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Uniqueness in determining rectangular grating profiles with a single incoming
wave (Part Il): TM polarization case *

Jianli Xiang' and Guanghui Hu ¥

Abstract. This paper is concerned with an inverse transmission problem for recovering the shape of a penetrable
rectangular grating sitting on a perfectly conducting plate. We consider a general transmission
problem with the coefficient A % 1 which covers the TM polarization case. It is proved that a
rectangular grating profile can be uniquely determined by the near-field observation data incited by
a single plane wave and measured on a line segment above the grating. In comparision with the TE
case (A = 1), the wave field cannot lie in H 2 around each corner point, bringing essential difficulties
in proving uniqueness with one plane wave. Our approach relies on singularity analysis for Helmholtz
transmission problems in a right-corner domain and also provides an alternative idea for treating the
TE transmission conditions which were considered in the authors’ previous work [Inverse Problem,
39 (2023): 055004.]

Key words. inverse scattering, penetrable rectangular grating, uniqueness, transmission conditions, TM polar-
ization case.
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1. Introduction and main result. Consider the time-harmonic electromagnetic scattering
of a plane wave from a penetrable rectangular grating which remains invariant along one
surface direction x3. The diffractive grating is supposed to sit on the perfectly conducting
substrate o < 0. In TE and TM polarization cases, the wave scattering can be modeled
by a transmission problem for the Helmholtz equation over the oxxo-plane with a boundary
condition on xo = 0 and an appropriate radiation condition as zo — oo. In this paper
the medium above the grating profile is supposed to be isotropic and homogeneous. For
rectangular gratings, the cross-section A of the grating surface in the oxizo-plane consists of
line segments that are perpendicular to either the z; or xo-axis. More precisely, we define a
set A of the so-called rectangular grating profiles by (see Figure 1)

A= {A | A is a non-self-intersecting curve in Ri which is 27-periodic in z1,

A is piecewise linear and any linear part is parallel to the x1- or xg—axis}.

Note that A € A cannot contain any crack, for instance, a line segment intersecting the
other part of A at one ending point. The rectangular gratings defined above include the
class of binary gratings, whose grooves have the same height. Denote by QX the unbounded
periodic domain above A, that is, the component of Ri separated by A which is connected
to 9 = +oo. Let Q) be the periodic domain below A but above the substrate x5 = 0. Let
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v = (v1,12) € S:= {z € R? : |2| = 1} be the normal direction at A pointing into 2}. Suppose
that a plane wave in the (x1, z2)-plane given by

u'(z1,29) = glomi—ibre o = ki sinf, B =k cosf

with some incident angle § € (—n/2,7/2) and wave number k; > 0, is incident upon the
grating A from the top. Consider a general transmission problem for finding the total field
u = u(z1,x2) such that

([ Au+ k2u = 0, in Qj{,
Au + k3u =0, in Q,
(1.1) ut=u", fu=A0, u, on A,
u=u"+u’, in Qj{,
d,u =0, on I,

\

with the following radiation condition as xo — 4-00:

(1.2) ub(r) = u—u' = ZA" glon@1+ifnT2 in o > A" := max .
) (z1,22)EA

In (1.1), we have k; > 0 for j = 1,2, k1 # ka2, A > 0,A # 1, o :=n + v and

k? — a2 if || < ki,
ivaz —k¥ if |an| > k.

The notation (-)* stand for the limits of u and d,u on A obtained from above (+) or below
(=) and Ty = {(z1,H) : 0 < 1 < 27} for H € R. Note that the TM polarization case
corresponds to the special case that A = (ki/k2)?. The expansion in (1.2) is the well-known
Rayleigh expansion (see e.g. [10, 17, 19]), A,, € C are called Rayleigh coefficients. The series
(1.2) together with their derivatives are uniform convergent in any compact set in zo > AT,
because u € HL(Sg) (see below for the definition) and the scattered fields consist of infinitely
many surface waves which exponentially decay as zo — +00. We will look for weak solutions
to (1.1)—(1.2) in the a-quasiperiodic Sobolev space

Bn =

HX(SH) = {u € H,(Su), e "1 is 2r-periodic in z },

with Sy := {# € R? : 0 < 2y < H} for any H > A*. Note that, since we are interested in
quasi-periodic solutions, the notations Qf, A, Spr and T'y always denote the corresponding sets
in one periodicity cell 0 < x1 < 27. Uniqueness, existence and regularity results on solutions
to the forward scattering problem will be summarized as follows.

Proposition 1.1. (i) There eists at least one solution u € H}(Sg) to the forward scat-
tering problem (1.1)-(1.2), where H > AT is arbitrary. Moreover, uniqueness holds true if
k3 > \k3.
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Figure 1. Rectangular periodic structures.

(ii) Letu € HL(Sy) be a solution to the forward scattering problem (1.1)-(1.2) corresponding
to some rectangular grating A € A. Then we have uw € HY™(Sy)NHZ(S%) for any s € [0,1/2),

where Sli{ = SN Qf\: Moreover, u is real-analytic on S}; and Sy except at the finite number
of corner points of A.

Uniqueness and existence of the above transmission problem have been sufficiently inves-
tigated in the literature by applying the Dirichlet-to-Neumann map; see e.g., [1, 2, 4, 9] in
periodic structures. In particular, the uniqueness proof for rectangular gratings with the con-
dition k? > )\kzg follows directly from the authors’ previous paper [11, Appendix]. If k% > )\kzg
does not hold, guided bloch waves might exist and additional constraint should be imposed on
the total field to ensure uniqueness; see the recent publication [12] for a sharp radiation con-
dition derived from the limiting absorption principle under the Dirichlet boundary condition.
The second assertion, which states smoothness of the solution around a corner point and up
to a flat interface, follows from standard elliptic regularity result for interface problems in a
right-corner domain; see e.g., in [9, 14, 15, 18, 20]. We refer to the Appendix of this paper for
the proof of Proposition 1.1.

Now we formulate the inverse problem with a single measurement data above the grating.

(IP): Let H > A" be a fixed constant and suppose u = u(zy,72) is a solution to the
direct problem (1.1)—(1.2). Given the transmission coefficient A\ > 0 (# 1) and the
wavenumbers ki and ko, determine the periodic interface A € A from knowledge of
the near-field data u(zy, H) for all 0 < z7 < 2.

The main uniqueness result of this paper is stated as follows.

Theorem 1.2. Let uy and ug be solutions to the direct diffraction problem (1.1)-(1.2) cor-
responding to (A1, k1, ke, ) and (Mg, k1, ko, \), respectively. If
(1.3) ui(xy, H) = ug(xq, H) for all z € (0,27),

where H > max{A{, AT} is a fived constant, then Ay = As.

