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In this paper, we study a continuous-time exploratory mean-variance (EMV) problem under the
framework of reinforcement learning (RL), and the Choquet regularizers are used to measure the
level of exploration. By applying the classical Bellman principle of optimality, the Hamilton-Jacobi-
Bellman equation of the EMV problem is derived and solved explicitly via maximizing statically
a mean-variance constrained Choquet regularizer. In particular, the optimal distributions form a
location-scale family, whose shape depends on the choices of the Choquet regularizer. We further
reformulate the continuous-time Choquet-regularized EMV problem using a variant of the Choquet
regularizer. Several examples are given under specific Choquet regularizers that generate broadly
used exploratory samplers such as exponential, uniform and Gaussian. Finally, we develop a rein-
forcement learning algorithm and assess its performance via simulations and empirical analysis,
including comparisons with the plug-in policy and the entropy-regularized policy.

Keywords: Choquet regularization; Mean-variance problem; Reinforcement learning; Stochastic
control

JEL Classifications: C61, C63, G11

1. Introduction

Reinforcement learning (RL) is an active subarea of machine
learning. In RL, the agent can directly interact with the black
box environment and get feedback. This kind of learning that
focuses on the interaction process between the agent and the
environment is called trial-and-error learning. By trial and
error learning, we skip the parameter estimation of the model
and directly learn the optimal policy (Sutton and Barto 2018),
which can overcome some difficulties that traditional opti-
mization theory may have in practice. Many RL algorithms
are based on traditional deterministic optimization, and the
optimal solution is usually a deterministic policy. But in some
situations, it makes sense to solve for an optimal stochas-
tic policy for exploration purposes. The stochastic policy
is to change the determined action into a probability dis-
tribution through randomization. Searching for the optimal
stochastic policy has many advantages, such as robustness
(Ziebart 2010) and better convergence (Gu et al. 2016) when
the system dynamics are uncertain.

∗Corresponding author. Email: hao.wang@mail.nankai.edu.cn

Entropy measures the randomness of the actions an agent
takes, and thus can indicate the level of exploration in RL.
The idea of maximum entropy RL is to make the policy more
random in addition to maximizing the cumulative reward, so
entropy together with a temperature parameter is added to
the objective function as a regularization term; see e.g. Neu
et al. (2017). Here, the temperature parameter is a regular-
ization coefficient used to control the importance of entropy;
the larger the parameter, the stronger the exploratory ability,
which helps to accelerate the subsequent policy learning and
reduces the possibility of the policy converging to a local opti-
mum. Haarnoja et al. (2017) generalized maximum entropy
RL to continuous state and continuous action settings rather
than tabular settings. Wang et al. (2020a) first established
a continuous-time RL framework with continuous state and
action from the perspective of stochastic control and proved
that the optimal exploration policy for the linear-quadratic
(LQ) control problem in the infinite time horizon is Gaussian.
Further, Wang and Zhou (2020) applied this RL framework
for the first time to solve the continuous-time mean-variance
(MV) problem, and we refer to Zhou (2021) for more sum-
maries. Motivated by Wang et al. (2020a), Dai et al. (2023)
extended the exploratory stochastic control framework to an
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incomplete market, where the asset return correlates with a
stochastic market state, and learned an equilibrium policy
under a mean-variance criterion. Jiang et al. (2022) studied
the exploratory Kelly problem by considering both the amount
of investment in stock and the portion of wealth in stock as the
control for a general time-varying temperature parameter.

From the perspective of risk measures, Han et al. (2023)
first introduced another kind of index that can measure the
randomness of actions called Choquet regularizers. They
showed that the optimal exploration distribution of LQ control
problem with infinite time horizon is no longer necessar-
ily Gaussian as in Wang et al. (2020a), but are dictated by
the choice of Choquet regularizers. As mentioned in Han
et al. (2023), Choquet regularizers have a number of theoret-
ical and practical advantages to be used for RL. In particular,
they satisfy several ‘good’ properties such as quantile addi-
tivity, normalization, concavity, and consistency with convex
order (mean-preserving spreads) that facilitate analysis as
regularizers. Moreover, the availability of a large class of
Choquet regularizers makes it possible to compare and choose
specific regularizers to achieve certain objectives specific to
each learning problem. To the best of our knowledge, there is
no literature using regularizers other than entropy to quan-
tify the information gain of exploring the environment for
practical problems. Thus, it is natural to consider some practi-
cal exploratory stochastic control problems using the Choquet
regularizers for regularization.

This paper mainly studies the continuous-time exploratory
mean-variance (EMV) problem as in Wang and Zhou (2020)
in which we replace the differential entropy used for regu-
larization with the Choquet regularizers. When looking for
pre-committed optimal strategies as the goal, the MV model
can be converted into a LQ model in finite time horizon by
Zhou and Li (2000). The form of the LQ-specialized HJB
equation suggests that the problem boils down to a static
optimization where the given Choquet regularizer is to be
maximized over distributions with given mean and variance,
which has been solved by Liu et al. (2020). Since the EMV
portfolio selection is formulated in a finite time horizon, we
show that the optimal distributions form a location-scale fam-
ily with a time-decaying variance whose shape depends on the
choice of Choquet regularizers. This suggests that the level
of exploration decreases as the time approaches the end of
the planning horizon. We further give the optimal exploration
strategies under several specific Choquet regularizers, and
observe insights of the perfect separation between exploita-
tion and exploration in the mean and variance of the optimal
distribution and the positive effect of a random environment
on learning. Furthermore, by utilizing policy improvement
and convergence theorems, we devise an RL algorithm to
tackle EMV problems using the continuous-time policy gradi-
ent method introduced by Jia and Zhou (2022b), subsequently
validating it through simulation.

We assert that our paper represents more than a mere
extension of the works by Wang and Zhou (2020) and Han
et al. (2023). Han et al. (2023) primarily provided theoretical
insights into the use of Choquet integrals as the regulariza-
tion, without practical algorithmic implementation. For the
first time, we introduce an RL algorithm designed to learn the
solution of the MV problem under Choquet regularization and

generate implementable portfolio allocation strategies, with-
out presupposing any knowledge about the underlying param-
eters. Our numerical simulations demonstrate the practical
effectiveness of the RL algorithm based on Choquet regular-
ization, exhibiting comparable performance to the approach
proposed in Wang and Zhou (2020). Moreover, unlike the
finding in Wang and Zhou (2020) where the optimal distri-
bution is always Gaussian when the entropy is utilized as
the regularization, our study benefits from a wide range of
Choquet regularizers. This allows for the comparison and
selection of specific regularizers tailored to achieve specific
learning objectives, thereby accommodating the preferences
of individual agents.

Additionally, inspired by the form of entropy, we further
refine our approach by reformulating the continuous-time
Choquet-regularized RL problem using a new type of Choquet
regularizers called logarithmic Choquet regularizers. Thanks
to the monotonic nature of the logarithmic function, the prob-
lem remains solvable by maximizing the Choquet regularizer
over distributions with given mean and variance. Further-
more, since the regularizers affect the value function, it is
to be expected that the variance of the optimal distribu-
tions is different. We also examine the explicit exploration
costs associated with these different types of regularizers and
explored their connections with classical and EMV problems.
Notably, we observe distinct differences in exploration costs
between the two EMV problems. Specifically, with Choquet
regularizers, exploration costs depend on unknown model
parameters and specific regularizers. This enables the com-
parison and selection of specific Choquet regularizers tailored
to meet the exploration cost preferences of individual agents.
In contrast, with logarithmic Choquet regularizers, explo-
ration costs only depend on the exploration parameter and
the time horizon, similar to using entropy as the regularizer
in Wang and Zhou (2020). It is interesting to note that the
optimization problem under entropy regularization in Wang
and Zhou (2020) is equivalent to that under logarithmic Cho-
quet regularization for a specific choice of distortion function.
This reveals that the logarithmic Choquet regularizers gener-
alize Shannon entropy regularization as a special case, thereby
offering a more flexible framework.

The rest of this paper is organized as follows. Section 2
introduces the MV problem under the Choquet regulariza-
tions. Section 3 solves the continuous-time EMV problem
and gives several examples. Section 4 discusses the corre-
sponding results under the variant of Choquet regularizations.
Section 5 introduces the RL algorithm, and section 6 evaluates
its performance through simulation studies and real financial
data, comparing it with plug-in strategies and the entropy-
regularized method of Wang and Zhou (2020). Section 7
concludes the paper.

2. Formulation of problem

2.1. Choquet regularizers

We assume that (�,F , P) is an atomless probability space.
With a slight abuse of notation, let M denote both the set of
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(probability) distribution functions of real random variables
and the set of Borel probability measures on R, with the obvi-
ous identity �(x) ≡ �((−∞, x]) for x ∈ R and � ∈M. We
denote by Mp ⊂M, p ∈ [1,∞), the set of distribution func-
tions or probability measures with finite p-th moment. For
a random variable X and a distribution �, we write X ∼ �

if the distribution of X is � under P, and X
d= Y if two

random variables X and Y have the same distribution. We
denote by μ and σ 2 the mean and variance functionals on M2,
respectively; that is, μ(�) is the mean of � and σ 2(�) the
variance of � for � ∈M2. We denote by M2(m, s2) the set
of � ∈M2 satisfying μ(�) = m ∈ R and σ 2(�) = s2 > 0.

In Han et al. (2023), the Choquet regularizer is defined to
measure and manage the level of exploration for RL based on
a subclass of signed Choquet integrals (Wang et al. 2020b).
Given a concave function h : [0, 1]→ R of bounded variation
with h(0) = h(1) = 0 and � ∈M, the Choquet regularizer
�h on M is defined as

�h(�) =
∫

R

h ◦�([x,∞)) dx.

The set of all such functions h is denoted by H.
The following proposition summarizes several useful prop-

erties of �h that were previously established in Section 2 of
Han et al. (2023).

