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PML AND HIGH-ACCURACY BOUNDARY INTEGRAL EQUATION
SOLVER FOR WAVE SCATTERING BY A LOCALLY DEFECTED

PERIODIC SURFACE\ast 

XIUCHEN YU\dagger , GUANGHUI HU\ddagger , WANGTAO LU\S , AND ANDREAS RATHSFELD\P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper studies the perfectly matched layer (PML) method for wave scattering
in a half space of a homogeneous medium bounded by a two-dimensional, perfectly conducting, and
locally defected periodic surface, and develops a high-accuracy boundary integral equation (BIE)
solver. Along the vertical direction, we place a PML to truncate the unbounded domain onto a strip
and prove that the PML solution converges to the true solution in the physical subregion of the strip
with an error bounded by the reciprocal PML thickness. Laterally, we divide the unbounded strip
into three regions: one region containing the defect and two semi-waveguide regions, separated by
two vertical line segments. In both semi-waveguides, we prove the well-posedness of an associated
scattering problem so as to well define a Neumann-to-Dirichlet (NtD) operator on the associated ver-
tical segment. The two NtD operators, serving as exact lateral boundary conditions, reformulate the
unbounded strip problem as a boundary value problem over the defected region. Due to the period-
icity of the semi-waveguides, the two NtD operators are related to two different Neumann-marching
operators, and either Neumann-marching operator is governed by a nonlinear Riccati equation. It
is proved that the Neumann-marching operators are contracting, so that the PML solution decays
exponentially fast along both lateral directions. The consequences culminate in two opposite as-
pects. Negatively, the PML solution cannot converge exponentially to the true solution in the whole
physical region of the strip. Positively, from a numerical perspective, the Riccati equations can now
be efficiently solved by a recursive doubling procedure and a high-accuracy PML-based BIE method
so that the boundary value problem on the defected region can be solved efficiently and accurately.
Numerical experiments demonstrate that the PML solution converges exponentially fast to the true
solution in any compact subdomain of the strip.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . periodic structure, PML, boundary integral equation, local defect, Riccati equation

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 35B27, 78A40, 78M15

\bfD \bfO \bfI . 10.1137/21M1439705

1. Introduction. Due to its nearly reflectionless absorption of outgoing waves,
the perfectly matched layer, or PML, since its invention by B\'erenger in 1994 [4], has
become a primary truncation technique in a broad class of unbounded wave scatter-
ing problems [11, 32, 16] in a range of fields, including quantum mechanics, acoustics,
electromagnetism (optics), and seismology. Mathematically, a PML can be equiv-
alently understood as a complexified transformation of a coordinate [12]. A wave
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WAVE SCATTERING BY A DEFECTED PERIODIC SURFACE 2593

outgoing along the coordinate is then analytically continued in the complex plane
and becomes exponentially decaying in the PML. However, such a double-edged fea-
ture causes the PML to be placed only in the direction where the medium structure is
invariant so as to guarantee the validity of analytic continuation. Consequently, PML
loses its prominence for some complicated structures, such as periodic structures [21].
Motivated by this, in this paper we study wave scattering in a half space of a homoge-
neous medium bounded by a two-dimensional (2D), perfectly conducting, and locally
defected periodic surface, and we investigate the potential of PML in designing an
accurate boundary integral equation (BIE) solver for the scattering problem.

Let a cylindrical wave due to a line source, or a downgoing plane wave, be specified
above the defected surface. Then, a primary question is to understand clearly how
the scattered wave radiates at infinity. Intrinsically, PML is closely related to the
well-known Sommerfeld radiation condition (SRC), which, arguably, is an alternative
way of saying ``wave is purely outgoing at infinity."" However, SRC is considered
to be no longer valid for characterizing the scattered wave even when the surface
is flat [2]. Instead, the upward propagation radiation condition (UPRC), a.k.a. the
angular spectrum representation condition [14], is commonly used and can well pose
the present problem or even more general rough surface scattering problems [5, 7, 8].
Milder than SRC, UPRC only requires that the scattered wave contain no downgoing
waves on top of a straight line above the surface, allowing waves that are incoming
horizontally from infinity.

If the surface has no defects, the total wave field for the plane-wave incidence is
quasi-periodic so that the original scattering problem can be formulated in a single unit
cell, bounded laterally but unbounded vertically. According to UPRC, the scattered
wave at infinity can then be expressed in terms of upgoing Bloch waves, so that a
transparent boundary condition or PML of a local/nonlocal boundary condition can
be successfully used to terminate the unit cell vertically; the reader is referred to
[3, 10, 26, 35] and the references therein for related numerical methods as well as
theories of exponential convergence due to a PML truncation. But for the case when
the incident wave is non--quasi-periodic, e.g., the cylindrical wave, or if the surface is
locally defected, much fewer numerical methods or theories have been developed, as
it is no longer straightforward to laterally terminate the scattering domain. Existing
laterally truncating techniques include the recursive doubling procedure (RDP) [34,
15], Floquet--Bloch mode expansion [17, 20, 24], and the Riccati-equation based exact
boundary condition [22].

In a recent work [19], we proved that the total field for the cylindrical incidence,
a.k.a. the Green function, satisfies the standard SRC on top of a straight line above
the surface. Based on this, we further revealed that for the plane-wave incidence, the
perturbed part of the total field due to the defect satisfies the SRC as well. Conse-
quently, this suggests using a PML to terminate the vertical variable so as to truncate
the unbounded domain onto a strip, which is bounded vertically but unbounded later-
ally. In fact, such a natural setup of a PML had already been adopted in the literature
[34, 6, 33] but without a rigorous justification of the outgoing behavior. It is worth-
while to mention that Chandler-Wilde and Monk in [6] rigorously proved that under
a Neumann-condition PML, the PML solution converges to the true solution in the
whole physical region of the strip at the rate of only an algebraic order of PML thick-
ness; they further revealed that the PML solution due to the cylindrical incidence
for a flat surface decays exponentially at infinity of a rectangular strip. However,
it remains unclear how the PML solution radiates at infinity of the more generally
curved strip under consideration. On the other hand, no literally rigorous theory has
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2594 X. YU, G. HU, W. LU, AND A. RATHSFELD

been developed to clearly understand why this PML-truncated strip can further be
laterally truncated to a bounded domain by the aforementioned techniques without
introducing artificial ill-posedness; in other words, the well-posedness of scattering
problems in exterior regions of the truncated domain is unjustified.

To address these questions, we first prove in this paper that under a Dirichlet-
condition PML, the PML solution due to the cylindrical incidence, i.e., the Green
function of the strip, converges to the true solution in the physical subregion of the
strip at an algebraic order of the PML thickness. Next, we split the strip into three
regions: a bounded region containing the defect, and two semi-waveguide regions of
a single-directional periodic surface, separated by two vertical line segments. By use
of the Green function of the strip, transparent boundary conditions can be developed
to truncate the unbounded semi-waveguides. Based on this, we apply the method
of variational formulation and the Fredholm alternative to prove the well-posedness
of the scattering problem in either semi-waveguide so as to define a Neumann-to-
Dirichlet (NtD) operator on its associated vertical segment. The two NtD operators
serve exactly as lateral boundary conditions to terminate the strip and to reformulate
the unbounded strip problem as a boundary value problem on the defected region.
Due to the periodicity of the semi-waveguides, both NtD operators turn out to be
closely related to a Neumann-marching operator, which is a solution of a nonlinear
Riccati equation. It is proved that the Neumann-marching operators are contract-
ing, indicating that the PML solution decays exponentially fast along both lateral
directions even for the curved strip. The consequences culminate in two opposite
aspects. Positively, from a numerical perspective, the Riccati equations can be effi-
ciently solved by an RDP method so that the strip can be laterally truncated with
ease. Negatively, the PML solution shall never exponentially converge to the true
solution in the whole physical region of the strip. Nevertheless, as conjectured in [6],
exponential convergence is optimistically expected to be realizable in any compact
subdomain of the strip.

To validate the above conjecture numerically, we employ a high-accuracy PML-
based boundary integral equation (BIE) method [29] to execute the RDP so that
the two Riccati equations can be accurately solved for the two Neumann-marching
operators, respectively, and hence the two NtD operators terminating the strip can
be obtained. With the two NtD operators well prepared, the boundary value problem
in the defected region can be accurately solved by the PML-based BIE method again.
By carrying out several numerical experiments, we observe that the PML truncation
error for the wave field over the defected part of the surface decays exponentially
fast as PML absorbing strength or thickness increases. This indicates that there is
a chance that the PML solution still converges to the true solution exponentially in
any compact subdomain of the strip, the justification of which remains open.

The rest of this paper is organized as follows. In section 2, we introduce the half-
space scattering problem and present some known well-posedness results. In section
3, we introduce a Dirichlet-condition PML, prove the well-posedness of the PML-
truncated problem, and study the prior error estimate of the PML truncation. In
section 4, we study well-posedness of the semi-waveguide problems. In section 5, we
establish lateral boundary conditions, prove the exponentially decaying property of
the PML solution at infinity of the strip, and develop an RDP technique to get the
lateral boundary conditions. In section 6, we present a PML-based BIE method to
numerically solve the scattering problem. In section 7, numerical experiments are
carried out to demonstrate the performance of the proposed numerical method and to
validate the proposed theory. We draw our conclusion finally in section 8 and propose
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WAVE SCATTERING BY A DEFECTED PERIODIC SURFACE 2595

(a) (b)

PML

Fig. 1. (a) A sketch of the half-space scattering problem. (b) A PML placed above \Gamma . The
scattering surface \Gamma locally perturbs the periodic curve \Gamma T of period T . x\ast represents the exciting
source. \Gamma H is an artificial interface, on which a DtN map is defined or a PML is placed.

some future plans.

2. Problem formulation. Let \Omega \times \BbbR \subset \BbbR 3 be an x3-invariant domain bounded
by a perfectly conducting surface \Gamma \times \BbbR , where \Gamma \subset \BbbR 2, bounding domain \Omega \subset \BbbR 2,
is a local perturbation of a T -periodic curve \Gamma T \subset \BbbR 2 periodic in the x1-direction, as
shown in Figure 1(a). We denote the Cartesian coordinate system of \BbbR 3 by (x1, x2, x3)
and let x = (x1, x2) \in \Omega . Throughout this paper, we shall assume that \Gamma is Lipschitz
and that \Omega satisfies the following geometrical condition:

(GC) (x1, x2) \in \Omega \Rightarrow (x1, x2 + a) \in \Omega \forall a \geq 0.

For simplicity, suppose \Gamma only perturbs one periodic part of \Gamma T , say | x1| < T
2 .

Let the unbounded domain \Omega \times \BbbR be filled by a homogeneous medium of refractive
index n. For a time-harmonic, transverse-electric (TE), polarized electromagnetic
wave excited by an x3-invariant incoming field of time dependence e - \bfi \omega t with angular
frequency \omega , the x3-component of the electric field, denoted by utot, is x3-invariant,
has the same time dependence, and satisfies the following boundary value problem for
the 2D Helmholtz equation

\Delta utot + k2utot = 0 in \Omega ,(1)

utot = 0 on \Gamma ,(2)

where \Delta = \partial 2x1
+ \partial 2x2

is the 2D Laplacian, and k = k0n with k0 = 2\pi 
\lambda denoting the

free-space wavenumber for wavelength \lambda .
Let an incident wave uinc be specified in \Omega , and let x = (x1, x2) \in \Omega . In this

paper, we shall mainly focus on the following two cases of incidences: (i) a plane wave
uinc(x) = e\bfi k(cos \theta x1 - sin \theta x2) for the incident angle \theta \in (0, \pi ); (ii) a cylindrical wave

uinc(x;x\ast ) = G(x;x\ast ) = \bfi 
4H

(1)
0 (k| x  - x\ast | ) excited by a source at x\ast = (x\ast 1, x

\ast 
2) \in \Omega .

In the latter case, equation (1) should be replaced by

(3) \Delta utot + k2utot =  - \delta (x - x\ast ),

so that utot(x;x\ast ) in fact represents the Green function excited by the source point
x\ast . For simplicity, we assume that | x\ast 1| < T/2 so that x\ast is right above the perturbed
part of \Gamma .

Let usc = utot  - uinc denote the scattered wave. One may enforce the following
UPRC:

(4) usc(x) = 2

\int 
\Gamma H

\partial G(x; y)

\partial y2
usc(y)ds(y),
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2596 X. YU, G. HU, W. LU, AND A. RATHSFELD

where \Gamma H = \{ (x1, H) : x1 \in \BbbR \} denotes a straight line strictly above \Gamma for some H > 0
and y = (y1, y2). According to [7], the UPRC helps to define a Dirichlet-to-Neumann
(DtN) map \scrT : H1/2(\Gamma H) \rightarrow H - 1/2(\Gamma H) for the domain \Omega H = \{ x \in \Omega : x2 > H\} ,
such that for any \phi \in H1/2(\Gamma H),

(5) \scrT \phi = \scrF  - 1Mz
\^\phi ,

where \^\phi (H; \xi ) = [\scrF \phi ](H; \xi ) denotes the normalized Fourier transform

(6) [\scrF \phi ](H; \xi ) =
1\surd 
2\pi 

\int 
\BbbR 
\phi (x1, H)e - \bfi \xi x1dx1,

and the operator Mz in the space of Fourier transforms is the operator of multiplica-
tion by

(7) z(\xi ) =

\biggl\{ 
 - i

\sqrt{} 
k2  - \xi 2 for | \xi | \leq k,\sqrt{} 

\xi 2  - k2 for | \xi | > k.

Then, we may enforce

(8) \partial \nu u
sc =  - \scrT usc on \Gamma H ,

where, unless otherwise indicated, \nu always denotes the outer unit normal vector on
\Gamma H . The UPRC guarantees the well-posedness of our scattering problem [7] but does
not force usc to be purely outgoing at infinity, largely limiting its applications in
designing numerical algorithms.

