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Abstract

In this paper we propose a frequency-domain method for recovering the trajectory of
a moving point source from multi-frequency near-field data measured at one and sparse
observation points in three dimensions. The radiating period of the moving point source
is supposed to be supported on the real axis and a priori known. In contrast to inverse
stationary source problems, one needs to study observable and non-observable measurement
positions. The analogue of these concepts in the far-field regime were firstly proposed in the
authors’ previous paper (to appear in SIAM J. Imaging Sciences, 2023). In this paper the
observable and non-observable measurement positions for straight and circular motions are
analyzed. In the near-field case, we verify that the smallest annular region that contains the
trajectory and centered at an observable position can be imaged for an admissible class of
orbit functions. Using the data from sparse observable positions, it is possible to reconstruct
the Θ-convex domain of the trajectory. Intensive 3D numerical tests with synthetic data are
performed to show effectiveness and feasibility of this new algorithm.

Keywords: inverse moving source problem, Helmholtz equation, multi-
frequency data, factorization method, uniqueness, near-field data

1 Introduction

1.1 Time-dependent model and its Fourier transform

We suppose that the whole space R3 is filled with a homogeneous and isotropic medium
with a unit mass density. Consider a moving point source along the trajectory function
a(t) : [tmin, tmax]→ R3 ∈ C1[tmin, tmax] with 0 < tmin < tmax. The source function S is supposed
to radiate wave signals at the beginning time tmin and stop radiating at the time point tmax, i.e.,
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it is supported in the interval [tmin, tmax] with respect to the time variable t > 0. Hence, the
source function takes the form

S(x, t) = δ(x− a(t))g(t)χ(t), (1.1)

where δ denotes the Dirac delta function, g(t) ∈ C(tmin, tmax) is a real-valued function fulfilling
the coercivity constraint

|g(t)| ≥ c0 > 0, t ∈ [tmin, tmax], (1.2)

and

χ(t) =

{
1, t ∈ [tmin, tmax],

0, t /∈ [tmin, tmax],

is the characteristic function over the interval [tmin, tmax]. Denote the trajectory by Γ := {x :

x = a(t), t ∈ [tmin, tmax]}. One can easily find Supp S(·, t) ⊂ Γ for all t ∈ [tmin, tmax]. The
propagation of the radiated wave fields U(x, t) is governed by the initial value problem

∂2U

∂t2
= ∆U + S(x, t), (x, t) ∈ R3 × R+,R+ := {t ∈ R : t > 0},

U(x, 0) = ∂tU(x, 0) = 0, x ∈ R3.

(1.3)

The solution U can be written explicitly as the convolution of the fundamental solution G to
the wave equation with the source term,

U(x, t) = G(x; t) ∗ S(x, t) :=

∫
R+

∫
R3

G(x− y; t− τ)S(y, τ) dydτ (1.4)

where
G(x; t) =

δ(t− |x|)
4π|x|

.

In this paper the one-dimensional Fourier and inverse Fourier transforms are defined by

(Fu)(k) =
1√
2π

∫
R
u(t)e−ikt dt, (F−1v)(t) =

1√
2π

∫
R
v(k)eikt dk,

respectively. The Fourier transform of S is thus given by

f(x, k) := (FS(x, ·))(k) =
1√
2π

∫
R
δ(x−a(t))g(t)χ(t)e−ikt dt =

1√
2π

∫ tmax

tmin

δ(x−a(t))g(t)e−ikt dt.

(1.5)
It is obvious f(x, k) = 0 for all x /∈ Γ and k ∈ [kmin, kmax]. From the expression (1.4), one
deduces the Fourier transform of the wave fields U ,

w(x, k) = (FU)(x, k) =

∫
R3

(FG)(x− y; k)(FS)(y, k) dy

=
1√
2π

∫
R3

Φ(x− y; k)f(y, k) dy.

(1.6)
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Here, Φ(x − y; k) is the fundamental solution to the Helmholtz equation (∆ + k2)w = 0, given
by

Φ(x− y; k) =
eik|x−y|

4π|x− y|
, x 6= y, x, y ∈ R3,

and H(1)
0 is the Hankel function of the first kind of order zero. On the other hand, taking the

Fourier transform on the wave equation yields the inhomogeneous Helmholtz equations

∆w(x, k) + k2w(x, k) = −f(x, k), x ∈ R3, k > 0. (1.7)

From (1.6) we observe that w satisfies the Sommerfeld radiation condition

lim
r→∞

r(∂rw − ikw) = 0, r = |x|, (1.8)

which holds uniformly in all points x ∈ R3.

