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Abstract

This paper addresses a factorization method for imaging the support of a wave-number-
dependent source function from multi-frequency data measured at a finite pair of symmetric
receivers in opposite directions. The source function is given by the inverse Fourier transform
of a compactly supported time-dependent source whose initial moment or terminal moment
for radiating is unknown. Using the multi-frequency far-field data at two opposite obser-
vation directions, we provide a computational criterion for characterizing the smallest strip
containing the support and perpendicular to the directions. A new parameter is incorpo-
rated into the design of test functions for indicating the unknown moment. The data from a
finite pair of opposite directions can be used to recover the Θ-convex polygon of the support.
Uniqueness in recovering the convex hull of the support is obtained as a by-product of our
analysis using all observation directions. Similar results are also discussed with the multi-
frequency near-field data from a finite pair of observation positions in three dimensions. We
further comment on possible extensions to source functions with two disconnected supports.
Extensive numerical tests in both two and three dimensions are implemented to show effec-
tiveness and feasibility of the approach. The theoretical framework explored here should be
seen as the frequency-domain analysis for inverse source problems in the time domain.
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1 Introduction

1.1 Problem formulation

Consider the inhomogeneous Helmholtz equation with a wave-number-dependent source term

∆w(x, k) + k2w(x, k) = −f(x, k), x ∈ R3, (1.1)

where k > 0 is called the wave-number. In this paper the source function f(x, k) is supposed
to be the inverse Fourier transform of a time-dependent source S(x, t) with compact support in
both temporal and spatial variables. More precisely, we make the following assumptions:

• suppS(x, t) = D × [tmin, tmax] ⊂ BR × R+ with some tmax > tmin ≥ 0 and some R > 0.
Here BR = {x ∈ R3 : |x| < R}.

• D ⊂ R3 is a bounded Lipschitz domain such that R3\D is connected.

• S(x, t) ∈ C([tmin, tmax], L
∞(D)) is a real-valued function fulfilling the positivity constraint

S(x, t) ≥ c0 > 0 a.e. x ∈ D, t ∈ [tmin, tmax]. (1.2)

Hence, the source function in the frequency-domain takes the integral form

f(x, k) =
1√
2π

∫
R
S(x, t)eiktdt =

1√
2π

∫ tmax

tmin

S(x, t)eiktdt. (1.3)

This implies that the function k 7→ f(x, k) is real-analytic for every x ∈ R3. The Helmholtz
equation (1.1) arises from the inverse Fourier transform of the time-dependent acoustic wave
equation with the function S(x, t) as the forcing term and satisfying the homogeneous initial
conditions (see (7.54) in the Appendix). The unique solution to (1.1) satisfies the Sommerfeld
radiation condition

lim
r→∞

r(∂rw − ikw) = 0, r = |x|, (1.4)

which holds uniformly in all directions x/|x|. In fact, the radiating behavior of w at a fixed
frequency can be derived from the inverse Fourier transform of the outgoing solution to the
time-dependent wave equation in R3 ([13]). Moreover, w is of a convolution form in spatial
variables:

w(x, k) =

∫
R3

Φ(x− y; k)f(y, k) dy, (1.5)

where Φ(x; k) is the fundamental solution to the Helmholtz equation (∆ + k2)w = 0, given by

Φ(x; k) =
eik|x|

4π|x|
, x ∈ R3, |x| ≠ 0.

2



The Sommerfeld radiation conditions (1.4) for w and Φ give rise to the following asymptotic
behavior at infinity:

w(x, k) =
eik|x|

4π|x|

{
w∞(x̂, k) +O

(
1

|x|

)}
as |x| → ∞, (1.6)

where w∞(·, k) ∈ C∞(S2) is referred to as the far-field pattern (or scattering amplitude) of w.
It is well known that the function x̂ 7→ w∞(x̂, k) is real analytic on S2, where x̂ ∈ S2 is usually
called the observation direction. In the appendix we shall prove that w∞(x̂, k) coincides with
the inverse Fourier transform of the time-dependent far-field data in terms of the time variable.
By (1.5), the far-field pattern w∞ can be expressed as

w∞(x̂, k) =

∫
D
e−ikx̂·yf(y, k) dy, x̂ ∈ S2, k > 0. (1.7)

Since the time-dependent source S is real valued, we have f(x,−k) = f(x, k) and thus
w∞(x̂,−k) = w∞(x̂, k) for all k ∈ R. The far-field pattern w∞(x̂, k) depends analytically
on k ∈ R, because D is bounded and f is real-analytic with respect to k ∈ R.

In our previous work [13] we have studied the inverse source problem of identifying ∂D from
the multi-frequency data detected at one or several (but not necessarily symmetric) observation
directions/points, provided the source radiating period [tmin, tmax] is completely known. We note
that both the initial moment tmin and the terminal moment tmax are essentially required in [13].
The primary task of this paper is to relax this condition by assuming that one of tmin and tmax

is not given. Let 0 ≤ kmin < kmax and denote by [kmin, kmax] the bandwidth of available wave
numbers of the Helmholtz equation. The inverse source problems to be considered within this
paper are described as follows:

(ISPs): Extract information on the position and shape of the support D of S(·, t) from
knowledge of the multi-frequency far-field patterns

{w∞(±x̂j , k) : k ∈ [kmin, kmax], j = 1, 2, · · · , J} ,

or from the multi-frequency near-field data

{w(±xj , k) : k ∈ [kmin, kmax], |xj | = R, j = 1, 2, · · · , J} .

Here, 2J ∈ N denotes the number of opposite observation directions/positions and either the
initial or the terminal moment is not given.

1.2 Literature review and comments

If the time-dependent source function is of the form S(x, t) = s(x)δ(t − t0) (which corresponds
to the critical case that tmin = tmax = t0), the source function in the frequency domain can
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be expressed as f(x, k) = s(x)eikt0/
√
2π. In the special case that t0 = 0, the source term

f(x, k) = s(x)/
√
2π is independent of the wave-number. If the impulse moment t0 is given,

the function u(x, k) = w(x, k)e−ikt0
√
2π turns out to be the radiation solution of the Helmholtz

equation ∆u + k2u = s whose right hand side is again independent of the wave-number. The
far-field pattern of u is nothing else but the Fourier transform of the space-dependent source term
s at the Fourier variable ξ = kx̂ ∈ R3 multiplied by some constant. A wide range of literatures
is devoted to such inverse wave-number-independent source problems with multi-frequency data,
for example, uniqueness proofs and increasing stability analysis with near-field measurements
[2, 3, 6, 7, 21] and a couple of numerical schemes such as iterative method, Fourier method and
test-function method for recovering the source function [2, 4, 7, 22] and sampling-type methods
for imaging the support [1, 9, 17, 18]. We shall establish a multi-frequency factorization method
for imaging D from a finite number of observation directions in the far field or a finite number
of near-field positions. This approach was proposed by A. Kirsch in 1998 [19, 20] with the
multi-static data at a fixed energy. Later it has been extensively studied in various inverse
time-harmonic scattering problems using far-field patterns over all observation directions (or
equivalently, the Dirichlet-to-Neumann map for elliptic equations).

For inverse source problems in the frequency domain, to the best of our knowledge, little
is known if the source function of the Helmholtz equation depends on both frequency/wave-
number and spatial variables. Essential difficulties arise from the expression (1.7), where the
far-field pattern is no longer the Fourier transform of the source function. For source terms of the
integral form (1.3) with complete knowledge on the radiating period, a factorization method was
established in [13] for imaging the so-called Θ-convex polygon (see [9] for the original definition)
of the support associated with a finite number of observation directions. This extends the
multi-frequency factorization scheme of [9, 11] from wave-number-independent sources to wave-
number-dependent ones. In particular, the multi-frequency data at a single direction can be used
to rigorously characterize the smallest strip that contains the support D and perpendicular to
the observation direction. The goal of this paper is to establish the same factorization method
but with only partial information on the radiation period (that is, either tmin or tmax). The
price we pay is to introduce a new parameter into the design of test functions and utilize the
multi-frequency far-field data at two opposite directions. Moreover, we show that the unknown
moment tmin or tmax can also be recovered by a indicator function on the new parameter in the
test function and by using the data of two opposite directions. Another contribution of this
paper is to address how to extend our approach to source functions with disconnected supports.
A direct sampling method was proposed in [14] for treating (ISPs) with complete knowledge on
the radiating period, which we think remains valid under the weaker assumptions of this paper.

It remains interesting to investigate the inverse source problems (ISPs) when both tmin and
tmax are not given, in particular, to extract source information from a single direction/position.
Our approach does work, while it relies heavily on the information of the initial moment tmin
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or the terminal moment tmax. Intuitively, we think that two different parameters should be
incorporated into the test function if none of them is known, but the theoretical frame is still
unclear to us. However, in the special case that tmin = tmax = t0 and S(x, t) = s(x)δ(t− t0) with
an unknown moment t0 ∈ R+, it is possible to recover D = supp(s) and t0 using the same data
considered in this paper. Another open problem is to establish the multi-frequency factorization
method for inverse medium and inverse obstacle scattering problems for which the right hand
side f(x, k) depends also on the solution w(x, k). The lack of the positivity condition (1.2) brings
difficulties in extending our idea to inverse medium problems, but the framework of this paper
can be used to handle high frequency or weak scattering models for inverse obstacle scattering
problems. It is worth noting that the factorization method explored here differs from that for
acoustic wave scattering by obstacles in the time domain (see [5, 16]). In these works the time-
dependent causal scattered waves at infinitely many receivers are needed to defined a modified
far-field operator. Our attention is to extract the support information of a time-dependent source
from wave signals recorded at one or several receivers. The approach considered here should be
seen as a frequency-domain analysis for inverse source problems in the time domain. In the
recent work [15], our approach has been adapted to inverse moving point sources problems in
the frequency domain via Fourier transform.

The remaining part is organized as follows. In Section 2, the factorizations of the multi-
frequency far/near-field operator are reviewed. Section 3 is devoted to the design of test functions
and indicator functions using multi-frequency far-field data received at a single pair or a finite
pair of symmetric directions. Uniqueness and inversion algorithms will be also addressed. In
Section 4, the corresponding inverse problems using multi-frequency near-field data are discussed.
We comment on possible extensions of our reconstruction method to source functions with two
disconnected supports in Section 5. Finally, a couple of numerical tests will be reported in
Section 6.

Below we introduce some notations to be used throughout this paper. Unless otherwise
stated, we always suppose that D is bounded and connected. Given x̂ ∈ S2, we define

x̂ ·D := {t ∈ R : t = x̂ · y for some y ∈ D} ⊂ R.