It is well-known that a general grating profile cannot be uniquely determined by one plane wave

in a lossless media. In the literature there are uniqueness results using many incoming waves of

different kinds, for instance, quasiperiodic waves with the same phase-shift [13], fixed-direction
3
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multifrequency plane waves [10] and fixed-frequency multi-direction plane waves [24]. Binary
gratings have very important applications in industry, because they can be easily fabricated
[22, 23]. The inverse problem of identifying parameters of binary gratings plays a major role
in quality control and optimal design of diffractive elements with prescribed far field patterns
[1, 5, 9]. In the authors’ previous work [11], a global uniqueness result in the TE polarization
case (i.e., A = 1) was verified. The approach of [11] was based on the singularity analysis of an
overdetermined Cauchy problem for an inhomogeneous Laplacian equation in a corner domain.
If A # 1, the wave field cannot lie in H? around each corner point. This weaker smoothness
gives rise to essential difficulties in carrying out approach of [11] to the transmission conditions
with X\ # 1. The aim of this paper is to develop a different approach for proving Theorem
1.2. Numerically, optimization-based iterative schemes are usually utilized for solving the
inverse problem. One may conclude from Theorem 1.2 that the global minimizer of the object
functional within the class of rectangular gratings is unique. The proof of Theorem 1.2 also
implies that wave fields must be singular (that is, non-analytic) at the corner point.

2. Preliminary lemmas. The singularity analysis seems natural for justifying uniqueness
to inverse scattering from penetrable scatterers whose boundary contains corner points; see
e.g. [6, 7, 11] where the TE transmission conditions (i.e., A = 1) were considered. As will
be seen later, the TM case appears quite different from the TE case. In this section, we
prepare several lemmas for the proof of Theorem 1.2. They are mostly motivated by the
papers [6, 7, 11], but are interesting on their own right. Throughout the whole paper, we let
(r,0) be the polar coordinates of x = (x1,z2) in R?, and let Bg denote the disk centered at
origin with radius R > 0. The corner domains €, and the line segments IIy (¢ = 1,2) are
defined as (see Figure 2):

Q:={(r0):0<r<R,0<60<3m/2}, I :={(r,0):0<r<R}
Qy:={(r,0):0<r<R, —7/2<0<0}, Iy:={(r,37/2):0<r <R}

T2

0

Qs

Figure 2. Illustration of two domains Q¢ and two line segments II, (¢ =1,2).
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Lemma 2.1. Let q1 and g2 be two constants in Br and let \ be a positive constant. Suppose
that uy and ug satisfy the Helmholtz equations

Aup+qup =0 in Br, £=1,2
subject to the transmission conditions
du _ \Ous
ov ov
If 1 # q2 and X\ # 1, then uy = us = 0 in Bp.

Proof. Recalling the Taylor expansion of analytic solutions of the Helmholtz equation (see
[7, 8]), we have

(21) Ul = U9, on II; UIl,.

ug(r,0) = Z prtm (a%)m cos(nf) + b%)m sin(n@)), for 0 <r <R,
n,meN:n+2m>0

where the coefficients a% ), and b,(f ). fulfill the recurrence relations

99) &  — —a 0 B0 & b{),, ¥ n,m € N.
(2:2) @njnia Am+ D(n+m+ 1) mm Onmtl = g Ny m 1) e
The transmission conditions in (2.1) are equivalent to the four relations:
n+2m=lI n+2m=lI n+2m=lI n+2m=lI
YDICTID SIS SN SR
n,meN n,meN n,meN n,meN
n+2m=I n—+2m=I
[an{zn cos(nm/2) — bnlgn sin(nm/2)] = Z [an%Zn cos(nm/2) — bg’zn sin(nm/2)],
n,meN n,meN
n+2m=lI n+2m=lI
Z n [anl,zn sin(nm/2) + b,(ilzn cos(nm/2)] = A Z n [a,(fzn sin(nm/2) + bg??n cos(nm/2)].
n,meN n,meN

Case One: n = 2k + 1 for some k € N. In this case the transmission conditions can be
simplified to be
2)

1) _
> Aokt1,m = > A9k+1,m>
2k+142m=l 2k+142m=l

1 2
Y @k+D)(DRay) =AY @k DD ab .
2k+142m=I 2k+1+2m=lI

(2.3)

1 2
> (2k+ l)bgk)JrLm =X > (2k+ 1)b;k)+1,m’
2k+1+2m=1 2t 1+2m=l

k (1) _ k 1 (2)
(_1) bzk+1,m* Z (_1) bZk+1,m'
2k+1+2m=l 2k+1+2m=I

5

(2.4)
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It suffices to show ag{)“ o= b;k)ﬂ m =0foralkmeN, (=12

We first consider the case: | = 2k + 1+ 2m = 1, that is k = 0, m = 0. From (2.3) and
(2.4) we deduce that

1) _ 2
1 aq

(1
0= 1

)

2 1 2 1 2
=Jaig: Mg =N bp =0

O —

)
a 0 a

Since A # 1, we obtain ag()) = gg = bgl()) = bgz()) = 0. By the recurrence relation (2.2), we have

o) =o) =0forallmeN, =12
We carry out the proof by induction. Supposing for some M € N that

(25) i = A =00 B =05, =0, for k<M, kmeN

We need to prove the above relations in (2.5) with M replaced by M + 1. For this purpose,
it is sufficient to verify

1 2 1
ag]\)/1+3,o = aéz\)ﬂ?,,o =0, bél\)/l—i—?» 0= bé]\)/l—i—?» 0o=0.

Setting [ = 2k+1+42m = 2M + 3 in (2.3) and (2.4) and using the relations in (2.5), we obtain

1 2 1 2 1 1 2
aéz\)us 0= aé]\)4+3 0’ a;z\)us,o = )‘agl\)d+3 0’ bé]\)4+3,0 = )‘bgz\)us,o’ béz\)us,o = bé]\)4+3,0'
Again using A # 1 yields agll\)/[+370 = ag21\)/[+370 = b;\)/ﬂrs,o = bg21\)/[+370 = 0. Consequently, we
achieve that ag{)ﬂ = bg{)ﬂ =0forallk,meN,=1,2

Case Two: n = 2k for k € N. It then follows from the transmission conditions that

(2.6) Soay. = > Gl S onFay, = > (—DFay,,

2k+2m=l 2k+2m=l 2k+2m=l 2k+2m=l

2k+-2m=l 2k+2m=l 2k+-2m=l 2k+2m= l

Suppose | := k+m = 0, that is k = 0, m = 0. From the relation (2.6), we obtain
él()) = aéz()) Then we set [ = k+m = 1 in (2.6) and (2.7), that isk = 1, m = 0 or k = 0,
= 1. This gives the relations bg()] = )\b;?()] and