Proposition 2.1 For h ∈ H, the Choquet regularizer �h

satisfies the following properties:

(i) �h is well defined, non-negative, and satisfies location
invariant and scale homogeneous.†

(ii) �h(δc) = 0, ∀c ∈ R, where δc is the Dirac measure at
c.

(iii) For all �1, �2 ∈M and λ ∈ [0, 1], �h(λ�1 + (1−
λ)�2) � λ�h(�1)+ (1− λ)�h(�2).

(iv) �h(�1) � �h(�2) for all �1, �2 ∈M with �1 �cx

�2.‡

Each property in Proposition 2.1 has a natural interpreta-
tion for a regularizer that measures the level of randomness,
or the level of exploration in the RL context of this paper.
Proposition 2.1(i) implies that any distribution for explo-
ration can be measured in non-negative values. Moreover, the
measure is invariant to shifts in location and scales linearly
with the distribution, which aligns with intuitive properties
of randomness. Proposition 2.1(ii) means that degenerate dis-
tributions do not have any randomness measured by �h.
Proposition 2.1(iii) means that mixing distributions gener-
ally introduces additional randomness. Moreover, in part
(iv), �1 �cx �2 is equivalent to saying that �2 is a mean-
preserving spread of �1, indicating that �2 is more dispersed
and therefore ‘more random’ than �1. Taken together, these
properties justify the use of �h as a principled regularizer

† We call �h to be location invariant and scale homogeneous if
�h(�

′) = λ�h(�) where �′ is the distribution of λX + c for λ > 0,
c ∈ R and X ∼ �.
‡ �1 is smaller than �2 in convex order, denoted by �1 �cx �2,
if E[f (�1)] � E[f (�2)] for all convex functions f, provided that
the two expectations exist. It is immediate that �1 �cx �2 implies
E[�1] � E[�2].

for quantifying randomness or exploration in reinforcement
learning.

The family of Choquet regularizers encompasses several
classical dispersion measures, including the range, mean-
median deviation, Gini deviation, and inter-ES differences;
see Section 2.6 of Wang et al. (2020b) for details. In con-
trast to Shannon entropy, Choquet regularization allows for
the selection of different h-functions tailored to the agent’s
preferences, providing greater flexibility and adaptability in
measuring randomness.

For a distribution � ∈M, let its left-quantile for p ∈ (0, 1]
be defined as

Q�(p) = inf {x ∈ R : �(x) � p} .

It is useful to note that �h admits a quantile representation.
Specifically, if h is left-continuous, then

�h(�) =
∫ 1

0
Q�(1− p) dh(p). (1)

In what follows, h′ represents the right-derivative of h, which
exists on [0, 1) since h is concave on [0, 1]. Let ‖h′‖2 =
(
∫ 1

0 (h′(p))2 dp)1/2. We give a lemma which we will rely on
when considering the EMV problem formulated by Wang and
Zhou (2020).

Lemma 2.2 Theorem 3.1 of Liu et al. 2020 If h is contin-
uous and not constantly zero, then a maximizer �∗ to the
optimization problem

max
�∈M2

�h(�) subject to μ(�) = m and σ 2(�) = s2 (2)

has the following quantile function

Q�∗(p) = m+ s
h′(1− p)

‖h′‖2
, a.e. p ∈ (0, 1), (3)

and the maximum value of (2) is �h(�
∗) = s‖h′‖2.

By Lemma 2.2, Han et al. (2023) presented many exam-
ples linking specific exploratory distributions with the corre-
sponding Choquet regularizers and generated some common
exploration measures including ε-greedy, three-point, expo-
nential, uniform and Gaussian; see their Examples 4.1–4.6
and sections 4.3–4.5.

Remark 2.3 The result in Lemma 2.2 can be extended to
a more general case involving higher moments. For a > 1,
Theorem 5 in Pesenti et al. (2025) showed that if the uncertain
set is given by

Ma(m, v) = {� ∈Ma : μ(�) = m and E [|�− m|a] � va} ,

the optimization problem max�∈Ma �h(�), for p ∈ (0, 1),
can be solved by

Q�(p) = m+ v

∣∣h′(1− p)− ch,b

∣∣b
h′(1− p)− ch,b

[h]1−b
b ,

if h′(1− p)− ch,b �= 0, and Q�(p) = m otherwise.
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Here, b ∈ [1,∞] is the Hölder conjugate of a, namely b =
(1− 1/a)−1, or equivalently, 1/a+ 1/b = 1,

ch,b = arg min
x∈R

∥∥h′ − x
∥∥

b and

[h]b = min
x∈R
∥∥h′ − x

∥∥
b =

∥∥h′ − ch,b

∥∥
b ,

with

∥∥h′ − x
∥∥

b =
(∫ 1

0

∣∣h′(p)− x
∣∣b dp

)1/b

, b <∞ and∥∥h′ − x
∥∥
∞ = max

p∈[0,1]

∣∣h′(p)− x
∣∣ , x ∈ R.

2.2. Continuous-time EMV problem

The classical MV problem has been well studied in the lit-
erature; see e.g. Markowitz (1952), Li and Ng (2000) and
Li et al. (2002). We first briefly introduce the classical MV
problem in continuous time.

Let T be a fixed investment planning horizon and {Wt, 0 �
t � T} be a standard Brownian motion defined on a given
filtered probability space (�, F , {Ft}0�t�T , P) that satisfies
usual conditions. Assume that a financial market consists of a
riskless asset and only one risky asset, where the riskless asset
has a constant interest rate r > 0 and the risky asset has a price
process governed by

dSt = St(μ dt + σ dWt), 0 � t � T , (4)

with S0 = s0 > 0 where μ ∈ R, σ > 0 is the mean and volatil-
ity parameters, respectively. The Sharpe ratio of the risky
asset is defined by ρ = (μ− r)/σ . Let u = {ut, 0 � t � T}
denote the discounted amount invested in the risky asset at
time t, and the rest of the wealth is invested in the risk-free
asset. By (4), the discounted wealth process {X u

t , 0 � t � T}
for a policy ut is then given as

dX u
t = σut(ρ dt + dWt), 0 � t � T , (5)

with X u
0 = x0 ∈ R. Under the continuous-time MV setting, we

aim to solve the following constrained optimization problem

min
u

Var[X u
T ] subject to E[X u

T ] = z, (6)

where {X u
t , 0 � t � T} satisfies the dynamics (5) under the

investment policy u, and z ∈ R is an investment target deter-
mined at t = 0 as the desired mean payoff at the end of the
investment horizon [0, T].

By applying a Lagrange multiplier w, we can transform (6)
into an unconstrained problem

min
u

E[(X u
T )2]− z2 − 2w(E[X u

T ]− z)

= min
u

E[(X u
T − w)2]− (w− z)2. (7)

The problem in (7) was well studied by Li and Ng (2000), and
it can be solved analytically, whose solution u∗ depends on w.
Then the original constraint E[X u∗

T ] = z determines the value
of w.

Employing the method in Wang et al. (2020a) and Wang
and Zhou (2020), we give the ‘exploratory’ version of the
state dynamic (5) motivated by repetitive learning in RL. In
this formulation, the control process is now randomized, lead-
ing to a distributional or exploratory control process denoted
by � = {�t, 0 � t � T}. Here, �t ∈M (U) is the probability
distribution function for control at time t, with M (U) being
the set of distribution functions on U. For such a given dis-
tributional control � ∈M (U), the exploratory version of the
state dynamics in (5) is changed to

dX �
t = b̃(�t) dt + σ̃ (�t) dWt, 0 < t � T , (8)

with X �
0 = x0, where

b̃(�) :=
∫

R

ρσu d�(u) and σ̃ (�) :=
√∫

R

σ 2u2 d�(u).

(9)
Denote the mean and variance processes associated with the
control process � by μt and σ 2

t for 0 � t � T :

μt :=
∫

R

u d�t(u), σ 2
t :=

∫
R

u2 d�t(u)− μ2
t . (10)

Then it follows from (8)–(10) that

dX �
t = ρσμt dt + σ

√
μ2

t + σ 2
t dWt, (11)

with X �
0 = x0. We refer to Wang et al. (2020a, pp. 6–

8) for more detailed explanation of where this exploratory
formulation comes from.

Next, we use a Choquet regularizer �h to measure the
level of exploration, and the aim of the exploratory con-
trol is to achieve a continuous-time EMV problem under the
framework of RL. For any fixed w ∈ R, we get the Choquet-
regularized EMV problem by adding an exploration weight
λ > 0, which reflects the strength of the exploration desire:

min
�∈A (0,x0)

E

[
(X �

T − w)2 − λ

∫ T

0
�h(�t) dt

]
− (w− z)2,

where A (t, x) is the set of all admissible controls � for
(t, x) ∈ [0, T)× R. A control process � ∈ A (t, x) is said
to be admissible if (i) for t � s � T , �s ∈M (R) a.s.; (ii)
for A ∈ B(R), {∫A �s(u) du, t � s � T} is Fs-progressively

measurable; (iii) E[
∫ T

t (μ2
s + σ 2

s ) ds] <∞; and (iv) E[(X �
T −

w)2 − λ
∫ T

t �h(�s) ds |X �
t = x] <∞.

The value function is then defined as

V (t, x; w)

:= inf
�∈A (t,x)

E

[
(X �

T − w)2 − λ

∫ T

t
�h(�s) ds |X �

t = x

]
− (w− z)2, (12)

and the value function under feedback control � is

V�(t, x; w) := E

[
(X �

T − w)2 − λ

∫ T

t
�h(�s) ds |X �

t = x

]
− (w− z)2. (13)
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3. Solving EMV problem

In this section, we aim to solve the Choquet-regularized
EMV problem. Firstly, we have following result based on
Lemma 2.2.

Proposition 3.1 Let a continuous h ∈ H be given. For any
� = {�t}t�0 ∈ A(t, x) with mean process {μt}t�0 and vari-
ance process {σ 2

t }t�0, there exists �∗ = {�∗t }t�0 ∈ A(t, x)
given by

Q�∗t (p) = μt + σt
h′(1− p)

‖h′‖2
, a.e. p ∈ (0, 1), t � 0, (14)

which has the same mean and variance processes satisfying
V�∗(t, x; w) � V�(t, x; w).