Hence, (inf(x̂ · D), sup(x̂ · D)) must be a finite and connected interval on the real axis. A ball
centered at y ∈ R3 with the radius ϵ > 0 will be denoted as Bϵ(y). For brevity we write
Bϵ = Bϵ(0) when the ball is centered at the origin. Obviously, x̂ ·Bϵ(y) = (x̂ · y− ϵ, x̂ · y+ ϵ). In
this paper the one-dimensional Fourier and inverse Fourier transforms are defined by

(Ff)(k) = 1√
2π

∫
R
f(t)e−ikt dt, (F−1v)(t) =

1√
2π

∫
R
v(k)eikt dk,

respectively.
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2 Review of the factorization of far-field and near-field operators

In this section, we will introduce the far/near-field operator with multi-frequency data at a fixed
observation direction/position and review its connection with the data-to-pattern operator by a
range identity. We refer to [9] for discussions on source functions independent of the wave-number
and to [13] for wave-number-dependent source functions with complete a priori information on
the radiating period. Introduce the central frequency kc and half of the bandwidth of the multi-
frequency data as (see [9])

kc :=
kmin + kmax

2
, K :=

kmax − kmin

2
.

These parameters were firstly introduced in [9], allowing us to define far-field and near-field
operators with the same domain (i.e., L2(0,K)) of definition and range.

For every fixed direction x̂ ∈ S2, we define the far-field operator by (see [9])

(Fϕ)(τ) = (F
(x̂)
D ϕ)(τ) :=

∫ K

0
w∞(x̂, kc + τ − s)ϕ(s) ds. (2.8)

Since w∞(x̂, k) is analytic with respect to the wave number k ∈ R, the operator F (x̂) : L2(0,K) →
L2(0,K) is bounded. For notational convenience we introduce the space

XD := L2(D × (tmin, tmax)).

Denote by ⟨·, ·⟩XD
the inner product over XD. Below we show a factorization of the multi-

frequency far-field operator at a fixed observation direction.

Lemma 2.1. ([13]) We have F = LT L∗, where L = L
(x̂)
D : XD → L2(0,K) is defined by

(Lu)(τ) =

∫ tmax

tmin

∫
D
eiτ(t−x̂·y)u(y, t) dy dt, τ ∈ [0,K] (2.9)

for all u ∈ XD, and T : XD → XD is a multiplication operator defined by

(T u)(y, t) := 1√
2π
eikc(t−x̂·y) S(y, t)u(y, t). (2.10)

The operator L = L
(x̂)
D will be referred to as the data-to-pattern operator, because it maps

the time-dependent source function to the multi-frequency far-field data at a fixed observation
direction, that is,

w∞(x̂, k) =
1√
2π

(L
(x̂)
D S)(k).

Lemma 2.1 implies that the far-field operator F is self-adjoint. It is also positive if the positivity
constraint (1.2) holds. Define F# := |ReF | + |Im F |. Using the range identity proved in [13],
we obtain the relation

Range (F 1/2
# ) = Range (L). (2.11)
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Let χy(k) ∈ L2(0,K) be a y-dependent test function with y ∈ R3 and fix the observation
direction x̂ ∈ S2. Denote by (λ

(x̂)
n , ψ

(x̂)
n ) an eigensystem of the positive and self-adjoint operator

F#, which is uniquely determined by the multi-frequency far-field patterns {w∞(x̂, k) : k ∈
[kmin, kmax]}. Applying Picard’s theorem and range identity, we obtain

χy ∈ Range(L) if and only if
∞∑
n=1

|⟨χy, ψ
(x̂)
n ⟩|2

|λ(x̂)n |
<∞. (2.12)

In the subsequent Section 3 we shall choose proper test functions χy such that χy ∈ Range(L)

if and only if the sampling variable y belongs to a domain associated with the support of the
source function. The support of the Fourier transform of the function Lu can be evaluated as
follows (see [13]):

supp(F(Lu)) ⊂ [tmin − sup(x̂ ·D), tmax − inf(x̂ ·D)] for all u ∈ XD. (2.13)

The above results can be carried over the near-field case naturally. Given a fixed observation
point x ∈ ∂BR := {x ∈ R3, |x| = R}, we define the near-field operator by

(Nϕ)(τ) = (N (x)
D ϕ)(τ) :=

∫ K

0
w(x, kc + τ − s)ϕ(s) ds. (2.14)

Since w(x, k) is also analytic with respect to the wave number k ∈ R, the operator N :

L2(0,K) → L2(0,K) is bounded. Below we show a factorization of the near-field operator.

Lemma 2.2. ([13]) We have N = L̃T̃ L̃∗, where L̃ = L̃
(x)
D : XD → L2(0,K) is defined by

(L̃u)(τ) =

∫ tmax

tmin

∫
D
eiτ(t+|x−y|)u(y, t) dydt, τ ∈ [0,K]

for all u ∈ XD, and T̃ : XD → XD is a multiplication operator defined by

(T̃ u)(y, t) :=
eikc(t+|x−y|)
√
32π3|x− y|

u(y, t)S(y, t), |x| = R.

Analogously, the operator L̃ can be interpreted as the data-to-near-field operator, since it
maps the time-dependent source function to the multi-frequency data at the receiver x, that is,

w(x, k) =

(
L̃
(x)
D

S(y, t)√
32π3|x− y|

)
(k).

Again applying the range identity of [13] yields the relation

Range (N 1/2
# ) = Range (L̃). (2.15)
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Let χy(k) ∈ L2(0,K) be a test function relying on the sampling variable y ∈ R3, and denote
by (λ

(x)
n , ψ

(x)
n ) an eigensystem of the positive and self-adjoint operator N#. Similar to the far-field

case (see (2.12)), one obtains

χy ∈ Range(L̃) if and only if
∞∑
n=1

|⟨χy, ψ
(x)
n ⟩|2

|λ(x)n |
<∞.

In our analysis, we also need to estimate the support of the Fourier transform of L̃(x)
D u (see [13]):

supp F(L̃
(x)
D u) ⊂

[
inf
z∈D

|x− z|+ tmin, sup
z∈D

|x− z|+ tmax

]
, for all u ∈ XD. (2.16)

3 Test and indicator functions with multi-frequency far-field data

The aim of this section is to define test and indicator functions with multi-frequency far-field
data when the terminal moment tmax or the initial moment tmin is unknown. We shall consider
the two cases separately.

3.1 The terminal moment tmax is unknown

Let x̂ ∈ S2 be a fixed observation direction and assume that the initial moment tmin is known.
For y ∈ R3 and ϵ > 0, define the test function ϕ(x̂)y,η,ϵ ∈ L2(0,K) by

ϕ(x̂)y,η,ϵ(k) =
1

(η − tmin) |Bϵ(y)|

∫ η

tmin

∫
Bϵ(y)

eik(t−x̂·z)dzdt, k ∈ [0,K], (3.17)

where η > tmin is a parameter and |Bϵ(y)| = 4/3πϵ3 denotes the volume of the ball Bϵ(y) ⊂ R3.
The parameter η will be taken in a small neighborhood on the right hand side of tmin. As ϵ→ 0,
there holds the uniform convergence in L2(0,K):

ϕ(x̂)y,η,ϵ(k) → ϕ(x̂)y,η(k) :=
1

η − tmin

(∫ η

tmin

eiktdt

)
e−ikx̂·y

=
1

ik(η − tmin)

(
eikη − eiktmin

)
e−ikx̂·y.

(3.18)

Remark 3.1. The choice of η = tmax was taken in [13] when both tmin and tmax are known.
If tmax is unknown, we design the η-dependent test function (3.17) for recovering both kmax and
the support of the source function, which makes this paper quite different from our previous work
[13].

Below we describe the supporting interval of the Fourier transform of the test functions
defined by (3.17).
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Lemma 3.2. For ϵ > 0, we have

[Fϕ(x̂)y,η,ϵ](ξ) > 0 if ξ ∈ (tmin − x̂ · y − ϵ, η − x̂ · y + ϵ), (3.19)

[Fϕ(x̂)y,η,ϵ](ξ) = 0 if ξ /∈ (tmin − x̂ · y − ϵ, η − x̂ · y + ϵ). (3.20)

If ϵ = 0, it holds that

[Fϕ(x̂)y,η](ξ) =

{ √
2π/(η − tmin) if ξ ∈ (tmin − x̂ · y, η − x̂ · y),

0 if otherwise.
(3.21)

Proof. Setting ξ = t− x̂ · z, we can rewrite the function ϕ(x̂)y,η,ϵ as

ϕ(x̂)y,η,ϵ(τ) =

∫
R
eiτξgη,ϵ(ξ, x̂) dξ, gη,ϵ(ξ, x̂) =

1

(η − tmin)|Bϵ(y)|

∫ η−ξ

tmin−ξ

∫
Γ(t,x̂)

ds(z)dt,

with Γ(t, x̂) = {z ∈ Bϵ(y) : x̂ · z = t}. Hence, Fϕ(x̂)y,η,ϵ =
√
2π gη,ϵ(·, x̂). Observing that

sup
(
x̂ ·Bϵ(y)

)
= x̂ · y + ϵ, inf

(
x̂ ·Bϵ(y)

)
= x̂ · y − ϵ,

we obtain (3.19) and (3.20) from the expression of gη,ϵ(·, x̂). If ϵ = 0, there holds

ϕ(x̂)y,η(k) =
1

η − tmin

∫ η

tmin

eik(t−x̂·y) dt =
1

η − tmin

∫
R
eikξgη(ξ) dξ,

where

gη(ξ) :=

{
1, if ξ ∈ (tmin − x̂ · y, η − x̂ · y),
0, if otherwise.

Therefore, [Fϕ(x̂)y,η](ξ) =
√
2π gη(ξ)/(η − tmin).

Define the unbounded and parallel strips (see Figure 1)

K
(x̂)
D := {y ∈ R3 : inf(x̂ ·D) < x̂ · y < sup(x̂ ·D)} ⊂ R3, (3.22)

K
(x̂)
D,η := {y ∈ R3 : inf(x̂ ·D)− tmax + η < x̂ · y < sup(x̂ ·D)} ⊂ R3, (3.23)

whose directions are perpendicular to the observation direction x̂. The region K(x̂)
D ⊂ R3 repre-

sents the smallest strip containing D and perpendicular to the vector x̂ ∈ S2. By the definition
(3.23), it is obvious that

K
(−x̂)
D,η := {y ∈ R3 : inf(x̂ ·D) < x̂ · y < sup(x̂ ·D) + tmax − η} ⊂ R3,

and that K(x̂)
D = K

(x̂)
D,η ∩K

(−x̂)
D,η if η ∈ (tmin, tmax].
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K
(x̂)
D

K
(x̂)
D,η

x1

x2

−4 −2 2 4

−4

−2

2

4

inf(x̂ ·D) sup(x̂ ·D)

inf(x̂ ·D)− tmax + η

D

x̂ = (1, 0)

Figure 1: Illustration of the strips K(x̂)
D (green area) and K

(x̂)
D,η (union of green and blue area)

with x̂ = (1, 0) when η < tmax.