Nevertheless, our recent work [19] has shown a stronger Sommerfeld-type condi-
tion for the aforementioned two incidences, which still preserves the well-posedness.
Note that [19] assumes that each period of \Gamma T contains a line segment, which guaran-
tees a special local behavior of the Green function utot(x; y) for any x, y sufficiently
close to each line segment. Such a technical assumption can be removed by construct-
ing the DtN operator based on the idea of [18]. We will sketch this idea in the proof
of Theorem 4.1 below. Let SH = \Omega \cap \{ x : x2 < H\} be the strip between \Gamma H and \Gamma .
The radiation condition reads as follows:

(i) In the case of plane-wave incidence, the outgoing wave is uog := utot  - utotref ,
where utotref is the reference scattered field for the unperturbed scattering curve
\Gamma = \Gamma T , and satisfies the following half-plane Sommerfeld radiation condition
(hSRC): For a sufficiently large R > 0 and any \rho < 0,

lim
r\rightarrow \infty 

sup
\alpha \in [0,\pi ]

\surd 
r | \partial ruog(x) - ikuog(x)| = 0,

sup
r\geq R

r1/2| uog(x)| <\infty ,

and uog \in H1
\rho (S

R
H),

(9)

where x = (r cos\alpha ,H + r sin\alpha ), SR
H = SH \cap \{ x : | x1| > R\} , and H1

\rho (\cdot ) = (1+

x21)
 - \rho /2H1(\cdot ) denotes a weighted Sobolev space. We defer the computation

of utotref to section 6.3.
(ii) For the cylindrical incidence, the total field is the outgoing wave uog := utot

and satisfies the hSRC (9) in \Omega H . Thus, the scattered field usc satisfies (9)
as well since uinc satisfies (9).
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WAVE SCATTERING BY A DEFECTED PERIODIC SURFACE 2597

Certainly, uog satisfies the UPRC condition (4) such that (8) holds for uog in place of
usc [9, Thm. 2.9(ii)].

We recall some important results from [7]. For the cylindrical incident wave
uinc(x;x\ast ), to remove the singularity of the right-hand side of (3), let

(10) uogr (x;x\ast ) = uog(x;x\ast ) - \chi (x;x\ast )uinc(x;x\ast ),

where the cut-off function \chi (x;x\ast ) = 1 in a neighborhood of x\ast and has a sufficiently
small support enclosing x\ast . Let VH = \{ \phi | SH

: \phi \in H1
0 (\Omega )\} . Then, it is equivalent to

seek uogr \in VH that satisfies the boundary value problem

\Delta uogr + k2uogr = g in SH ,(11)

\partial \nu u
og
r =  - \scrT uogr on \Gamma H ,(12)

where g =  - [\Delta \chi ]uinc  - 2
\sum 2

j=1 \partial xj
\chi \partial xj

uinc \in L2(SH) such that supp g is in the

neighborhood of x\ast contained in SH . An equivalent variational formulation reads as
follows: Find uogr \in VH such that, for any \phi \in VH ,

(13) b(uogr , \phi ) =  - (g, \phi )SH
,

where the sesquilinear form b(\cdot , \cdot ) : VH \times VH \rightarrow \BbbC is given by

(14) b(\phi , \psi ) =

\int 
SH

(\nabla \phi \cdot \nabla \=\psi  - k2\phi \=\psi )dx+

\int 
\Gamma H

\scrT \phi \=\psi ds.

For the incident plane wave uinc(x), the trace of utotref on \Gamma , denoted by gref , belongs

to H1/2(\Gamma ), with \Gamma \setminus \Gamma T being its support. Note that an extension of utotref to a larger
domain containing \Gamma is required if the perturbed curve \Gamma is not contained in the domain
above the unperturbed periodic curve \Gamma T . Then, following the proof of Theorem4.10
in [31], one can also transform the original problem (1), (2) into the same problem
(11), (12), where now

g =  - (\Delta + k2)[\chi ref \eta gref ] \in (H1(SH))\ast ,

\eta : H1/2(\Gamma \setminus \Gamma T ) \rightarrow H1(SH) denotes an extension operator, and \chi ref is a cut-off func-
tion with a small support containing \Gamma \setminus \Gamma T so that g \in V \ast 

H . Due to the similarity
between the two incidences, we shall only consider the theoretical details for the
cylindrical incidence. However, in section 6.3, we shall discuss how to compute utot

for a plane-wave incidence numerically.
It has been shown in [7] that b satisfies the following inf-sup condition: For all

v \in VH ,

(15) \gamma | | v| | VH
\leq sup

\phi \in VH

| b(v, \phi )| 
| | \phi | | VH

,

where \gamma > 0 depends on H, k, and \Omega . Furthermore, b defines an invertible operator
\scrA : VH \rightarrow V \ast 

H such that (\scrA \phi , \psi ) = b(\phi , \psi ) and | | \scrA  - 1| | \leq \gamma  - 1. Thus, uogr =  - \scrA  - 1g so
that uog =  - \scrA  - 1g + \chi uinc for the cylindrical incident wave uinc.

The hSRC (9) suggests computing the outgoing wave uog numerically, as the
PML technique [4, 6] could apply now to truncate the x2-direction. In the following
sections, we shall first introduce the setup of a PML to truncate x2 and then develop
an accurate lateral boundary condition to truncate x1.
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Fig. 2. The two functions f1 and f2 for m = 6, H = 3, and L = 2.2.

3. PML truncation. Mathematically, the PML truncating x2 introduces a
complexified coordinate transformation

(16) \~x2 = x2 + iS

\int x2

0

\sigma (t)dt,

where \sigma (x2) = 0 for x2 \leq H and \sigma (x2) \geq 0 for x2 \geq H; note that such a tilde notation
can also be used to define \~y2 and \~x\ast 2 in the following. As shown in Figure 1(b), the
planar strip SL

H = \BbbR \times [H,H +L] with nonzero \sigma is called the PML region so that L
represents its thickness. In this paper, we choose an m \geq 0 and

(17) \sigma (x2) =

\left\{   
2fm

2

fm
1 +fm

2
, x2 \in [H,H + L/2],

2, x2 \geq H + L/2,m \not = 0,
1, x2 \geq H + L/2,m = 0,

where we note that \sigma \equiv 1 if m = 0, and

f1 =

\biggl( 
1

2
 - 1

m

\biggr) 
\xi 3 +

\xi 

m
+

1

2
, f2 = 1 - f1, \xi =

2x2  - (2H + L/2)

L/2
.

Let Lc := \~x2(H+L) - H = L+ iScL, where Sc =
S
L

\int H+L

H
\sigma (t)dt\geq S. Both the real

and imaginary parts of Lc affect the absorbing strength of the PML [12]. For m = 6,
H = 3, and L = 2.2, we show the pictures of f1 and f2 for x2 \in [3, 4.2] in Figure 2.

Now, let \~x = (x1, \~x2). For x\ast \in \Omega with x2 > H, by analytic continuation of (4)
we can define

uog(\~x;x\ast ) := 2

\int 
\Gamma H

\partial G(\~x; y)

\partial y2
uog(y;x\ast )ds(y),

satisfying

\~\Delta uog(\~x;x\ast ) + k2uog(\~x;x\ast ) =  - \delta (x - x\ast ),

where \~\Delta = \partial 2x1
+\partial 2\~x2

. By the chain rule, we see that \~uog(x;x\ast ) := uog(\~x;x\ast ) satisfies
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WAVE SCATTERING BY A DEFECTED PERIODIC SURFACE 2599

\nabla \cdot (A\nabla \~uog) + k2\alpha \~uog = - \delta (x - x\ast ) in \Omega PML,(18)

\~uog = 0 on \Gamma ,(19)

where A = diag\{ \alpha (x2), 1/\alpha (x2)\} , \alpha (x2) = 1+ iS\sigma (x2), and the PML region \Omega PML =
\Omega \cap \{ x : x2 \leq H + L\} consists of the physical region SH and the PML region SL

H .
On the PML boundary x2 = H + L, we use the homogeneous Dirichlet boundary
condition

(20) \~uog = 0 on \Gamma H+L = \{ x : x2 = H + L\} .

The authors in [6] adopted a Neumann condition on the PML boundary \Gamma H+L and
proved the well-posedness of the related PML truncation problem. Here, we choose
the Dirichlet condition (20) since, as we shall see, our numerical results indicate that
the Dirichlet-PML seems more stable than the Neumann-PML. Furthermore, we need
the Green function of the strip \~uog(x;x\ast ) for any x\ast \in \Omega PML and not only for x\ast \in SH

to establish lateral boundary conditions. For completeness, following the idea of [6]
we shall study the well-posedness of the problem (18)--(20) for any x\ast \in \Omega PML.

The fundamental solution of the anisotropic Helmholtz equation (18) is (see [29])

(21) \~G(x; y) = G(\~x; \~y) =
i

4
H

(1)
0 [k\rho (\~x; \~y)],

where \~y = (y1, \~y2); the complexified distance function \rho is defined to be

(22) \rho (\~x, \~y) = [(x1  - y1)
2 + (\~x2  - \~y2)

2]1/2;

and the half-power operator z1/2 is chosen to be the branch of
\surd 
z with nonnegative

real part for z \in \BbbC \setminus ( - \infty , 0] such that arg(z1/2) \in [0, \pi ). The special choice of \sigma in
(17) ensures that

(23) \~G(x; y) = \~G(x; yimag),

for any x \in \Gamma H+L, whenever y = (y1, y2) and yimag = (y1, 2(H + L)  - y2), the
mirror image of y w.r.t. the line \Gamma H+L, are sufficiently close to \Gamma H+L so that \rho (\~x; \~y) =
\rho (\~x; \~yimag).

To remove the singularity of the right-hand side of (18), we introduce

(24) \~uogr (x;x\ast ) = \~uog(x;x\ast ) - \chi (x;x\ast )\~uinc(x;x\ast ),

with the same cut-off function \chi as in (10), where \~uinc(x;x\ast ) = uinc(\~x; \~x\ast ). Then, \~uogr
satisfies

\nabla \cdot (A\nabla \~uogr ) + k2\alpha \~uogr = \~ginc in \Omega PML,(25)

\~uogr = 0 on \Gamma ,(26)

\~uogr = 0 on \Gamma H+L,(27)

where

(28) \~ginc = [\nabla \cdot (A\nabla ) + k2\alpha ](1 - \chi (x;x\ast ))\~uinc(x;x\ast ) \in L2(\Omega PML)

with supp \~ginc \subset \Omega PML = SH \cup SL
H . Taking into account that x\ast can be located

in SL
H , the support supp \~ginc may not completely lie in the physical domain SH .
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To establish a DtN map on \Gamma H like (8), we need to study the following boundary
value problem in the PML strip SL

H : Given q \in H1/2(\Gamma H), s \in H1/2(\Gamma H+L), and

\~gincPML = \~ginc| SL
H
\in L2(SL

H) with supp \~gincPML \subset SL
H , find v \in H1(SL

H) such that

\nabla \cdot (A\nabla v) + k2\alpha v = \~gincPML in SL
H ,(29)

v = q on \Gamma H ,(30)

v = s on \Gamma H+L.(31)

Let

(32) v0(x) = v(x) - vincPML(x), vincPML(x) :=

\int 
SL
H

[ \~G(x; y) - \~G(x; yimag)]\~g
inc
PML(y)dy,

where we recall that yimag is the mirror image of y w.r.t. the line \Gamma L+H . Thus, v0
satisfies

\nabla \cdot (A\nabla v0) + k2\alpha v0 = 0 in SL
H ,(33)

v0 = qn on \Gamma H ,(34)

v0 = sn on \Gamma H+L,(35)

where qn = q  - vincPML| \Gamma H
\in H1/2(\Gamma H) and sn = s - vincPML| \Gamma H+L

\in H1/2(\Gamma H+L).
By the method of separation of variables, we can explicitly express v0 in terms

of \^sn(\xi ) = [\scrF sn](H + L; \xi ) and \^qn(\xi ) = [\scrF qn](H; \xi ), i.e., the Fourier transforms of
qn and sn w.r.t. the variable x1, so that the PML-truncated problem (25)--(27) can
be reformulated as an equivalent boundary value problem on the physical region SH :
Find \~uogr \in VH that satisfies

\nabla \cdot (A\nabla \~uogr ) + k2\alpha \~uogr = \~ginc| SH
in SH ,(36)

\partial \nu \~u
og
r =  - \scrT p\~uogr | \Gamma H

+ fp on \Gamma H ,(37)

where

(38) fp = \scrN p(v
inc
PML| \Gamma H+L

) + \scrT p(vincPML| \Gamma H
) + \partial \nu v

inc
PML| \Gamma H

\in H - 1/2(\Gamma H),

and the two bounded operators \scrT p : H1/2(\Gamma H) \rightarrow H - 1/2(\Gamma H) and\scrN p : H1/2(\Gamma H+L) \rightarrow 
H - 1/2(\Gamma H) are defined through

\scrF [\scrT pqn](H; \xi ) =z
exp(zLc) + exp( - zLc)

exp(zLc) - exp( - zLc)
\^qn,

\scrF [\scrN psn](H + L; \xi ) =z
 - 2

exp(zLc) - exp( - zLc)
\^sn;

note that the above definitions allow \xi \in \BbbR now, since limits can be considered when
z = 0. The associated variational formulation reads as follows: Find \~uogr \in VH , such
that for any \psi \in VH ,

(39) bp(\~u
og
r , \psi ) =  - 

\int 
SH

\~ginc| SH
\=\psi dx+

\int 
\Gamma H

fp \=\psi ds,

where the sesquilinear form bp(\cdot , \cdot ) : VH \times VH \rightarrow \BbbC is given by

(40) bp(\phi , \psi ) =

\int 
SH

(\nabla \phi \cdot \nabla \=\psi  - k2\phi \=\psi )dx+

\int 
\Gamma H

\=\psi \scrT p\phi ds.
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As in [6], we define the k-dependent norm

| | \phi | | 2Hs(\BbbR ) =

\int 
\BbbR 
(k2 + \xi 2)s| [\scrF \phi ](\xi )| 2d\xi 

for Hs(\BbbR ). Then, the following lemma roughly characterizes the difference of \scrT p and
\scrT .