1 1 2 2 1 1 2 2
afy +af) = agy +af,  —ayg+ag) = —agy +af,
which imply that a((] % = a(()Qi and ag()) = g()) Since a(()l()] a(()?()], a(()g = aéﬂ, a((f)l = —‘ffa((f% and

q1 # o2, we obtain that
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Set | =k+4m = 2in (2.6) and (2.7), that isk =2, m =0or k=1, m =1 or k = 0,
m = 2, we have

1 1 2 2 1 1 2 2
frefl-afeal [ B -3l
1 1 2 2 1 1 2 2
RO SO R (P ST
which lead to that
1 2 1 2 1 2 1 2
afo = aly, apy =aby; b =MbY, bo) =MbY
Since agg = a%, agi = ag, agi)l = —%ag% and ¢ # ¢, we conclude that
agzn = agi)n =0, VmeN.
Since bg()) = )\b%, bgli = )\bg and bgﬁ = —%bg%, we arrive at
1 2 q1,(1 qz2 (2 q2 —q1,(2
0= by — b = —5bby + ATSbE0 = AT by

That is bg()) =0 for g2 # q1, A # 0. By the recurrence relation (2.2), we conclude

) =b?) =0, VmeN.

2m — Y2m =
We shall finish the proof by induction. Supposing for some M € N that

(2.8) “g«)—m = agi)_lm =0, ag\)/m = ag\)/m, for 1<k<M, meN;

(2.9) DS g0 = b5 0 =0, bSiyo = Absay, for 1<k<M, meN.

We need to prove all relations in (2.8) and (2.9) with M replaced by M + 1. For this purpose,
it is sufficient to verify

W @ g 0

2 1
Aonr,0 = Aanr,0 = A(M+1),0 o ; oSy

2 1 2
= Ay(M+1),00 2M,0 = bé]\)/[,o =0, bg]\)/1+2,o = )‘bél\)/H—Z,O'

Setting [ =k +m = M + 1 in (2.6) and using (2.8), we obtain

(1) n _ 2 (2) 1) L _ (2 (2
Aym+1),0 T %nr1 = %41y,0 T %201 Ay(M+1),0 ~ Y2m1 = Yom41),0 — Pemine

. 1 2 1 2 . 1 2 1 2
That is, ag(guﬂ),o = aé&wﬂ),o and ag]\)/[,l = aé]\)/[,l' Since aé]\)m = aé]\)/[,h ag]\)/[,o = aéz\)m’

agl;\)/“ = 4(21/‘[1%)&%\)/[0 and q; # qo, it follows that aglj\)/lo ag\)/lo = 0. Similarly, setting

I=k+m=DM+1in (2.7) and using (2.9) will lead to bgl&wﬂ) 0= )‘b;2(g\/[+1) o and bg\)ﬂ] =
b2

90 = 0. u
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In our uniqueness proof, we need a weak version of Lemma 2.1, which is stated below.
Lemma 2.2. Suppose p1(r,0) =0 in Q1 and p1(r,0) = p € C,p # 0 in Qo. Let vy, vo be
solutions to

Avy +E*(1 4+ p)vy =0, Avy+k?vy =0 in Bg,

subject to the transmission conditions (2.1). Then vy = vy =0 in Bpg.

Proof. Set ¢1 := k:2(1 + p1) in Q9. Since the Cauchy data of vy are analytic on IT; U Ils,
the Cauchy data of v; are also analytic there by the transmission boundary conditions. Since
vp is analytic in Q9, by the Cauchy-Kowalewski theorem in a piecewise analytic domain (see
[16, Lemma 2.1]), the function v; can be analytically extended from 5 to a full neighboring
area of the corner as a solution of the Helmholtz equation Aw; 4+ ¢giw; = 0, where wy denotes
the extended solution. Now applying Lemma 2.1 to w; and vy gives w; = vo = 0 near the
origin. This together with the unique continuation leads to v; = v9 = 0 in Bg. |

To investigate the regularity of solutions to the Helmholtz equation in a corner domain,
we consider the transmission problem

(2.10) { Auyp + k?'lu =0, in Qp,

up =ug, Oyu; = Ad,uz, on I,

where ky (¢ = 1,2) are constants satisfying k1 # ko and the unit normal vector v at Il is
supposed to point into 7. To rewrite the system (2.10) into a divergence form, we define

N L 1, in Ql, N L k%, in Ql, N L uy, in Ql,
a(0) { A, in Qo #(0) { AK2,  in Qo a(r,0) { uy, in Q.

Then the transmission problem (2.10) can be equivalently written as
V- (a(@)Va) + ~(@)a =0 in Bg.
By a decomposition theorem (see e.g., [9, 21, 20]), one obtains
m
=+ chr"jgpj(é?)(lnr)pj in Bg, p;€{0,1,---},
j=1

where @ € H?(Q) (¢ = 1,2) and n; € (0,1) are eigenvalues of the following positive definite
Sturm-Liouville eigenvalue problem:

P1(0)+2ei(0) =0, 0€(0,31/2)U(~x/2,0),
(2.11) 0;,+(0) = ¢;,_(0), 5 (0) = Ap, _(0),
0i(37/2) = oi(—n/2),  &(3n/2) = Mg (~/2).

In (2.11), the subscripts '+’ and '—’ denote the limits from ©; and g, respectively. It is
obvious that 79 = 0 is an eigenvalue with the eigenfunction ¢; 4+ = C € C. A general solution
8
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to (2.11) takes the form

+ ) + o '
(2.12) 0i(0) = { A{ cos(n;0) + B{ s?n(njé?), 6 € (0,37/2),
A} cos(n;0) + By sin(n6), 6 € (~7/2,0),

where the non-vanishing coefficients A]i, Bji are uniquely determined by the transmission
conditions through a homogeneous 4-by-4 algebraic system. Lengthy calculations give the
first positive eigenvalue (see Appendix)

1 (_)\2+6)\+1)>

2
2.13 = — _ —
(2.13) 7 = —arccos TEEEE 3

which yields the leading singularity of @ around the origin.

Lemma 2.3. For 6 € [0, 7], we have ©;(8) = ¢;(0 + 7/2) if and only if n; = 4N; ¢;(0) +
;i (0 +7/2) =0 if and only if nj = 4N + 2. Here N € N.

Proof. Recalling the expression of ¢;(f) in (2.12), we have
i@ +7/2) = A;L cos(n; (0 +7/2)) + B]?L sin(n; (0 +7/2)), 6 € [0,n].
For n; = 4N, we obtain
i@ +7/2) = A;L cos(4N6) + B;f sin(4N0) = ¢;(0).
If n; = 4N + 2, then
i@ +7/2) = —A;r cos((4N +2)0) — B;f sin((4N +2)0) = —p;(0).