Lemma 3.3. (i) For y ∈ K
(x̂)
D , there exists ϵ0 = ϵ0(y) > 0 such that ϕ(x̂)y,η,ϵ ∈ Range(L

(x̂)
D ) for

all ϵ ∈ (0, ϵ0) and η ∈ (tmin, tmax].

(ii) If y /∈ K
(x̂)
D,η, we have ϕ(x̂)y,η,ϵ /∈ Range(L

(x̂)
D ) for all ϵ > 0 and η ∈ (tmin, tmax].

Proof. (i) If y ∈ K
(x̂)
D , there must exist some z ∈ D and ϵ0 > 0 such that x̂ · y = x̂ · z and

Bϵ(z) ⊂ D for all ϵ ∈ (0, ϵ0). Moreover, we have ϕ(x̂)y,η,ϵ = ϕ
(x̂)
z,η,ϵ. Set

u(x, t) :=

{
1

|Bϵ(z)| (η−tmin)
, if x ∈ Bϵ(z), t ∈ [tmin, η],

0 if otherwise.

It is obvious that u(x, t) ∈ L2(D × (tmin, tmax)) for tmin < η ≤ tmax. By the definition of L(x̂)
D

(see (2.9)), it is easy to see ϕ(x̂)z,η,ϵ = L
(x̂)
D u.

(ii) Given y /∈ K
(x̂)
D,η, we suppose on the contrary that ϕ(x̂)y,η,ϵ = L

(x̂)
D g with some g ∈ L2(D ×

(tmin, tmax)), i.e.,

ϕ(x̂)y,η,ϵ(τ) =

∫ tmax

tmin

∫
D
eiτ(t−x̂·z)g(z, t) dzdt, τ ∈ [0,K]. (3.24)

By the analyticity in τ , the above relation remains valid for all τ ∈ R. Hence, the supporting
intervals of the Fourier transform of both sides of (3.24) must coincide. Using (3.19) and (2.13),
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we obtain

[tmin − x̂ · y − ϵ, η − x̂ · y + ϵ] ⊂ [tmin − sup(x̂ ·D), tmax − inf(x̂ ·D)] ,

leading to
inf(x̂ ·D) + ϵ− tmax + η ≤ x̂ · y ≤ sup(x̂ ·D)− ϵ, for all ϵ > 0. (3.25)

This implies that y ∈ K
(x̂)
D,η, a contradiction to the assumption y /∈ K

(x̂)
D,η. This proves ϕ(x̂)y,η,ϵ /∈

Range(L
(x̂)
D ) for all ϵ > 0.

In contrast with our previous work [13], Lemma 3.3 cannot be used to characterize the strip
K

(x̂)
D when tmax is not given, due to the lack of a inclusion relation between ϕ(x̂)y,η,ϵ and Range(L

(x̂)
D )

for y ∈ K
(x̂)
D,η\K

(x̂)
D . The price we pay is to make use of the multi-frequency data at two opposite

directions, which will be discussed in details in Section 3.3. We proceed with the definition of
the region Ωη with η ∈ (tmin, tmax], given by

Ωη = {y ∈ R3 : there exists an ϵ0(y) > 0 such that ϕ(x̂)y,η,ϵ ∈ Range(L(x̂)
D ) for all ϵ ∈ (0, ϵ0)}.(3.26)

It obviously follows from Lemma 3.3 that K(x̂)
D ⊂ Ωη ⊂ K

(x̂)
D,η if η ∈ (tmin, tmax]. Later we shall

define an indicator function for imaging the region Ωη from the multi-frequency far-field data
at a single observation direction. This implies that, when x̂ = (1, 0), the right boundary of Ωη

given by {y ∈ R3 : x̂ ·y = sup(x̂ ·D)} (see Fig. 1) illustrates partial information on the boundary
of the source support. Moreover, we have K(x̂)

D = Ωη = K
(x̂)
D,η if and only if η = tmax.

3.2 The initial moment tmin is unknown

When the initial time point tmin is unknown, the test function ϕ
(x̂)
y,η,ϵ can be correspondingly

defined as

ϕ(x̂)y,η,ϵ(k) :=
1

(tmax − η) |Bϵ(y)|

∫ tmax

η

∫
Bϵ(y)

eik(t−x̂·z)dzdt, k ∈ [0,K], (3.27)

where η < tmax is a parameter lying in a small neighborhood on the left of the terminal time
point tmax. As ϵ→ 0, there holds the convergence

ϕ(x̂)y,η,ϵ(k) → ϕ(x̂)y,η(k) :=
1

tmax − η

∫ tmax

η
eik(t−x̂·y)dt. (3.28)

In this case the definition of K(x̂)
D,η will be changed into

K
(x̂)
D,η := {y ∈ R3 : inf(x̂ ·D) < x̂ · y < sup(x̂ ·D)− tmin + η} ⊂ R3. (3.29)

The strip K(x̂)
D is still a subset of K(x̂)

D,η if η ∈ [tmin, tmax). Analogously to Lemma 3.3 we have
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Lemma 3.4. (i) For y ∈ K
(x̂)
D , there exists an ϵ0 = ϵ0(y) > 0 such that ϕ(x̂)y,η,ϵ ∈ Range(L

(x̂)
D )

for all ϵ ∈ (0, ϵ0) and η ∈ [tmin, tmax).

(ii) If y /∈ K
(x̂)
D,η, we have ϕ(x̂)y,η,ϵ /∈ Range(L

(x̂)
D ) for all ϵ > 0 and η ∈ [tmin, tmax).

The region Ωη defined by (3.26) still satisfies the inclusion relations K(x̂)
D ⊂ Ωη ⊂ K

(x̂)
D,η if

η ∈ [tmin, tmax). In the case that x̂ = (1, 0), the left boundary of Ωη, which coincides with
{y ∈ R3 : x̂ · y = inf(x̂ ·D)}, yields information on the support of the source function.

3.3 Indicator functions and inversion algorithms

3.3.1 Uniqueness and algorithm at two opposite observation directions

We first recall from the previous two subsections that the test function ϕ(x̂)y,η,ϵ with a small ϵ > 0

can be utilized to characterize the region Ωη. Define the auxiliary indicator function

I(x̂)η,ϵ (y) :=
∞∑
n=1

|⟨ϕ(x̂)y,η,ϵ, ψ
(x̂)
n ⟩|2L2(0,K)

|λ(x̂)n |
, y ∈ R3. (3.30)

By Picard’s theorem, for every η ∈ (tmin, tmax) we have I(x̂)η,ϵ (y) < +∞ if y ∈ Ωη and ϵ ∈ (0, ϵ0(y)).
However, the region Ωη provides only partial information on the strip K(x̂)

D . For the purpose of
completely characterizing K(x̂)

D , we utilize the multi-frequency data at two opposite directions x̂
and −x̂ to define the indicator function

W (x̂)
ϵ (y) =

[
I(x̂)η,ϵ (y) + I(−x̂)

η,ϵ (y)
]−1

. (3.31)

Combining the range identity (2.11) and Lemma 3.3 we can characterize the strip K(x̂)
D through

the indicator function (3.31).

Theorem 3.5 (Determination of the strip K(x̂)
D ). (i) If y ∈ K

(x̂)
D , there exists an ϵ0 = ϵ0(y) >

0 such that W (x̂)
ϵ (y) is strictly positive for all ϵ ∈ (0, ϵ0).

(ii) If y /∈ K
(x̂)
D , there holds W (x̂)

ϵ (y) = 0 for all ϵ > 0.

Proof. (i) Given y ∈ K
(x̂)
D , by Lemmas 3.3 and 3.4 there exists an ϵ0(y) > 0 such that

ϕ(x̂)y,η,ϵ ∈ Range(L
(x̂)
D ), ϕ(−x̂)

y,η,ϵ ∈ Range(L
(−x̂)
D ) for all ϵ ∈ (0, ϵ0), η ∈ (tmin, tmax).

From the range identity (2.11), we know 0 < I
(x̂)
η,ϵ (y) < +∞ and 0 < I

(−x̂)
η,ϵ (y) < +∞. Thus,

W
(x̂)
ϵ (y) must be a finite positive number.

(ii) For y /∈ K
(x̂)
D , it holds that either y /∈ K

(x̂)
D,η or y /∈ K

(−x̂)
D,η . Without loss of generality we

assume the former case y /∈ K
(x̂)
D,η, which implies y /∈ Ωη. In this case, ϕ(x̂)y,η,ϵ /∈ Range(L

(x̂)
D ) and

thus I(x̂)η,ϵ (y) = +∞ for all ϵ > 0. Consequently, W (x̂)
ϵ (y) = 0 for all ϵ > 0.
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Since ϕ(x̂)y,η,ϵ convergences uniformly to ϕ(x̂)y,η over the finite wavenumber interval [kmin, kmax],
we shall use the limiting function ϕ(x̂)y,η in place of ϕ(x̂)y,η,ϵ in the aforementioned indicator function.
Consequently, we introduce a new indicator function

W (x̂)(y) :=
[
I
(x̂)
η,0 (y) + I

(−x̂)
η,0 (y)

]−1
∼

 N∑
n=1

|⟨ϕ(x̂)y,η, ψ
(x̂)
n ⟩|2L2(0,K)

|λ(x̂)n |
+

|⟨ϕ(−x̂)
y,η , ψ

(−x̂)
n ⟩|2L2(0,K)

|λ(−x̂)
n |

−1

,

(3.32)
where y ∈ R3 and the integer N ∈ N is a truncation number. Taking the limit ϵ→ 0 in Theorem
3.5, it follows that

W (x̂)(y) =

{
≥ 0 if y ∈ K

(x̂)
D ,

0 if y /∈ K
(x̂)
D .

(3.33)

Hence, the values of W (x̂) in the strip K(x̂)
D should be relatively bigger than those elsewhere.

Uniqueness results in identifying the strip K
(x̂)
D and the terminal time point tmax when tmin

is given are summarized as follows.

Theorem 3.6. [Uniqueness at two opposite directions] Assume the terminal moment tmax is
unknown and let x̂ ∈ S2 be an arbitrarily fixed observation direction. Then the strip K

(x̂)
D and

the terminal time point tmax can be uniquely determined by the multi-frequency far-field data
{w∞(±x̂, k) : k ∈ (kmin, kmax)}.

Proof. The unique determination of the strip K
(x̂)
D follows from Theorem 3.5. Below we shall

prove the uniqueness in identifying tmax by contradiction. Suppose that there are two different
terminal time points t(1)max < t

(2)
max but corresponding to identical multi-frequency far-field data at

the observation directions ±x̂. From the expressions

w∞(±x̂, k) = 1√
2π

∫ t
(j)
max

tmin

∫
D
eik(t∓x̂·y)S(y, t) dy dt, j = 1, 2,

it is not difficult to deduce that

0 =

∫ t
(2)
max

t
(1)
max

eikt
(∫

D
S(y, t) dy

)
dt = 0 for all k ∈ (kmin, kmax).