Lemma 3.1. For any L with kScL > 0, we have

(41) | | \scrT  - \scrT p| | \leq 
1

kScL
+

2\surd 
3

exp( - [2kL])

[2kL]
.

Proof. The proof is similar to that of [6, Thm. 3.1]. We omit the details here.

Clearly, the sesquilinear form bp in (40) defines a bounded linear functional \scrA p :
VH \rightarrow V \ast 

H such that, for any \phi \in VH ,

((\scrA  - \scrA p)\phi , \psi ) = b(\phi , \psi ) - bp(\phi , \psi ) =

\int 
\Gamma H

\=\psi (\scrT  - \scrT p)\phi ds.

Analogous to [6, sect. 3], we see immediately that

| | \scrA  - \scrA p| | \leq 2| | \scrT  - \scrT p| | \leq 
2

kScL
+

2\surd 
3

exp( - [2kL])

[2kL]
.

Consequently, since \scrA is invertible, \scrA p has a bounded inverse provided that ScL and
L are sufficiently large. Since the right-hand side of (39) defines a bounded functional
in V \ast 

H , we in fact have justified the following well-posedness result.

Theorem 3.1. Provided that L and ScL (note ScL\geq SL) are sufficiently large,
the PML-truncated problem (18)--(20) admits a unique solution \~uog(x;x\ast )= \~uogr (x;x\ast )+
\chi (x;x\ast )\~uinc(x;x\ast ) with \~uogr \in H1

0 (\Omega PML) = \{ \phi \in H1(\Omega PML) : \phi | \Gamma \cup \Gamma H+L
= 0\} 

for any x\ast \in \Omega PML. Moreover, there holds the estimate | | \~uogr (\cdot ;x\ast )| | H1(\Omega PML) \leq 
C| | \~ginc| | L2(\Omega PML), where \~ginc is defined by (28). If x\ast \in SH , then
(42)

| | uog(\cdot ;x\ast ) - \~uog(\cdot ;x\ast )| | VH
\leq 2

\gamma min
\bigl\{ 
[kScL],

\surd 
3[2kL] exp([2kL])

\bigr\} 
 - 2

| | uogr (\cdot ;x\ast )| | VH
.

Proof. The proof is similar to that of [6, Cor. 3.4].

Remark 3.1. The well-posedness in Theorem 3.1 holds in general for any Lip-
schitz curve satisfying (GC).

4. Semi-waveguide problems. Unlike the exponential convergence results in
[10, 35], (42) indicates only a poor convergence of the PML method over SH . However,
we believe that exponential convergence can be realized in a compact subset of SH ,
which is indeed true if \Gamma is flat [6]. Then the vertical PML truncation is efficient,
and the next essential question is how to accurately truncate \Omega PML in the lateral
x1-direction. To address this, as inspired by [22] and as illustrated in Figure 3(a), we
shall consider the two semi-waveguide problems

(P\pm )

\left\{       
\nabla \cdot (A\nabla \~u) + k2\alpha \~u = 0 in \Omega \pm 

PML := \Omega PML \cap 
\bigl\{ 
x : \pm x1 > T

2

\bigr\} 
,

\~u = 0 on \Gamma \pm := \Gamma \cap 
\bigl\{ 
x : \pm x1 > T

2

\bigr\} 
,

\~u = 0 on \Gamma \pm 
L+H := \Gamma L+H \cap 

\bigl\{ 
x : \pm x1 > T

2

\bigr\} 
,

\partial \nu c
\~u = g\pm on \Gamma \pm 

0 := \Omega PML \cap 
\bigl\{ 
x : x1 = \pm T

2

\bigr\} 
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(a) (b)

Fig. 3. (a) Region \Omega PML is divided into three regions \Omega  - 
PML, \Omega 0, and \Omega +

PML; semi-waveguide

problems (P\pm ) are defined in \Omega \pm bounded by \Gamma \pm 
H+L, \Gamma \pm 

0 , and \Gamma \pm . (b) Domain \Omega +
PML is further

truncated onto \Omega 0a by the curve \Gamma a := \{ x = (a, x2) : x \in \Omega PML\} for a \geq T/2, and \Omega +
a = \Omega +

PML\setminus \Omega 0a.

for given Neumann data g\pm \in H - 1/2(\Gamma \pm 
0 ), where \nu c = A\nu denotes the conormal

vector with \nu pointing toward \Omega \pm 
PML, \~u denotes a generic field, and we note that

\Gamma \pm \subset \Gamma T does not contain the defected part \Gamma 0. In this section, we shall study the
well-posedness of the semi-waveguide problems (P\pm ). We refer the reader to [31,
Chap. 3] for the definition of Sobolev spaces \~Hs(\Gamma \pm 

0 ) defined on the open arc \Gamma \pm 
0 and

its dual space H - s(\Gamma \pm 
0 ) with s \in \BbbR .

By Theorem3.1, the following uniqueness result is easy to obtain.

Lemma 4.1. Provided that ScL and L are sufficiently large, problem (P\pm ) has at
most one solution in H1(\Omega \pm 

PML).

Proof. Suppose \~u \in H1(\Omega +
PML) satisfies (P

+) with g+ = 0. Let

\Omega e
PML = \{ x \in \BbbR 2 : (x1, x2) \in \Omega +

PML or (T  - x1, x2) \in \Omega +
PML\} \cup \Gamma +

0 ,

\Gamma e = \{ x \in \BbbR 2 : (x1, x2) \in \Gamma + or (T  - x1, x2) \in \Gamma + or (T/2, x2) \in \Gamma \} .

Then,

\~ue(x1, x2) =

\biggl\{ 
\~u(x1, x2), x1 \geq T/2,
\~u(T  - x1, x2), x1 < T/2,

in H1(\Omega e
PML) satisfies problem (25)--(27) with \~g, \Omega PML, and \Gamma replaced by 0, \Omega e

PML,
and \Gamma e, respectively. Theorem 3.1 and Remark 3.1 imply that \~ue = 0 on \Omega e

PML so that
\~u = \~ue| \Omega +

PML
= 0. The uniqueness of problem (P - ) can be established similarly.

In order to study the well-posedness of problem (P\pm ) by Fredholm's alternative,
we have to truncate \Omega +

PML by imposing an exact transparent boundary condition, i.e.,
a condition including the DtN operator on an artificial boundary \Gamma a := \{ x = (a, x2) :
x \in \Omega PML\} for some a \geq T/2. Let \Omega +

a be the unbounded domain bounded by
\Gamma a, \Gamma 

+
H+L, and \Gamma , and as indicated in Figure 3(b), let \Omega 0a be the domain bounded

by \Gamma +
0 , \Gamma a, \Gamma 

+
H+L, and \Gamma +. We suppose, without loss of generality, that both \Omega +

a

and \Omega 0a are Lipschitz domains. Otherwise, we can replace the segment \Gamma a by a
curve of a slightly different shape. To get the DtN operator over \Gamma a without the
technical assumption on \Gamma made in [19, section 2.3], we shall follow the ideas of
[18]. The authors of [18] investigate well-posedness of time-harmonic electromagnetic
scattering by perfectly conducting periodic surfaces with local perturbations in both
TE and TM (transverse magnetic) polarizations. In a truncated bounded Lipschitz
domain enclosing the perturbation, it is impossible in general to get an explicit form
of the DtN map in the form of a series on the artificial boundary. In [18], the DtN
operator is defined through the Green formula and extension operators, and a single
layer operator is used to represent the wave fields in the exterior of the truncated
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domain. For the purpose of avoiding the explicit use of the Green function, the single
layer operator is defined as a well-defined transmission problem for the Helmholtz
equation. Such an approach also leads to mapping properties of the single layer
operator and carries over to the waveguide problems (P\pm ).

We first construct the single layer operator \scrS a on the artificial boundary \Gamma a as
follows: Given \varphi \in H - 1/2(\Gamma a), consider the transmission problem of finding v \in 
H1

0 (\Omega PML) such that

\nabla \cdot (A\nabla v) + k2\alpha v = 0 in \Omega +
PML \cup 

\Bigl[ 
\Omega PML \setminus \Omega +

PML

\Bigr] 
, \partial +1 v  - \partial  - 1 v = \varphi on \Gamma a,

(43)

where \partial 1 := \partial /\partial x1. Note that the normal direction \nu = (1, 0) at \Gamma a points into \Omega +
a .

In the PML layer SL
H , the equations in (43) can be written in the same form as in

(29),

(44) \nabla \cdot (A\nabla v) + k2\alpha v = \~gincPML in SL
H ,

with \~gincPML \in X\ast , X := \{ u \in H1(SL
H) : u = 0 on \Gamma H+L\} , defined by\bigl\langle 

\~gincPML, w
\bigr\rangle 
:=

\int 
\Gamma a\cap SL

H

\varphi w ds, w \in X.

Using \~gincPML, we again define the functions v0, v
inc
PML \in H1(SL

H) and fp \in H - 1/2(\Gamma H)
as in (32) and (38). The variational formulation for v reads as (see, e.g., (39))

(45) bp(v, \psi ) =

\int 
\Gamma a\cap SH

\varphi \psi ds+

\int 
\Gamma H

fp\psi ds \forall \psi \in VH ,

where the sesquilinear form bp is defined as in (40). Analogously to the proof of
Theorem 3.1, one can show the unique solvability of v \in H1

0 (\Omega PML) provided L and
ScL are sufficiently large. Moreover, the mapping H - 1/2(\Gamma a) \ni \varphi \mapsto \rightarrow v \in H1

0 (\Omega PML)
is bounded. The single layer operator \scrS a : H - 1/2(\Gamma a) \rightarrow \~H1/2(\Gamma a) is then defined by
\scrS a\varphi :=v| \Gamma a

, which is obviously a bounded operator.
Next, we show that \scrS a is invertible and strongly elliptic. In the special case k = i,

the well-posedness of (43) simply follows from the Lax--Milgram lemma. Indeed, from
the variational formulation

a(v, \psi ) :=

\int 
\Omega PML

\bigl[ 
\alpha (x2)\partial 1v\partial 1\psi + 1/\alpha (x2)\partial 2v\partial 2\psi + \alpha (x2)v\psi 

\bigr] 
dx =

\int 
\Gamma a

\varphi \psi ds,(46)

\psi \in H1
0 (\Omega PML),

we observe that the sesquilinear form a is strictly coercive over H1
0 (\Omega PML), that is,

Re a(v, v) \geq c | | v| | 2H1(\Omega PML)
, c > 0.(47)

Moreover, the variational solution v belongs to

H1
(\tau )(\Omega PML) :=\{ u\in H1

0 (\Omega PML) : e
\tau | x| u\in H1(\Omega PML)\} 

for \tau \in (0, 1), and the mapping \varphi \mapsto \rightarrow v is bounded from H - 1/2(\Gamma a) into H1
(\tau )(\Omega PML)

and even compact from H - 1/2(\Gamma a) into L2
(\tau \prime )(\Omega PML) := \{ u \in H1

0 (\Omega PML) : e\tau 
\prime | x| u \in 
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L2(\Omega PML)\} with \tau \prime < \tau (cf. [18, Thm. 3.1]). Denote the operator mapping \varphi \mapsto \rightarrow \~v| \Gamma a
,

where \~v \in L2
(\tau \prime )(\Omega PML) is a solution of (46), by \scrS (i)

a . Then it follows that (\scrS a - \scrS (i)
a )\varphi =

w| \Gamma a , where w \in H1
0 (\Omega PML) is the solution to

(48) \nabla \cdot (A\nabla w) + k2\alpha w = (k2  - 1)\alpha \~v in \Omega PML.

The unique solvability of w to (48), which again goes back to the proof of Theorem
3.1, yields the boundedness of the mapping L2

(\tau \prime )(\Omega PML) \ni v \mapsto \rightarrow w \in \~H1/2(\Gamma a). This,

together with the compactness of \varphi \mapsto \rightarrow \~v from H - 1/2(\Gamma a) \rightarrow L2
(\tau \prime )(\Omega PML), proves the

compactness of \scrS a  - \scrS (i)
a . In summary, the single layer operator \scrS a : H - 1/2(\Gamma a) \rightarrow 

\~H1/2(\Gamma a) can be decomposed into the sum of a compact operator \scrS a  - \scrS (i)
a and

a coercive operator \scrS (i)
a . On the other hand, we observe that \scrS a\varphi = v| \Gamma a

= 0
implies that v \equiv 0 in \Omega PML \cap \{ x1 \lessgtr a\} (see the proof of Lemma 4.1) and thus
\varphi = \partial +\nu v| \Gamma a  - \partial  - \nu v| \Gamma a = 0. Hence, the single layer operator \scrS a is boundedly invertible.

The DtN operator \scrT a : \~H1/2(\Gamma a) \rightarrow H - 1/2(\Gamma a) is defined by \scrT ag = \partial 1u| \Gamma a where
u \in H1(\Omega +

a ) is the unique solution to

\nabla \cdot (A\nabla u) + k2\alpha u = 0 in \Omega +
a , u = g on \Gamma a,

u = 0 on \partial \Omega +
a \cap \{ \Gamma \cup \Gamma H+L\} .