Proof By (8), it is clear that the term E[(X �
T − w)2|X �

t =
x] in (13) only depends on the mean process {μt}t�0 and the
variance process {σ 2

t }t�0 of {�t}t�0. Thus, for any fixed t �
0, choose �∗t with mean μt and variance σ 2

t that maximizes
�h(�t). Together with Lemma 2.2, we get the desired result.

�

Proposition 3.1 indicates that the control problem in (12)
is minimized within a location–scale family of distributions,†
which is determined only by h. In fact, if �̂t is in the location-
scale family of �∗t , then we have �̂t(x) = �∗t ((x− a)/b)

for some a ∈ R and b > 0 for all x ∈ R. Since �λh(�) =
λ�h(�) for any λ > 0, � that maximizes �h also maximizes
�λh. Thus, by Proposition 3.1, we have h′(p) = Q�∗t (1−
p)− μt = (Q�̂∗t

(1− p)− a)/b− μt for p ∈ (0, 1) a.e. Since

μ(�̂t) = a+ bμt, it follows that �̂t maximizes �h over
M2(μt(�̂), σ 2

t (�̂)).

Remark 3.2 We know from Remark 2.3 that if both the
reward term and the dynamic process only depend on the
mean process μt and the a-th moment process σ a

t of �t

for t � 0, then we have V�∗(t, x; w) � V�(t, x; w) with �∗t
satisfying

Q�∗t (p) = μt + σt

∣∣h′(1− p)− ch,b

∣∣b
h′(1− p)− ch,b

[h]1−b
b ,

if h′(1− p)− ch,b �= 0, and

Q�∗t (p) = μt, otherwise.

Using the Bellman’s dynamic principle, we get

V (t, x; w) = inf
�∈A (t,x)

E

[
−λ

∫ s

t
�h(�v) dv

+ V (s, X �
s ; w) |X �

t = x

]
. (15)

Then we can deduce from (15) that V satisfies the HJB
equation

Vt(t, x; w)+ min
�∈M (R)

[
1

2
σ̃ 2(�)Vxx(t, x; w)

† Recall that given a distribution � the location-scale family of �
is the set of all distributions �a,b parameterized by a ∈ R and b > 0
such that �a,b(x) = �((x− a)/b) for all x ∈ R.

+ b̃(�)Vx(t, x; w)− λ�h(�)

]
= 0. (16)

By (9), the HJB equation in (16) is equivalent to

Vt(t, x; w)+ min
�∈M (R)

[
σ 2

2

(
μ(�)2 + σ(�)2

)
Vxx(t, x; w)

+ ρσμ(�)Vx(t, x; w)− λ�h(�)

]
= 0, (17)

with terminal condition V (T , x; w) = (x− w)2 − (w− z)2.
Here, we assume that � has finite second-order moment,
and μ(�) and σ(�)2 are the mean and variance of �,
respectively.

We now pay attention to the minimization in (17). Let

ϕ(t, x, �) = σ 2

2

(
μ(�)2 + σ(�)2

)
Vxx(t, x; w)

+ ρσμ(�)Vx(t, x; w)− λ�h(�).

Note that ϕ(t, x, �) only depends on � by μ(�) and σ(�)2

except �h(�), we get

min
�∈M (R)

ϕ(t, x, �) = min
m∈R,s>0

min
�∈M (R)

μ(�)=m,σ(�)2=s2

ϕ(t, x, �),

and the inner minimization problem is equivalent to

max
�∈M (R)

�h(�) subjectto μ(�) = m, σ(�)2 = s2. (18)

By Lemma 2.2, the maximizer �∗ of (18) whose quantile
function is Q�∗(p) satisfies

Q�∗(p) = m+ s
h′(1− p)

‖h′‖2
, (19)

and �h(�
∗) = s‖h′‖2. Then the HJB equation in (17) is

converted to

Vt(t, x; w)+ min
m∈R,s>0

[
σ 2

2
(m2 + s2)Vxx(t, x; w)

+ ρσmVx(t, x; w)− λs‖h′‖2

]
= 0. (20)

By the first-order conditions, we get the minimizer of (20)

m∗ = −ρ

σ

Vx

Vxx
, and s∗ = λ‖h′‖2

σ 2vxx
. (21)

Bringing m∗ and s∗ back into (20), we can rewrite (20) as

Vt − ρ2

2

V 2
x

Vxx
− λ2

2σ 2

‖h′‖2
2

Vxx
= 0. (22)

By the terminal condition V (T , x; w) = (x− w)2 − (w− z)2,
a smooth solution to (22) is given by

V (t, x; w) = (x− w)2e−ρ2(T−t)
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− λ2‖h′‖2
2

4ρ2σ 2
(eρ2(T−t) − 1)− (w− z)2. (23)

Then we can deduce from (19), (21) and (23) that

m∗ = −ρ

σ
(x− w), and s∗ = λ‖h′‖2

2σ 2
eρ2(T−t),

and the dynamic (11) under �∗ becomes

dX ∗t = −ρ2(X ∗t − w) dt

+
√

ρ2(X ∗t − w)2 + λ2‖h′‖2
2

4σ 2
e2ρ2(T−t) dWt

with X ∗0 = x0.
Finally, we try to calculate w. By E[maxt∈[0,T](X ∗t )2] <∞

and using Fubini theorem, we get

E[X ∗t ] = x0 + E

[∫ t

0
−ρ2(X ∗s − w) ds

]
= x0 +

∫ t

0
−ρ2(E[X ∗s ]− w) ds.

Hence, E[X ∗t ] = (x0 − w)2e−ρ2t + w. It follows from E[X ∗T ] =
z that

w = zeρ2T − x0

eρ2T − 1
.

We summarize the above results in the following theorem.

Theorem 3.3 The value function of Choquet-regularized
EMV problem in (12) is given by

V (t, x; w) = (x− w)2e−ρ2(T−t)

− λ2‖h′‖2
2

4ρ2σ 2
(eρ2(T−t) − 1)− (w− z)2, (24)

and the corresponding optimal control process is �∗, whose
quantile function is

Q�∗(p) = −ρ

σ
(x− w)+ λh′(1− p)

2σ 2
eρ2(T−t), (25)

with the mean and variance of �∗

μ(�∗) = −ρ

σ
(x− w), and σ(�∗)2 = λ2‖h′‖2

2

4σ 4
e2ρ2(T−t).

(26)
The optimal wealth process under �∗ is the unique solution
of the SDE

dX ∗t = −ρ2(X ∗t − w) dt

+
√

ρ2(X ∗t − w)2 + λ2‖h′‖2
2

4σ 2
e2ρ2(T−t) dWt

with x∗0 = x0. Finally, the Lagrange multiplier w is given by

w = zeρ2T − x0

eρ2T − 1
.

Proof Along with the similar lines of the verification
theorem in Wang et al. (2020a) (see their Theorem 4), we can
verify that for any w ∈ R, (24) is indeed the value function
and the optimal control �∗ is admissible. �

There are several observations to note in this result. We
can see from (25) that for any Choquet regularizer, the opti-
mal exploratory distribution is uniquely determined by h′.
Different h corresponds to a different Choquet regularizer;
hence h will certainly affect the way and the level of explo-
ration. Also, since h′(x) is the ‘probability weight’ put on x
when calculating the (nonlinear) Choquet expectation; see e.g.
Quiggin (1982) and Gilboa and Schmeidler (1989), the more
weight put on the level of exploration, the more spread out the
exploration becomes around the current position. In addition,
we point out that if we fix the value of ‖h′‖2

2 for different Cho-
quet regularizers by multiplying or dividing by a constant, the
mean and variance of the different optimal distributions are
equal.

Moreover, the optimal control processes under �h has the
same expectation as the one in Wang and Zhou (2020) when
the differential entropy is used as a regularizer, which is
also identical to the optimal control of the classical, non-
exploratory MV problem, and the expectation is independent
of λ and h. Meanwhile, the variance of optimal control pro-
cess is independent of state x but decreases over time, which
is different from Han et al. (2023) where an infinite horizon
counterpart is studied. This is intuitive because by explo-
ration, one can get more information over time, and then the
demand and aspiration of exploration decreases. In a sense,
the expectation represents exploitation which means mak-
ing the best decision based on existing information, and the
variance represents exploration. As a result, the observations
above show a perfect separation between exploitation and
exploration.

In the following example, we show optimal exploration
samplers under the EMV framework for some concrete
choices of h studied in Han et al. (2023). Theorem 3.3 yields
that the mean of the optimal distribution is independent of h,
so we will specify only its quantile function and variance for
each h discussed below.

Example 3.1 (i) Let h(p) = −p log(p). Then we have

�h(�)

=
∫ ∞

0
�([x,∞)) log(�([x,∞))) dx,

which is the cumulative residual entropy defined in
Rao et al. (2004) and Hu and Chen (2020); see Exam-
ple 4.5 of Han et al. (2023). The optimal policy is a
shifted-exponential distribution given as

�∗(u; t, x)

= 1− exp

{
− 2σ 2

λeρ2(T−t)

(
u+ ρ

σ
(x− w)

)
− 1

}
.

Since ‖h′‖2
2 = 1, the variance of �∗ is given by

(σ ∗(x))2 = λ2

4σ 4
e2ρ2(T−t).
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(ii) Let h(p) = ∫ p
0 z(1− s)ds, where z is the stan-

dard normal quantile function. We have �h(�) =∫ 1
0 Q�(p)z(p) dp; see Example 4.6 of Han et al. (2023).

The optimal policy is a normal distribution given by

�∗(·; t, x) = N

(
−ρ

σ
(x− w),

λ2

4σ 4
e2ρ2(T−t)

)
,

owing to the fact that ‖h′‖2
2 = 1.