By the analyticity on k, the above identity holds true for all k ∈ R. Hence∫
D
S(y, t) dy = 0 for all t ∈ (t(1)max, t

(2)
max),

which contradicts the positivity condition (1.2) for S. This proves t(1)max = t
(2)
max.

Having determined the strip K(x̂)
D from Theorem 3.5, one can recover the unknown terminal

moment tmax by plotting the one-dimensional function η 7→ I
(x̂)
η,ϵ (z) with some fixed z ∈ K

(x̂)
D .
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Theorem 3.7 (Determination of tmax). Suppose that the initial time point tmin is known. Choose
z ∈ K

(x̂)
D such that x̂ · z − inf(x̂ ·D) = ϵ0 for some small number ϵ0 > 0. Then

[I(x̂)η,ϵ (z)]
−1 =

{
a finite positive number, if η ∈ (tmin, tmax], ϵ ∈ (0, ϵ0/2],

0, if η > tmax + ϵ0, ϵ ∈ (0, ϵ0/2].

Proof. By the proof of Lemma 3.3 (i), it holds that ϕ(x̂)y,η,ϵ ∈ Range(L
(x̂)
D ) for all ϵ ∈ (0, ϵ0/2] and

η ∈ (tmin, tmax]. Hence, 0 < I
(x̂)
η,ϵ (z) <∞ and [I

(x̂)
η,ϵ (z)]−1 > 0 for such η and ϵ. On the other hand,

one can repeat the arguments in the proof of Lemma 3.3 (ii) to prove that ϕ(x̂)z,η,ϵ /∈ Range(L
(x̂)
D ) for

all ϵ ∈ (0, ϵ0/2] if η > tmax + ϵ0, which together with the Picard’s theorem implies I(x̂)η,ϵ (z) = +∞
and [I

(x̂)
η,ϵ (z)]−1 = 0.

Remark 3.8. (i) Choosing ϵ0 > 0 to be sufficiently small, one deduces from Theorem 3.7 that
the function η 7→ [I

(x̂)
η,ϵ (z)]−1 must decay fast in a small neighborhood on the right hand side of

η = tmax, which indicates an approximation of tmax. We refer to the Section 6.1.2 for numerical
examples. (ii) The results of Theorems 3.6 and 3.7 can be established analogously when tmin is
unknown and tmax is given.

3.3.2 Algorithm and uniqueness at a finite pair of opposite directions

If the wave signals are detected at a finite number of observation directions {±x̂j : j =

1, 2, · · · ,M}, we shall make use of the following indicator function:

W (y)=

 M∑
j=1

1

W (x̂j)(y)

−1

=

 M∑
j=1

N∑
n=1

|⟨ϕ(x̂j)
y,η , ψ

(x̂j)
n ⟩|2L2(0,K)

|λ(x̂j)
n |

+
|⟨ϕ(−x̂j)

y,η , ψ
(−x̂j)
n ⟩|2L2(0,K)

|λ(−x̂j)
n |

−1

, y ∈ R3.

(3.34)
Define the Θ-convex hull of D associated with the directions {±x̂j : j = 1, 2, · · · ,M} as

ΘD :=
⋂

j=1,2,··· ,M
K

(x̂j)
D .

By Lemma 3.3, the above convex hull can be uniquely determined by the multi-frequency far-field
data {w∞(±x̂j , k) : k ∈ [kmin, kmax], j = 1, 2, · · · ,M}.

Theorem 3.9 (Algorithm with a finite pair of opposite directions). We have W (y) ≥ 0 if y ∈ ΘD

and W (y) = 0 if y /∈ ΘD.

Proof. If y ∈ ΘD, then y ∈ K
(x̂j)
D for all j = 1, 2, ...,M , yielding that x̂j · y ∈ x̂j · D. Hence,

one deduces from Theorem 3.5 that 0 ≤ W (x̂j)(y) < ∞ for all j = 1, 2, ...,M , implying that
W (y) ≥ 0. On the other hand, if y /∈ ΘD, there must exist some unit vector x̂l such that

y /∈ K
(x̂l)
D . Again using Theorem 3.5, we get

[W (x̂l)(y)]−1 = I(x̂l)
η (y) + I(−x̂l)

η (y) = ∞,

which proves W (y) = 0 for y /∈ ΘD.
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The values of W (y) are expected to be large for y ∈ ΘD and small for those y /∈ ΘD. As a by-
product of the above factorization method, we obtain a uniqueness result with multi-frequency
far-field data for all observation directions. Denote by ch(D) the convex hull of D, that is, the
intersections of all half spaces containing D.

Theorem 3.10 (Uniqueness with all observation directions). Let the assumption (1.2) hold.
Then ch(D) can be uniquely determined by the multi-frequency far-field patterns {w∞(x̂, k) : k ∈
[kmin, kmax], x̂ ∈ S2}.

Proof. Given a fixed direction x̂ ∈ S2, it follows from Lemma 3.3 that the strip K
(x̂)
D can be

uniquely determined. Since the Θ-convex hull of D associated with all directions x̂ ∈ S2 coincides
with ch(D), we obtain uniqueness in recovering the convex hull of D.

4 Inversion algorithm with multi-frequency near-field data

Suppose that the initial time point tmin is given, but the terminal time point tmax is unknown.
Choose the test functions

ϕ̃(x)y,η,ϵ(k) =
1

(η − tmin) |Bϵ(y)|

∫ η

tmin

∫
Bϵ(y)

eik(t+|x−z|)dzdt, k ∈ [0,K], η ∈ (tmin, tmax].

As ϵ→ 0, there holds the convergence

ϕ̃(x)y,η,ϵ(k) → ϕ̃(x)y,η(k) :=
1

η − tmin

∫ η

tmin

eik(t+|x−y|)dt, k ∈ [0,K], η ∈ (tmin, tmax]. (4.35)

Introduce two annuluses centered at the receiver x ∈ ∂BR (see Figure 2):

A
(x)
D := {y ∈ R3 : inf

z∈D
|x− z| < |x− y| < sup

z∈D
|x− z|} (4.36)

and
A

(x)
D,η := {y ∈ R3 : inf

z∈D
|x− z| < |x− y| < sup

z∈D
|x− z|+ tmax − η}. (4.37)
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A
(x)
D

A
(x)
D,η

x

inf
z∈D

|x− z|

sup
z∈D

|x− z|

sup
z∈D

|x− z|+ tmax − η

D

Figure 2: Illustration of the annuluses A(x)
D (green area) and A(x)

D,η (union of green and blue area)
defined in (4.36) and (4.37).

Let the operator L̃ = L̃
(x)
D be defined as in Lemma 2.2. By arguing similarly to Lemma 3.3,

we deduce from the range identity (2.15) that

Theorem 4.1. Suppose that the initial time point tmin is known, D ⊂ BR and |x| = R.

(i) For y ∈ A
(x)
D , there exists ϵ0 > 0 such that ϕ̃(x)y,η,ϵ ∈ Range(L̃

(x)
D ) for all ϵ ∈ (0, ϵ0) and

η ∈ (tmin, tmax].

(ii) If y /∈ A
(x)
D,η, we have ϕ̃(x)y,η,ϵ /∈ Range(L̃

(x)
D ) for all ϵ > 0 and η ∈ (tmin, tmax].

For y ∈ R3, introduce the auxiliary function

W̃ (x)(y) :=

 N∑
n=1

|⟨ϕ̃(x)y,η, ψ̃
(x)
n ⟩|2L2(0,K)

|λ̃(x)n |
+

|⟨ϕ̃(−x)
y,η , ψ̃

(−x)
n ⟩|2L2(0,K)

|λ̃(−x)
n |

−1

, (4.38)

where (λ̃
(x)
n , ψ̃

(x)
n ) is an eigensystem of the near-field operator N (x)

D and the integer N ∈ N is a
truncation number. Note that the multi-frequency data at two opposite receivers ±x ∈ ∂BR are
required in computing the function W̃ (x). As the counterpart to the relation (3.33) and Theorem
3.7, one can show in the near-field case that

Corollary 4.2. (i) It holds that

W̃ (x)(y) =

{
≥ 0 if y ∈ A

(x)
D ∩A(−x)

D ,

0 if y /∈ A
(x)
D ∩A(−x)

D .
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(ii) Choose z0 ∈ A
(x)
D ∩ A(−x)

D such that supz∈D |z − x| − |x − z0| = ϵ0 for some small number
ϵ0 > 0. Then

[Ĩ(x)η,ϵ (z0)]
−1 =

{
a finite positive number, if η ∈ (tmin, tmax], ϵ ∈ (0, ϵ0/2],

0, if η > tmax + ϵ0, ϵ ∈ (0, ϵ0/2],

where

Ĩ(x)η,ϵ (y) :=

∞∑
n=1

|⟨ϕ̃(x)y,η,ϵ, ψ̃
(x)
n ⟩|2L2(0,K)

|λ̃(x)n |
, y ∈ R3. (4.39)

By the first assertion, the values of W̃ (x̂) in the domain A(x)
D ∩A(−x)

D should be relatively bigger
than those elsewhere, which yield information of the source support. The second assertion can
be used to calculate the terminal time point tmax by properly choosing z0 with a sufficiently
small ϵ0 > 0. If the wave signals are detected at a finite couple of symmetric observation points
{±xj ∈ SR : j = 1, 2, · · · ,M}, the indicator function

W̃ (y)=

 M∑
j=1

1

W̃ (xj)(y)

−1

=

 M∑
j=1

N∑
n=1

|⟨ϕ̃(xj)
y,η , ψ̃

(xj)
n ⟩|2L2(0,K)

|λ̃(xj)
n |

−1

, y ∈ R3, (4.40)

can be used to approximate the region
⋂

j=1,2,··· ,M
{
A

(xj)
D ∩A(−xj)

D

}
. As the radius of the receivers

|xj | = R → ∞, this region will converge to the Θ-convex set associated with the directions ±x̂j
for j = 1, 2, · · · ,M .

Remark 4.3. (i) In the case that the initial moment tmin is unknown, we define the test
function

ϕ̃(x)y,η,ϵ(k) =
1

(tmax − η) |Bϵ(y)|

∫ tmax

η

∫
Bϵ(y)

eik(t+|x−z|)dzdt, k ∈ [0,K], η ∈ [tmin, tmax),

which converges to

ϕ̃(x)y,η,ϵ(k) → ϕ̃(x)y,η(k) :=
1

tmax − η

∫ tmax

η
eik(t+|x−z|)dt (4.41)

as ϵ → 0. We retain the notation A
(x)
D defined as in (4.36), but change the definition of

A
(x)
D,η into

A
(x)
D,η := {y ∈ R3 : inf

z∈D
|x− z|+ tmin − η < |x− y| < sup

z∈D
|x− z|}.

Then one can prove the results in Theorem 4.1 and Corollary 4.2 in the same manner.