1.2 Formulation in the frequency domain and literature review

Denote by [kmin, kmax] an interval of frequencies on the positive real axis. From the time-domain
setting we see

f(x, k) 6= 0, x ∈ Γ, f(x, k) = 0, x /∈ Γ

for all k ∈ [kmin, kmax], implying supp f(·, k) = Γ for all k ∈ [kmin, kmax]. For every k > 0, the
unique solution w ∈ H2

loc(R3) to (1.7)-(1.8) is given by (1.6), i.e.,

w(x, k) =
1√
2π

∫
R3

Φ(x− y; k)f(y, k)dy =
1

8π2

∫ tmax

tmin

e−ik(t−|x−a(t)|)

|x− a(t)|
g(t) dt, x /∈ Γ. (1.9)

Noting that the time-dependent source S is real valued, we have f(x,−k) = f(x, k) for all k > 0

and thus w(x,−k) = w(x, k).
In this paper we are interested in the following inverse problem (see Fig. 1):

(IP): Recovery the trajectory Γ from knowledge of the multi-frequency near-field patterns

{w(xj , k) : k ∈ [kmin, kmax], j = 1, 2, · · · ,M}.

where xj ∈ SR := {x : |x| = R} are sparse observation points and [kmin, kmax] denotes a
broad band of frequencies. Here we assume R > sup

t∈[tmin,tmax]
|a(t)|.

In particular, we are interested the following question:

What kind information on Γ can be extracted from the the multi-frequency near-field data
{w(x, k) : k ∈ [kmin, kmax]} at a fixed observation point x ∈ SR ?

The above questions are of great importance in industrial, medical and military applications,
because the number the measurement positions is usually quite limited and multi-frequency
data are always available by Fourier transforming the time-dependent measurement data.
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|xj | = R, w(xj , k)

Γ

a(tmin)

a(tmax)

Figure 1: Imaging the trajectory Γ from knowledge of multi-frequency near-field patterns mea-
sured at sparse observation points |xj | = R, j = 1, 2, . . . ,M .

2 Factorization of near-field operator

The aim of this section is to explore the factorization method for recovering the trajectory
Γ = Suppf(·, k) from the data measured at a single observation point x ∈ SR. We shall proceed
with the lines of [9] to derive a factorization of the near-field operator N (x). Following the spirit
of [8], we introduce the central frequency κ and half of the bandwidth of the given data K as

κ :=
kmin + kmax

2
, K :=

kmax − kmin

2
.

Define the near-field operator N (x) : L2(0,K)→ L2(0,K) by

(N (x)φ)(τ) :=

∫ K

0
w(x, κ+ τ − s)φ(s) ds, τ ∈ (0,K). (2.10)

Recall from (1.9) that w is analytic in k ∈ R. Hence the near-field operator N (x) is linear and
bounded. Further, it holds that

(N (x)φ)(τ) =

∫ K

0

1√
2π

∫
R3

Φ(x− y;κ+ τ − s)f(y, κ+ τ − s) dy φ(s) ds

=
1√
2π

∫ K

0

∫
R3

ei(κ+τ−s)|x−y|

4π|x− y|

(
1√
2π

∫ tmax

tmin

e−i(κ+τ−s)tδ(y − a(t))g(t) dt

)
dy φ(s) ds

=
1

2π

∫ K

0

∫ tmax

tmin

e−i(κ+τ−s)(t−|x−a(t)|)

4π|x− a(t)|
g(t) dt φ(s) ds

(2.11)
Below we shall prove a factorization of the above near-field operator.
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Theorem 2.1. We have N (x) = LT L∗ where L = L(x) : L2(tmin, tmax)→ L2(0,K) is defined by

(Lψ)(τ) :=

∫ tmax

tmin

e−iτ(t−|x−a(t)|ψ(t) dt, τ ∈ (0,K) (2.12)

for all ψ ∈ L2(tmin, tmax). Here the middle operator T : L2(tmin, tmax) → L2(tmin, tmax) is a
multiplication operator defined by

(T ϕ)(t) :=
e−iκ(t−|x−a(t)|)

8π2|x− a(t)|
g(t)ϕ(t). (2.13)

Remark 2.2. In the remaining part of this paper the operator L will be referred to as the data-
to-pattern operator corresponding to the orbit function a(t). It is obvious that the near-field data
(1.9) can be expressed as w(x, k) = (L(x) 1

8π2|x−a(t)|)(k).