(iii) Let h(p) = p− p2. Then �h(�) = E[|X1 − X2|]/2,
which is the Gini mean difference; see Section 4.5
of Han et al. (2023). The optimal policy �∗(·; x) is a
uniform distribution given as

U

[
−ρ

σ
(x− w)− λ

2σ 2
eρ2(T−t),

− ρ

σ
(x− w)+ λ

2σ 2
eρ2(T−t)

]
.

Since ‖h′‖2
2 = 1/3, the variance of �∗ is given by

(σ ∗(x))2 = λ2e2ρ2(T−t)/12σ 4.

Remark 3.4 For h ∈ H with a general �, we can convert
sampling from � to sampling from a uniform distribution.
To be specific, assuming ξ is a uniform random variable on
[0, 1], we then have P(Q�(ξ) � a) = P(ξ � �(a)) = �(a).
Consequently, Q�(ξ) follows the distribution �.

4. An alternative form of Choquet regularizers

As mentioned in Introduction, for an absolutely continuous �,
Shannon’s differential entropy, defined as

DE(�) := −
∫

R

�′(x) log(�′(x)) dx (27)

is commonly used for exploration–exploitation balance in
RL; see Wang and Zhou (2020), Guo et al. (2022), Jiang
et al. (2022) and Dai et al. (2023). It admits a different
quantile representation (see Sunoj and Sankaran 2012)

DE(�) =
∫ 1

0
log(Q′�(p)) dp.

It is clear that DE is location invariant, but not scale homoge-
neous. It is not quantile additive either. Therefore, DE is not a
Choquet regularizer.

Inspired by the logarithmic form of DE, we consider
another EMV problem:

V̂ (t, x; w) := inf
�∈A (t,x)

E

[
(X �

T − w)2

− λ

∫ T

t
log �h(�s) ds |X �

t = x

]
− (w− z)2,

(28)

where we apply the logarithmic form of �h as the regularizer
to measure and manage the level of exploration. According to

the monotonicity and concavity of logarithmic function, we
can easily verify that log �h is still a concave mapping:

log �h(λ�1 + (1− λ)�2)

� log(λ�h(�1)+ (1− λ)�h(�2))

� λ log �h(�1)+ (1− λ) log �h(�2)

for all �1, �2 ∈M and λ ∈ [0, 1], and consistent with con-
vex order:

log �h(�1)

� log �h(�2), for all �1, �2 ∈M with �1 �cx �2.

Comparing to the properties of �h, log �h is not necessar-
ily non-negative as �h. However, the non-negativity does
not inherently affect the exploration. Further, �(�) is zero
when � is Dirac measure, we then have log �(δc) = −∞
for all c ∈ R. The location invariance for log �h is obvious.
For scale homogeneity, log �h is no longer linear in its scale,
but we have log �h(�

′) = log �h(�)+ log λ for any λ > 0
where �′ is the distribution of λX for λ > 0 and X ∼ �. It is
interesting to see that the level of randomness is captured by
the term of log λ. Based on the observations above, we find
that log �h has many similarities with DE in capturing the
randomness.

We remark that maximizing �h over M2(m, s2) is equiva-
lent to maximizing log �h over M2(m, s2). In the following
theorem, we give the optimal result of (28) directly. Since the
procedure is similar to section 3, we omit the details here.

Theorem 4.1 The value function of (28) is given by

V̂ (t, x; w) = (x− w)2e−ρ2(T−t) + λρ2

4
(T2 − t2)

− λ

2

(
ρ2T + log

λ‖h′‖2
2

2eσ 2

)
(T − t)− (w− z)2,

(29)

and the corresponding optimal control process is �̂∗ with
quantile function

Q�̂∗(p) = −ρ

σ
(x− w)+

√
λ

2σ 2‖h′‖2
2

e
1
2 ρ2(T−t)h′(1− p).

(30)
Moreover, the mean and variance of �∗ are

μ(�̂∗) = −ρ

σ
(x− w), and σ(�̂∗)2 = λ

2σ 2
eρ2(T−t).

The optimal wealth process under �∗ is the unique solution
of the SDE

dX ∗t = −ρ2(X ∗t − w) dt +
√

ρ2(X ∗t − w)2 + λ

2
eρ2(T−t) dWt

with X ∗0 = x0. Finally, the Lagrange multiplier w is given by

w = zeρ2T − x0

eρ2T − 1
.
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Remark 4.2 By (30), we can see that the optimal exploratory
distribution is also uniquely determined by h′. Since the form
of log �h affects the value function, even though the form of
optimal distributions is the same, it is to be expected that the
variance of the optimal distributions is different from (25). It
is worth pointing that the mean and variance of the optimal
distributions are the same as those in Wang and Zhou (2020)
where the differential entropy is used as a regularizer, which
is an interesting observation. This is because for the payoff
function depending only on the mean and variance processes
of the distributional control, the Gaussian distribution max-
imizes the entropy when the mean and variance are fixed,
and the maximized MV constrained entropy and log �h are
equal up to a constant and both logarithmic in the given stan-
dard deviation and independent of the mean. Moreover, since
different h corresponds to different exploratory distributions,
our optimal exploratory distributions are no longer necessar-
ily Gaussian as in Wang and Zhou (2020), and are dictated
by the choice of Choquet regularizers, which can be such as
Gaussian, uniform distribution or exponential distribution.

Parallel to Example 3.1, we give Example 4.1. Theorem 4.1
yields that both the mean and the variance of the optimal dis-
tribution are independent of h, so we will specify only its
quantile function.

Example 4.1 (i) Let h(p) = −p log(p). Then we have

log �h(�)

= log
∫ ∞

0
�([x,∞)) log(�([x,∞))) dx.

The optimal policy is a shifted-exponential distribution
given as

�∗(u; t, x)

= 1− exp

⎧⎨⎩−
√

2σ 2

λeρ2(T−t)
(u+ ρ

σ
(x− w))− 1

⎫⎬⎭ .

(ii) Let h(p) = ∫ p
0 z(1− s) ds, where z is the standard

normal quantile function. We have log �h(�) =
log
∫ 1

0 Q�(p)z(p) dp. The optimal policy is a normal
distribution given by

�∗(·; t, x) = N

(
−ρ

σ
(x− w),

λ

2σ 2
eρ2(T−t)

)
.

(iii) Let h(p) = p− p2. Then log �h(�) = log E[|X1 −
X2|]− log 2. The optimal policy �∗(·; x) is a uniform
distribution given as

U

[
−ρ

σ
(x− w)−

√
3λ

2σ 2
eρ2(T−t),

− ρ

σ
(x− w)+

√
3λ

2σ 2
eρ2(T−t)

]
.

Remark 4.3 The optimal policy in Example 4.1(ii) coincides
with the entropy-regularized optimal policy derived in Wang

and Zhou (2020), where the authors established the optimality
of Gaussian exploration distributions under Shannon entropy
regularization. Specifically, for a Gaussian distribution � =
N(m, s2), the Shannon entropy regularization term defined
in (27) takes the form DE(�) = log s+ 1

2 log(2πe). We can
also compute the logarithmic Choquet integral with the distor-
tion function h1(p) = ∫ p

0 z(1− s) ds, yielding log �h1(�) =
log s. This reveals that the original optimization problem
under entropy regularization is equivalent to the logarithmic
Choquet-regularized counterpart with distortion h1, showing
that log �h generalizes Shannon entropy regularization as
a special case. Therefore, the logarithmic Choquet integral
offers greater flexibility by accommodating a broader class of
distortion functions h.

Next, we consider the solvability equivalence between the
classical and the exploratory MV problems. Here, ‘solvability
equivalence’ implies that the solution of one problem will lead
to that of the other directly, without needing to solve it sepa-
rately. Recall the classical MV problem in section 2.2. The
explicit forms of optimal control and value function, denoted
respectively by u∗ and V cl, were given by Theorem 3.2-(b)
of Wang and Zhou (2020). We provide the solvability equiva-
lence between the classical and the exploratory MV problems
defined by (7), (12) and (28), respectively. Since the proof
is similar to that of Theorem 9 in Appendix C of Wang
et al. (2020a), we omit the details here.

Proposition 4.4 The following three statements (a), (b), (c)
are equivalent.

(a) The function V(t, x; w) = (x− w)2e−ρ2(T−t) − λ2‖h′‖2
2

4ρ2σ 2

(eρ2(T−t) − 1)− (w− z)2, (t, x) ∈ [0, T]× R, is the
value function of the EMV problem (12) and the opti-
mal feedback control is �∗, whose quantile function
is

Q�∗(p) = −ρ

σ
(x− w)+ λh′(1− p)

2σ 2
eρ2(T−t).

(b) The value function V̂ (t, x; w) = (x− w)2e−ρ2(T−t) +
λρ2

4 (T2 − t2)− λ
2

(
ρ2T + log λ‖h′‖2

2
2eσ 2

)
(T − t)− (w−

z)2, (t, x) ∈ [0, T]× R, is the value function of the
EMV problem (28) and the optimal feedback control
is �̂∗, whose quantile function is

Q�̂∗(p) = −ρ

σ
(x− w)

+
√

λ

2σ 2‖h′‖2
2

h′(1− p)e
1
2 ρ2(T−t).

(c) The function V cl(t, x; w) = (x− w)2e−ρ2(T−t) − (w−
z)2, (t, x) ∈ [0, T]× R, is the value function of the clas-
sical MV problem (7) and the optimal feedback control
is

u∗(t, x; w) = −ρ

σ
(x− w).
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Moreover, the three problems above all have the same
Lagrange multiplier

w = zeρ2T − x0

eρ2T − 1
.

From the proposition above, we naturally want to explore
more connections between (a), (b) and (c). In fact, they have
the following convergence property.

Proposition 4.5 Suppose that statement (a) or (b) or (c) of
Proposition 4.4 holds. Then for each (t, x, w) ∈ [0, T]× R×
R,

lim
λ→0

�̂∗(·; t, x; w) = lim
λ→0

�∗(·; t, x; w) = δu∗(t,x;w)(·) weakly,

and

lim
λ→0
|V (t, x; w)− V cl(t, x; w)| = 0,

and lim
λ→0
|V̂ (t, x; w)− V cl(t, x; w)| = 0.