(ii) In contrast with Theorem 3.10, we cannot obtain the uniqueness result in recovering ch(D)

even if the near-field data are measured at all receivers lying on |x| = R.
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5 Discussions on source functions with two disconnected supports

In the previous sections the support D of the source function S is always supposed to be con-
nected. In this section we assume that D = D1 ∪D2 ⊂ R3 contains two disjoint sub-domains Dj

(j = 1, 2) which can be separated by some plane. For simplicity we only consider the far-field
measurement data at multi-frequencies. The indicator function (3.33) can be used to image the
strip K(x̂)

D if the multi-frequency data are observed at two opposite directions ±x̂. With all ob-
servation directions the convex hull of D can be recovered from the indicator (3.34). Physically,
it would be more interesting to determine ch(Dj) for each j = 1, 2, whose union is usually only
a subset of ch(D). Analogously to Lemma 3.3 and Theorem 3.5, we can prove the following
results.

Corollary 5.1. Let x̂ ∈ S2 be fixed and suppose one of tmin and tmax is unknown. Set T :=

tmax − tmin > 0.

(i) For y ∈ K
(x̂)
D1

∪K(x̂)
D2

, we have ϕ(x̂)y,η,ϵ ∈ Range(L
(x̂)
D ) for all ϵ ∈ (0, ϵ0) with some ϵ0 > 0.

(ii) If y /∈ K
(x̂)
D1,η

∪ K
(x̂)
D2,η

, we have ϕ
(x̂)
y,η,ϵ /∈ Range(L

(x̂)
D ) for all ϵ > 0, provided one of the

following conditions holds

(a) inf(x̂ ·D2)− sup(x̂ ·D1) > T ; (b) inf(x̂ ·D1)− sup(x̂ ·D2) > T. (5.42)

(iii) Let the indicator function W (x̂) be defined by (3.32). Under one of the conditions in (5.42)
it holds that

W (x̂)(y) =

{
≥ 0 if y ∈ K

(x̂)
D1

∪K(x̂)
D2
,

0 if y /∈ K
(x̂)
D1

∪K(x̂)
D2
.

Note that the conditions in (5.42) imply that (x̂ ·D1)∩(x̂ ·D2) = ∅. Furthermore, the Fourier
transform of L(x̂)

D f with f ∈ XD is supported in the following two disjoint intervals (see Lemma
5.2 below for a detailed proof)[

tmin − sup(x̂ ·D1), tmax − inf(x̂ ·D1)
] ⋃ [

tmin − sup(x̂ ·D2), tmax − inf(x̂ ·D2)
]
.

For small T > 0, there exists at least one observation directions x̂ ∈ S2 such that the relations
in (5.42) hold, because D1 and D2 can be separated by some plane by our assumption. If the
conditions (5.42) hold for all observation directions x̂ ∈ S2, one can make use of the indicator
function (3.34) to get an image of the set

⋂
j=1,2,···M{K(x̂j)

D1
∪K(x̂j)

D2
}, which is usually larger than

ch(D1)∪ ch(D2). This means that our approach can only be used to recover partial information
of ch(Dj), provided the source radiating period T is sufficiently small in comparison with the
distance between D1 and D2. The numerical experiments performed in Section 6 confirm the
above theory; see Figures 7-10.
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Physically, the conditions in (5.42) ensure that the time-dependent signals recorded at x̂ has
two disconnected supports which correspond to the wave fields emitting from D1 and D2, respec-
tively. If one can split the multi-frequency far-field patterns at a single observation direction,
it is still possible to recover {K(x̂)

D1
∪ K(x̂)

D2
} even if the conditions in (5.42) cannot be fulfilled.

Below we prove that the multi-frequency far-field patterns excited by two disconnected source
terms can be split under additional assumptions.

To rigorously formulate the splitting problem, we go back to the Helmholtz equation (1.1),
where D = D1 ∪D2 contains two disjoint bounded and connected sub-domains D1 and D2, that
is,

∆u+ k2u = −f1(·, k)− f2(·, k) in R3,

where suppfj(·, k) = Dj for any k > 0 and

fj(x, k) :=
1√
2π

∫ tmax

tmin

Sj(x, t)e
iktdt, x ∈ Dj .

Let uj be the unique radiating solution to

∆uj + k2uj = −fj(x, k) in R3, j = 1, 2.

Denote by u∞(x̂, k), u∞j (x̂, k) the far-field patterns of u and uj at some fixed observation direction
x̂ = x/|x|, respectively. It is obvious that u∞ = u∞1 + u∞2 , where

u∞j (x̂, k) =
1√
2π

∫ tmax

tmin

∫
Dj

Sj(y, t)e
ik(t−x̂·y) dydt, k ∈ R+. (5.43)

The splitting problem in the frequency domain can be formulation as follows: Given a fixed
observation direction x̂ ∈ S2, split {u∞j (x̂, k) : k ∈ R} from the data {u∞(x̂, k) : k ∈ R} for
j = 1, 2.

Set lj := sup(x̂ ·Dj)− inf(x̂ ·Dj) and Λj = T + ℓj with T = tmax − tmin > 0. We make the
following assumptions on the time-dependent source function S(x, t).

(i) S(x, t) ≥ c0 > 0 for (x, t) ∈ D × [tmin, tmax].

(ii) S is analytic on D × [tmin, tmax] and the boundary ∂D is analytic.

(iii) Either inf(x̂ ·D1) < inf(x̂ ·D2), or sup(x̂ ·D1) > sup(x̂ ·D2).

Lemma 5.2. Under the assumption (i), the supporting interval of F(u∞j ) is Ij := [tmin− sup(x̂ ·
Dj), tmax − inf(x̂ ·Dj)] and the function t 7→ (Fu∞j )(t) is positive on Ij. Moreover, (Fu∞j )(t) is
analytic in t ∈ Ij under the additional assumption (ii).
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Proof. The far-field expression (5.43) can be rewritten as

u∞j (x̂, k) =

∫
R
eikξgj(ξ) dξ, j = 1, 2,

where

gj(ξ) :=
1√
2π

∫ tmax

tmin

∫
Γj(t−ξ)

Sj(y, t)ds(y)dt =
1√
2π

∫ tmax−ξ

tmin−ξ

∫
Γj(t)

Sj(y, t+ ξ)ds(y)dt. (5.44)

Here Γj(t) ⊂ Dj is defined as Γj(t) := {y ∈ Dj : x̂ · y = t}. By the assumption (i) we deduce
from (5.44) with ξ = tmax − inf(x̂ ·Dj)− ϵ, ϵ ∈ (0,Λj) that

gj(ξ) =

∫ inf(x̂·Dj)+ϵ

inf(x̂·Dj)+ϵ−T

∫
Γj(t)

Sj(y, t+ ξ)ds(y)dt

=

∫ inf(x̂·Dj)+ϵ

inf(x̂·Dj)

∫
Γj(t)

Sj(y, t+ ξ)ds(y)dt

> 0,

because

t+ ξ ∈ (tmax − ϵ, tmax) if t ∈
(
inf(x̂ ·Dj), inf(x̂ ·Dj) + ϵ

)
,

and ∫
Γj(t)

Sj(y, t+ ξ)ds(y) = 0 if t < inf(x̂ ·Dj)

due to the fact that Γj(t) = ∅. Since gj coincides with the Fourier transform of u∞j by a factor,
this proves the first part of the lemma. The analyticity of (Fu∞j )(t) in t ∈ Ij follows from (5.44)
under the assumption (ii).

Next we show that the multi-frequency far-field measurement data at a fixed observation direction
can be uniquely split. Note that the splitting is obvious under the conditions in (5.42), because
by Lemma 5.2 the Fourier transform of u∞(x̂, k) has two disconnected components.

Theorem 5.3. Suppose that there are two time-dependent sources S and S̃ with supp S̃ = D̃ ×
[tmin, tmax] and D̃ = D̃1 ∪ D̃2. Here the source function S̃ and its support D̃ are also required
to satisfy the assumptions (i)-(iii). Let ũ∞j be defined by (5.43) with Dj , Sj replaced by D̃j,
S̃j := S̃|D̃j×(tmin,tmax)

, respectively. Then the relation

u∞(x̂, k) = u∞1 (x̂, k) + u∞2 (x̂, k) = ũ∞1 (x̂, k) + ũ∞2 (x̂, k), k ∈ (kmin, kmax) (5.45)

implies that u∞j (x̂, k) = ũ∞j (x̂, k) for k ∈ [kmin, kmax] and j = 1, 2.
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Proof. By the analyticity of u∞j , ũ∞j in k ∈ R, the function u∞ can be analytically extended to
the whole real axis. Denote by [Tmin, Tmax] the supporting interval of the Fourier transform of
u∞ with respect to k. In view of assumption (iii) and Lemma 5.2, we may suppose without loss
of generality that Tmax = tmax − Λmin with

Λmin = inf(x̂ ·D1) = inf(x̂ · D̃1) < inf(x̂ ·D2), Λmin < inf(x̂ · D̃2).

If otherwise, there must hold Tmin = tmin − Λmax with

Λmax = sup(x̂ ·D1) = sup(x̂ · D̃1) > sup(x̂ ·D2), Λmax > sup(x̂ · D̃2)

and the proof can be carried out similarly.
Define wj = u∞j − ũ∞j for j = 1, 2. Using (5.45), we get w1(x̂, k) = −w2(x̂, k) for all k ∈ R.

Hence, their Fourier transforms must also coincide, i.e., [Fw1](t) = −[Fw2](t) for all t ∈ R.
Taking δ < min{inf(x̂ ·D2)− Λmin, inf(x̂ · D̃2)− Λmin}. Again using Lemma 5.2, we obtain

0 = [Fw2](t) = [Fw1](t) for all t ∈ [Tmax − δ, Tmax]

because the interval [Tmax − δ, Tmax] lies in the exterior of the supporting intervals of both Fu∞2
and F ũ∞2 . Combining this with the analyticity of [Fw1](t) in t, we get

[Fw1](t) = 0 for all t ∈
[
Tmin, tmax −max

{
sup(x̂ ·D1), sup(x̂ · D̃1)

}]
. (5.46)

If sup(x̂ ·D1) < sup(x̂ · D̃1), it is seen from Lemma 5.2 that

[F−1u∞1 ](t∗) = 0, [F−1ũ∞1 ](t∗) > 0 (5.47)

where

t∗ = tmin − sup(x̂ ·D1)− ϵ ∈ Ij =
[
tmin − sup(x̂ · D̃1), tmax − inf(x̂ · D̃1)

]
.

Obviously, the relations in (5.47) contradicts the fact that [Fw1](t
∗) = 0 by (5.46). This

proves sup(x̂·D1) ≥ sup(x̂·D̃1). The relation sup(x̂·D1) ≤ sup(x̂·D̃1) can be proved analogously.
Hence, sup(x̂ ·D1) = sup(x̂ · D̃1) := Λmax and

[Fw1](t) = 0 for all t ∈
[
tmin − Λmax, tmax − Λmin

]
.