(49)

By definition of the single layer operator, we conclude that the solution u of (49) co-
incides with the unique solution v \in H1

0 (\Omega PML) to (43) with \varphi := \scrS  - 1
a g \in H - 1/2(\Gamma a)

in \Omega +
a . This implies that the DtN operator \scrT a is well defined and bounded. Moreover,

defining \Gamma b and \Omega +
b for b > a similarly to \Gamma a and \Omega +

a , the operator \scrT a takes the explicit
form

(50) \langle \scrT ag, \psi \rangle =
\int 
\Omega +

a \setminus \Omega +
b

\Bigl[ 
A\nabla u \cdot \nabla \~\psi  - k2\alpha (x2)u \~\psi 

\Bigr] 
dx, \psi \in \~H1/2(\Gamma a),

where \~\psi \in \{ v \in H1(\Omega +
a \setminus \Omega +

b ): v = 0 on (\Gamma H+L \cup \Gamma ) \cap \{ x : a \leq x1 \leq b\} and on \Gamma b\} 
denotes an extension of \psi \in \~H1/2(\Gamma a) obtained by a fixed bounded operator of ex-
tension. We are now ready to establish the well-posedness of problems (P\pm ).

Theorem 4.1. Under the geometrical condition (GC), provided that L and ScL
are sufficiently large, the semi-waveguide problem (P\pm ) has a unique solution \~u \in 
H1(\Omega \pm 

PML). Moreover, there holds | | \~u| | H1(\Omega \pm 
PML)

\leq C| | g\pm | | H - 1/2(\Gamma \pm 
0 ) for any g\pm \in 

H - 1/2(\Gamma \pm 
0 ), where C is independent of g\pm .

Proof. We only consider the problem (P+), because (P - ) can be treated in the
same manner. By (50), the DtN operator \scrT a can be decomposed into the sum of
a coercive operator and a compact operator. Indeed, using the same arguments in

proving (47) and the compactness of \scrS a  - \scrS (i)
a , one can show that the DtN operator

\scrT (i)
a corresponding to k = i is coercive and the difference \scrT a  - \scrT (i)

a is compact. This
implies that the DtN operator \scrT a : \~H1/2(\Gamma a) \rightarrow H - 1/2(\Gamma a) is a Fredholm operator
with index zero. The injectivity of \scrT a follows from the uniqueness result of Lemma
4.1. Hence, by Fredholm's alternative, the inverse \scrT  - 1

a : H - 1/2(\Gamma a) \rightarrow \~H1/2(\Gamma a)
exists and is bounded, which is nothing else but the NtD operator.

To prove Theorem 4.1, we take a = T/2 and thus \Gamma a = \Gamma +
0 . For g

+ \in H - 1/2(\Gamma +
0 ),

we have \varphi := \scrT  - 1
T/2(g

+) \in \~H1/2(\Gamma +
0 ). By definition of the DtN operator there exists a

unique u \in H1(\Omega +
PML) such that u = \varphi , \partial 1u = g+ on \Gamma +

0 with the estimate

(51) | | u| | H1(\Omega +
PML)

\leq C | | \varphi | | \~H1/2(\Gamma +
0 ) \leq C | | g+| | H - 1/2(\Gamma +

0 ), C > 0,
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which proves Theorem 4.1.

Remark 4.1. Like Theorem 3.1, Theorem 4.1 also holds for any Lipschitz curves
\Gamma \pm , which are not necessarily periodic, satisfying the geometrical condition (GC).

Remark 4.2. Suppose that both the unperturbed curve \Gamma T and the perturbed curve
\Gamma are Lipschitz graphs and fulfill the geometrical condition (GC). The forward scat-
tering problem (1), (2) admits a unique solution uog which satisfies the hSRC (9)
in \Omega H for any H > max\{ x2 : x \in \Gamma \cup \Gamma T \} (see section 2 for the definitions of uog

and hSRC). This can be proved by constructing a new form of DtN operator analo-
gously to the operator \scrT a. We refer the reader to [18] for the radiation condition and
the uniqueness and existence results for nongraph Lipschitz curves in the presence of
evanescent surface waves.

5. Lateral boundary conditions. According to Theorem 3.1, \partial \nu c
\~uog(\cdot ;x\ast )| \Gamma \pm 

0
\in 

H - 1/2(\Gamma \pm 
0 ) for any x

\ast \in SH with | x\ast 1| < T/2. Thus, \~u = \~uog(\cdot ;x\ast )| \Omega \pm 
PML

satisfies (P\pm )

with g\pm = \partial \nu c
\~uog(\cdot ;x\ast )| \Gamma \pm 

0
in the distributional sense, respectively. Theorem 4.1 then

implies that we can define two vertical NtD (vNtD) operators \scrN \pm : H - 1/2(\Gamma \pm 
0 ) \rightarrow \widetilde H1/2(\Gamma \pm 

0 ) satisfying \~uog| \Gamma \pm 
0
= \scrN \pm \partial \nu c

\~uog| \Gamma \pm 
0
. Such transparent boundary conditions

can serve as exact lateral boundary conditions to terminate the x1-variable for the
PML-truncated problem (18), (19). Consequently, the original unbounded problem
(1), (2) equipped with the hSRC condition (9) can be truncated onto the perturbed
cell \Omega 0 := \Omega PML \cap 

\bigl\{ 
x : | x1| < T

2

\bigr\} 
and reformulated as the following boundary value

problem:
(BVP1)\left\{       

\nabla \cdot (A\nabla \~uog) + k2\alpha \~uog =  - \delta (x - x\ast ) in \Omega 0,
\~uog = 0 on \Gamma 0 = \Gamma \cap \{ x : | x1| < T/2\} ,
\~uog = 0 on \Gamma 0

H+L=\Gamma H+L\cap \{ x : | x1| <T/2\} ,
\~uog = \scrN \pm \partial \nu c

\~uog on \Gamma \pm 
0 .

Theorems 3.1 and 4.1 directly imply that (BVP1) admits the unique solution

\~uog(\cdot ;x\ast ) = \~uogr (\cdot ;x\ast )| \Omega 0
+ \chi (\cdot ;x\ast )| \Omega 0

\~uinc(x;x\ast )| \Omega 0
,

with \~uogr as defined in Theorem 3.1. Nevertheless, it is challenging to get \scrN \pm by
directly solving the unbounded problem (P\pm ) in practice. To overcome this diffi-
culty, in this section we shall define two closely related Neumann-marching operators,
derive the governing Riccati equations, and design an efficient RDP to accurately
approximate \scrN \pm .

5.1. Solution operators \bfscrS \pm and Neumann-marching operators \bfscrR \pm 
\bfitp . Now,

let \Gamma \pm 
j = \{ (x1 \pm jT, x2) : x = (x1, x2) \in \Gamma \pm 

0 \} , \Omega \pm 
PML,j = \{ x \in \Omega \pm 

PML : \pm x1 >

T/2 + (j  - 1)T\} , and \Omega \pm 
j = \Omega \pm 

PML,j\setminus \Omega 
\pm 
PML,j+1, for j \in \BbbN \ast , as illustrated in Figure

4(a) for the notation with superscript +.
As inspired by [22], the well-posedness of (P\pm ) well defines two bounded solution

operators \scrS \pm : H - 1/2(\Gamma \pm 
0 ) \rightarrow H1(\Omega \pm 

PML) such that \~uog| \Omega \pm 
PML

= \scrS \pm (\partial \nu c \~u
og| \Gamma \pm 

0
), and

two bounded Neumann-marching operators \scrR \pm 
p : H - 1/2(\Gamma \pm 

0 ) \rightarrow H - 1/2(\Gamma \pm 
1 ) such that

\partial \nu \pm 
c
\~uog| \Gamma \pm 

1
= \scrR \pm 

p (\partial \nu \pm 
c
\~uog| \Gamma \pm 

0
), where \nu \pm c = A\nu \pm with \nu \pm = (\pm 1, 0)T . We have the

following properties of \scrR \pm 
p , which are analogous to [22, Thm. 3.1].

Proposition 5.1. Under the condition that kScL and kL are sufficiently large,
we can choose \Gamma \pm 

0 intersecting \Gamma at a smooth point such that \scrR \pm 
p are compact operators
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(a) (b)

Fig. 4. (a) The semi-waveguide region \Omega +
PML is divided into domains \Omega +

j , j = 1, . . . , of the

same shape. The operator \scrR +
p can then march Neumann data through the vertical line segments

\Gamma +
j , j = 0, . . . . (b) The boundary of \Omega j consists of four parts: \Gamma +

j,1 (left), \Gamma +
j,2 (bottom), \Gamma +

j,3 (right),

\Gamma +
j,4 (top). Here, \theta in indicates the interior angle at a corner, as will be used in (83).

and

(52) \partial \nu \pm 
c
\~uog| \Gamma \pm 

j+1
= \scrR \pm 

p (\partial \nu \pm 
c
\~uog| \Gamma \pm 

j
)

holds for any j \geq 0. Furthermore,

(53) \rho (\scrR \pm 
p ) < 1,

where \rho denotes the spectral radius.

Proof. We study only the property of \scrR +
p . The choice of \Gamma +

0 and the interior
regularity theory of elliptic operators directly imply the compactness of \scrR +

p .
It is clear that (52) holds for j = 0. We need only justify the case j = 1, as all

others can be done by induction. Consider the semi-waveguide problem (P+) with
g+ =  - \partial \nu +

c
\~uog| \Gamma +

1
, where the negative sign appears since \nu +c =  - \nu c. Theorem 4.1

implies that \~uogn (x) = \~uog(x1 + T, x2) for x \in \Omega +
PML is the unique solution. Then

\partial \nu +
c
\~uogn | \Gamma +

1
= \scrR +

p (\partial \nu +
c
\~uogn | \Gamma +

0
), which reads exactly as \partial \nu +

c
\~uog| \Gamma +

2
= \scrR +

p (\partial \nu +
c
\~uog| \Gamma +

1
).

Now we prove (53) and take an arbitrary eigenfunction 0 \not = g \in H - 1/2(\Gamma +
0 ) such

that \scrR +
p g = \lambda 0g. Suppose \~u satisfies (P+) with g+ = g on \Gamma +

0 . Then, for any

v \in H1(\Omega +
PML), we get v(\cdot  - jT, \cdot ) \in H1(\Omega +

PML,j+1) for any j \geq 0, and, by the Green
identity, that

| \lambda 0| j
\bigm| \bigm| \bigm| \bigm| \int 

\Gamma 0

g\=vds

\bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Gamma j

(\scrR +
p )

jgv(\cdot  - jT, \cdot )ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega PML,j+1

\Bigl[ 
(A\nabla \~uog)T\nabla v(\cdot  - jT, \cdot ) - k2\alpha \~uogv(\cdot  - jT, \cdot )

\Bigr] 
dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C| | \~uog| | H1(\Omega +

PML,j+1)
| | v| | H1(\Omega +

PML)
\rightarrow 0, j \rightarrow \infty .

Choosing v such that
\int 
\Gamma 0
g\=vds \not = 0, we get | \lambda 0| < 1, and (53) follows.

By (53) and the identity (cf. [23])

\rho (\scrR \pm 
p ) = lim

j\rightarrow \infty 
| | (\scrR \pm 

p )
j | | 1/j ,

there exists a sufficiently large integer N0 > 0 such that (\scrR \pm 
p )

N0 is contracting, i.e.,

(54) | | (\scrR \pm 
p )

N0 | | < 1.
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Let \Omega \pm ,N0

j be the interior of N0 consecutive cells \cup N0

j\prime =1\Omega 
\pm 
(j - 1)N0+j\prime . As a corollary,

the above results indicate that \~uog decays exponentially at infinity of the strip.

Corollary 5.1. Under the condition that kL and kScL are sufficiently large,

(55) | | \~uog(\cdot ;x\ast )| | 
H1(\Omega 

\pm ,N0
j )

\leq C| | (\scrR \pm 
p )

N0 | | j - 1| | \~ginc| | L2(\Omega PML),

where we recall that \~ginc = [\nabla \cdot (A\nabla ) + k2\alpha ](1 - \chi (x;x\ast ))\~uinc(x;x\ast ), and C is inde-
pendent of j \geq 0. In other words, for any x\ast \in \Omega PML, the PML-truncated solution
\~uog(x;x\ast ) decays exponentially fast to 0 in the strip as | x1| \rightarrow \infty .

Remark 5.1. The authors of [6] revealed a result similar to (55) for \Gamma being a flat
surface. The above corollary indicates that such an exponentially decaying property
for the PML-truncated solution holds even for locally defected periodic curves. As
a consequence, this reveals that the PML truncation cannot realize an exponential
convergence to the true solution for numerical solutions at regions sufficiently away
from the source or local defects since the true solution is expected to decay only at an

algebraic rate at infinity; [7] has indicated that uog behaves as \scrO (x
 - 3/2
1 ) as x1 \rightarrow \infty .

Although, due to Corollary 5.1, an exponential convergence of the PML method in
the whole physical domain SH cannot be realized, it is the exponential decay property
of \~uog that makes the RDP, as introduced below, successful at effectively computing
\scrR \pm 

p . Moreover, we point out that (55) holds for L being fixed but j \rightarrow \infty . If, on
the contrary, j is fixed but L \rightarrow \infty , we believe exponential convergence can still be
achieved. In doing so, we need a more effective description of the Neumann-marching
operators \scrR \pm 

p , as was given in [22]. Take \scrR +
p as an example. As shown in Figure

4(b), \Omega +
j denotes the jth unit cell on the right of \Gamma +

0 , which is unperturbed for j \geq 1,

and to simplify the presentation, we further denote the four boundaries of \Omega +
j by

\Gamma j,1 = \Gamma +
j - 1, \Gamma j,3 = \Gamma +

j , \Gamma j,2 = \Omega +
j \cap \Gamma , \Gamma j,4 = \Omega +

j \cap \Gamma +
H+L.

