig. 3B, second row),
which indicates that in this case theNNH-SSH
respects the PT symmetry (12). However, under
the action of a self-defocusing nonlinearity, the
probe beam induces anti-guiding so that more
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Fig. 1. Experimental realization of NNH-SSHs for nonlinear tuning of PT symmetry and topological
states. (A) Illustration of a passive PT-symmetric “neutral” SSH lattice (middle) switched to a non-PT “gain”
lattice (top) or a non-PT “loss” lattice (bottom) by local nonlinearity at the topological defect. The switching
direction can be readily reversed. Red, green, and blue cylinders and dots represent “gain,” “neutral,” and
“loss” lattice sites (g is the loss coefficient); colored bars denote different stages of the NNH-SSHs. The
Hamiltonian relations are illustrated for corresponding active non-Hermitian systems (29). (B) Schematic
for cw-laser writing and probing the lattices. A dashed white arrow marks the writing sequence. (C) Side view
of the writing beam pattern, where a = 22.8 mm and b = 15.2 mm represent waveguide spacing for the dimer lattice.
(D) The written NNH-SSH examined by a broad plane-wave beam. (E) Plot of intensity transmission ratio as a
function of the gap ratio in a single waveguide obtained from simulation. Insets show side views of a waveguide
portion taken from the experiment in (C) atm/l = 0 (red), 0.40 (green), and 0.56 (blue), where in each inset a single
writing beam is shown at the top and the guided output probe beam at the bottom.
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of its energy escapes from the defect channel,
equivalently introducing leakage (“loss”) to the
center waveguide. The NNH-SSH turns into a
non–PT-symmetric structure, and the excited

mode becomes asymmetric (Fig. 3B, first row)
as more light goes to the “loss” waveguide,
corresponding to point D in Fig. 2B. In con-
trast, when a self-focusing nonlinearity is used,

it induces self-guiding, such that the diffraction
is suppressed, equivalently providing “gain” to
the center waveguide. Again, the beam be-
comes asymmetric but nowmore light goes to
the “gain”waveguide, corresponding to point
E in Fig. 2B. Because evidently the change in
the real part of the index potential alone does
not result in asymmetric modes, our results
represent a nonlinearity-induced transition
fromaPT-symmetric lattice to a non-Hermitian
lattice without PT symmetry.
As illustrated in Fig. 1A, the transition can

also be reversed by nonlinearity. Such results
are shown in Fig. 3A with an initial “gain”
NNH-SSH, and in Fig. 3C with an initial “loss”
NNH-SSH. In the non-PT “gain” lattice, a probe
beam evolves linearly into an asymmetric dis-
tribution. Under self-defocusing nonlinearity, a
symmetric profile with the characteristic fea-
ture of a topological interface state is restored
(Fig. 3A, first row), as nonlinearity entails the
retrieval of lattice PT symmetry. However,
in this case, it cannot be restored with self-
focusing nonlinearity, which increases the
gain-loss imbalance (Fig. 3A, third row). The
scenario corresponding to an inversed transi-
tion starting from a non-PT “loss” to a PT-
symmetric lattice is shown in Fig. 3C. These
results, corroborated by numerical simulations
(29), clearly demonstrate nonlinearity-mediated
control of PT symmetry and topological states
in the NNH-SSHs.
So far, we have shown that local nonlinearity

can be used to control the loss in the defect
waveguide, thereby affecting the global lat-
tice properties. We now discuss tuning of the
NNH-SSHs close to the EPs, where intriguing
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Fig. 2. Calculated non-Hermitian topological interface states tuned by nonlinearity. (A) Illustration of
an active PT-symmetric SSH with an interface topological defect located at site n = 0. Colored dots represent
different lattice sites. (B) Left: Calculated eigenvalues l for a finite lattice with 33 sites. Red circles and
blue dots denote real and imaginary parts of the eigenvalues, respectively; shaded regions illustrate the band
structure of an infinite lattice. Right: The corresponding eigenmode profiles, where the eigenvalues for points
A to E are obtained with propagation constants b0 = 0, 2, –2, 2i, and –2i while keeping b for all other
waveguides unchanged. Color codes for different waveguides are the same as in Fig. 1.