Proof The weak convergence is obvious and the conver-
gence of value function follows from

lim
λ→0

λ2‖h′‖2
2

4ρ2σ 2
(eρ2(T−t) − 1) = 0,

and lim
λ→0

λ

2
log

λ‖h′‖2
2

2eσ 2
= 0.

�

Next, we examine the ‘cost of exploration’ – the loss in
the original (i.e. non-regularized) objective due to explo-
ration, which was originally defined and derived in Wang
et al. (2020a) for problems with entropy regularization. Due
to the explicit inclusion of exploration in the objectives (12)
and (28), the cost of the EMV problems are defined as

Cu∗,�∗(0, x0; w)

=
(

V (0, x0; w)+ λE

[∫ T

0
�h(�

∗
t )dt|X �∗

0 = x0

])
− V cl(0, x0; w), (31)

and

Ĉu∗,�̂∗(0, x0; w)

=
(

V̂ (0, x0; w)+ λE

[∫ T

0
log �h(�̂

∗
t ) dt |X �̂∗

0 = x0

])
− V cl(0, x0; w). (32)

Proposition 4.6 Suppose that statement (a) or (b) or (c) of
Proposition 4.4 holds. Then the cost of exploration for the
EMV problem are, respectively, given as

Cu∗,�∗(0, x0; w) = λ2‖h′‖2
2

4ρ2σ 2
(eρ2T − 1), (33)

and

Ĉu∗,�̂∗(0, x0; w) = λT

2
. (34)

Proof Note that

�h(�
∗
t ) = σ(�∗t )‖h′‖2 = λ‖h′‖2

2

2σ 2
eρ2(T−t),

and

log �h(�̂
∗
t ) = log

(
σ(�̂∗t )‖h′‖2

) = 1

2
log

(
λ‖h′‖2

2

2σ 2
eρ2(T−t)

)
.

Bringing �h(�
∗
t ) and log �h(�̂

∗
t ) back into (31) and (32),

respectively, we can get (33) and (34). �

Remark 4.7 The costs of exploration for the two EMV prob-
lems are quite different. When �h is regarded as the regular-
izer, the derived exploration cost does depend on the unknown
model parameters through h, μ and σ . (33) implies that, with
other parameters being equal, to reduce the exploration cost
one should choose regularizers with smaller values of ‖h′‖2.
Moreover, by (26), we have

Cu∗,�∗(0, x0; w) = λ‖h′‖2

2ρ2
σ ∗(x0)− λ2‖h′‖2

2

4ρ2σ 2
,

meaning that the cost is proportional to the standardized devi-
ation of the exploratory control, but inversely proportional to
the square of the Sharp ratio ρ2. In contrast, when log �h

is regarded as the regularizer, the derived exploration cost
only depends on λ and T. It is also interesting to note that
Ĉu∗,�∗(0, x0; w) in (34) is the same as the one using DE as the
regularizer; see Theorem 3.4 of Wang and Zhou (2020).

Nevertheless, they also have some common features. The
exploration cost increases as the exploration weight λ and the
exploration horizon T increase, due to more emphasis placed
on exploration. In addition, the costs are both independent of
the Lagrange multiplier, which suggests that the exploration
cost will not increase when the agent is more aggressive (or
risk-seeking) reflected by the expected target z or equivalently
the Lagrange multiplier w.

Remark 4.8 To compare Cu∗,�∗(0, x0; w) and Ĉu∗,�∗(0, x0; w),
we have

Cu∗,�∗(0, x0; w)

Ĉu∗,�̂∗(0, x0; w)

= λ‖h′‖2
2

2σ 2

eρ2T − 1

ρ2T
= λ‖h′‖2

2

2σ 2

(
1+

∞∑
n=1

ρ2nTn

(n+ 1)!

)
.

Then we can easily verify which regularizer has smaller
exploration cost under determined market parameters. In gen-
eral, from a cost point of view, when λ, ‖h′‖2 and ρ2 are small
enough and σ is relatively large, �h is a good choice to reduce
cost; otherwise log �h may be a better choice.

5. RL algorithm design

5.1. Policy improvement

In RL setting, the policy improvement is an important pro-
cess which ensures the existence of a new policy better than
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any given policy. In Proposition 3.1, we have showed that the
EMV problem in (12) can be minimized within a location-
scale family of distributions. Such a property is also applied
to the EMV problem in (28) when log �h is regarded as the
regularizer. In the following theorem, by Itô’s formula, we
can also verify that for any given policy, when the regular-
izer is �h or log �h, there always exists a better policy in a
location-scale family which depends on h. So we can search
the optimal exploration distribution only in this location-scale
family.

Theorem 5.1 Let w ∈ R be fixed and � (resp.�̂) be an arbi-
trarily given admissible feedback control whose correspond-
ing value function is V�(t, x; w)(resp.V̂�(t, x; w)) under regu-
larizer �h(resp. log �h). Suppose that V�(t, x; w)(resp.V̂�(t,
x; w)) ∈ C1,2([0, T)× R ∩ C0([0, T]× R)) and V�

xx (t, x; w)

(resp.V̂�
xx (t, x; w)) > 0 for any (t, x) ∈ [0, T)× R. Suppose

further that the feedback control �̃(resp.˜̂�) whose quantile
function is

Q�̃(p) = −ρ

σ

V�
x

V�
xx

+ λ

σ 2V�
xx

h′(1− p) (35)

resp. Q˜̂�(p) = −ρ

σ

V̂ �̂
x

V̂ �̂
xx

+
√

λ

σ 2‖h′‖2
2V̂ �̂

xx

h′(1− p) (36)

is admissible. Then

V �̃(t, x; w) � V�(t, x; w), (t, x) ∈ [0, T)× R,

resp. V̂
˜̂�(t, x; w) � V̂ �̂(t, x; w), (t, x) ∈ [0, T)× R.

Proof Let �̃ = {�̃s, s ∈ [t, T]} and ˜̂� = {˜̂�s, s ∈ [t, T]} be
the open-loop control generated by the given feedback control
policies �̃ and ˜̂�, respectively. By assumption, �̃ and ˜̂� are
admissible. Applying Itô’s formula, we have for any (t, x) ∈
[0, T]× R,

V�(s, X �̃
s ) = V�(t, x)+

∫ s

t
V�

t (v, X �̃
v ) dv

+
∫ s

t
V�

x (v, X �̃
v ) dX �̃

v

+ 1

2

∫ s

t
V�

xx (v, X �̃
v ) d < X �̃, X �̃ >v

= V�(t, x)+
∫ s

t
V�

x (v, X �̃
v )

σ

√
μ(�̃v)2 + σ(�̃v)2 dWv

+
∫ s

t

[
V�

t (v, X �̃
v )+ ρσμ(�̃v)V

�
x (v, X �̃

v )

+ σ 2

2
(μ(�̃v)

2 + σ(�̃v)
2)V�

xx (v, X �̃
v )

]
dv.

(37)

Let τn := inf{s � t :
∫ s

t σ 2V�
x (v, X �̃

v )2(μ(�̃v)
2 + σ(�̃v)

2) dv
� n} be a family of stopping times, then substituting s ∧ τn

into (37) and taking expectation we get

V�(t, x) = E

[
V�(s ∧ τn, X �̃

s∧τn
)−
∫ s∧τn

t
[V�

t (v, X �̃
v )

+ ρσμ(�̃v)V
�
x (v, X �̃

v )+ σ 2

2
(μ(�̃v)

2

+ σ(�̃v)
2)V�

xx (v, X �̃
v )] dv |X �̃

t = x

]
. (38)

On the other hand, by standard argument we have

V�
t (t, x)+ ρσμ(�)V�

x (t, x)+ σ 2

2
(μ(�)2

+ σ(�)2)V�
xx (t, x)− λ�h(�) = 0.

It follows that

V�
t (t, x)+ min

�′∈P(R)

[
ρσμ(�′)V�

x (t, x)+ σ 2

2
(μ(�′)2

+ σ(�′)2)V�
xx (t, x)− λ�h(�

′)
]

� 0. (39)

By (21), we know �̃ is the minimizer of (39). Substituting �̃

into (39) and bringing back to (38) we have

V�(t, x) � E

[
V�(s ∧ τn, X �̃

s∧τn
)

−
∫ s∧τn

t
λ�h(�̃v) dv |X �̃

t = x

]
. (40)

Taking s = T in (40) and sending n to∞, we obtain

V�(t, x) � E

[
V �̃(T , X �̃

T )− λ

∫ T

t
�h(�̃v) dv |X �̃

t = x

]
= V �̃(t, x).

The proof of regularizer log �h is almost the same, so we omit
it. �

Theorem 5.2 Let �0(u; t, x, w) be a feedback control which
has quantile function

Q�0(p) = Q�̂0(p) = a(x− w)+ c1ec2(T−t)h′(1− p), (41)

and {�n(u; t, x, w)} and {�̂n(u; t, x, w)} be the sequence of
feedback controls updated by (35) and (36), respectively.
Denoted by {V�n

(t, x; w)} and {V̂ �̂n
(t, x; w)} the sequence of

corresponding value functions. Then

lim
n→∞�n(·; t, x, w) = �∗(·; t, x, w) weakly,

resp. lim
n→∞ �̂n(·; t, x, w) = �̂∗(·; t, x, w) weakly,

and

lim
n→∞V�n

(t, x; w) = V (t, x; w), (t, x) ∈ [0, T),

resp. lim
n→∞ V̂ �̂n

(t, x; w) = V̂ (t, x; w), (t, x) ∈ [0, T)× R,
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for any (t, x, w) ∈ [0, T]× R× R, where �∗ and �̂∗ in (25)
and (30) are the optimal controls, and V and V̂ are the value
functions given by (24) and (29).