Conversely, if ¢;(0) = ¢;(0 + 7/2) for 6§ € [0,7], then n; # 4N + 2. In the following, we
only need to show that the eigenvalue 7; can’t be a fractional number which implies n; = 4N.
Setting # = 0 and 6 = 7 in the equality ¢;(0) = ¢;(0 + 7/2) yields

1 — cos(m;/2) — sin(mn;/2) A;r A
cos(mn;) — cos(3mn;/2) sin(mn;) — sin(37n;/2) B;-L N0 )
By simple calculation,

1 — cos(mn;/2) —sin(mn;/2)
cos(mn;) — cos(3mn;/2) sin(mn;) — sin(37n;/2)

‘ = 2sin(mn;)[1 — cos(mn;/2)],

which cannot vanish when 7; is a fractional number. Hence, A;r = B;r = 0, which is impossi-
ble.

Similarly, if ¢;(0) + ¢;(0 + 7/2) = 0 for § € [0, 7], then n; # 4N. To show that the
eigenvalue 7); can’t be a fractional number, we take § = 0 and 6 = 7 in the equality ¢;(6) +
©;(0 +m/2) = 0. It then follows the linear system

< Cos@;ffﬁlffgg/fgjm) Sm(mji;;fg;@w) ) ( gi ) - ( 8 ) |

This manuscript is for review purposes only.



In this case the determinant of coefficient matrix is given by 2sin(mn;) [1 + cos(mn;/2)], which
does not vanish when 7; is a fractional number. Hence, 7; = 4N + 2 for some N € N. |

In the subsequent sections, we normalize the eigenfunctions in L?(—7/2,37/2), that is,

©o(0) = 1/v/27 and

3m/2 3m/2 1 if j =1
(02, — , e[ =
[ e@ra =1 [ o0t = b {o #520

Then, we make an ansatz on the solution 4 to (2.10) of the form

(2.14) a(r,0) =Y aei(0)+ > ei(r)p;(0), a;€C,

520 >0

where the second term is required to satisfy the inhomogeneous equation

SOV - [al0)V(es(r)e;(0))] = £(r,0),

J=0
with f(r,0) := —&(0)u(r,0) in Bg. Since a(f) is a piecewise constant function, it holds that
1 ANV 77]2 . f(T', 0)
j=0

Multiplying ¢;(0) to both sides of the above equation and integrating over (—m /2,37 /2) with
respect to 0 yields

1. .,
Lrep) — Be; = (),
where
0 3m/2
(215 500 == [ K 00000~ [ k00,00
—/2 0

An explicit expression of e; is given by (see e.g., [3])

r —

rhi 1, r— " r 1n; .
ej(r) = — fi(s)s ~Mids — fi(s)s'™ids for j >0, 0<rg <.
205 Jro)2 205 Jo
In the special case j = 0, one has
016 Lot = pe) = [ e on - [ Ko
. —(reg(r)) = fo(r) = —— ug (7, — uq (7, )

Straight forward calculations yield the leading terms of fy and eg.
Lemma 2.4. Let up = u1(0O) = u2(0). we have

™ UQ m Uo
= —= (k3 + 3k ) —= +o(1 = —= (k3 + 3kt 2 2 0.
folr) = =5 (K + 34 ) Z o), eolr) = — G (K +34) L +00%), as v

10
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3. Proof of Theorem 1.2. From the coincidence of u; and us on 'y, we obtain u; = us
in x9 > H. The unique continuation of solutions to the Helmholtz equation leads to

(3.1) ui(z1,22) = ug(xy, o) forall x € QXl N QL.

Assume on the contrary that A; # Ay. Switching the notations for A1 and As if necessary, we
only need to consider the following cases:

e Case one: there exists a corner point O of A; such that O € QXZ (see Figure 3);

e Case two: all corners of A; and Ag coincide but Ay # As (see Figure 4);

e Case three: there exists a corner point O of As lying on Ay, but O is not a corner of

A; (see Figure 5).

Obviously, the corners of A; and Ay do not coincide completely in the first and last cases.
Using coordinate translation, we suppose that the corner O is located at the origin. Below we
shall prove that neither of previous three cases occurs. This contraction yields Ay = As.

3.1. Case one. Choose R > 0 such that Br C QL. Since the corner point O € QL

Br N QXI
Ger |
ROQAl
Ao

Figure 3. Case one: there exists a corner point O of A1 such that O € Qj{z.

stays away from Ao, the function us satisfies the Helmholtz equation with the wave number
k1 in Bg, while u; fulfills the Helmholtz equation with the variable potential k%(1+ p;). Here,
p1(z) is a piecewise constant function defined by

@ { 0, in BpNQy,
PIT) = ko2 . _
(k—i) -1, mn BRmQAl'
Recalling the transmission conditions in (1.1), we find that the pair (uj,us3) is a solution to

Auy + k3 (1 + p1(z))uy =0, in Bg,

Aug + k3ug = 0, in Bp,
ouy F)
up =uz, Ak =52, on BrNA;.

Here, the symbol (-)~ denotes the limit from Q- Applying Lemma 2.2, we obtain u; = 0 in
Bpg and thus u; = 0 in R?, which is impossible (see [11]).
11
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3.2. Case two. The corners of A; and As coincide (see Figure 4), implying that A; and
A5 have the same height and also the same grooves but with different opening directions. This
section relies on ingenious analysis on the regularity of solutions to the Helmholtz equation in
a corner domain. We refer to [20] for an overview of the interface problem of the Laplacian
equation.

O, Ay

Ag
Figure 4. Case two: corners of A1 and Az are identical but Ay # As.

Choose a corner point O € A; N As and R > 0 sufficiently small such that the disk
Bp := {x € R?: |z| < R} does not contain other corners. We can conclude from Proposition
1.1 that uy,us € H¥(Br) (0 < s < 1/2) fulfill the system

(3.2) { V- (a(0)Vuy) + k(0)u; =0, in Bpg,

V- (a(@+7/2)Vu) + k(0 + 71/2)ug =0, in Bg,

where

(1, if 0€(0,3n/2), K2 it 6€(0,37/2),
a(6) '—{ N if e (-n2,0, O '—{ M2, i 0 (—m/2,0),

and a(0+27) = a(0), k(6 £27) = k(0). It is obvious that ug coincides with uy after a rotation
about the angle 7/2, that is, ua(r,0) = ui(r,0 + 7/2). In Lemma 3.1 below, we shall derive a
more explicit expression of uy (¢ = 1,2) under the condition (3.1).