Using again Lemma 5.2 we find that Fu∞1 and F ũ∞1 also vanish for t /∈ [tmin−Λmax, tmax−Λmin].
Therefore, w1 ≡ 0 and u∞1 ≡ ũ∞1 , which implies u∞2 ≡ ũ∞2 .

Remark 5.4. Once u∞j (±x̂, k) (j = 1, 2) can be computed from u∞(±x̂, k), one can apply the

factorization scheme proposed in Sections 2-4 to get an image of the strip K
(x̂)
Dj

for j = 1, 2.
The numerical implementation of the multi-frequency far-field splitting at a single observation
direction is beyond the scope of this paper. We refer to [10] for a numerical scheme splitting
far-field patterns over all directions at a fixed frequency.
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6 Numerical examples

In this section, we will conduct a series of numerical experiments to validate our algorithm in
R2 and R3. In practical scenarios, the time-domain data should be transformed into the multi-
frequency data via the inverse Fourier transform. For the sake of streamlining the numerical
procedures in simulation, we will only perform computational tests for the Helmholtz equation.
Our primary objective is to extract information about the supports of sources. This goal is
achieved through the utilization of multi-frequency far/near-field data recorded at either a single
pair of opposite observation direction/point or a finite pair of observation directions/points.

6.1 Numerical examples for the far-field case in R2 and R3

Assuming a wave-number-dependent source term f(x, k), as defined in (1.3), we can synthesize
the far-field pattern using equation (1.7) by

w∞(x̂, k) =
1√
2π

∫ tmax

tmin

∫
D
eik(t−x̂·y)S(x, t) dydt, k ∈ [kmin, kmax]. (6.48)

Below we will describe the process of inversion algorithm. The frequency interval [kmin, kmax]

can be discretized by defining

kn = (n− 0.5)∆k, ∆k :=
K

N
, n = 1, 2, · · · , N.

We approximate the far-field operator in (2.8) using the rectangle method:

(F (x̂)ϕ)(τn) ≈
N∑

m=1

w(x̂, kc + τn − sm)ϕ(sm)∆k, (6.49)

where τn := n∆k and sm := (m− 0.5)∆k, n,m = 1, 2, · · · , N . A discrete approximation of the
far-field operator F (x̂) is given by the Toeplitz matrix

F (x̂) := ∆k



w∞(x̂, kc + k1) w∞(x̂, kc − k1) · · · w∞(x̂, kc − kN−1)

w∞(x̂, kc + k2) w∞(x̂, kc + k1) · · · w∞(x̂, kc − kN−2)
...

...
...

...
w∞(x̂, kc + kN−1) w∞(x̂, kc + kN−2) · · · w∞(x̂, kc − k1)

w∞(x̂, kc + kN ) w∞(x̂, kc + kN−1) · · · w∞(x̂, kc + k1)


, (6.50)

where F (x̂) is a N × N complex matrix. Here, we adopt 2N − 1 samples w∞(x̂, kc +

kn), n = 1, 2, · · · , N and w∞(x̂, kc − kn), n = 1, 2, · · · , N − 1, of the far-field pattern. De-
noting by

{
(λ̃

(x)
n , ψ

(x)
n ) : n = 1, 2, · · · , N

}
an eigen-system of the matrix F (x̂) (6.50), then

one deduces that an eigen-system of the matrix (F (x̂))# := |ReF (x̂))| + |Im (F (x̂))| is
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{
(λ

(x̂)
n , ψ

(x̂)
n ) : n = 1, 2, · · · , N

}
, where λ(x̂)n := |Re (λ̃(x̂)n )|+|Im (λ̃

(x̂)
n )|. For any test point y ∈ R3,

test function ϕ(x̂)y,η (3.18) can be discretized as

ϕ(x̂)y,η :=

(
1

η − tmin

∫ η

tmin

eiτ1(t−x̂·y)dt, · · · , 1

η − tmin

∫ η

tmin

eiτN (t−x̂·y)dt

)
. (6.51)

We truncate the auxiliary indicator function I(x̂)η,ϵ (y) (3.30) by

I(x̂)η (y) ∼
N∑

n=1

|ϕ(x̂)y,η · ψ(x̂)
n |2

|λ(x̂)n |
, y ∈ R3, (6.52)

where · denotes the inner product in R3 and N is consistent with the dimension of the Toeplitz
matrix (6.50). Furthermore, an approximation of the indicator function W (y) in (3.34) is

W (y)=

 M∑
j=1

1

W (x̂j)(y)

−1

∼

 M∑
j=1

N∑
n=1

|ϕ(x̂j)
y,η , ψ

(x̂j)
n |2

|λ(x̂j)
n |

+
|ϕ(−x̂j)

y,η , ψ
(−x̂j)
n |2

|λ(−x̂j)
n |

−1

, y ∈ R3. (6.53)

It can also be reduced to the approximation of W (x̂)(y) in (3.31) as M = 1. The visualizations
of the strips K(x̂)

D,η, K
(x̂)
D (see Figure 1) and Θ-convex hull of source support D are attainable

through the plots of 1/I
(x̂)
η defined as (6.52) and W (x̂)(y) = W (y) defined as (6.53) for M =

1. We suppose kmin = 0 for the sake of simplicity, then the bandwidth of frequency can be
extended from (0, kmax) to (−kmax, kmax) by w∞(x̂,−k) = w(x̂, k). Thus, one deduces from
these new measurement data with kmin = −kmax that kc = 0 and K = kmax. The frequency
band is represented by the interval (0, 8π/3) and discretized by N = 16 and ∆k = π/6. The
source function is chosen as S(x, t) = 3|x|2(t + 1) in R3. The radiating time is supposed to be
[tmin, tmax] = [0, 2] in R2 and [tmin, tmax] = [0, 0.5] in R3. We always take η = 0.1 unless other
specified. In the figures below, the shape of source support D will be highlighted by the red/pink
solid line and the indicator function values are all normalized to their respective maximum values.
The shapes of the source support related in our two dimensional numerical examples are listed
below:

• Peanut: x(t) = (x1, x2) + ar
√
b cos2 t+ 1(cos t, sin t), t ∈ [0, 2π],

• Round square: x(t) = (x1, x2) + r(cos3 t+ cos t, sin3 t+ sin t), t ∈ [0, 2π],

• Kite: x(t) = (x1, x2) + (r cos t+ ar(cos 2t− 1), br sin t), t ∈ [0, 2π],

• Ellipse: x(t) = (x1, x2) + (a cos t, b sin t), t ∈ [0, 2π].
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6.1.1 Recovery of K(x̂)
D and ΘD with far-field measurements in R2.

Firstly, we focus on reconstructing strips K(x̂)
D,η in (3.22) and K(x̂)

D in (3.23) perpendicular to the
observation direction and containing a peanut-shaped source support using a single observation
direction. The search domain is selected as [−4, 4]× [−4, 4]. In Figure 3, we present reconstruc-
tions K(x̂)

D,η using multi-frequency far-field data from a single observation direction x̂ = (1, 0) for

a peanut-shaped support with the auxiliary indicator function 1/I
(x̂)
η (y) defined in (6.52). We

test various values for η, namely η = 0.3, 1, 1.8. It is evident that both the right boundary of the
strips {y ∈ R2 : x̂ · y = sup(x̂ ·D)} and the left boundary {y ∈ R2 : x̂ · y = inf(x̂ ·D)− tmax + η}
are perfectly reconstructed. The width of strips K(x̂)

D,η in Figure 3 is tmax−η units wider than the

width of the smallest strip K
(x̂)
D containing the peanut-shaped source support. As η (η ≤ tmax)

increases, strips K(x̂)
D,η get progressively closer to strip K(x̂)

D . In the limiting case where η = tmax,

it follows that K(x̂)
D,η = K

(x̂)
D .

(a) η = 0.3 (b) η = 1 (c) η = 1.8

Figure 3: Reconstructions using multi-frequency far-field data from a single observation direction
for a peanut-shaped source support with the auxiliary indicator function 1/I

(x̂)
η defined in (6.52).

Figure 4 illustrates the reconstructions using multi-frequency far-field data from a single ob-
servation direction x̂ = (1, 0) for a peanut-shaped support. We employ the auxiliary indicator
functions 1/I(x̂)η (y) in Figure 4(a) and 1/I

(−x̂)
η (y) in Figure 4 (b). Additionally, an indicator func-

tion W (x̂)(y) = W (y) (6.53) defined with M = 1, is utilized in Figure 4(c). It can be observed
that the strip K(x̂)

D in Figure 4(c) is the intersection of the strip K(x̂)
D,η in Figure 4(a) and the strip

K
(−x̂)
D,η in Figure 4(b), as proven by our theory in Theorem 3.5. To enhance the intuitiveness of

inversion results, we introduce a threshold δ > 0 in Figures 4(d)–(f), respectively. It is evident
that 1/I

(±x̂)
η (y) can effectively capture the strip x̂ · D with a shift tmax − η = 1.9 of the lower

boundary along the observation direction ±x̂. The strip K(x̂)
D has been accurately recovered by

the normalized indicator function.

24



(a) 1/I
(x̂)
η (y) (b) 1/I

(−x̂)
η (y) (c) W (x̂)(y)

(d) δ = 3× 10−3 (e) δ = 3× 10−3 (f) δ = 3× 10−3

Figure 4: Reconstructions using multi-frequency far-field data from a single observation direction
for a peanut-shaped support. We employ an auxiliary indicator function as defined in (6.52) and
indicator function as defined in (6.53) with M = 1.

Next, we conduct numerical tests using M pairs of opposite observation directions x̂m =

(cos θm, sin θm) with θm = (m−1)π
M ,m = 1, · · · ,M. The reconstructions of a peanut-shaped source

support are presented in Figure 5 and those for a rounded-square-shaped source support in Figure
6, respectively. It is evident from Figures 5(a) and 6(a) that the locations of the supports are
precisely captured by the intersection of two strips K(±x̂)

D,η from two different pairs of opposite
observation directions. The two observations are perpendicular to each other with M = 2,
hence, yielding the smallest rectangle/square containing the source support. In fact, the position
of the source can be reconstructed from multi-frequency data taken from any two observation
directions. In Figures 5(b) and 6(b), we utilize multi-frequency far-field date from M = 4 pairs
of opposite observation directions. It is evident that both the location and shape are accurately
captured. Similarly, by setting M = 8, the shape of the supports can be more precisely inverted
in Figures 5(c) and 6(c).
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(a) M = 2 (b) M = 4 (c) M = 8

Figure 5: Reconstructions using multi-frequency far-field data from M pairs of opposite obser-
vation directions for a peanut-shaped source support.

(a) M = 2 (b) M = 4 (c) M = 8

Figure 6: Reconstructions using multi-frequency far-field data from M pairs of opposite obser-
vation directions for a rounded-square-shaped source support.