Consider the following boundary value problem for a generic field \~u:

(BVP2)

\left\{   
\nabla \cdot (A\nabla \~u) + k2\alpha \~u = 0 in \Omega +

j ,

\~u = 0 on \Gamma j,2 \cup \Gamma j,4,
\partial \nu c

\~u = gi on \Gamma +
i , i = j  - 1, j,

for gi \in H - 1/2(\Gamma +
i ), i = j  - 1, j. We have the following well-posedness theorem.

Theorem 5.1. Provided that kT/\pi /\in \scrE := \{ i\prime /2j\prime | j\prime \in \BbbN , i\prime \in \BbbN \ast \} , and that L,
as well as ScL, is sufficiently large, (BVP2) is well-posed. The well-posedness even

holds with \Omega +
j replaced by the interior domain of 2l consecutive cells, say \cup 2l

j=1\Omega 
+
j ,

for any number l \geq 0.

Proof. It is clear that only uniqueness is needed [31, Thm. 4.10]. Suppose j = 1
and gi = 0, i = 0, 1. Then, by first an even extension over \Gamma +

0 and then a 2T -periodic
extension, we get a 2T -periodic solution \~ue (corresponding to a normal incidence) in a
strip bounded in the x2-direction by a 2T -periodic grating surface, possibly different
from \Gamma , and the PML boundary \Gamma H+L. However, according to the well-posedness
theory [5, Cor. 5.2] for the half-space scattering by the grating, the PML convergence
theory in [10, Thm. 2.4] can be readily adapted here to show that \~ue \equiv 0, taking into
account that kT/\pi /\in \scrE has excluded horizontally propagating Bloch modes.
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Remark 5.2. We note that the condition kT/\pi /\in \scrE is not necessary for the well-
posedness of (BVP2). Alternatively, if kT/\pi \in \scrE , one may impose zero Neumann
condition on \Gamma 4,j to guarantee the uniqueness of the modified (BVP2) [30, 35].

By Theorem 5.1, we can define a bounded NtD operator \scrN (0) : H - 1/2(\Gamma +
j - 1) \times 

H - 1/2(\Gamma +
j ) \rightarrow \widetilde H1/2(\Gamma +

j - 1)\times \widetilde H1/2(\Gamma +
j ) such that\Biggl[ 

\~u| \Gamma +
j - 1

\~u| \Gamma +
j

\Biggr] 
= \scrN (0)

\Biggl[ 
\partial \nu  - 

c
\~u| \Gamma +

j - 1

\partial \nu +
c
\~u| \Gamma +

j

\Biggr] 
(56)

for all j \geq 1. Due to the invariant shape of \Omega +
j with respect to j, \scrN (0) is in fact

independent of j. Suppose j = 1. Then, by the linearity principle, \scrN (0) can be
rewritten in the matrix form

\scrN (0) =

\Biggl[ 
\scrN (0)

00 \scrN (0)
01

\scrN (0)
10 \scrN (0)

11

\Biggr] 
,

where the bounded map \scrN (0)
i\prime j\prime : H

 - 1/2(\Gamma +
j\prime ) \rightarrow \widetilde H1/2(\Gamma i\prime ) maps \partial \nu c

\~u| \Gamma +

j\prime 
= gj\prime to \~u| \Gamma +

i\prime 

if g1 - j\prime = 0 for i\prime , j\prime = 0, 1 in (BVP2). Due to the shape invariance of \Gamma +
j , we shall

identify H - 1/2(\Gamma +
j ) for all j \geq 0 as the same space H - 1/2(\Gamma +

0 ), and, similarly, the\widetilde H1/2(\Gamma +
j ) shall all be identified as the dual space of H - 1/2(\Gamma +

0 ).

Returning to the semi-waveguide problems (P\pm ), we have, by the definition of
\scrR +

p and (56) for j = 1 and 2, that

\scrN (0)
10 \partial \nu  - 

c
\~uog| \Gamma +

0
 - \scrN (0)

11 \scrR +
p \partial \nu  - 

c
\~uog| \Gamma +

0
= \~uog| \Gamma +

1
(57)

= \scrN (0)
00 \scrR +

p \partial \nu  - 
c
\~uog| \Gamma +

0
 - \scrN (0)

01 (\scrR +
p )

2\partial \nu  - 
c
\~uog| \Gamma +

0
.

Here and in the following, the product of two operators should be regarded as their
composition. Thus,\Bigl[ 

\scrN (0)
10  - \scrN (0)

11 \scrR +
p  - \scrN (0)

00 \scrR +
p +\scrN (0)

01 (\scrR +
p )

2
\Bigr] 
\partial \nu c

\~uog| \Gamma +
0
= 0,

for any \partial \nu c \~u
og| \Gamma +

0
\in H - 1/2(\Gamma +

0 ), so that we end up with the following Riccati equation

for \scrR +
p :

(58) \scrN (0)
10  - [\scrN (0)

11 +\scrN (0)
00 ]\scrR +

p +\scrN (0)
01 (\scrR +

p )
2 = 0.

One similarly obtains the governing equation for \scrR  - 
p ,

(59) \scrN (0)
01  - [\scrN (0)

11 +\scrN (0)
00 ]\scrR  - 

p +\scrN (0)
10 (\scrR  - 

p )
2 = 0.

Analogous to [22], the previous results in fact indicate that the two Riccati equations
(58) and (59) must be uniquely solvable under the condition that \rho (R\pm 

p ) < 1. The
vNtD operators \scrN \pm mapping \partial \nu c

\~uog| \Gamma \pm 
0
to \~uog| \Gamma \pm 

0
are, respectively, given by

\scrN + =\scrN (0)
00  - \scrN (0)

01 \scrR +
p ,(60)

\scrN  - =\scrN (0)
11  - \scrN (0)

10 \scrR  - 
p .(61)

However, due to the nonlinearity of the Riccati equations (58) and (59), it is not that
easy to get \scrN \pm in practice [22]. To tackle this difficulty, we shall develop an RDP to
effectively approximate \scrR \pm 

p .
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5.2. Recursive doubling procedure. Take \scrR +
p as an example. We first study

the NtD operator

(62) \scrN (l) =

\Biggl[ 
\scrN (l)

00 \scrN (l)
01

\scrN (l)
10 \scrN (l)

11

\Biggr] 

on the boundary of \cup 2l

j=1\Omega 
+
j for l \geq 1, where \scrN (l)

i\prime j\prime is bounded from H - 1/2(\Gamma +
0 )

to \widetilde H1/2(\Gamma 0) for i\prime , j\prime = 0, 1. If l = 1, we need to compute \scrN (1) on the boundary of

\Omega +
1 \cup \Omega +

2 . Using (56) for j = 1 and 2 and eliminating \~uog and \partial \nu c
\~uog by the continuity

condition on \Gamma +
1 , one gets

(63) (\scrN (l - 1)
00 +\scrN (l - 1)

11 )\partial \nu +
c
\~uog| \Gamma +

1
=  - \scrN (l - 1)

10 \partial \nu  - 
c
\~uog| \Gamma +

0
+\scrN (l - 1)

01 \partial \nu +
c
\~uog| \Gamma +

2
.

By Theorem 5.1, the well-posedness of the modified (BVP2) for l = 1 indicates that
there exist two bounded operators \scrA l - 1,\scrB l - 1 : H - 1/2(\Gamma +

0 ) \rightarrow H - 1/2(\Gamma +
0 ) such that

\partial \nu +
c
\~uog| \Gamma +

1
=  - \scrA l - 1\partial \nu  - 

c
\~uog| \Gamma +

0
+ \scrB l - 1\partial \nu +

c
\~uog| \Gamma +

2
.

Equation (63) implies that

\scrA l - 1 = (\scrN (l - 1)
00 +\scrN (l - 1)

11 ) - 1\scrN (l - 1)
10 , \scrB l - 1 = (\scrN (l - 1)

00 +\scrN (l - 1)
11 ) - 1\scrN (l - 1)

01 ,

where (\scrN (l - 1)
00 + \scrN (l - 1)

11 ) - 1 is a generalized inverse from \widetilde H1/2(\Gamma 0) to H - 1/2(\Gamma +
0 ).

Thus, one obtains

\scrN (l)
00 = \scrN (l - 1)

00  - \scrN (l - 1)
01 \scrA l - 1, \scrN (l)

01 = \scrN (l - 1)
01 \scrB l - 1,(64)

\scrN (l)
10 = \scrN (l - 1)

10 \scrA l - 1, \scrN (l)
11 = \scrN (l - 1)

11  - \scrN (l - 1)
10 \scrB l - 1.(65)

Equations (64)--(65) can be recursively applied to get \scrN (l) for all l \geq 1, and the
number of consecutive cells \{ \Omega j\} doubles after each iteration, which form the origin
of the term recursive doubling procedure (RDP) in the literature [34, 15]. In the
following, we shall see that RDP provides a simple approach for solving (58) and
(59).

Now, analogously to (58) and (59), we obtain from \scrN (l) and (52) the following
equations:

\scrN (l)
10  - [\scrN (l)

11 +\scrN (l)
00 ](\scrR +

p )
2l +\scrN (l)

01 (\scrR +
p )

2(l+1)

= 0,(66)

\scrN + = \scrN (l)
00  - \scrN (l)

01 (\scrR +
p )

2l ,(67)

\scrN (l)
01  - [\scrN (l)

11 +\scrN (l)
00 ](\scrR  - 

p )
2l +\scrN (l)

10 (\scrR  - 
p )

2(l+1)

= 0,(68)

\scrN  - = \scrN (l)
11  - \scrN (l)

10 (\scrR  - 
p )

2l .(69)

We have the following convergence theorem.

D
ow

nl
oa

de
d 

01
/0

6/
23

 to
 6

0.
29

.1
53

.5
5 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2610 X. YU, G. HU, W. LU, AND A. RATHSFELD

Theorem 5.2. Provided that kT/\pi /\in \scrE , and that L, as well as ScL, is sufficiently
large, we have

| | \scrN (l)
10 | | \leq C| | (\scrR +

p )
2l | | , | | \scrN (l)

01 | | \leq C| | (\scrR  - 
p )

2l | | ,
(70)

| | \scrN +  - \scrN (l)
00 | | \leq C| | (\scrR +

p )
2l | | \cdot | | (\scrR  - 

p )
2l | | , | | \scrN  -  - \scrN (l)

11 | | \leq C| | (\scrR +
p )

2l | | \cdot | | (\scrR  - 
p )

2l | | ,
(71)

for any integer l \geq l0, where the constant C > 0 depends only on | | \scrN \pm | | and \rho (\scrR \pm 
p ).

Moreover, for a fixed q with \rho (\scrR \pm 
p ) < q < 1, the index l0 is chosen such that

| | (\scrR \pm 
p )

2l | | < q2
l

for any l \geq l0.

Proof. The estimates (71) can be directly derived from (70), (67), and (69). In

the following, we only prove the estimate for \scrN (l)
10 , and one can justify the estimate for

\scrN (l)
01 similarly. In the domain \Omega (l) = \cup 2l

j=1\Omega 
+
j , consider the boundary value problem\left\{       

\nabla \cdot (A\nabla \~u) + k2\alpha \~u = 0 in \Omega (l),

\~u = 0 on (\Gamma + \cup \Gamma +
H+L) \cap \Omega (l),

\partial \nu c
\~u = g on \Gamma +

0 ,
\partial \nu c \~u = 0 on \Gamma +

2l

for any g \in H - 1/2(\Gamma +
0 ). It is straightforward to verify that

\~u =

\left[  \scrS +

\left\{   
\infty \sum 
j=0

\Bigl[ 
(\scrR  - 

p )
2l(\scrR +

p )
2l
\Bigr] j
g

\right\}   
\right]  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\Omega (l)

 - 

\left[  \scrS  - 

\left\{   
\infty \sum 
j=0

\Bigl[ 
(\scrR +

p )
2l(\scrR  - 

p )
2l
\Bigr] j

(\scrR +
p )

2lg

\right\}   
\right]  (\cdot  - (2l + 1)T, \cdot )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Omega (l)

is a solution of the above problem and is unique by Theorem 5.1, where we recall
that \scrS \pm are the two solution operators defined in section 5.1, and (\cdot  - (2l + 1)T, \cdot )
indicates a translation in the x1-direction such that for any x = (x1, x2) \in \Gamma +

2l
, (x1  - 

(2l+1)T, x2) \in \Gamma  - 
0 . The two series converge in H - 1/2(\Gamma 0) since | | (\scrR \mp 

p )
2l(\scrR \pm 

p )
2l | | < 1.

Then

\scrN (l)
10 g = \~u| \Gamma +

2l
= \scrN +

\left\{   (R+
p )

2l
\infty \sum 
j=0

\Bigl[ 
(\scrR  - 

p )
2l(\scrR +

p )
2l
\Bigr] j
g

\right\}   
 - \scrN  - 

\left\{   
\infty \sum 
j=0

\Bigl[ 
(\scrR +

p )
2l(\scrR  - 

p )
2l
\Bigr] j

(\scrR +
p )

2lg

\right\}   .

Obviously,

| | \scrN (l)
10 g| | \leq 

\biggl[ 
| | \scrN +| | 
1 - q2

+
| | \scrN  - | | 
1 - q2

\biggr] 
| | (R+

p )
2l | | \cdot | | g| | .