Proof Here we only provide the detailed proof for the case of
�h, and the results of log �h can be derived in the same way.
Let {�0

s } be the open-loop control generated by �0. We can
verify that {�0

s } is admissible. The dynamic of wealth under
�0 is

dX �0

t = ρσμ(�0) dt + σ
√

μ(�0)2 + σ(�0)2 dWt,

X �0

t = x,

and the value function under �0 is

V�0
(t, x) = E

[∫ T

t
−λ�h(�

0
v) dv+ (X �0

T − w)2 |X �0

t = x

]
− (w− z)2.

By Feynman-Kac formula, we deduce that V�0
satisfies the

following PDE

Vt(t, x)+ ρσμ(�0)Vx(t, x)+ 1

2
σ 2(μ(�0)2

+ σ(�0)2)Vxx(t, x)− λ�h(�
0) = 0,

with terminal condition V�0
(T , x) = (x− w)2 − (w− z)2.

Solving this equation we obtain

V�0
(t, x; w) = (x− w)2e(2ρσa+σ 2a2)(T−t) + F0(t),

where F0(t) is a smooth function which only depends
on t. Obviously, V�0

(t, x; w) satisfies the conditions of
Theorem 5.1, so we can use (35) to obtain �1 whose quantile
function is

Q�1(p) = −ρ

σ
(x− w)+ λh′(1− p)

2σ 2e(2ρσa+σ 2a2)(T−t)
,

with

μ(�1) = −ρ

σ
(x− w),

and σ 2(�1) = λ2‖h′‖2
2

4σ 2e2(2ρσa+σ 2a2)(T−t)
.

By repeating the above program with �1, we have

V�1
(t, x; w) = (x− w)2e−ρ2(T−t) + F1(t),

where F1(t) is a smooth function which only depends on
t. Using Theorem 5.1 again we obtain �2 whose quantile
function is

Q�2(p) = −ρ

σ
(x− w)+ λh′(1− p)

2σ 2
eρ2(T−t),

with

μ(�2) = −ρ

σ
(x− w), and σ 2(�2) = λ2‖h′‖2

2

4σ 4
e2ρ2(T−t).

By (25)–(26), we know that �2 is optimal. �

Theorem 5.2 shows that, starting from a given initial
quantile function, the sequence of feedback controls updated
iteratively converges weakly to the optimal control, and the
corresponding value functions also converge. This result not
only justifies the effectiveness of the method but also implies
that, from a learning perspective, such an iterative scheme
can be seen as a stable and convergent policy update process.
In particular, choosing an initial distribution of the form (41)
guarantees convergence of the learning algorithm.

5.2. The EMV algorithm

In this section, we aim to solve (12) and (28) by assuming
that there is no knowledge about the underlying parame-
ters. One method to overcome this problem is to replace
the parameters by their estimations. However, as mentioned
in Introduction, the estimations are usually very sensitive to
the sample. We will give an offline RL algorithm with a
given training data set based on the Actor-Critic algorithm
in Konda and Tsitsiklis (2000), Sutton and Barto (2018) and
Jia and Zhou (2022b). The Actor-Critic algorithm is essen-
tially a policy-based algorithm, but additionally learns the
value function in order to help the policy function learn bet-
ter. Meanwhile, we use a self-correcting scheme in Wang and
Zhou (2020) to learn the Lagrange multiplier w.

Here, we only present the RL algorithm for the case of �h

to solve (12). When using log �h as the regularizer, we only
need to replace �h by log �h and modify the parameterization
appropriately.

In continuous-time setting, we first discretize [0, T] into
N small intervals [ti, ti+1], (i = 0, 1, . . . , N − 1) whose length
is equal to T/N = �t. We use policy gradient principle to
update Actor; and for Critic, Jia and Zhou (2022a) showed
that the time-discretized algorithm converges as �t→ 0 as
long as the corresponding discrete-time algorithms converges,
thus we adopt a learning approach of temporal difference
error (the TD error; see Doya 2000, Jia and Zhou 2022a).
Assume that � is a given admissible feedback policy and let
D = {(ti, xti), i = 0, 1, . . . , N} be a set of samples, the initial
sample is (0, x0), then for i = 1, 2, . . . , N , we sample uti−1 from
�ti−1 and get xti at ti. On the one hand, we have

V�(t, x) = E

[
(X �

T − w)2 − λ

∫ T

t
�h(�s) ds |X �

t = x

]
− (w− z)2,

so the TD error at ti is

δi = −λ�h(�ti)�t + V�(ti+1, Xti+1)− V�(ti, Xti),

i = 0, 1, . . . , N − 1.

On the other hand, based on (24), we can parameterize the
Critic value by

V θ (t, x) = (x− w)2e−θ2(T−t) − θ1(e
θ0(T−t) − 1)− (w− z)2.

This parameterization is well aligned with the inherently
linear-quadratic structure of the mean-variance objective,
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making it both natural and analytically tractable. We fur-
ther assess the robustness of this approach empirically in
section 6.2. For a single point ti, we define the loss function
as

L(θ) = 1

2
(Uti − V θ (ti, Xti))

2, (42)

where Uti is the estimation of V (ti, Xti). We take Uti a boot-
strapping estimate −λ�h(�ti)�t + V θ (ti+1, Xti+1) in (42) as
the temporal difference target which will not generate gradi-
ent to update the value function automatically. So the gradient
of the loss function is

∇θL(θ) = −(−λ�h(�ti)�t + V θ (ti+1, Xti+1)

− V θ (ti, Xti))∇θV θ (ti, Xti). (43)

Let αθ be the learning rate of θ , then by (43), we can get the
gradient and the update rule of θ with a set of sample D :

∇θ = −
N−1∑
i=0

∂V θ

∂θ
(ti, xti)[V

θ (ti+1, xti+1)

− V θ (ti, xti)− λ�h(�
φ
ti )�t], (44)

and

θ ←− θ − αθ∇θ . (45)

Based on Theorem 5.2, we can parameterize the policy by �φ

with quantile function

Q
�

φ
t
(p) = −φ0(x− w)+ e

1
2 φ1+ 1

2 φ2(T−t)h′(1− p).

By Lemma 2.3 of Han et al. (2023), we know that

�h(�
φ
t ) =

∫ 1

0
(−φ0(x− w)+ e

1
2 φ1+ 1

2 φ2(T−t)h′(p)2) dp.

Let g(t, x; φ) = ∇φV�φ

(t, x) be the policy gradient of �φ

and p(t, φ) = �h(�
φ
t ), together with Theorem 5 of Jia and

Zhou (2022b), g(t, x; φ) has the following representation:

g(t, x; φ)

= E

[∫ T

t

{
∂

∂φ
log �̇

φ
t

(
dV�φ (s, X �φ

s )− λp(s, φ) ds
)

− λ
∂p

∂φ
(s, φ) ds

} ∣∣∣X �φ

t = x

]
, (46)

where �̇
φ
t is the density function of �

φ
t . It should be empha-

sized that Theorem 5 in Jia and Zhou (2022b) is valid only
when the support of the exploration distribution is inde-
pendent of φ. In cases where this condition does not hold,
additional terms must be incorporated to capture the effect of
φ on the support set. Let αφ be the learning rate of φ, then
by (46), we can also get the gradient and the update rule of φ

with a set of sample D :

∇φ =
N−1∑
i=0

{
∂

∂φ
log �̇φ(uti |ti, xti)[V

θ (ti+1, xti+1)− V θ (ti, xti)

− λ�h(�
φ
ti )�t]− λ

∂p

∂φ
(ti, xti , φ)�t

}
, (47)

and

φ←− φ − αφ∇φ. (48)

Let αw be the learning rate of w, then by the constraint
E[XT ] = z we can get the standard stochastic approximation
update rule:

wn+1 = wn − αw

⎛⎝ 1

m

j∑
i=j−m+1

x(i)
T − z

⎞⎠ ,

where x(i)
T is the last point of sample i and j ≡ 0 mod m.

We summarize the algorithm as pseudocode in Algorithm 1.

6. Numerical experiments

In this section, we first evaluate the performance of
Algorithm 1 through simulations in section 6.1. We then test
the proposed algorithm on real-world data in section 6.2,
comparing it with traditional plug-in methods and entropy-
regularized reinforcement learning algorithms in Wang and
Zhou (2020).

6.1. Simulation study

In our setting, we consider an investment horizon of T = 1
year with a time step of �t = 1

252 , corresponding to daily
rebalancing over 252 trading days. The number of time grids
is thus N = 252. We set the annualized risk-free rate to r =
2%, while the annualized expected return μ and volatility σ

are selected from {−50%, −30%, −10%, 10%, 30%, 50%}
and {10%, 20%, 30%, 40%}, respectively. Let the initial
wealth to be x0 = 1 and the annualized target return on the
terminal wealth is 40% which yields z = 1.4.

For our algorithm, we take the number of episodes
K = 20000, and take the sample average size for Lagrange
multiplier m = 10. By Proposition 4.6 and Remark 4.8, to
maintain exploration costs at comparable levels, we set the
exploration weight λ to 0.01 when employing �h as the reg-
ularizer, and 0.1 when using log �h as the regularizer. The
learning rates are taken as αθ = αφ = αw = 0.01 with decay
rate l(j) = j−0.51.

Based on Examples 3.1 and 4.1, we mainly investigate the
simulation results for three exploration distributions: Gaus-
sian, exponential distribution and uniform distribution. We
present the mean and the variance of the last 200 terminal
wealth, and the corresponding Sharpe ratio ( mean−1√

variance
). The

simulation results of our algorithm are presented in tables 1–3.
For different values of μ and σ , we take means of every

100 terminal wealth for different h to show the tendency of the
expectation of terminal wealth in figures 1 and 2, respectively.
Although different exploration preferences lead to different
trajectories, the final outcomes are broadly similar: after suf-
ficient iterations, the sample mean still fluctuates around 1.4.
Moreover, the algorithm performs more significantly as |μ|
increases or as σ decreases with other parameters fixed. In
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Algorithm 1 Actor-Critic Algorithm for EMV Problem
Input: initial wealth x0, the parameters (μ, σ , r) of Market, the target z, exploration weight λ, investment horizon T , time step
�t, number of time grids N , learning rates αθ , αφ , αw, number of episodes K, sample average size m, and a simulator of the
market called Market.
Learning procedure: Initialize θ , φ, w.

for episode j = 1 to K do
Initialize n = 0
xtn ← x0

while n < N do
Compute and store ∂

∂θ
V θ (tn, xtn)

Sample utn from �φ(· | tn, xtn).
Compute and store p(tn, xtn , φ).
Compute and store ∂p

∂φ
(tn, xtn , φ).