Lemma 3.1. Let ui,us € H**(Bg) (0 < s < 1/2) be solutions to (3.2). If
ui(r,0) = ua(r,0) for all 6 e (0,7), r€[0,R),
then

(3.3) w(rd)= > aD20rmelle), (=12

n,m
n,meNn+m>0

where ¢§1L)(9) is the normalized eigenfunction of (2.11) corresponding to the eigenvalue n = 2n
and 5} (0) = 4, (0 +/2).
Proof. To prove (3.3), it suffices to verify for all [ € N that

(3.4) up(r,0) = Z al®) r2("+m)1/1§2(0) +o(r?), as r—0.
0<n+m<l 12
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Recalling (2.14) and Lemma 2.4, we have

(35)  w(r,8) =uo+ > alrmpl(0) + el (el 0) + 3 el ), =12,
j>1 j>1

where wgl)(H) := ¢;(#) are normalized eigenfunctions, @5»2)(9) = @51)(9 + 7/2) and

() i / "0, 1, r~ / (z St
3.6 e — fig(s)s ™ ids — o ids, for j >0, £=1,2.
( ) ]70( ) 277] ro/2 7,0 ( ) 2?,,] 7,0

Here the functions f (0 with ¢ = 1,2 are defined analogously to (2.15) and 0 < rg < r. By
(2.13), we know that n; > 2/3 for j > 1, which together with 6(-7()]( ) =o(r) (¢ =1,2) implies
that (3.4) holds with l =n+m = 0 and aéo = aoo = V/2muy.

Step 1: Prove that (3.4) holds for [ = 1. It is obvious that if { = n+m = 1 for some
n,m € N, then n =0, m=1orn =1, m=0. Hence, it suffices to prove

up(r,0) = agf%zb((f)w) + [a 82)1 (()Z)(H) + a&% gz) (9)]7"2 +o(r?), as r—0,(=1,2,

with some agz)l, a&% € C for £ = 1,2. Recalling from the definition of efg (j>0,£=1,2) in

(3.6), we obtain

mdyouor +o(r?), if n #2
(z)()_ as r — 0,

(3.7) €0
mdjouoﬂlnr—}—o( 5, if n; =2,

where d; € C are given by

0 3r/2 -

(38)  djo=- [k% L0 O Okt [ w00 de] .20,
—m/2 0

Hence, it follows from (3.5) that

we(r,0) = ug + Z a§f)rnj gpy) (0) + o(rlo),
0<n; <2

where lp = max{n; : 0 < n; < 2}. Recalling ui(r,0) = us(r,0), dgui(r,0) = Opua(r,)
(0 € [0,7]), we obtain

af el (0) = P (0), o[V 0)] =P [P O)], Vo), e ©2)
which we can be rewritten as the linear system

<A+cos( ni9) + B sin(n;0)  —A¥ cos(n; (0 + 5)) — Bf sin(n; (0 + & ))) ol _<o>
B cos(n;0) — A+ sin(n;0) A+ sin(n; (6 + %)) B+ cos(n; (0 + 3)) '
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)24 (B)?] sin (3n;) > 0, we obtain alt) =

Since the determinant of coefficient matrix is [(A 4

a&z) =0 for 0 < n; < 2. It then follows from (3.5

up(r,0) = ug + Z ay)r"j gpy) 0)+ e%(r)goy) 0)+ 0( b, asr — 0,
2<n; <4 nj 20

where [ = max{n; : 2 < n; < 4}. Hence,

V2
(3.9) ue(r,0) =uo+a{hr?us(0) + > aPrpld(0) + TWDQ,O uor?Inr 7 (0)

2<n;<4

V2rd

+ ug 72 E T JO (»Z) (0) + o(r™1), as r — 0,
41
n;#2 J

Dy = djo for n; = 2. Equating the coefficients of the terms r? and r?Inr

Daouo [¥5(0) — 4§ (6)] =0,

1) (1 2 V2mdjoug ¢ (1 2
[afous” 0) — o @) + 3 TS [ 0) - o 60)] =0,
;72 J

for all # € (0, 7). Since 1/)52) 0) = —¢§1)(9), by linear independence of trigonometric functions,
we conclude that

D5 oug =0, a%—kaiozo and djoup =0 if SOJ ( )7'&()0] () 77]'7&2'
If ¢(1)(0) = (p§.2) (0), we have n; = 4N by Lemma 2.3 and

d; _{0, if m; = 4N, N #0,
70 _%(3]{% + k%)a if n;=0(Ge j=0).

This implies that the terms with j = 0 in the following summation all vanish, i.e.,

2 ug Z 27 djo (é)(é?) = r? UO727;CZ0,0 (g)(é?).

©j
;72 TIJ
Inserting these results into (3.9) yields as r — 0 that
ug('r" 9) = Z a%)rn,rQ(TH*m Z O[ T‘nJSOJ + Z + 0( )
0<n+m<1 2<17]<4 7; >0

where aOO = V/27uyg, ao 1 = V2mdo,0uo/4, al 0 = —aﬁ)) Further, we have a(()% = a((f% doo/4
and

aé% djo=0 forn; # 0; aﬁ}}n él)(e) =a(?) (2)(0) forall 0 <n+m <1,

n n,m+¥2n
V2 2 :
—4_7]]2 djoupre, it n; #2,

4 l
el )(r) = e;()](r) —
—42 dj70 uo 7’2 In r14 if n; = 2.
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It is seen from (3.7) that e% (r) = o(r3). This finishes the Step 1.

Step 2: Induction arguments. We make an induction hypothesis that for some N > 1,

n

w(r,0) = a%)mr%”*m)wé@ 0) + > ag-é)r"f gpy) (6)
0<n+m<N 2N<n;<2N+2

+ 3 e (0) +o(riv);

17]>0

(3.10) 4O

(Z) _ nm 1D2n2n _
n/m = ~BNYZ=(2n) , Vn+m=N,0<n<N —1;

a%)mdmn:O, forn; #2n, VO<n+m < N —1;

ai S (0) = a2 (), YoO<n+m<N,
where ef])\,(r) (¢ =1,2) is defined as (2.16), (3.6) with f](ﬁ)) replaced by f](%

) sz 0 2 (0 0)
150 == [ R [weo - Y a0

0<n+m<N-1

0 -
[ Blueo - 3 el o) 00

—7/2 0<n+m<N-—1

Iy == max{n; : 2N < n; < 2N +2};

0 S 37/2
djon = — [k% Qw&)(e)so&”(e) dg+ k] /0 oV (0)" (0) de]
—k+ (= k) [0 [65) (0P dg, iy = 2n,

(K —13) [, S0 @)V (0)dg. it m; #2m,

for 0 <n < N —1; Doy 2y := dj 2, when n; = 2n.

Note that the above induction hypothesis with N = 1 has been proved in Step one. Now
we want to prove that (3.10) holds for N + 1. By the definition of ef])\,, straightforward
calculations show that

(3.11) =

2N+2 ¢ )
N +§7Na%,’rndj,zn+o<r”+3), it 7 #2N +2,

(312 SR =1

D .
W INF2In gy 4 o(r2N+3), if n; =2N +2.