Proof. We first show that the adjoint operator L∗ : L2(0,K) → L2(tmin, tmax) of L can be
expressed by

(L∗φ)(t) :=

∫ K

0
eis(t−|x−a(t)|)φ(s) ds, φ ∈ L2(0,K). (2.14)

Indeed, for ψ ∈ L2(tmin, tmax) and φ ∈ L2(0,K), it holds that

〈Lψ, φ〉L2(0,K) =

∫ K

0

(∫ tmax

tmin

e−iτ(t−|x−a(t)|)ψ(t) dt

)
φ(τ) dτ

=

∫ tmax

tmin

ψ(t)

(∫ K

0
eiτ(t−|x−a(t)|)φ(τ)dτ

)
dt

= 〈ψ,L∗φ〉L2(tmin,tmax).

which implies (2.14). By the definition of T , we have

(T L∗φ)(t) =
e−iκ(t−|x−a(t)|)

8π2|x− a(t)|
g(t)

∫ K

0
eis(t−|x−a(t)|)φ(s) ds, φ ∈ L2(0,K).

Hence, using (1.5) and (2.11),

(LT L∗φ)(τ) =

∫ tmax

tmin

e−iτ(t−|x−a(t)|)

(
e−iκ(t−|x−a(t)|)

8π2|x− a(t)|
g(t)

∫ K

0
eis(t−|x−a(t)|)φ(s) ds

)
dt

=
1

2π

∫ K

0

∫ tmax

tmin

e−i(κ+τ−s)(t−|x−a(t)|)

4π|x− a(t)|
g(t) dt φ(s) ds

= (N (x)φ)(τ).

This proves the factorization N (x) = LT L∗.

Denote by Range(L(x)) the range of the data-to-pattern operator L = L(x) (see (2.12)) acting
on L2(tmin, tmax).

Lemma 2.3. The operator L : L2(tmin, tmax)→ L2(0,K) is compact with dense range.
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Proof. For any ψ ∈ L2(tmin, tmax), it holds that Lψ ∈ H1(0,K), which is compactly embedded
into L2(0,K). This proves the compactness of L. By (2.14), (L∗φ)(t) coincides with the inverse
Fourier transform of φ at the variable t−|x−a(t)|. Since the set {t−|x−a(t)| : t ∈ [tmin, tmax]}
forms an interval of R, the relation (L∗φ)(t) = 0 implies φ = 0 in L2(0,K). Hence, L∗ is injective.
The denseness of Range(L(x)) in L2(0,K) follows from the injectivity of L∗.

Within the framework of Factorization method, it is essential to connect the ranges of N (x)

and L. We first recall that, for a bounded operator F : Y → Y in a Hilbert space Y the real and
imaginary parts of F are defined respectively by

ReF =
F + F ∗

2
, ImF =

F − F ∗

2i
,

which are both self-adjoint operators. Furthermore, by spectral representation we define the
self-adjoint and positive operator |ReF | as

|ReF | =
∫
R
|λ| dEλ, if ReF =

∫
R
λ dEλ.

The selfadjoint and positive operator |ImF | can be defined analogously. Introduce a new operator

F# := |ReF |+ |ImF |.

Since F# is selfadjoint and positive, its square root F 1/2
# is defined as

F
1/2
# :=

∫
R+

√
λ dEλ, if F# =

∫
R+

λ dEλ.

In this paper we need the following result from functional analysis.

Theorem 2.4. ([9]) Let X and Y be Hilbert spaces and let F : Y → Y , L : X → Y , T : X → X

be linear bounded operators such that F = LTL∗. We make the following assumptions

(i) L is compact with dense range and thus L∗ is compact and one-to-one.