Subsequently, we consider a source support with two disconnected components, one kite-
shaped and the other peanut-shaped depicted in Figures 7-8, one elliptic-shaped and the other
rounded-square-shaped in Figures 9-10. We examine various values of η in the test function
and different radiating periods [tmin, tmax] of the source. The search domain is chosen as
[−6, 6]× [−6, 6]. In Figures 7-8, the peanut and kite are centered at the points (3, 3) and (-3,-3),
respectively. In Figures 9-10, the ellipse and round square are centered at the points (−3, 3)

and (3,-3), respectively. We present visualizations of indicator function (6.53) with M = 8 for
a peanut-shaped and a kite-shaped support with η = 0.1, 0.5, 0.9 in Figure 7. The radiating
period of the source is set to [tmin, tmax] = [0, 1]. It is evident that both the shapes and locations
are accurately reconstructed. The inverted results become more accurate with the increasing η
(η ≤ tmax = 1). If we enlarge the radiating period, can we still obtain results as accurate as those
in Figure 7? In Figure 8, we set [tmin, tmax] = [0, T ] with T = 2, 3, 5. It turns out that increasing
radiating period leads to distorted numerical reconstructions. This is due to the reason that the
conditions (5.42) are no longer satisfied and the wave signals from two components are interfered
with each other for large T ; see Figure 8(c). The accuracy of Figure 8(b) can be improved by
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increasing the number of observation directions. In Figures 9 and 10, we perform extensive tests
by reconstructing an elliptic-shaped component and a rounded-shaped square component, which
further confirm the correctness of our algorithm.

(a) η = 0.1 (b) η = 0.5 (c) η = 0.9

Figure 7: Reconstructions using multi-frequency far-field data from 8 pairs of opposite obser-
vation directions for a peanut-shaped and a kite-shaped support with various η. We set the
radiating period [tmin, tmax] = [0, 1].

(a) T = 2 (b) T = 3 (c) T = 5

Figure 8: Reconstructions using multi-frequency far-field data from 8 pairs of opposite obser-
vation directions for a peanut-shaped and a kite-shaped support with various radiating periods
[tmin, tmax] = [0, T ].
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(a) η = 0.1 (b) η = 0.5 (c) η = 0.9

Figure 9: Reconstructions using multi-frequency far-field data from 8 pairs of opposite observa-
tion directions for an elliptic-shaped and a rounded-square-shaped support with various η. We
set the radiating period [tmin, tmax] = [0, 1].

(a) T = 2 (b) T = 3 (c) T = 5

Figure 10: Reconstructions using multi-frequency far-field data from 8 pairs of opposite observa-
tion direction for an elliptic-shaped and a rounded-square-shaped support with various radiating
periods [tmin, tmax] = [0, T ].

6.1.2 Determination of tmax from far-field measurements in R2.

Assume that the initial moment tmin for source radiating is known, but the terminal moment tmax

is unknown. Suppose that ∂D is the square parameterized by x(θ) = 0.8(cos3 θ + cos θ, sin3 θ +

sin θ) and the radiating period is [tmin, tmax] = [0, 4]. Our objective is to determine the terminal
time tmax using the far-field measurement w∞(x̂, k) from a specific observation direction x̂. The
frequency band is represented by the interval (0, 8π/3) and discretized byN = 32 and ∆k = π/12.
In our tests, we use different directions and fix the test point y(θ) = 0.8(cos3 θ + cos θ, sin3 θ +

sin θ) ∈ K
(x̂)
D to plot the one-dimensional function η → 1/I

(x̂)
η (y) in Figure 11. Notably, the

one-dimensional function η → 1/I
(x̂)
η (y) exhibits a rapid decay near η = 4 and the value of

1/I
(x̂)
η (y) tends to 0 for all η > tmax+ ϵ0. This aligns with our theoretical prediction in Theorem

3.7, stating that the function η → 1/I
(x̂)
η,ϵ (y) must have a rapid decay near η = tmax, indicates

the value of tmax. Consequently, the terminal time can be clearly seen as tmax = η = 4.
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(a) x̂ = (1, 0), θ = π (b) x̂ = (
√
2/2,

√
2/2), θ = 5π/4 (c) x̂ = (0, 1), θ = 3π/2

Figure 11: Determination of tmax with different observation directions x̂ and a fixed test point
y(θ) = 0.8(cos3 θ+cos θ, sin3 θ+sin θ) ∈ K

(x̂)
D such that x̂ · y− inf(x̂ ·D) = ϵ0 = 0.01 by plotting

the one-dimensional function η → 1/I
(x̂)
η (y) where I(x̂)η (y) is defined in (6.52). The radiating

period of the source is [tmin, tmax] = [0, 4] for a rounded-square-shaped source support.

Next we test various test points y = y0 + ϵ0 x̂, where x̂ · y − inf(x̂ · D) = ϵ0 = 0, 0.1, 1.
Here, y0 is set as 0.8(cos3 7π

4 +cos 7π
4 , sin

3 7π
4 +sin 7π

4 ) and x̂ = (−
√
2/2,

√
2/2). We visualize the

behavior of the one-dimensional function η → 1/I
(x̂)
η (y) in Figure 12. The plot illustrates that

the function η → 1/I
(x̂)
η (y) exhibits rapid decay on the right hand of η = tmax + ϵ, and the value

of 1/I(x̂)η (y) tends to 0 for all η > tmax+ ϵ0. Consequently, it becomes evident that the algorithm
for determining tmax is reliable only if ϵ0 is sufficiently small (see Figures 12 (a) and (b)). Figure
12 (c) shows that the reconstruction of tmax is distorted if ϵ0 = 1 is not a small number.

(a) ϵ0 = 0, y = y0 + ϵ0x̂ (b) ϵ0 = 0.1, y = y0 + ϵ0x̂ (c) ϵ0 = 1, y = y0 + ϵ0x̂

Figure 12: Determination of tmax with a fixed observation direction x̂ = (−
√
2/2,

√
2/2) and

different test point y = y0+ϵ0x̂ such that x̂ ·y− inf(x̂ ·D) = ϵ0 where we set y0 = 0.8(cos3 7π/4+

cos 7π/4, sin3 7π/4 + sin 7π/4) by plotting the one-dimensional function η → 1/I
(x̂)
η (y). The

radiating period of the source is [tmin, tmax] = [0, 4] for a rounded-square-shaped source support.

6.1.3 Numerical examples with far-field measurements in R3

In this subsection, we explore the reconstructions of a spherical support and a cubic support
using multi-frequency far-field measurements from single/sparse observation directions in R3,
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respectively. The spherical support of the source D is characterized by the set D = {x ∈ R3 :

x21 + x22 + x23 ≤ 1} (see Figure 13(a)). Meanwhile, the cubic support of the source D is described
by the set D = {x ∈ R3 : |x1| ≤ 1, |x2| ≤ 1, |x3| ≤ 1} (see Figure 16(a)). The search domain is
chosen as [−3,−3]3.

Firstly, we present the reconstructions of a spherical support from one observation x̂ = (1, 0, 0)

by plotting the indicator function W (x̂)(y) in (6.53) with M = 1 in Figure 13. Figure 13(a) shows
the geometry of a spherical source support and its projections onto three coordinate planes.
Figure 16(b) illustrates a slice of reconstruction at y2 = 0, from which we conclude that the
smallest strip K(x̂)

D containing the source and perpendicular to the observation direction on the
cross-section at y2 = 0 is perfectly reconstructed. The sphere is precisely sandwiched between
two hyperplanes/iso-surfaces in Figure 13(c). In fact, we obtain a smallest slab containing the
source support and perpendicular to the observation direction from a single pair of opposite
observation directions multi-frequency data in R3.

(a) A spherical support (b) A slice at y2 = 0 (c) Iso-surface and a sphere

Figure 13: Reconstructions for a spherical support using multi-frequency far-field data from one
pair of opposite observation direction (±1, 0, 0).

Secondly, we present the numerical results for reconstructing the location and shape of
the spherical source support from multi-frequency data obtained through sparse observation
directions, as illustrated in Figure 14. We consider different scenarios with varying number
of pairs of opposite observation directions, specifically M = 3, 7, 10, 15. To provide a com-
prehensive insight into the reconstructions presented in Figure 14, projections onto the oy1y2,
oy1y3, and oy2y3 planes are included. In Figure 14(a), the reconstruction is derived from 3

properly-selected pairs of opposite directions x̂ = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. It is evi-
dent that the spherical support is accurately embedded within the cube, consistent with our
theoretical predictions. Indeed, we theoretically establish the location of the source support
using far-field data from any three different observation directions in R3. Figure 14(b) illus-
trates the reconstruction from a set of 7 properly-selected pairs of opposite observation direc-
tion x̂ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (

√
2/2,

√
2/2, 1/2), (

√
2/2,−

√
2/2, 1/2), (−

√
2/2,

√
2/2, 1/2),

(−
√
2/2,−

√
2/2, 1/2)} and the corresponding −x̂. For Figures 14(d)-(e), we choose 10 and 15
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observation directions uniformly distributed on the upper hemisphere with a radius of 1. Clearly,
as the number of pairs of opposite observation directions M increases, the inversion results be-
come progressively closer to the spherical support. Upon examining these 2D visualizations, a
noteworthy transformation is observed in the projections onto the three coordinate planes, evolv-
ing from a square [−1, 1]2 in Figure 15(a) to gradually assume an approximate circular shape
y2i + y2j ≤ 1, i ̸= j, i, j = 1, 2, 3 in Figure 15(d). These findings not only confirm the accuracy
of our three-dimensional reconstructions but also emphasize the significance of utilizing multiple
observation directions for enhanced precision.

(a) M = 3 (b) M = 7

(c) M = 10 (d) M = 15

Figure 14: Reconstructions for a spherical support using multi-frequency far-field data from mul-
tiple observation directions. Here we take the number of pairs of opposite observation directions
M = 3, 7, 10, 15.
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(a) A slice at y1 = 0 (b) A slice at y2 = 0 (c) A slice at y3 = 0

Figure 15: Slices of reconstruction for a spherical support using multi-frequency far-field data
from 15 pairs of opposite observation directions.

Next, we turn our attention to the reconstructions for a cubic support, as illustrated in Figure
16(a)). Figure 16(b) and (c) depict a slice at y2 = 0 and an iso-surface by plotting the indicator
function W (y) with data from a single pair of opposite observation direction (±1, 0, 0). It is
evident that the smallest strip K(x̂)

D is well-represented in Figure 16(b) and the cube is precisely
enclosed between two hyperplanes/iso-surfaces in Figure 16(c). Given the exact geometry of the
source support being cubic, theoretically, the geometry can be precisely recovered using far-field
data from three properly-selected pairs of opposite observation directions. We showcase the re-
construction using far-field data from 3 pairs of directions x̂ = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}
in Figure 17(a), where the projections onto the three coordinate planes are also included. The
results demonstrate that the cubic source support is perfectly reconstructed. Slices of the re-
construction are further presented in Figure 18. Additionally, in Figure 17(b)-(d), we utilize
multi-frequency data from 7, 10, 15 pairs of opposite observation directions to reconstruct the
cubic source support, respectively, with directions uniformly distributed on the sphere with a
radius of 1. A common observation is that both the location and shapes are accurately captured
as the number of observation directions increases.