Fig. 3. Demonstration of single-channel nonlinear control of PT symmetry and topological states. (A to C) Top three rows: Experimental results showing output
transverse patterns of a probe beam launched into the defect channel for three distinct cases. The NNH-SSH is fabricated with a “gain” (A), “neutral” (B), or “loss” (C)
interface waveguide. Bottom row: Schematic of the excitation beam and the corresponding linear mode profile. In the linear regime, only the “neutral” lattice (B) initially
has PT symmetry. In (A) and (C), the lattice is non–PT-symmetric, but PT symmetry and topological states are restored under the action of nonlinearity.
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properties are expected for non-Hermitian sys-
tems (30–32). To this end, in our model we
considered a scan through the EPs by chang-
ing the global gain or loss amplitude; our find-
ings are summarized in Fig. 4, A and B. For the
three lattices defined earlier, we kept the po-
tential of the central defect waveguide fixed
(as set by the nonlinearity in our experiment)
and varied the gain/loss ratio for all other
waveguides. The complex eigenvalue spectra
ln exhibit a markedly different bifurcation
feature: Before reaching the EP of the PT-
symmetric lattice, which has only real eigen-
values, they come in complex conjugate pairs
(with different ranges of imaginary magni-
tudes) for the other two lattices; after a certain
value of gain/loss ratio beyond the pertinent
EP, all three lattices exhibit the same range
of imaginary eigenvalues determined by the
bulk modes of the lattices (Fig. 4A). This is a
direct outcome of the inherent connection be-
tween the Hamiltonians (29). At the EP, the
bandgap closes and the topologically protected
mode becomes extended, which suggests that a
phase transition should have taken place. This
can be clearly seen from the sharp drop of the
transmitted intensity through the defect chan-
nel after a long propagation distance in all
three lattices (Fig. 4B): The cusp followed by a
continuous rise of the intensity indicates the
presence of an EP in each lattice. Moreover,
with the nonlinear tuning illustrated in Fig. 4A,
our scheme can give rise to the birth or death
of EPs for the NNH-SSHs (29), which merits
further investigation.
A direct outcome of the topological nature

of the SSH model is the robustness of zero
modes to perturbation in the off-diagonal of
the Hamiltonian. One may wonder which of
the two opposite tendencies will prevail: the
sensitivity or the robustness, especially when
close to the EP (30–32). We theoretically ad-
dress this question in Fig. 4C, where the defect
mode eigenvalues are plotted on the complex
plane for various values of defect potential
but the gain/loss ratio is fixed for the rest of
the lattice. We examine the robustness of
the defect mode to off-diagonal perturba-
tions (15% on the coupling coefficients) that
respect the lattice chiral symmetry. Strictly
speaking, only the PT-symmetric lattice sup-
ports the exact zero mode with complete topo-
logical robustness. Once the eigenvalue of the
defect mode is driven away from the origin in
the complex plane, topological protection is
gradually lost. Interestingly, this loss of pro-
tection is not “isotropic” (in a sense that the
instability of the defect mode grows in a pre-
ferred direction in the complex spectra), but
is enhanced when the parameters are tuned
close to the EP.
Topology andPT symmetry typically describe

the global properties of a system, whereas most
optical nonlinearities are local. Therefore, their

interplay in some sense is a manifestation of
the interplay of local and global characteristics.
It is natural to ask: Is there a general theory
for the NNH PT-symmetric systems driven by
nonlinearity (29)? Beyond that, there aremany
fundamental questions yet to answer. For in-
stance, how can one characterize topological
invariants for finite NNH-SSHs driven by non-
linearity, given that the concept developed for
linear Hermitian systems is not equally ap-
plicable? More intriguingly, can nonlinearity
induce crossing or encircling of the EP (31, 32)
in order to control the dynamics of topological
modes? Is it possible to tune the bandgap
structures and remotely control the power
flow at a target destination far from a topo-
logical defect in NNH systems? How would
local nonlinearity affect overall topological
features and classifications of symmetry
and topology (33)?We envisage that nonlinear
controlmay play a unique role in integrating
these concepts to harness complex systems
beyond photonics, including but not limited
to acoustics, plasmonics, polaritonics, and
ultracold atoms.
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Fig. 4. Theoretical analysis of complex spectra around the EP and zero-mode robustness. (A) The
range of the imaginary part of the complex eigenvalues (maximal/minimal magnitudes) as a function
of the global gain-loss amplitude for three NNH-SSHs. The EP is marked for the “neutral” PT-symmetric
lattice. Colored dots before the EP correspond to experimental gain/loss parameters (b0 = 2i, 0, –2i)
at the defect waveguide; they can be switched via nonlinearity, as indicated by the dashed arrow.
Other lattice parameters are the same as for Fig. 2. (B) Plot of defect-channel intensity in the NNH-SSHs
tuned across the EP under the same initial conditions. (C) Sensitivity of defect-mode eigenvalues to
the perturbation on coupling coefficients when |Im(bn)|n≠0 is fixed to 1. Red dots denote the eigenvalue
fluctuation for 100 realizations of added perturbation; the blue dots correspond to the initial
defect eigenvalue. The inset depicts corresponding values of the central defect potential b0 on the
complex plane. Notice the robustness of the exact zero mode at the origin.
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Controlling the topological properties of physical systems provides a platform for developing devices and
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