(ii) ReT and ImT are both one-to-one, and the operator T# = |ReT | + |ImT | : X → X is
coercive, i.e., there exists c > 0 with〈

T# ϕ,ϕ
〉
≥ c ||ϕ||2 for all ϕ ∈ X.

Then the operator F# is positive and the ranges of F 1/2
# : Y → Y and L : X → Y coincide.

To apply Theorem 2.4 to our inverse problem, we set

F = N (x), L = L, T = T , X = L2(tmin, tmax), Y = L2(0,K),
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where T is the multiplication operator of (2.13). It is easy to see

[(Re T )ϕ] (t) =
cos[κ(t− |x− a(t)|)]

8π2|x− a(t)|
g(t)ϕ(t),

[(Im T )ϕ] (t) = −sin[κ(t− |x− a(t)|)]
8π2|x− a(t)|

g(t)ϕ(t)

are both one-to-one operators from L2(tmin, tmax) onto L2(tmin, tmax). The coercivity assumption
of N (x) yields the coercivity of T#. As a consequence of Theorem 2.4, we obtain

Range [(N (x))
1/2
# ] = Range (L(x)) for any x ∈ SR. (2.15)

Let ϕ ∈ L2(0,K) be a test function. We want to characterize the range of L(x) through
the choice of ϕ. Denote by (λ

(x)
n , ψ

(x)
n ) an eigensystem of the positive and self-adjoint operator

(N (x))#, which is uniquely determined by the multi-frequency near-field patterns {w(x, k) : k ∈
(kmin, kmax)}. Applying Picard’s theorem and Theorem 2.4, we obtain

ϕ ∈ Range(L(x)) if and only if
∞∑
n=1

|〈ϕ,ψ(x)
n 〉|2

|λ(x)
n |

< +∞. (2.16)

To establish the factorization method, we now need to choose a proper class of test functions
which usually rely on a sample variable in R3.

3 Range of L(x) and test functions

To characterize the range of L(x), we need to investigate monotonicity of the function ξ = h(t) :=

t − |x − a(t)| ∈ C1[tmin, tmax]. For this purpose we define the division points of a continuous
function over a closed interval.

Definition 3.1. Let f ∈ C[tmin, tmax]. The point t ∈ (tmin, tmax) is called a division point if
(1) f(t) = 0;
(2) There exist an ε0 > 0 such that either |f(t+ ε)| > 0 or |f(t− ε)| > 0 for all 0 < ε < ε0.

Obviously, the division points constitute a subset of the zero set of a continuous function.
However, a division point cannot be an interior point of the zero set. Since a(t) ∈ C1[tmin, tmax],
there are finitely many division points of the function h′, which we denote by t1 < t2 < · · · < tn−1.
The interval [tmin, tmax] is then divided into n sub-intervals [tj−1, tj ], j = 1, 2, · · · , n, where
tmin = t0 and tmax = tn. Let aj and hj be the restrictions of a and h to [tj−1, tj ], respectively.
Set

ξ
(x)
j,min := inf

t∈[tj−1,tj ]
{hj(t)}, ξ

(x)
j,max := sup

t∈[tj−1,tj ]
{hj(t)}, j = 1, 2, · · ·n.

In each subinterval (tj−1, tj), one of following cases must hold:
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• h′j(t) > 0 for all t ∈ (tj−1, tj). There holds

ξ
(x)
j,min = tj−1 − |x− aj(tj−1)|, ξ

(x)
j,max = tj − |x− aj(tj)|;

• h′j(t) < 0 for all t ∈ (tj−1, tj). We have

ξ
(x)
j,min = tj − |x− aj(tj)|, ξ

(x)
j,max = tj−1 − |x− aj(tj−1)|;

• h′j(t) = 0 for all t ∈ (tj−1, tj). Consequently,

ξ
(x)
j,min = ξ

(x)
j,max = t− |x− aj(t)|, t ∈ [tj−1, tj ].