Here Donyoon = djon with nj = 2N + 2 and d;on is defined analogously by (3.11).
Using the relations ui(r,0) = ua(r,8), Jgui(r,0) = dgua(r,8) (0 € [0,7]), we deduce from
the expressions of u; in (3.10) that

ag-l)gpg»l)(é?) = a(2)¢§2)(0)7 ag.l) [gpy)(@)] (2) [gp§2)(0)] , V@€ (0,m), nj € (2N,2N +2).
15
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Similarly, we can obtain an equation system about the unknowns ag.l) and 045-2), where the

determinant of coefficient matrix is still not equal to zero for 2N < n; < 2N +2. Consequently,

we achieve that oz(l) = oz§2) =0 for 2N < n; < 2N + 2. Inserting this into (3.10) gives

ug(r,0) = Z a%%ﬁ2(n+m)¢§?(9)+ Z a§é)rnjg0§z)(9)

0<n+m<N 2N+2<n; <2N-+4
+ Z e Y+o(rty), =12
1;>0

Using the relations in (3.12), we can obtain

n+m=N+1
w(r,0) =Y a2yl 0) + 022N al) wl)0) + a0 L (0)

)

0<n+m<N 0<n<N-1
0 0 g

ay'oDan+22n J2N427 m/} ) + Z anodiaN  onys (5)(0)

T AN L9 2N+2 ON L2 _ 2

2 __ 2
AN +2 oo N +2)7 =

+ Z agz)r"ng-é)(H) +o(rivt1), ¢=1,2.
2N+2<n;<2N+4

Here, a%)Jrlo = a( ) for nj = 2N + 2, Iy41 := max{n; : 2N +2 <n; < 2N + 4} and

) agﬁ)m—l D2n72n
(3.13) a"’m:(2N+2)2—(2n)2’ VO<n<N-1,n+m=N+1.

Applying the induction hypothesis aﬁi%@é}j 0) = ﬁn én) (@) for all 0 < n+m < N into

(3.13), we have

(3.14) o) i (0) = a2 w2 (0), YO<n<N—-1,n+m=N+1.

Ap mW¥on n,

Comparing the expressions of u; and ug and using the fact that u; = ug for all § € (0, )
yields

agxlz,)o Dany2,2n ¢§2+2(9) = ag\?,)o Dony2,28 wg\)fﬁ(e)’
and
(1)
X ) an'o djen 1
AoV @+ Y Gy emr e ©)
J

n; £2N+2

(2)
2 2 ano djan 2
=a\ 1o BN a0+ Y W¢§ '(0)
1 #£2N 42 1

16
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Since ag\l,?o = (—1)Na§\2,?0, wé?\),+2(6?) = (- )N+11/12N+2(0), we conclude that
alo Danaan Y5 45(0) = 0,
and

1)
1 anodj2nN 1 2
(V0 = DR UL+ Y G [0 - (Y0 =0
n; A2N+2 "

Using Lemma 2.3 and the linear independence of trigonometric functions, we conclude that

1) 2)
(3.15) §v+1 0¢2N+2( ) = a§v+1 0¢2N+2(9)

and

0, if 90] '(0) # o

0, if gpg )(9) + <p§-7 (#) #0, N is an odd number.

(9), N is an even number,

afo djan = {
Recalling Lemma 2.3 and the definition of d;2x, we find that

doon — 0, if 7n; =4l and N is an even number, [ # N/2,
2N 0, if mj =414 2 and N is an odd number, [ # (N —1)/2.

Based on the above results, we conclude that

oy dion =0, form; #£2N, £=1,2.
Combining the previous equalities with the following two induction hypothesis

(©)
£ n,m D'fl,"
i = AT Vntm=N,0<n< N1

a%)mdmnzo, for n; #2n, VO<n+m < N —1,

we find that

(3.16) a(g) djon =0, form; #2n, VO<n < N,n+m=N.

Hence,

B wen= Y e Y e
0<n4+m<N+1 2N+2<n;<2N+4
+263N+1 0)+0( vy =1,2,

77]>0
where ef])\prl is defined in the same way as ef}w Donan equals to djon when n; = 2N and
(0
an'n D
(3.18) o) = o2 0=1,2.

(2N +2)7 - 2N)”’
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Then, the relation ag\lf?owék),(é?) = ag\z,?o g\), (0) gives that
(3.19) al 0l (0) = aJ i (0).

Therefore, relations (3.13)—(3.19) imply that (3.10) still holds for N + 1.
Step 3: By the induction argument, we know that (3.10) holds for any N € N£- which
implies (3.4) for all [ € N. Hence, the proof of (3.3) is complete. [ ]

By Lemma 3.1, we have

S a2 A= cos(2n0) + B sin(2n0)], 0 € (—7/2,0),

( 9) n+m>0
ulr, =
> aﬁi?m‘z("‘km) [AF cos(2n0) + B, sin(2n0)], 60 € (0,37/2).
n+m>0

Now, using the transmission condition of u; on II; one can repeat the proof in the proof of
Lemma 2.1 to obtain u; = 0 around O, which is impossible. This excludes the case two.

3.3. Case three. Assume there exists a corner O of Ay such that O € A, but O is not a
corner point of A;. Without loss of generality, we suppose that O is located on a vertical line
segment of A; (see Figure 5). Choose R > 0 sufficiently small such that the disk Br does not

Ay

Figure 5. Case three: O € A1 N Az is a corner of Aa but not a corner of A1.

contain any other corners. We can see that uj,us € H'™5(Bg) (0 < s < 1/2) are solutions to
the systems

Aug + kup =0, in 6¢€l0,7/2)U (31/2,2n],
(3.20) Aug + k3up =0, in 0¢€(n/2,3m/2),
uf =uy, Ofui = A0, ui, on 0=m/2, 31/2,
( Aug + kfuy = 0, in ¢ (0,7/2),
(3.21) Ausg + k3ug = 0, in e (n/2,2n),
uy =uy, Ofus = A0, ua, on 0=0,m7/2.

By Proposition 1.1 (ii), the Cauchy data (u],d,u]) are analytic on Bg N Ay. Then, the
coincidence uy(r,0) = uz(r,0) for all 6 € [0,7/2] implies that uj and d,uj are both analytic
on Br N As. By the Cauchy-Kowalewski theorem in a piecewise analytic domain (refer to

18
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Lemma 2.1 in [16]), we conclude that there exists Ry € (0, R) such that us can be extended
analytically from Bg, N QL to Br, and the extended function ws satisfies that

A’U)Q + k%wz = 07 in BR17
wo = u;, Oywy = 8Vu§L, on Bpg, NAs.

Recalling the transmission boundary in (3.21) and the fact that A is a constant, we also find
that u, and J,u, are both analytic on Br N Ag. Similarly, the solution uy can be extended
analytically from Br,NQ), to Br, (R2 € (0, 1)) by the Cauchy-Kowalewski theorem. Denote
by va the extended function in Bp,, which satisfies

Avg + k%vg =0, in BR27
Vg = Uy, Oyva = dyuy, on Bpg, NAs.