Theorem 5.2 indicates that we can directly approximate

(72) \scrN + \approx \scrN (l)
00 , \scrN  - \approx \scrN (l)

11 ,
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WAVE SCATTERING BY A DEFECTED PERIODIC SURFACE 2611

where the approximation errors decay exponentially as l increases. Moreover, for l suf-

ficiently large, | | \scrN (l)
00 +\scrN (l)

11 | | = \scrO (1) and | | (\scrN (l)
00 +\scrN (l)

11 )
 - 1| | = \scrO (1). The last assertion

is a consequence of (71) and of the invertibility of \scrN ++\scrN  - = liml\rightarrow \infty [\scrN (l)
00 +\scrN (l)

11 ].
Indeed, for the invertibility of \scrN ++\scrN  - , we remark that \scrN \pm is strongly elliptic, which
follows from the strong ellipticity of its inverse (e.g., (\scrN +) - 1 = \scrT a) shown in the proof
of Theorem 4.1. Hence, the strong ellipticity implies the Fredholm property with in-
dex zero for \scrN ++\scrN  - . On the other hand, for a function g with [\scrN ++\scrN  - ]g = 0, we
define \~u0 over \Omega +

PML as the solution \~u of P+ with g+ := g and over the shifted domain
S\Omega  - 

PML := \{ (x1, x2) : (x1 + T, x2) \in \Omega  - 
PML\} by \~u0(x1 + T, x2) := \~u(x1, x2), where \~u is

the solution of P - with g - (x1, x2) :=  - g(x1 + T, x2). Then [\scrN + +\scrN  - ]g = 0 implies
the continuity of \~u0 and \partial 2\~u0 through \Gamma +

0 , and the choice of the g\pm the continuity
of \partial c\~u0. Consequently, \~u0 is a solution of the homogeneous Dirichlet problem over
the periodic unperturbed domain \Omega +

PML \cup S\Omega  - 
PML such that the unique solvability of

Theorem 3.1 provides \~u0 \equiv 0 and g \equiv 0. The null space of \scrN ++\scrN  - is trivial, and
\scrN ++\scrN  - is invertible.

Now we multiply (66) by the bounded (\scrN (l)
00 +\scrN (l)

11 )
 - 1. Then the third term in

the multiplied (66) is exponentially smaller than the second term, and the first term
must be comparable to the second term. Thus, we approximate

(\scrR +
p )

2l \approx [\scrN (l)
11 +\scrN (l)

00 ]
 - 1\scrN (l)

10 ,(73)

with a truncation error \scrO (| | (\scrR +
p )

2l | | | | (\scrR  - 
p )

2l | | ). Furthermore, we get \scrR +
p iteratively

from

(\scrR +
p )

2j\approx [\scrN (j)
11 +\scrN (j)

00 ] - 1
\Bigl[ 
\scrN (j)

10 +\scrN (j)
01 (\scrR +

p )
2j+1

\Bigr] 
, j = l  - 1, . . . , 0.(74)

It can be seen clearly that the total truncation error for computing \scrR +
p accumulates

to

\Pi 0
j=l - 1

\Bigl\{ 
[\scrN (j)

11 +\scrN (j)
00 ] - 1\scrN (j)

01

\Bigr\} 
\scrO (\| (\scrR +

p )
2l\| \| (\scrR  - 

p )
2l\| )

= \scrO 
\Bigl( 
\Pi 0

j=l - 1

\Bigl\{ 
C\| [\scrN + +\scrN  - ] - 1\| \| (\scrR  - 

p )
2j\| 

\Bigr\} 
\| (\scrR +

p )
2l\| \| (\scrR  - 

p )
2l\| 

\Bigr) 
= \scrO 

\Bigl( \bigl[ 
C\| [\scrN + +\scrN  - ] - 1\| 

\bigr] l
q0+1+\cdot \cdot \cdot +2l - 1

\| (\scrR +
p )

2l\| \| (\scrR  - 
p )

2l\| 
\Bigr) 

= \scrO 
\Bigl( 
\| (\scrR +

p )
2l\| \| (\scrR  - 

p )
2l\| 

\Bigr) 
.

Consequently, the backward iteration (74) provides an exponentially accurate approx-
imation to R+

p as l \rightarrow \infty . One similarly obtains \scrR  - 
p from

(\scrR  - 
p )

2l \approx [\scrN (l)
11 +\scrN (l)

00 ]
 - 1\scrN (l)

01 ,(75)

(\scrR  - 
p )

2j\approx [\scrN (j)
11 +\scrN (j)

00 ] - 1
\Bigl[ 
\scrN (j)

01 +\scrN (j)
10 (\scrR  - 

p )
2j+1

\Bigr] 
, j = l  - 1, . . . , 0.(76)

According to Theorem 5.2, l can be chosen by the criteria

max\{ | | \scrN (l)
00  - \scrN (l - 1)

00 | | , | | \scrN (l)
11  - \scrN (l - 1)

11 | | \} \leq \epsilon thres

for some sufficiently small threshold parameter \epsilon thres > 0. Since this simple approach
has been successful, we did not try alternative adaptive algorithms based, e.g., on a
posteriori error estimates of the form C\| \scrN \pm 

l - 1  - \scrN \pm 
l \| \| \~uog\| . Clearly, RDP does not
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2612 X. YU, G. HU, W. LU, AND A. RATHSFELD

require solving any Sylvester equation and thus is more effective than the modified
Newton's method in [22]. As shall be illustrated in numerical examples, RDP can
provide sufficiently accurate numerical solutions by only a few iterations.

From the above, it can be seen that the essential step to approximating \scrN \pm is to
get the NtD operator \scrN (0) on the boundary of the unit cell \Omega \pm 

1 . As no information
of the field \~uog in \Omega \pm 

1 is required, it is clear that the BIE method is an optimal
choice, as it treats only the boundary of \Omega \pm 

1 . Since PML is involved in domain
\Omega \pm 

1 , the high-accuracy PML-based BIE method developed in our previous work [29]
straightforwardly provides an accurate approximation of \scrN (0), so as to effectively
drive the RDP to get \scrN \pm by (72). We shall present the details in the next section.

6. The PML-based BIE method. In this section, we shall first review the
PML-based BIE method in [29] to approximate the NtD operator on the boundary
of a unit cell---one with perturbation and one without---by an NtD matrix. Then, we
shall use these NtD matrices to approximate the two vNtD operators \scrN \pm on \Gamma \pm 

0 and
to solve (BVP1) finally. From now on, we shall assume that the scattering surface \Gamma 
is piecewise smooth and satisfies (GC).

6.1. Approximating \bfscrN \pm . Without loss of generality, we consider (BVP2) in
an unperturbed cell, say \Omega +

1 , and we need to approximate \scrN (0) first. According to
[29], for any \~u satisfying

(77) \nabla \cdot (A\nabla \~u) + k2\alpha \~u = 0

on \Omega +
1 , we have the Green representation theorem

\~u(x) =

\int 
\partial \Omega +

1

\{ \~G(x, y)\partial \nu c
\~u(y) - \partial \nu c

\~G(x, y)\~u(y)\} ds(y)(78)

for all x \in \Omega +
1 . We recall that \nu denotes the outer unit normal vector on \partial \Omega +

1 and
\nu c := A\nu the conormal vector. Moreover, as x approaches \partial \Omega +

1 = \cup 4
j=1\Gamma j,1, the usual

jump conditions imply [29]

\scrK [\~u](x) - \scrK 0[1](x)\~u(x) = \scrS [\partial \nu c \~u](x),(79)

where we have defined the integral operators

\scrS [\phi ](x) = 2

\int 
\partial \Omega +

1

\~G(x, y)\phi (y)ds(y),(80)

\scrK [\phi ](x) = 2 p.v.

\int 
\partial \Omega +

1

\partial \nu c
\~G(x, y)\phi (y)ds(y),(81)

\scrK 0[\phi ](x) = 2 p.v.

\int 
\partial \Omega +

1

\partial \nu c
\~G0(x, y)\phi (y)ds(y),(82)

where p.v. indicates the Cauchy principal value, and \~G0(x, y) =  - 1
2\pi log \rho (\~x, \~y) is the

fundamental solution of the complexified Laplace equation \nabla (A \cdot \nabla \~u) = 0. Note that

(83) \scrK 0[1](x) =  - \theta 
in(x)

\pi 
,

where \theta in(x) is defined as the interior angle at x, as indicated in Figure 4(b). However,
numerically evaluating \scrK 0[1] near corners is more advantageous, as illustrated in the
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literature [13, 28]. Thus, \~u = (\scrK  - \scrK 0[1])
 - 1\scrS \partial \nu c

\~u on \partial \Omega +
1 . Consequently, the NtD

operator \scrN u for any unperturbed domain can be defined as

\scrN u = (\scrK  - \scrK 0[1])
 - 1\scrS .

Here and in the following, we denote the operator of multiplication with a function by
the same symbol as that for the function. Note that some authors denote the operator
of multiplication \scrK 0[1] in the last formula by \scrK 0[1]I and write \scrN u = (\scrK  - \scrK 0[1]I)

 - 1\scrS .
To approximate \scrN u, we need to discretize the two integral operators and the mul-

tiplication operator on the right-hand side. Suppose now that the piecewise smooth
curve \partial \Omega +

1 is parameterized by \{ x(s) = (x1(s), x2(s))| 0 \leq s \leq L1\} , which is close
to the arclength parameterization. Since corners may exist, \~u(x(s)) can have corner
singularities in its derivatives at corners. To smoothen \~u, we introduce a grading func-
tion s = w(t), 0 \leq t \leq 1. For a smooth segment of \partial \Omega +

1 corresponding to s \in [s0, s1]
and t \in [t0, t1] such that si = w(ti) for i = 0, 1, where s0 and s1 correspond to two
corners, we take [13, eq. (3.104)]

(84) s = w(t) =
s0wp

1 + s1wp
2

wp
1 + wp

2

, t \in [t0, t1],

where the positive integer p ensures that the derivatives of w(t) vanish at the corners
up to order p,

w1 =

\biggl( 
1

2
 - 1

p

\biggr) 
\xi 3 +

\xi 

p
+

1

2
, w2 = 1 - w1, \xi =

2t - (t0 + t1)

t1  - t0
.

To simplify notation, we shall use x(t) to denote x(w(t)), and x\prime (t) to denote
dx
ds (w(t))w

\prime (t), in the following. Assume that [0, 1] is uniformly sampled by N grid
points \{ tj = jh\} Nj=1 with even N and grid size h = 1/N and that the grid points
contain all the corner points.

Thus, \scrS [\partial \nu c \~u] at point x = x(tj) can be parameterized by

\scrS [\partial \nu c
\~u](x(tj)) =

\int 1

0

S(tj , t)\phi 
s(t)dt,(85)

where S(tj , t) = \bfi 
2H

(1)
0 (k\rho (x(tj), x(t))), and the scaled conormal vector \phi s(t) =

\partial \nu c \~u(x(t))| x\prime (t)| , smoother than \partial \nu c \~u(x(t)), is introduced to regularize the approx-
imation of \scrN u [27].

Considering the logarithmic singularity of S(tj , t) at t = tj , we can discretize the
integral in (85) by Alpert's 6th-order hybrid Gauss-trapezoidal quadrature rule [1]
and then by trigonometric interpolation to get

(86) \scrS [\partial \nu c \~u
s]

\left[   x(t1)
...

x(tN )

\right]   \approx S

\left[   \phi s(t1)
...

\phi s(tN )

\right]   ,
where the N \times N matrix S approximates \scrS . One similarly approximates \scrK [\~u](x(tj))
and \scrK 0[1](x(tj)) for j = 1, . . . , N , so that we obtain, on the boundary of \partial \Omega +

1 ,

(87)

\left[    
\bfitu 1,1

\bfitu 1,2

\bfitu 1,3

\bfitu 1,4

\right]    = \bfitN u

\left[    
\bfitphi s

1,1

\bfitphi s
1,2

\bfitphi s
1,3

\bfitphi s
1,4

\right]    ,D
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where \bfitu 1,j\prime and \bfitphi s
1,j\prime for j

\prime = 1, 2, 3, 4 represent Nj\prime \times 1 column vectors of \~u and \phi s

at the Nj\prime grid points of \Gamma 1,j\prime , respectively. Note that N =
\sum 4

j\prime =1Nj\prime , and the grid
points on \Gamma 1,3 are obtained by horizontally shifting the grid points on \Gamma 1,1 to \Gamma 1,3 so
that N1 = N3. Clearly, the N \times N matrix \bfitN u approximates the scaled NtD operator
\scrN s

u related to \scrN u by \scrN u\partial \nu c \~u = \scrN s
u\phi 

s. Now, by \~u| \Gamma 1,2\cup \Gamma 1,4 = 0, we eliminate the
vectors \bfitu 1,2, \bfitu 1,4, \bfitphi 1,2, and \bfitphi 1,4 in (87) so that we obtain two 2N1 \times 2N1 matrices
\bfitN (0) and \bfitT that satisfy\biggl[ 

\bfitu 1,1

\bfitu 1,3

\biggr] 
= \bfitN (0)

\biggl[ 
\bfitphi s

1,1

\bfitphi s
1,3

\biggr] 
,

\biggl[ 
\bfitphi s

1,2

\bfitphi s
1,4

\biggr] 
= \bfitT 

\biggl[ 
\bfitphi s

1,1

\bfitphi s
1,3

\biggr] 
,(88)

where we denote

\bfitN (0) =

\Biggl[ 
\bfitN 

(0)
00 \bfitN 

(0)
01

\bfitN 
(0)
10 \bfitN 

(0)
11

\Biggr] 

by \bfitN 
(0)
ij \in \BbbC N1\times N1 . On the continuous level, a representation like (88) follows from

the well-posedness of (BVP2) in Theorem 5.1. So we presume that the elimination
leading to (88) on the discretized level is stable. Note that, different from [29], we no
longer simultaneously assume \~u = \phi s = 0 on the PML boundary \Gamma 1,4, which could
cause pronounced errors in numerical results. A possible reason is as follows. Unlike
[29], BIEs are used in all unit cells, no matter how close to or far away from the
perturbed cell. For the cells away from the perturbed cell, a part of \~uog can enter the
PML at small grazing angles, so that inconsistently assuming both zero Dirichlet and
Neumann conditions on \Gamma 1,4 leads to significant truncation errors. Now compare (56)
and (88). Like \bfitN u, \bfitN 

(0) approximates the scaled NtD operator \scrN (0),s on \Gamma +
1 \cup \Gamma +

3

related to \scrN (0) by \scrN (0)\partial \nu c \~u = \scrN (0),s\phi s.
The PML-based BIE method can provide a high-accuracy approximation of\scrN (0),s

based on two aspects. First, the grading function w(t) smoothens the densities (e.g.,
\phi s(t) in (85)) in the integral operators \scrS , \scrK , and \scrK 0, as illustrated by [13, 29]. Second,
the quadrature rule [1] is proved to be highly accurate for discretizing the three
integral operators with logarithmic kernels (e.g., S(tj , t) in (85)) and smooth densities.
Some numerical techniques, further stabilizing the numerical discretizations, have
been presented in detail in [29].