Compute and store ∂
∂φ

log �̇φ(utn | tn, xtn).
Apply utn to the market simulator and get the state x at next time point.
Store xtn+1 ← x.
n← n+ 1.

end while
Store the terminal wealth x(j)

T ← xtN .
Compute the gradient of θ and φ by (44) and (47), respectively.

∇θ = −
N−1∑
i=0

∂V θ

∂θ
(ti, xti)[V

θ (ti+1, xti+1)− V θ (ti, xti)− λp(ti, xti , φ)�t],

and

∇φ =
N−1∑
i=0

{
∂ log �̇φ

∂φ
(uti | ti, xti)[V

θ (ti+1, xti+1)− V θ (ti, xti)− λp(ti, xti , φ)�t]

− λ
∂p

∂φ
(ti, xti)

}
+ support adjustment term.

Update θ and φ by (45) and (48), respectively.

θ ←− θ − αθ l(j)∇θ

φ←− φ − αφ l(j)∇φ

Update w every m episodes:
if j ≡ 0 mod m then

w← w− αw

⎛⎝ 1

m

j∑
i=j−m+1

x(i)
T − z

⎞⎠ .

end if
end for

addition, when |μ| is small and σ is large relatively, the
performance is bad. This is because larger σ reflects higher
level of randomness of the environment, and at this time the
significance of exploration becomes smaller.

The performance under different λ with Gaussian is shown
in figures 3 and 4. We can see that when ρ2 is relatively
larger, λ has a more significant impact on algorithm perfor-
mance under regularizer �h than log �h. This is consistent
with Remark 4.8. Finally, we show one sample trajectory of
uti under different h in figure 5. As shown, the trajectories

differ across regularizers: the exponential distribution exhibits
a skewed exploration pattern, the normal distribution appears
more symmetric, and the uniform distribution is more concen-
trated. Since our parameters and target settings are the same
as those in Wang and Zhou (2020), we can see that our RL
algorithm based on Choquet regularizations and logarithmic
Choquet regularizers perform on par with the one in Wang
and Zhou (2020). Compared with the results that Gaussian is
always the optimal in Wang and Zhou (2020), the availability
of a large class of Choquet regularizers makes it possible
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Table 1. Performance of Gaussian with h(p) = ∫ p
0 z(1− s) ds.

�h log �h

μ σ Mean Variance Sharpe ratio Mean Variance Sharpe ratio

− 0.5 0.1 1.4052 0.0035 6.8192 1.4052 0.0037 6.6520
− 0.3 0.1 1.4141 0.0103 4.0852 1.4143 0.0104 4.0554
− 0.1 0.1 1.4479 0.1104 1.3482 1.4485 0.1107 1.3482
0.1 0.1 1.3966 0.2516 0.7906 1.3970 0.2571 0.7828
0.3 0.1 1.4052 0.0408 2.0043 1.4055 0.0441 1.9307
0.5 0.1 1.4007 0.0247 2.5722 1.4007 0.0267 2.4519
− 0.5 0.2 1.4078 0.0147 3.3654 1.4077 0.0153 3.2939
− 0.3 0.2 1.4208 0.0458 1.9668 1.4209 0.0464 1.9534
− 0.1 0.2 1.4557 0.5046 0.6416 1.4552 0.5038 0.6413
0.1 0.2 1.3576 0.8506 0.3878 1.3575 0.8643 0.3846
0.3 0.2 1.3967 0.1402 1.0595 1.3966 0.1487 1.0284
0.5 0.2 1.3943 0.0739 1.4506 1.3941 0.0799 1.3945
− 0.5 0.3 1.4118 0.0368 2.1456 1.4117 0.0382 2.1053
− 0.3 0.3 1.4290 0.1201 1.2362 1.4292 0.1221 1.2282
− 0.1 0.3 1.4143 1.0305 0.4081 1.4126 1.0228 0.4080
0.1 0.3 1.2978 1.3627 0.2551 1.2974 1.3796 0.2532
0.3 0.3 1.3887 0.2825 0.7314 1.3884 0.2961 0.7138
0.5 0.3 1.3890 0.1353 1.0574 1.3886 0.1444 1.0225
− 0.5 0.4 1.4171 0.0761 1.5122 1.4169 0.0786 1.4872
− 0.3 0.4 1.4364 0.2507 0.8715 1.4366 0.2539 0.8665
− 0.1 0.4 1.3539 1.4238 0.2966 1.3514 1.4054 0.2965
0.1 0.4 1.2358 1.5370 0.1902 1.2346 1.5465 0.1887
0.3 0.4 1.3801 0.4691 0.5550 1.3797 0.4879 0.5436
0.5 0.4 1.3844 0.2119 0.8351 1.3839 0.2244 0.8103

Table 2. Performance of exponential distribution with h(p) = −p log p.

�h log �h

μ σ Mean Variance Sharpe ratio Mean Variance Sharpe ratio

− 0.5 0.1 1.4081 0.0041 6.3781 1.4105 0.0049 5.8661
− 0.3 0.1 1.4194 0.0109 4.0208 1.4200 0.0132 3.6508
− 0.1 0.1 1.4617 0.1069 1.4119 1.4531 0.1249 1.2822
0.1 0.1 1.3743 0.2063 0.8240 1.3761 0.2493 0.7533
0.3 0.1 1.3979 0.0372 2.0637 1.4039 0.0387 2.0543
0.5 0.1 1.3970 0.0229 2.6243 1.4018 0.0232 2.6370
− 0.5 0.2 1.4144 0.0165 3.2244 1.4150 0.0199 2.9382
− 0.3 0.2 1.4332 0.0475 1.9866 1.4271 0.0571 1.7874
− 0.1 0.2 1.4821 0.4784 0.6970 1.4551 0.5237 0.6289
0.1 0.2 1.3262 0.6552 0.4031 1.3167 0.7928 0.3557
0.3 0.2 1.3853 0.1246 1.0915 1.3934 0.1278 1.1006
0.5 0.2 1.3880 0.0696 1.4713 1.3983 0.0697 1.5090
− 0.5 0.3 1.4228 0.0396 2.1254 1.4184 0.0474 1.9159
− 0.3 0.3 1.4503 0.1213 1.2929 1.4318 0.1409 1.1504
− 0.1 0.3 1.4243 0.8750 0.4536 1.4212 1.0341 0.4143
0.1 0.3 1.2595 0.9949 0.2602 1.2460 1.2313 0.2217
0.3 0.3 1.3767 0.2393 0.7700 1.3802 0.2413 0.7739
0.5 0.3 1.3818 0.1239 1.0847 1.3923 0.1223 1.1219
− 0.5 0.4 1.4334 0.0771 1.5610 1.4207 0.0914 1.3916
− 0.3 0.4 1.4671 0.2474 0.9390 1.4344 0.2741 0.8298
− 0.1 0.4 1.2964 0.8256 0.3263 1.3428 1.1752 0.3162
0.1 0.4 1.1885 1.0576 0.1833 1.1782 1.3137 0.1555
0.3 0.4 1.3691 0.3772 0.6010 1.3656 0.3720 0.5994
0.5 0.4 1.3777 0.1872 0.8729 1.3849 0.1797 0.9080

to choose specific regularizers to achieve certain objective
used exploratory samplers such as exponential, uniform and
Gaussian.

6.2. Real data analysis

Unlike simulations, empirical analysis requires more practical
considerations and methodological adjustments. Following

the approach in Huang et al. (2022), we set up our empiri-
cal analysis as follows. First, since the trading occurs after
we observe the stock price at the trading moment, we can-
not update the parameters after observing the data for a
whole year. Thus, the algorithm must be adapted for online
updating to reflect real-time decision-making. Second, explo-
ration increases variance, and since wealth dynamics are fully
determined by observed stock prices, we can track wealth
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Table 3. Performance of uniform distribution with h(p) = p− p2.