Again using the transmission conditions in (3.21) yields

Awy + k?%ZUg =0, in Bp,,
Avg + k‘%vg =0, in  Bg,,
w9 = V2, O, w9 = )\8,/02, on BR2 N As.

Since k1 # kg, we obtain we = vy = 0 in Bpg, by Lemma 2.1, that is, us = 0 in Bg,. This
together with the unique continuation leads to uo = 0 in Bp, which is impossible.

4. Appendix. This section is devoted to the regularity problem around a corner point
and up to the flat interface, and the well-posedness of solutions to the forward scattering
(1.1)—(1.2).

4.1. Regularity around a corner. Firstly, we investigate the regularity of a solution to
the transmission problem of the Helmholtz equation in a right angle domain (see the Figure

6).

Theorem 4.1. The solution i to (2.10) has the reqularity @ € H'*$(Br) N H'2/3(Qy) for
any 0<s<1/2 ((=1,2).

Proof. For the sake of notational simplicity, we write p(0) := ¢;(6), n := n; for some fixed
j. A general solution to (2.11) takes the form

| AT cos(nf) + B sin(nd), 0 € (0,37/2),
(4-1) #(0) = { A~ cos(nf) + B~ sin(nd), 6 € (—n/2,0).

Using the transmission boundary conditions in (2.11) yields
At = A", AT cos(3mn/2) + B sin(3mn/2) = A” cos(mn/2) — B sin(7n/2).
Since

') = —nA* sin(nf) + nB™ cos(nd), 6 € (0,3n/2),
7= —nA~ sin(nf) + 77[§* cos(nh), 0 € (—n/2,0),
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T2

I

I, 2

Figure 6. Sketch map of Q; and II, (¢ =1,2).

we have
Bt =AB~, —A"sin(3mn/2) + B cos(3mn/2) = A [A” sin(mn/2) + B~ cos(mn/2)].

That is, (AT, A, BT, B7) satisfies the following 4-by-4 algebraic system:

1 -1 0 0 At 0
cos(3mn/2) —cos(mn/2)  sin(37n/2) sin(mn/2) A= | | O
0 0 1 —A BT | | o0
sin(37n/2) Asin(mn/2) —cos(3wn/2) Acos(mn/2) B~ 0

We denote the fourth order matrix on the left by M. Then simple calculation shows that

1 -1 0 0
M| = cos(3mn/2) —cos(mn/2) sin(37n/2)  sin(7n/2)
0 0 1 -
sin(37n/2) Asin(mn/2) —cos(3wn/2) Acos(mwn/2)
cos(3mn/2) —cos(mn/2)  sin(3wn/2)  sin(7n/2)
= 0 1 -
Asin(7n/2) + sin(37n/2) —cos(3wn/2) Acos(mwn/2)
cos(3mn/2) —cos(mn/2) 0  sin(wn/2) + Asin(37n/2)
= 0 1 —A

Asin(7n/2) + sin(37n/2)
cos(3mn/2) — cos(mn/2)
Asin(7n/2) + sin(37n/2)

20

0 Acos(mn/2) — Acos(37mn/2)

sin(7n/2) 4+ Asin(37n/2)
Acos(mn/2) — Acos(3mn/2)
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That is,

|M| = —X[ cos(3mn/2) — Cos(ﬂ'n/2)]2 — [Asin(mn/2) + sin(37n/2)] [ sin(wn/2) + Asin(37n/2)]
= 2) cos(3mn/2) cos(mn/2) — (A2 + 1) sin(37n/2) sin(7n/2) — 2\

A1) A2 4 6)+ 1
— (1) cos () — & . ) cos(n) — % ~0,
which implies that
A% 46X+ 1
cos(mn) = —ﬁ or cos(mn) = 1.
Hence,
1 A 4+6A+1
”:;amos(_m) r n=2l, leN.
Note that, n € (0,1) and
MrerA+1  A+1)2+40 1 2\ )
= — — - 1 2 1 -‘ o 1 _
2(A+1)2 o) 2 prne € WRL de —l<cos(mn) < =3
Therefore,
— L arccos ( - M) .2
n= - arccos ST 1) 3
The proof is complete. -

4.2. Regularity up the flat interface. In this subsection we suppose that the angle is 7
and consider the transmission problem

(4.2)

Avy + k‘?’vg =0, in ﬁg,
vy =v2, Oyv1=2A0,v2, on Iy,

where k; are constants and ki # ko, the unit normal vector v at ﬁg is pointing into §~21. The
two semi-circles 2y and their boundaries I, (¢ = 1,2) are defined as (see the Figure 7):

Q:={(r,0):0<r<R,0<0<m/20r3r/2<0<2r}, IIj:={(r,7/2):0<r <R},
Qp:={(r,0):0<r <R, 7/2<6<3r/2}, Iy == {(r,37/2) : 0 < r < R}.

In order to rewrite the equation (4.2) into the divergence form, we define

~ 1 in ﬁl ~ k2 in ﬁl ~ U1 in ?21
0 = ’ ~ ’ 0 = 1 ~ ’ 0 = ) —~ ’
a( ) { )\, in QQ, K( ) { Ak%ﬁl in QQ, U(T, ) { V2, in QQ.
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Z2

Qo 0

z1

Figure 7. Sketch map of Qu and Il (0 =1,2).

Then (4.2) is equivalent to
V- (a()V7) + &(0)5 =0 in Bg.

By the decomposition theorem, & = @ + 3. &% ¢;(0)(Inr)Ps in Br with p; € {0,1,---}.

7j=1
Here, w € H%(Qy) (¢ =1,2), and §; € (0,1) are eigenvalues of the following positive definite
Sturm-Liouville:

. (0) + 62¢;(0) = 0, in 0¢e[0,7/2)U(n/2,3n/2) U (3r/2,2n],
(4.3) .+ (/2) = ¢, (m/2), ;4 (1/2) = Ap; _(7/2),

$j+(37/2) = ¢;,-(37/2), &, (37/2) = Ap; _(37/2).
Here, ¢; ¢, ¢; . denote the limits from ©; and ¢;,_, ¢; _ the limits from Q.

Theorem 4.2. The solution v to (4.2) has the regularity © € H'**(Bg) N H2(Qy) for any
0 <s<1/2, and ¥ is analytic on the closure of Qy (¢ =1,2).

Proof. Write ¢(8) := ¢;(0), 0; := d for some fixed j. A general solution to (4.3) takes the
form

A+ cos B sin T T T
¢(9):{ At cos(09) + BT sin(86), 6 € [0,7/2) U (31/2, 2x],

A~ cos(60) + B~ sin(66), 0 € (n/2,37/2).