Consequently, the previously developed RDP can be easily adapted here, in terms
of notation, by replacing \scrN by \bfitN for the equations (64)--(76), so that we get two N1\times 
N1 matrices\bfitR +

p and\bfitN + approximating the (scaled) Neumann-marching operator\scrR +
p

and the (scaled) vNtD operator \scrN + such that \bfitphi s
1,3 =  - \bfitR +

p \bfitphi 
s
1,1 and \bfitu 1,1 = \bfitN +\bfitphi s

1,1.
One similarly obtains two N1\times N1 matrices \bfitR  - 

p and \bfitN  - approximating \scrR  - 
p and \scrN  - ,

respectively.

6.2. Solving (BVP1). We are now ready to use the PML-based BIE method
to solve the main problem (BVP1). Fix x\ast \in \Omega 0. To eliminate the \delta function, we
consider \~usc(x;x\ast ) = \~uog(x;x\ast ) - \~uinc(x;x\ast ), satisfying (77). For simplicity, we denote
(cf. Figure 3(a))

\Gamma 0,1 = \Gamma  - 
0 , \Gamma 0,2 = \Gamma 0, \Gamma 0,3 = \Gamma +

0 , and \Gamma 0,4 = \Gamma H+L
0 .

Then, analogous to (87), on the four boundaries \Gamma 0,j , j = 1, 2, 3, 4, we apply the
PML-based BIE method of the previous section to approximate the NtD operator for
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\~usc and \partial \nu c
\~usc on the boundary of the perturbed cell \Omega 0 by a matrix \bfitN p,\left[    

\bfitu sc
0,1

\bfitu sc
0,2

\bfitu sc
0,3

\bfitu sc
0,4

\right]    = \bfitN p

\left[    
\bfitphi sc,s

0,1

\bfitphi sc,s
0,2

\bfitphi sc,s
0,3

\bfitphi sc,s
0,4

\right]    ,(89)

where \bfitu sc
0,j and \bfitphi sc,s

0,j for j = 1, 2, 3, 4 represent column vectors of \~usc and \partial \nu c
\~usc| x\prime | at

the grid points of \Gamma 0,j , respectively. Rewriting the above in terms of \~uog and \partial \nu c
\~uog,

we get \left[    
\bfitu og
0,1

\bfitu og
0,2

\bfitu og
0,3

\bfitu og
0,4

\right]    = \bfitN p

\left[    
\bfitphi og,s

0,1

\bfitphi og,s
0,2

\bfitphi og,s
0,3

\bfitphi og,s
0,4

\right]    +

\left[    
\bfitu inc
0,1

\bfitu inc
0,2

\bfitu inc
0,3

\bfitu inc
0,4

\right]     - \bfitN p

\left[     
\bfitphi inc,s

0,1

\bfitphi inc,s
0,2

\bfitphi inc,s
0,3

\bfitphi inc,s
0,4

\right]     ,(90)

where \bfitu inc
0,j and \bfitphi inc,s

0,j represent column vectors of \~uinc(x;x\ast ) and \partial \nu c
\~uinc(x;x\ast )| x\prime | at

the grid points of \Gamma 0,j , respectively. The boundary conditions in (BVP1) imply that

\bfitu og
0,2 = 0, \bfitu og

0,4 = 0,(91)

\bfitu og
0,1 = \bfitN  - \bfitphi og,s

0,1 , \bfitu og
0,3 = \bfitN +\bfitphi og,s

0,3 .(92)

Solving the linear system (90)--(92), we get \~uog(x;x\ast ) and \partial \nu c \~u
og(x;x\ast ) on all grid

points of \partial \Omega 0.
Now we discuss how to evaluate \~uog(x;x\ast ) in the physical domain SH . We dis-

tinguish two cases:
1. x \in \Omega 0. Since on the grid points of \partial \Omega 0, \~usc and \partial \nu c

\~usc| x\prime | are available,
we use the Green representation formula (78) with \partial \Omega +

1 replaced by \partial \Omega 0 to
compute \~usc(x;x\ast ) in \Omega 0 so that \~uog(x;x\ast ) becomes available in \Omega 0.

2. x \in \Omega \pm 
j . Consider \Omega 

+
1 first. Suppose \bfitu og

1,j\prime and \bfitphi og,s
1,j\prime represent column vectors

of \~uog and \partial \nu c
\~uog| x\prime | at the grid points of \Gamma 1,j\prime for 1 \leq j\prime \leq 4. By the

continuity of \partial \nu c
\~uog on \Gamma 1,1 = \Gamma 0,3 = \Gamma +

0 , \bfitphi 
og,s
1,1 =  - \bfitphi og,s

0,3 . Since \bfitphi og,s
1,3 =

 - \bfitR +
p \bfitphi 

og,s
1,1 , we get \bfitu og

1,j\prime for j\prime = 1, 3 by (88), and \bfitphi og,s
1,j\prime for j\prime = 2, 4. Using

\bfitu og
1,2 = \bfitu og

1,4 = 0, the functions \~uog(x;x\ast ) and \partial \nu c
\~uog| x\prime | on \partial \Omega +

1 become
available. Hence, the Green representation formula (78) applies and provides
\~uog(x;x\ast ) in \Omega +

1 . Repeating the same procedure, one obtains \~uog(x;x\ast ) in
\Omega +

j for j \geq 2. The case for x \in \Omega  - 
j can be handled similarly.

Consequently, utot(x;x\ast ) \approx \~uog(x;x\ast ) becomes available for

x \in SH \subset \Omega 0 \cup 
\bigl[ 
\cup \infty 
j=1\Omega j,+ \cup \Omega j, - 

\bigr] 
.

6.3. Computing \bfitu \bft \bfo \bft for plane-wave incidence. To close this section, we
briefly discuss how to compute utot for an incident plane wave uinc = e\bfi k(cos \theta x1 - sin \theta x2)

with \theta \in (0, \pi ). First, we consider the unperturbed case \Gamma = \Gamma T so that utot becomes
the reference solution utotref . It is clear that u

sc
ref = utotref  - uinc satisfies the quasi-periodic

boundary condition

uscref( - T/2, x2) = \gamma uscref(T/2, x2),(93)

\partial x1u
sc
ref( - T/2, x2) = \gamma \partial x1u

sc
ref(T/2, x2),(94)
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2616 X. YU, G. HU, W. LU, AND A. RATHSFELD

where \gamma = e\bfi k cos \theta T . On \Gamma , (2) implies

(95) uscref =  - uinc.

Due to quasi-periodicity, we could express uscref above \Gamma H in terms of a Fourier
series, i.e.,

(96) uscref(x1, x2) =

\infty \sum 
j= - \infty 

Rje
\bfi \alpha jx1+\bfi \beta jx2 , x2 \geq H,

where \alpha j = k cos \theta + 2\pi j
T and \beta j =

\sqrt{} 
k2  - \alpha 2

j if | \alpha j | \leq k (otherwise, \beta j = i
\sqrt{} 
\alpha 2
j  - k2),

and Rj denotes the jth Rayleigh coefficient of the reflected wave. Thus, on the PML
boundary \Gamma L+H , the complexified field \~uscref(x1, x2) = uscref(x1, \~x2) satisfies

(97) \~uscref(x1, L+H) =

\infty \sum 
j= - \infty 

Rje
\bfi \alpha jx1+\bfi \beta j(H+L) - \beta jScL.

For simplicity, we assume that all \beta j are sufficiently away from 0 so that, provided ScL
is sufficiently large, we can directly impose the following Dirichlet boundary condition:

(98) \~uscref(x1, H + L) = 0.

If \beta j is quite close to 0, alternative accurate boundary conditions can be developed.
We refer the reader to [26, 30, 35] for details. On the other hand, \~uscref satisfies the
quasi-periodic conditions (93) and (94) and the boundary condition (95), but with u
replaced by \~u.

On the boundary \partial \Omega 0, the PML-BIE method gives, analogous to (89),

(99)

\left[    
\bfitu sc
1

\bfitu sc
2

\bfitu sc
3

\bfitu sc
4

\right]    = \bfitN p

\left[    
\bfitphi sc

1

\bfitphi sc
2

\bfitphi sc
3

\bfitphi sc
4

\right]    ,
where \bfitu sc

j\prime and \bfitphi sc
j\prime for 1 \leq j\prime \leq 4 represent vectors of values of \~uscref and \partial \nu c

\~uscref | w\prime | at
the grid points of \Gamma 0,j\prime , respectively. Note that \bfitN p is the same as \bfitN u in (87) since
\Gamma = \Gamma T . Equation (98) directly implies that

(100) \bfitu sc
4 = 0.

The quasi-periodic conditions (93) and (94) imply

(101) \bfitu sc
3 = \gamma \bfitu sc

1 , \bfitphi sc
3 =  - \gamma \bfitphi sc

1 .

The boundary condition (95) indicates

(102) \bfitu sc
2 =  - \bfitu inc

2 ,

where \bfitu inc
2 represents the vector of values of uinc at grid points of \Gamma 0,2. Solving the

linear system (99)--(102) gives rise to values of \~uscref and \partial \nu c
\~uscref | w\prime | on \partial \Omega 0. The Green

representation formula (78) can help to compute \~uscref in \Omega 0. The quasi-periodicity
helps to construct \~uscref in any other cell \Omega \pm 

j for j \in \BbbN \ast . Consequently, utotref becomes
available in the whole physical domain SH .

Now, if \Gamma is a local perturbation of \Gamma T , then \~uscref is available by the above ar-
guments, and one follows the same approach developed in section 6.2 to get \~uog =
\~usc - \~uscref in any unperturbed cell and, therewith, utot in the complete physical region
SH . We omit the details here.
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7. Numerical examples. In this section, we will carry out four numerical ex-
periments to validate the performance of the PML-based BIE method and the pro-
posed theory. In all examples, we set the period to T = 1 and the wavelength to the
free-space value \lambda = 1 so that k0 = 2\pi . We consider two types of incidence: (1) a
cylindrical incidence excited by the source point x\ast = (0, 1.5); and (2) a plane-wave
incidence of angle \theta to be specified. We suppose that only one unit cell of the periodic
background structure is perturbed. To set up the PML, we choose m = 0 in (17) to
simplify the definition of \sigma . In the RDP iterations (74) and (76), we take l=20 and
\epsilon thres = 10 - 15. Furthermore, we choose H = 3 and set the computational domain
to be [ - 5.5, 5.5]\times [ - 2, 3], which contains 11 cells. To validate the accuracy of our
method, we compute the relative error

Erel :=
| | (\bfitphi sc,s

2,0 )
num  - (\bfitphi sc,s

2,0 )
exa| | \infty 

| | (\bfitphi sc,s
2,0 )

exa| | \infty 
,

for \bfitphi sc,s
2,0 representing the scaled normal derivative | w\prime | \partial \nu usc on \Gamma 2,0, the perturbed part

of \Gamma , and for different values of S and L in the setup of the PML, where superscript
``num"" indicates a numerical solution and superscript ``exa"" a sufficiently accurate
numerical solution or, if available, the exact solution.

Example 1: A flat curve. In the first example, we assume that \Gamma is the
straight line \{ x : x2 = 0\} . Certainly, we can regard such a simple structure as a
periodic structure with period equal to one wavelength. Formally, we regard the line
segment \Gamma 0,2 \subset \Gamma between x1 = - 0.5 and x1 =0.5 as the ``perturbed"" part. For the
cylindrical incidence, the total wave field utot is given by

utot(x;x\ast ) =
i

4

\Bigl[ 
H

(1)
0 (k| x - x\ast | ) - H

(1)
0 (k| x - x\ast imag| )

\Bigr] 
,

where the image source point is x\ast imag =(0, - 1.5). Using this to compute the scaled
conormal derivative on segment \Gamma 0,2, we get the reference solution and can check the
accuracy of our method. We discretize each smooth segment of the ``perturbed""/
unperturbed unit cell by 600 grid points. To check how the wavenumber condition in
Theorem 5.1 affects the accuracy of our numerical solver, we consider two values of
the refractive index n in \Omega : (1) n = 1.03 so that kT/\pi = 2.06 /\in \scrE , and (2) n = 1 so
that kT/\pi = 2 \in \scrE . For both cases, we compare results of Dirichlet and Neumann
boundary conditions on \Gamma H+L.