(a) A cubic support (b) A slice at y2 = 0 (c) iso-surface and a cube

Figure 16: Reconstructions for a cubic support using multi-frequency far-field data from one pair
of opposite observation direction (±1, 0, 0).
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(a) M = 3 (b) M = 7

(c) M = 10 (d) M = 15

Figure 17: Reconstructions for a cubic support using multi-frequency far-field data from a finite
number of pairs of opposite observation directions with M = 3, 7, 10, 15.

(a) y1 = 0 (b) y2 = 0 (c) y3 = 0

Figure 18: Slices of reconstruction for a cubic support using multi-frequency far-field data from
3 pairs of properly-selected opposite observation directions.
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6.2 Numerical examples for near-field case in R3

In this subsection, we continue to conduct the numerical examples in Section 6.1.3 for recon-
structing the spherical-shaped support and cubic-shaped source support but with near-field mea-
surements. Being different from the far-field case, we need to reconstruct the annulus A(x)

D,η which
contains the source support D and centered at the observation point x by using the auxiliary
indicator function Ĩ

(x)
η,ϵ (y) defined in(4.39). In Figure 19(a) and (d), (b) and (e), we present

a slice y2 = 0 and iso-surfaces of reconstructions for a spherical support from one observation
point x = (3, 0, 0) by plotting the indicator function 1/Ĩ

(x)
η,ϵ (y) and 1/Ĩ

(−x)
η,ϵ (y) . To enhance

the resolution, the boundaries of the sphere and the annulus A(x)
D,η at slice y2 = 0 are high-

lighted in pink and yellow solid lines in Figure 19(a) and (b), respectively. It is evident that
{y ∈ R3 : |x − y| = infz∈D |x − z|} and {y ∈ R3 : |x − y| = supz∈D |x − z| + tmax − η} (yellow
lines), which is with a shift tmax − η to {y ∈ R3 : |x − y| = supz∈D |x − z|}, are all precisely
reconstructed. The spherical support is enclosed between the iso-surfaces and closely adjacent
to the inner ball surface in Figures 19 (d) and (e). We further illustrate a slice y2 = 0 and
iso-surfaces of reconstruction from a pair of opposite observation points (±3, 0, 0) by plotting the
indicator function W̃ (x)(y) (4.38) in Figures 19 (c) and (e). The spherical support is enclosed
within the disc-shaped geometric object and the location has also been roughly determined in
Figure 19(f). It is worth noting that we can not reconstruct the A(x)

D defined in (4.36) even using
a pair of opposite observation points ±x, which differs from the far-field case.
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(a) A slice y2 = 0 for 1/Ĩ
(−x)
η,ϵ (b) A slice y2 = 0 for 1/Ĩ

(x)
η,ϵ (c) A slice y2 = 0 for W̃ (x)

(d) Iso-surface for 1/Ĩ
(−x)
η,ϵ (e) Iso-surface for 1/Ĩ

(x)
η,ϵ (f) Iso-surface for W̃ (x)

Figure 19: Reconstructions for a spherical support using multi-frequency near-field data from
a single observation point x = (3, 0, 0) and −x and from a pair of opposite observation points
(±3, 0, 0).

Figure 20 illustrates the reconstructions of a spherical source support from sparse observation
points. In Figure 20(a), the precise location is obtained using near-field data from 3 pairs of
observation points x = {(±3, 0, 0), (0,±3, 0), (0, 0,±3)}. In Figure 20(b), (c) and (d) we choose
7, 14, 15 observation points uniformly distributed on the upper hemisphere with a radius of 3

together with their symmetric observation points, respectively. It is evident that with increasing
number of observation points, the reconstruction results progressively approach the shape of
a sphere. The projections onto the three coordinate planes further verify the accuracy of our
algorithm. Figure 21 depicts 15 points uniformly distributed on the upper hemisphere with a
radius of 3. Additionally, Figure 22 shows slices of the reconstruction at the planes y1 = 0,
y2 = 0 and y3 = 0 using data from 15 pairs of opposite observation points (see Figure 20(d)).
For comparison purpose, the boundary of the support’s slice is also demonstrated with the pink
solid line. These slices provide further confirmation of the accuracy of our algorithm.
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(a) M = 3 (b) M = 7

(c) M = 10 (d) M = 15

Figure 20: Reconstructions for a spherical support using multi-frequency near-field data at sparse
observation points. Here we choose the number of observation points M = 3, 7, 10, 15.

(a) y1 = 0 (b) y2 = 0 (c) y3 = 0

Figure 22: Slices of reconstructions for a spherical support using multi-frequency near-field data
at 15 pairs of opposite observation points.

To further validate the effectiveness of our algorithm in the near-field case, we reconstruct
the cubic support using sparse observation points in Figure 23. We consider different numbers
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Figure 21: 15 points uniformly distributed on the upper hemisphere with a radius of 3.

of pairs of opposite observation points M = 3, 7, 10, 15. The observation points are the same
as those in Figure 23. Figure 23(a) demonstrates that the location and shape are effectively
reconstructed with only 3 pairs of properly-selected observation points. Improved reconstruction
results are achieved with 15 pairs of opposite observation points uniformly distributed on the
sphere in Figure 23(d). In Figure 24, slices at y1 = 0, y2 = 0 and y3 = 0 further illustrate the
accuracy of the algorithm in the near-field case.
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(a) M = 3 (b) M = 7

(c) M = 10 (d) M = 15

Figure 23: Reconstructions for a cubic support using multi-frequency near-field data at sparse
observation points. Here we choose the number of pairs of opposite observation points M =

3, 7, 10, 15.

(a) y1 = 0 (b) y2 = 0 (c) y3 = 0

Figure 24: Slices of reconstructions for a cubic support using multi-frequency near-field data at
15 pairs of opposite observation points.
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7 Appendix

We prove that the far-field pattern w(x̂, k) in the frequency domain (see (1.7)) is the inverse
Fourier transform of the time-dependent far-field pattern with respect to the time variable.
Suppose that the whole space R3 is filled with a homogeneous and isotropic medium with a unit
mass density. We designate the sound speed of the background medium as the constant c > 0.
The source function S is supposed to be sufficiently smooth with a compact supported on D in
the spatial variables. Moreover, the wave signals are supposed to be radiated at the initial time
point tmin and terminated at the time point tmax. Therefore,

supp S(x, t) = D × [tmin, tmax] ⊂ BR × R+ ⊂ R3 × R+.

The propagation of the radiated wave fields U(x, t) is governed by the initial value problemc
−2∂

2U

∂t2
= ∆U + S(x, t), (x, t) ∈ R3 × R+,

U(x, 0) = ∂tU(x, 0) = 0, x ∈ R3.

(7.54)

The solution U(x, t) can be written explicitly as the convolution of the fundamental solution
G(x, t) to the wave equation with the source term,

U(x, t) = G(x; t) ∗ S(x, t) :=
∫
R3

∫
R+

G(x− y; t− s)S(y, s) dsdy

=

∫
R3

∫
R+

δ(t− s− c−1|x− y|)
4π|x− y|

S(y, s) dsdy,

(7.55)

where

G(x; t) =
δ(t− c−1|x|)

4π|x|
, (x, t) ∈ R3\{0} × R+.

In the time domain, the far-field pattern U∞(x̂, t) of U(x, t) is defined as (see e.g., [8])

U∞(x̂, t) := lim
|x|→+∞

|x| U(x, c−1|x|+ t) for x̂ ∈ S2 and t ∈ R.

By (7.55), we can express U∞(x̂, t) as

4πU∞(x̂, t) = 4π lim
|x|→+∞

|x|
∫
R3

∫
R

δ(t+ c−1|x| − s− c−1|x− y|)
4π|x− y|

S(y, s) dsdy

= lim
|x|→+∞

∫
BR

|x|
|x− y|

∫
R
δ(t− s+ c−1(|x| − |x− y|))S(y, s) dsdy

=

∫
BR

∫
R
δ(t− s+ c−1x̂ · y)S(y, s) dsdy

=

∫
R3

∫
R
δ(t− s+ c−1x̂ · y)S(y, s) dsdy,

(7.56)
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which can be justified rigorously based on the definition of distribution. Taking the inverse
Fourier transform on the wave equation yields the inhomogeneous Helmholtz equations

∆u(x, ω) + (ω/c)2u(x, ω) = −f(x, ω), x ∈ R3, ω > 0, (7.57)

where the source function f(x, ω) is given by

f(x, ω) =
1√
2π

∫
R
S(x, t)eiωtdt. (7.58)

The solution u(x, ω) of the Helmholtz equation (7.57) can be rephrased as

u(x, ω) = (F−1U)(x, ω) =
√
2π

∫
R3

(F−1G)(x− y;ω)(F−1S)(y, ω) dy

=

∫
R3

Φ(x− y;ω/c)f(y, ω) dy

=

∫
R3

eiωc
−1|x−y|

4π|x− y|
f(y, ω) dy.

(7.59)

Here, Φ(x; k) is the outgoing fundamental solution to the Helmholtz equation (∆ + k2)u = 0,
given by

Φ(x; k) =
eik|x|

4π|x|
, x ∈ R3, |x| ≠ 0.

By definition of the far-field pattern in the frequency domain (see (1.6)), one can express u∞(x̂, ω)

as
u∞(x̂, ω) =

∫
R3

e−iωc−1x̂·yf(y, ω) dy

=

∫
R3

e−iωc−1x̂·y 1√
2π

∫
R
S(y, t)eiωtdt dy

=
1√
2π

∫
R3

∫
R
S(y, t)eiω(t−c−1x̂·y) dtdy.

(7.60)

On the other hand, the inverse Fourier transform of the time-dependent far-field pattern (7.56)
can be simplified to be

4π
(
F−1U∞) (x̂, ω) = 1√

2π

∫
R

(∫
R3

∫
R
δ(t− s+ c−1x̂ · y)S(y, s) dsdy

)
eiωtdt

=
1√
2π

∫
R3

∫
R
S(y, s)

∫
R
δ(t− s+ c−1x̂ · y)eiωt dt dsdy

t=s−c−1x̂·y
=========

1√
2π

∫
R3

∫
R
S(y, s)eiω(s−c−1x̂·y) dsdy

s=t
====

1√
2π

∫
R3

∫
R
S(y, t)eiω(t−c−1x̂·y) dtdy

= u∞(x̂, ω).

(7.61)

Hence, the far-field pattern u∞(x̂, ω) coincides with the inverse Fourier transform of the time-
dependent far-field pattern U∞(x̂, t) with respect to the time variable up to the factor 4π.
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