Using the transmission boundary conditions in (4.3) yields

At cos(md/2) + Bt sin(nd/2) = A~ cos(md/2) + B~ sin(wd/2),
At cos(316/2) + Bt sin(3m6/2) = A~ cos(3w6/2) + B~ sin(370/2).
22
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Since

(0 = —0A*tsin(60) + 6Bt cos(6), 6 € [0,7/2) U (37/2,2n],
¢ 0)= —6A~ sin(60) 4+ 0B~ cos(60), 6 € (7/2,37/2),

then we obtain that

— At sin(76/2) + B cos(md/2) = \[—A~ sin(n6/2) + B~ cos(nd/2)],
—Atsin(3m6/2) + Bt cos(3m6/2) = A\[—~A~ sin(375/2) + B~ cos(37/2)].

That is, (A~, B, AT, BT) satisfies the following equation system:

cos(md/2) sin(mwd/2) —cos(md/2)  —sin(mwd/2) {1* 0
cos(3md/2) sin(376/2) —cos(3md/2) —sin(37/2) B ] |0
—Asin(md/2)  Acos(md/2)  sin(wd/2) —cos(md/2) At ] |0
—Asin(376/2) Acos(37d/2)  sin(37d/2)  —cos(3md/2) Bt 0
We denote the fourth order matrix on the left by M. Then simple calculation shows that
cos(md/2) sin(7d/2) 0 0
W7l cos(3md/2) sin(3md/2) 0 0
[M] = —Asin(7d/2)  Acos(wd/2) (1 —N)sin(wd/2) (A —1)cos(wd/2)
—Asin(376/2) Acos(376/2) (1 — A)sin(370/2) (A —1)cos(376/2)
cos(md/2)  sin(md/2) 0 0
-1 cos(3m/2) sin(37wd/2) 0 0
N 0 0 sin(md/2)  cos(md/2)
0 0 sin(37d/2) cos(3wd/2)

= (X —1)?sin?(76) = 0.

That is, sin(m§) = 0 and then § € N, which implies that o € H'(Bg) N H2(Qy) and © is
analytic up to the boundary of II; UIl;. The proof is complete. |

4.3. Uniqueness and existence of forward scattering problem. Define the DtN mapping
T:HY*(Ty) — Ha/*(Ty) by

(Tf)(x1) = Zzﬁnfn elomL, where f(x1) = Z fn €™ € HY?(Dy).

nez neL
Introduce the piecewise analytic functions
1 in S7, k2 in S,
a(x) == . H K(z) = Ly, . H
A in Sq, Aky in Sy

The scattering problem (1.1)—(1.2) can be equivalently formulated as the following divergence
form in the truncated domain Sg:
V- (a(x)Vu) + k(x)u =0, in Sy,
(4.4) { Ot = Tu + (Opu’ — Tuit), on Iy,
u =0, on T.
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Theorem 4.3. The boundary value problem (4.4) has at least one solution u € H}(Sy) for
any fired H > AT. Moreover, uniqueness remains true for any ki, ko > 0 under the following
monotonicity conditions on the medium:

(4.5) k> k3.
Proof. From the definition of T, it follows that for f € bi i 2(I’ H),

(46)  Re(Tf,f)=— > [Bullfal?> <0, Im(Tf )= > |Bulful® >0,

|on |>k1 |an|<k1

where the pair (-,-) denotes the duality between H, 2 and Hol/ >on T g. The variational
formulation for (4.4) can be written as: find u € H}(Sy) such that for all v € H.(Sy),

(4.7) L(u,v) := / [a(z)Vu - VT — a(x)k(x)uv] doz — /FH Tuvds = /FH <Tui — gg;) vds.

Su

Using (4.6), one can conclude that the above sesquilinear form gives rise to a strongly elliptic
operator £ such that L(u,v) = (Lu,v) for all u,v € Hé/2(SH) (see also e.g., [5, 9]), where (-, )
denotes the inner product over the Hilbert space H}(Sg). On the other hand, the adjoint of
L: H:(Sy) — HL(SH) takes the explicit form

(L*u,v) = L(v,u) = /S [a(x)Vu - VT — a(x)k(x)uv] doe + 27 Z i BtinTn, u,v € H(SH).
H nez

Here, u, and v, denote the Fourier coefficients of e_i‘mlu|pH and e_mxlv|pH, respectively.
Taking the imaginary part on both sides of the previous identity with v = uw and using (4.6),

we get > |Bul|un|? = 0 for u € Ker(L*). This implies that
lan|<k1

/ <Tui _ Qu >ﬁds =0 forall ve Ker(L").
Ty 0z

By Fredholm alternative, there always exists a solution u € H}(Sg) to (4.4).

To prove uniqueness, we suppose that u’ = 0. Then u satisfies the upward Rayleigh
expansion radiation condition. Taking the real part on both sides of (4.7) with v = u and
u® = 0 and using (4.6), we obtain

I = /S [a(2)|Vul® — a(@)r(@)[ul?] de=— > |Ba] lun|? e 21 <0,

|an|>k1

Multiplying the Helmholtz equation by x2 0ow and integrating by part over Sli{ yield the
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Rellich’s identities:
It = </ —/) To [—VQWU\Z + vk |ul? + 2Re(82u_+8,,u+)] ds
Ty A

+/ \Vul|? — k2 [ul?* — 2|02ul?* dz = 0,

S

I = / T [—1/2|Vu|2 + voka|ul® + 2Re((92u__(91,u7)] ds
A

+ / \Vul|? — k2 [ul?* — 2|0u? dz = 0.

H

The integrand over A is well-defined because, for rectangular gratings it holds that u €

H2/2+6(Sfi1) for some € > 0 depending on A (see e.g., [20, Chapter 2.4.3] and [9, Section 3.3]).
Straightforward calculations show that

/ o [—Vg]VUF + ng%\uP + 2Re(82H8Vu)] ds=H Z |5n] ]un\2 =0,
T

lan|<k1
and
0=1I"+XI"
= —/ [AMA=D)[d,u™ P+ (A= 1)|0-u” 2+ (k] — Me3)|ul?] vozo ds — 2/ a(x)|Ogul?® dz + I,
A SH
where 0, denotes the tangential derivative on A with 7 := (—w,v1). By the assumptions

(4.5) on ky, ko and recalling the fact that 1o > 0 on A, we conclude that the integral over
A is non-positive, so that each term in the above expression vanishes. Consequently, we get
Ou =0 in Sy and I; = 0, implying that w, = 0 for all |ay,| > k1. Therefore,

u= A,e™T 4 A, e T i QX, A, A € C,

if a,, = k1 or oy, = —ky for some n,m € Z (that is, Rayleigh frequencies occurs). Note that
the above expression of v is well-defined in R?. Since vo = 1 on the line segment of A parallel
to the xq-axis and k? > k3, one can also deduce from (4.8) that u = 0 on this segment, which
gives A, = A,, = 0 and thus u = 0. [ ]
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