For n = 1.03, Figures 5(a) and (b) compare the exact solution and our numerical
solution for L = 2.2 and S = 2.8. The two solutions are indistinguishable. To give
a detailed comparison, Figures 5(c) and (d) show how the relative error Erel decays
as one of the two PML parameters, the absorbing constant S and the thickness L,
increases for either zero Dirichlet or zero Neumann condition on \Gamma H+L. In Figure
5(c), we take L=2.2 and let S vary between 0.2 and 2.8, while in Figure 5(d), we take
S=2.8 and let the PML thickness L vary between 0.2 and 2.2. In both figures, the
vertical axis is logarithmically scaled so that the vertical dashed lines indicate that
the relative error Erel decays exponentially as L or S increases for both conditions.
On the other hand, the Neumann condition gives faster convergence rates than the
Dirichlet condition. The convergence curves indicate that nearly 11 significant digits
are revealed by the proposed PML-based BIE method. The ``o"" lines in Figure 6(a)
show the convergence curve of

(103) ERic = | | \bfitN (0)
10  - [\bfitN 

(0)
11 +\bfitN 

(0)
00 ]\bfitR +

p +\bfitN 
(0)
01 (\bfitR +

p )
2| | \infty 
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(a)
-5 0 5

-1

0

1

2

(b)
-5 0 5
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-1

0

1

2

3

(c)
0.2 1 2

1e-11

1e-10

1e-08

1e-06

0.0001

Dirichlet
Neumann

(d)
0.2 1 2

1e-11

1e-10

1e-08

1e-06

0.0001

Dirichlet
Neumann

Fig. 5. Example 1: Real part of utot in [ - 5.5, 5.5]\times [ - 2.0, 3.0] excited by the point source
y=(0, 1.5). (a) Exact solution. (b) Numerical solution. Convergence history of relative error Erel

versus (c) PML absorbing constant S. (d) Thickness of the PML L for both Dirichlet and Neumann
conditions on \Gamma H+L.

against the number of iterations l. It can be seen that, after no more than 11 iterations,
\bfitR +

p converges exponentially and satisfies its governing Riccati equation (58) up to
round-off errors. The ``o"" lines in Figure 6(b) show the curve of | | \phi og,s| \Gamma +

j
| | \infty against

j, where \phi og,s denotes the scaled conormal derivative | w\prime | \partial \nu +
c
uog. It can be seen that

\phi og,s, and hence \partial \nu +
c
uog, indeed decays exponentially as j or x1 increases, as has been

claimed in Corollary 5.1.
In Figure 6(c), we compare the Dirichlet and Neumann conditions for n = 1. We

take L = 2.2 and let S vary from 0.2 to 2.8. Among the four convergence curves,
solid lines indicate 600 grid points chosen on each smooth segment of each unit cell,
while dashed lines indicate 100 grid points; ``+"" indicates the Neumann condition on
\Gamma H+L while ``o"" indicates the Dirichlet condition. If 100 grid points are used, Erel

for Neumann condition starts decreasing after S \geq 2, whereas Erel for the Dirichlet
condition has already reached its minimum error; if 600 grid points are used, the
Neumann condition does not lead to a convergent Erel at all for S \in [0.2, 2.8], but the
Dirichlet condition still shows the same convergence rate and accuracy as in the case
n = 1.03. Consequently, the Dirichlet condition outperforms the Neumann condition
for n = 1.

Example 2: A sine curve. In the second example, we assume that \Gamma is the
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(a)
5 10 15 20

1e-18

1e-15

1e-10

1e-05
0.0001 Example 1

Example 2,3
Example 4

(b)
0 100 200 300 400

10-2

10-1

100

101

102

Example 1
Example 2
Example 3
Example 4

(c)
0.5 1 1.5 2 2.5

1e-11

1e-10

1e-07

1e-06

1

D-600
N-600
D-100
N-100

Fig. 6. All four examples. (a) Convergence history of ERic in (103) against the number of
iterations l. (b) Radiation behavior of \phi og,s| 

\Gamma +
j

as j \rightarrow \infty . (c) Performance of Dirichlet and

Neumann conditions in Example 1 for n = 1, at which kT/\pi \in \scrE ; here ``D"" stands for Dirichlet and
``N"" for Neumann, and 100 indicates 100 grid points are used to discretize each smooth segment of
the unit cells, etc.

(a)
-5 0 5

-2

-1

0

1

2

3

(b)
0.2 1 2

1e-11

1e-10

1e-08

1e-06

0.0001

Dirichlet
Neumann

(c)
0.2 1 2

1e-11

1e-10

1e-08

1e-06

0.0001

Dirichlet
Neumann

Fig. 7. Example 2. (a) Numerical solution of real part of the total wave field u in [ - 5.5, 5.5]\times 
[ - 2.0, 3.0] excited by the point source y=(0, 1.5). Convergence history of relative error Erel versus
(b) PML absorbing constant S for fixed PML thickness L= 2, and (c) PML thickness L for fixed
PML absorbing constant S=2.8; vertical axes are logarithmically scaled.

sine curve, x2 =sin(2\pi x1 + \pi ), as shown in Figure 7(a) and that n = 1.03 to obtain
kT/\pi /\in \scrE . For the cylindrical incidence, we discretize each smooth segment of any unit
cell by 600 grid points and compare results of the Dirichlet and Neumann boundary
conditions on \Gamma H+L. Taking S = 2.8 and L = 2.2, we evaluate the wave field in
[ - 5.5, 5.5]\times [ - 2.0, 3.0] and use this as the reference solution since the exact solution is
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(c)
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(d)
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1e-06
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Fig. 8. Example 3. Numerical solution of real part of the total wave field u in [ - 5.5, 5.5]\times 
[ - 2.0, 3.0] excited by (a) a cylindrical wave by source y = (0, 1.5); (b) a plane wave of incident
angle \theta = \pi 

3
. Convergence history of relative error Erel versus (c) PML thickness L for fixed PML

absorbing constant S = 2.8 for both incidences, and (d) PML absorbing constant S for fixed PML
thickness L=2.2 (4.0) for cylindrical (plane-wave) incidence.

no longer available. In Figure 7, (a) shows the field pattern of the reference solution,
and (b) and (c) show the convergence history of relative error Erel versus one of
the two PML parameters S and L, respectively. Again, we observe that Erel decays
exponentially as S or L increases, and that nearly 12 significant digits are revealed by
the proposed PML-based BIE method. Unlike the flat surface in Example 1, we no
longer observe a faster convergence rate of the Neumann condition, but find that both
conditions share the same convergence rate and accuracy. Comparing with the bad
result for the Dirichlet condition and kT/\pi \in \scrE and with the impressive improvement
for kT/\pi /\in \scrE , we conclude that, in the sine curve example, the Neumann condition is
less superior than the Dirichlet condition, and thus we shall only use the latter in the
remaining experiments. With the Dirichlet condition, the ``+"" lines in Figure 6(a)
show the convergence curve of ERic in (103) against the number of iterations l. The
``+"" lines in Figure 6(b) show the curve of | | \phi og,s| \Gamma +

j
| | \infty against j.

Example 3: A locally perturbed sine curve. In the third example, we
assume that \Gamma is the sine curve \Gamma T := \{ x : x2 = sin(2\pi x1 + \pi )\} locally perturbed
such that the part between x1 = - 0.5 and x1 = 0.5 is replaced by the line segment
\{ (x1, 0) : x1 \in [ - 0.5, 0.5]\} , as shown in Figure 8(a). For the cylindrical incidence, we
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(a)
0.5 1 1.5 2 2.5

10-10

10-5

(b)
0.5 1 1.5 2
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10-5

(c)
1 2 3 4 5 6 7
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(d)
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10-8
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Fig. 9. Example 3. For n = 1.03, the cylindrical incidence, and different values of k0, conver-
gence history of relative error Erel versus (a) PML thickness L for fixed PML absorbing constant
S=2.8, (b) PML absorbing constant S for fixed PML thickness L=2.2. For n = 1, the cylindrical
incidence, and k0 = 2\pi , convergence history of relative error Erel versus (c) PML thickness L for
fixed PML absorbing constant S=2.8, and (d) PML absorbing constant S for fixed PML thickness
L=8.

discretize each smooth segment of any unit cell by 600 grid points. Taking S = 2.8
and L=2.2, we evaluate the wave field in [ - 5.5, 5.5]\times [ - 2.0, 3.0] and use this as the
reference solution, the field pattern of which is shown in Figure 8(a). The ``x"" lines
in Figure 6(b) show the curve of | | \phi og,s| \Gamma +

j
| | \infty against j.

For the plane-wave incidence, we take \theta = \pi 
3 and discretize each smooth segment

of any unit cell by 700 grid points. Taking S=2.8 and L=4, we evaluate the wave
field in [ - 5.5, 5.5]\times [ - 2.0, 3.0] and use this as the reference solution, the field pattern
of which is shown in Figure 8(b).

For both incidences, Figures 8(c) and (d) show the convergence history of relative
error Erel versus one of the two PML parameters S and L, respectively. The con-
vergence curves decay exponentially and indicate that nearly 11 significant digits are
revealed by the proposed PML-based BIE method.

For the cylindrical incidence, in Figures 9(a) and (b) we show the convergence
history of relative error Erel versus the PML parameters S and L, with k0 being one
of the four values 2\pi , 5\pi , 10\pi , and 20\pi , where numerical solutions for S = 2.8 and
L = 2.2 are used as the reference solutions. It can be seen that Erel reaches the round-
off error more rapidly as k0 increases. In other words, to attain a specified accuracy,
S and L can be made smaller for an incident wave with a greater wavenumber (or
a smaller wavelength), which is a common fact for the PML community [21]. For
k0 = 2\pi and n = 1 so that kT/\pi \in \scrE , in Figures 9(c) and (d) we show the convergence
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Fig. 10. Example 4. Numerical solution of real part of the total wave field u in [ - 5.5, 5.5]\times 
[ - 2.0, 3.0] excited by (a) a cylindrical wave by source y = (0, 1.5), (b) a plane wave of incident
angle \theta = \pi 

6
. Convergence history of relative error Erel versus (c) PML thickness L for fixed PML

absorbing constant S = 2.8 for both incidences, and (d) PML absorbing constant S for fixed PML
thickness L=2.2 (3.0) for cylindrical (plane-wave) incidence.

curves for Erel against S or L, where a numerical solution for S = 2.8 and L = 8 is
used as the reference solution. Unlike in previous results, here L is chosen to be 8
wavelengths long to obtain 9 significant digits. Such a thicker PML is required since
\~uog decays more slowly in the PML region, which is possibly caused by the existence
of eigenfunctions in the semiwaveguides. Nevertheless, it can be seen that Erel still
decays exponentially as the PML parameters S and L increase.

Example 4: A locally perturbed binary grating. In the last example,
we assume that \Gamma consists of periodic rectangular grooves of depth 0.5 and width
0.25, with the part between x1 =  - 0.5 and x1 = 0.5 replaced by the line segment
\{ (x1, 0) : x1\in [ - 0.5, 0.5]\} , as shown in Figure 10(a). For the cylindrical incidence, we
discretize each smooth segment of any unit cell by 600 grid points. Taking S = 2.8
and L=2.2, we evaluate the wave field in [ - 5.5, 5.5]\times [ - 2.0, 3.0] and use this as the
reference solution, the field pattern of which is shown in Figure 10(a). The ``\lozenge "" lines
in Figure 6(a) show the convergence curve of ERic in (103) against the number of
iterations l. The ``\lozenge "" lines in Figure 6(b) show the curve of | | \phi og,s| \Gamma +

j
| | \infty against j.

For the plane-wave incidence, we take \theta = \pi 
6 and discretize each smooth segment

of any unit cell by 600 grid points. Taking S=2.8 and L=3, we evaluate the wave
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(a)
0.5 1 1.5 2 2.5

10-10

10-5

(b)
0.5 1 1.5 2

10-10

10-5

Fig. 11. Example 4. For cylindrical incidence and for different values of k0, convergence history
of relative error Erel versus (a) PML thickness L for fixed PML absorbing constant S=2.8, (b) PML
absorbing constant S for fixed PML thickness L=2.2.

field in [ - 5.5, 5.5]\times [ - 2.0, 3.0] and use this as the reference solution, the field pattern
of which is shown in Figure 10(b).

For both incidences, Figures 10(c) and (d) show the convergence history of rel-
ative error Erel versus one of the two PML parameters S and L, respectively. The
convergence curves decay exponentially and indicate that nearly 12 significant digits
are revealed by the proposed PML-based BIE method. For the cylindrical incidence,
in Figures 11(a) and (b) we show the convergence history of relative error Erel versus
the PML parameters S and L, with k0 being one of the four values 2\pi , 4\pi , 8\pi , and
16\pi , where numerical solutions for S = 2.8 and L = 2.2 are used as the reference
solutions.

8. Conclusion. This paper studied the perfectly matched layer (PML) theory
for wave scattering in a half space of a homogeneous medium bounded by a two-
dimensional, perfectly conducting, and locally defected periodic surface, and devel-
oped a high-accuracy boundary integral equation (BIE) solver. By placing a PML in
the vertical direction to truncate the unbounded domain to a strip, we proved that
the PML solution converges to the true solution in the physical subregion of the strip
at an algebraic order of the PML thickness. Laterally, the unbounded strip is divided
into three regions: a region containing the defect, and two semi-waveguide regions of
periodic subsurfaces, all separated by two vertical line segments. We proved the well-
posedness of an associated scattering problem in both semi-waveguides so as to well
define a Neumann-to-Dirichlet (NtD) operator on the associated vertical segment.
The two NtD operators, serving as exact lateral boundary conditions, reformulate
the unbounded strip problem as a boundary value problem over the defected region.
Each NtD operator is closely related to a Neumann-marching operator, governed by
a nonlinear Riccati equation, which was efficiently solved by an RDP method and a
high-accuracy PML-based BIE method so that the boundary value problem on the
defected region finally can be solved.

Our future research plan shall focus on the following two aspects:
(1) Extending the current work to study locally defected periodic structures of

stratified media. In such case, propagating Bloch modes may exist so that
the related Neumann marching operators \scrR \pm 

p may not be contracting.
(2) Rigorously justifying that the PML solution converges exponentially to the

true solution in any compact subset of the strip, as has been demonstrated
by numerical experiments.
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