�h log �h

μ σ Mean Variance Sharpe ratio Mean Variance Sharpe ratio

− 0.5 0.1 1.4100 0.0028 7.8029 1.4100 0.0033 7.1396
− 0.3 0.1 1.4214 0.0093 4.3755 1.4197 0.0111 3.9871
− 0.1 0.1 1.4632 0.1042 1.4352 1.4530 0.1203 1.3059
0.1 0.1 1.3859 0.1848 0.8977 1.3744 0.2374 0.7684
0.3 0.1 1.4049 0.0204 2.8296 1.4033 0.0243 2.5886
0.5 0.1 1.4015 0.0101 3.9945 1.4010 0.0113 3.7791
− 0.5 0.2 1.4171 0.0117 3.8522 1.4145 0.0140 3.4981
− 0.3 0.2 1.4361 0.0414 2.1422 1.4267 0.0485 1.9384
− 0.1 0.2 1.4834 0.4646 0.7093 1.4548 0.5042 0.6405
0.1 0.2 1.3493 0.6026 0.4499 1.3115 0.7657 0.3560
0.3 0.2 1.4007 0.0799 1.4174 1.3911 0.0935 1.2786
0.5 0.2 1.3995 0.0370 2.0771 1.3958 0.0415 1.9428
− 0.5 0.3 1.4260 0.0292 2.4917 1.4180 0.0345 2.2490
− 0.3 0.3 1.4537 0.1079 1.3812 1.4317 0.1209 1.2416
− 0.1 0.3 1.4225 0.8272 0.4645 1.4203 0.9898 0.4225
0.1 0.3 1.2918 0.9498 0.2994 1.2374 1.1943 0.2172
0.3 0.3 1.3985 0.1768 0.9477 1.3762 0.2017 0.8377
0.5 0.3 1.3987 0.0785 1.4232 1.3883 0.0868 1.3180
− 0.5 0.4 1.4367 0.0593 1.7931 1.4207 0.0680 1.6135
− 0.3 0.4 1.4708 0.2236 0.9955 1.4347 0.2376 0.8918
− 0.1 0.4 1.2928 0.7377 0.3409 1.3401 1.1045 0.3235
0.1 0.4 1.2258 1.0429 0.2211 1.1673 1.2627 0.1488
0.3 0.4 1.3957 0.3079 0.7131 1.3598 0.3418 0.6153
0.5 0.4 1.3986 0.1339 1.0891 1.3794 0.1449 0.9967

Figure 1. The effect of μ and σ on the exploration for the regularizer log �h.
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Figure 2. The effect of μ and σ on the exploration for the regularizer �h.

evolution without actually executing any specific investment
policy. Gradient estimation requires stochastic policies, but
the expected value of these policies corresponds to the opti-
mal deterministic policy at each point in time. Therefore,
we train using stochastic policies and execute investments
using their deterministic counterparts. This constitutes a form
of off-policy learning. Third, real financial markets are sub-
ject to various sources of data instability, such as regime
shifts, natural disasters, and economic fluctuations. Conse-
quently, we avoid techniques like sample reuse, which are
effective in controlled simulations but may introduce bias in
empirical settings. Instead, we employ mini-batch updates to
reduce the variance in gradient estimates. Finally, prior to
the backtesting phase, we perform pre-training using histor-
ical data from before the test period to provide a stable initial
model.

We obtain daily adjusted closing prices for 50 U.S. equi-
ties spanning the period from 1990 to 2019 via the Yahoo
Finance API using Python. These publicly available data
are used exclusively for academic research. Among them,
the data from 1990 to 1999 is used for pre-training, and
the data from 2000 to 2019 is used for backtesting. Each
time we select one stock and repeat the experiment 50 times
to collect statistics. In each experiment, the initial wealth
is set to 1, and the investment horizen is fixed at one
year (T = 1). We then conducted continuous backtesting for

20 years. The S&P 500 Index began at a level of 359.69
at the start of 1990 and rose to 1464.47 by the end of
1999. The annualized return over this 10-year period is cal-
culated using the compound annual growth rate (CAGR)
formula:

CAGR =
(

1464.47

359.69

) 1
10

− 1 ≈ 0.1507.

This implies that the S&P 500 Index achieved an approxi-
mate annualized return of 15.07% from 1990 to 1999, and
we accordingly set the target return to 15%. In our model,
investors are assumed to be price takers. Taking into account
practical considerations such as taxes and transaction costs,
low-frequency trading is more appropriate. Therefore, we
adopt a monthly rebalancing schedule.

We compare the performance of three different forms of the
distortion function h under the Choquet regularizer, as well
as the performance of the logarithmic Choquet regularizer.
In addition, we benchmark these results against the classical
plug-in policy. As noted in Remark 4.3, the logarithmic Cho-
quet regularizer encompasses Shannon entropy as a special
case under a specific choice of the distortion function. Conse-
quently, under normal exploration, the results obtained using
the log-Choquet regularizer correspond to the results using
entropy regularizer in Wang and Zhou (2020).



Exploratory mean-variance portfolio selection with Choquet regularizers 17

Figure 3. The effect of λ on the exploration for the regularizer log �h.

Following Huang et al. (2022), we first consider the case
with a leverage constraint, where borrowing is not permit-
ted. We also explore the scenario without this constraint.
The average wealth trajectories with leverage constraint under
different regularizers are reported in figures 6 and 7. And
the average wealth trajectories without leverage constraint
under different regularizers are reported in figures 8 and 9.
Note that the plug-in method is excessively sensitive to
historical data, particularly in the presence of extreme val-
ues. This often results in overly aggressive strategies that,
without leverage constraints, produce highly volatile wealth
trajectories. As these trajectories offer limited interpretive
value, we omit them from the figures. Summary statistics,
including the annualized return (AR), the annualized volatil-
ity (AV) and the Sharpe ratio (SR) are reported in tables 4
and 5.

Based on the figures and tables, we summarize our main
findings as follows. First, by comparing figures 6 and 7, or
figures 8 and 9, we observe that choosing the log-form Cho-
quet regularization or using the non-log version has minimal
impact on the algorithm’s performance. The results under
both types of regularizers are highly similar, which is consis-
tent with our simulation findings. This observation is further
supported by the summary statistics in tables 4 and 5, where
the performance metrics under the two regularizers are nearly
identical when the same exploration distribution is used.

Second, unlike the simulation study in section 6.1 where
the stock price has a fixed growth trend, when leverage
constraints are absent, exploration based on the exponen-
tial distribution leads to slightly faster wealth accumulation
after the financial crisis and a higher average terminal wealth.
This behavior is attributable to the asymmetric and heavy-
tailed characteristics of the exponential distribution, which
allows for broader exploration at larger investment levels.
When the stock price shifts from a decline to an increase,
this leads to faster wealth growth. However, as shown in
figures 8 and 9, it also lead to a sharper decline in wealth
under adverse market conditions, such as the financial crisis.
Since the result obtained with the logarithmic Choquet reg-
ularizer correspond to the result with entropy regularizer in
Wang and Zhou (2020), by adopting alternative forms of the
distortion function h, our Choquet regularization framework
exhibits more flexibility. From this perspective, the Choquet
regularizer demonstrates superior robustness and adaptability
compared to Shannon’s differential entropy.

Third, the limited exploration range of the uniform distri-
bution, as well as the lower bound inherent in the exponential
distribution, result in faster wealth accumulation compared
to the normal distribution. This is because negative invest-
ment exploration reduces returns during economic upswings.
This behavior is also evident in the empirical analysis: during
the pronounced bull market from 2010 to 2020, exploration
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Figure 4. The effect of λ on the exploration for the regularizer �h.

Figure 5. Samples of uti for the regularizer log �h and �h.

based on the exponential distribution and uniform distribution
exhibited faster growth in wealth.

Finally, after imposing the leverage constraint, the explo-
ration policy based on the exponential distribution exhibits
the most pronounced change, reflecting the heavier tail
characteristics of the exponential distribution compared to
others. Despite this adjustment, its overall performance
remains superior to that of the plug-in method, thereby
demonstrating the robustness of our algorithm.

7. Conclusion

For the first time, we applied the Choquet-regularized
continuous-time RL framework proposed by Han et al. (2023)
to practical problems. We studied the MV problem under Cho-
quet regularization and its logarithmic form. Several different
optimal exploration distributions of different h were given,
and when ‖h′‖2 is fixed, the optimal exploration distributions
have the same mean and variance. Unlike the infinite time
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Figure 6. The average wealth trajectory under �h with leverage constraint from 2000 to 2020.

Figure 7. The average wealth trajectory under log �h with leverage constraint from 2000 to 2020.

Figure 8. The average wealth trajectory under �h without leverage constraint from 2000 to 2020.
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Figure 9. The average wealth trajectory under log �h without leverage constraint from 2000 to 2020.

Table 4. Performance with leverage constraint.

�h log �h

Plug-in Normal Uniform Exponential Normal Uniform Exponential

AR 0.0913 0.1136 0.1149 0.1182 0.1132 0.1149 0.1151
AV 0.1407 0.1590 0.1630 0.1628 0.1597 0.1630 0.1634
SR 0.6487 0.7146 0.7049 0.7260 0.7090 0.7049 0.7043

Table 5. Performance without leverage constraint.

�h log �h

Normal Uniform Exponential Normal Uniform Exponential

AR 0.1372 0.1441 0.1511 0.1373 0.1441 0.1511
AV 1.4240 2.4765 1.2660 1.4186 2.4801 0.2655
SR 0.0963 0.0582 0.1193 0.0968 0.0581 0.1194

horizon results in Han et al. (2023), the variance decreases
over time in the finite time horizon problem. At the same
time, the mean of the optimal exploration distribution is
related to the current state x and independent of λ and h,
which is equal to the optimal action of the classical MV
problem. The variance of the optimal exploration distribu-
tion is related to λ and h and independent of state x, and
even independent of h under logarithmic regularization. These
also showed the perfect separation between exploitation and
exploration in the mean and variance of the optimal distribu-
tions as in Wang and Zhou (2020) when entropy is used as a
regularizer.

Further, we have obtained that the two regularization prob-
lems converge to the traditional MV problem, and compared
the exploration costs of the two regularizations. We found
that the exploration cost under the logarithmic Choquet reg-
ularization is consistent with the exploration cost under the
entropy regularization, only related to λ and time range T,
while the exploration cost under Choquet regularization is
also related to market parameters. Through simulation, we
compared the two kinds of regularization. In general, when

the market fluctuates greatly and the willingness to explore
is not strong, the cost of Choquet regularization is lower.
On the contrary, it may be better to use logarithmic Choquet
regularizers for regularization.

There remain several open questions to address. Firstly, we
currently treat λ as an exogenous variable. However, from
the perspective of exploration cost, turning λ into endoge-
nous and changeable can help us better control the exploration
cost. As time goes by, the information we obtain through
exploration will also increase, so the willingness to explore
will also change, which also implies the rationality of the
changing λ to time-related. Secondly, investigating stochas-
tic differential games within the mean-variance framework
using reinforcement learning presents an intriguing avenue for
exploration. Thirdly, the current Choquet integral is limited
to handling one-dimensional action spaces. Extending Cho-
quet regularization to high-dimensional settings remains an
open challenge. As discussed in Han et al. (2023), joint and
marginal-based constructions offer two promising directions,
and a comprehensive theoretical study along these lines is left
for future research.
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