Define

ξ
(x)
min := min

j
ξ

(x)
j,min = inf

t∈[tmin,tmax]
{h(t)}, ξ(x)

max := max
j
ξ

(x)
j,max = sup

t∈[tmin,tmax]
{h(t)}, (3.17)

which denote the minimum and maximum of h over [tmin, tmax], respectively. If |h′j(t)| > 0, the
monotonicity of the function ξ = hj(t) for t ∈ [tj , tj−1] implies the inverse function t = h−1

j (ξ) ∈
C1[ξ

(x)
j,min, ξ

x)
j,max]. Set

J = {j ∈ N : 1 ≤ j ≤ n, h′j(t) ≡ 0, t ∈ (tj−1, tj)}.

and assume hj(t) ≡ cj ∈ R for j ∈ J . Note that it is possible that J = ∅.
With these notations we can rephrase the operator L(x) defined by (2.12) as

(L(x)ψ)(τ) =
n∑
j=1

∫ tj

tj−1

e−iτhj(t)ψ(t) dt

=
∑
j /∈J

∫ tj

tj−1

e−iτhj(t)ψ(t) dt+
∑
j∈J

e−iτcj
∫ tj

tj−1

ψ(t) dt.

(3.18)

For j ∈ J , using e−iτc =
√

2πFδ(t− c) we can rewrite each term in the second sum as

e−iτcj
∫ tj

tj−1

ψ(t) dt =
√

2πFδ(t− cj)
∫ tj

tj−1

ψ(t) dt. (3.19)

For j /∈ J and h′j(t) > 0, the integral in the first summation on the right hand of (3.18) takes
the form ∫ tj

tj−1

e−iτhj(t)ψ(t) dt =

∫ ξ
(x)
j,max

ξ
(x)
j,min

e−iτξψ(h−1
j (ξ)) (h−1

j (ξ))′ dξ

=

∫ ξ
(x)
j,max

ξ
(x)
j,min

e−iτξψ(h−1
j (ξ))|(h−1

j (ξ))′| dξ.
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Note that [h−1
j (ξ)]′ > 0, due to the relation h′j(t)[h

−1
j (ξ)]′ = 1. Analogously, if h′j(t) < 0 for

some j /∈ J , we have [h−1
j (ξ)]′ < 0 and thus

∫ tj

tj−1

e−iτhj(t)ψ(t) dt = −
∫ ξ

(x)
j,max

ξ
(x)
j,min

e−iτξψ(h−1
j (ξ))(h−1

j (ξ))′ dξ

=

∫ ξ
(x)
j,max

ξ
(x)
j,min

e−iτξψ(h−1
j (ξ))|(h−1

j (ξ))′| dξ.

Now, extending h−1
j by zero from (ξ

(x)
j,min, ξ

(x)
j,max) to R and extending ψ ∈ L2(tmin, tmax) by zero

to L2(R), we can write each term for j /∈ J as∫ tj

tj−1

e−iτhj(t)ψ(t) dt =

∫
R
e−iτξψ(h−1

j (ξ))|(h−1
j (ξ))′| dξ. (3.20)

Combining (3.18), (3.19) and (3.20), we get

(L(x)ψ)(τ) =

∫
R
e−iτξg(ξ) dξ, (3.21)

with

g(ξ) =
∑
j /∈J

ψ(h−1
j (ξ)) |(h−1

j (ξ))′|+
∑
j∈J

δ(ξ − cj)
∫ tj

tj−1

ψ(t) dt.

Note that g is a generalized function if J 6= ∅ and that g coincides with the inverse Fourier
transform of L(x)ψ up to some constant. Since supp h−1

j ⊂ [ξ
(x)
min, ξ

(x)
max] for j /∈ J and cj ∈

[ξ
(x)
min, ξ

(x)
max], we may estimate that the support of g (equivalently, the inverse Fourier transform

of L(x)ψ) as follows:
supp(g(ξ)) ⊂ [ξ

(x)
min, ξ

(x)
max].

Summing up the above arguments we arrive at

Lemma 3.2. Let Γ = {y : y = a(t), t ∈ [tmin, tmax]} ⊂ R3 be a C1-smooth curve with tmax > tmin.
Then

(F−1L(x)ψ)(ξ) =
√

2π

∑
j /∈J

ψ(h−1
j (ξ)) |(h−1

j (ξ))′|+
∑
j∈J

δ(ξ − cj)
∫ tj

tj−1

ψ(t) dt

 . (3.22)

Moreover,
supp(F−1L(x)ψ) ⊂ [ξ

(x)
min, ξ

(x)
max].

Below we provide a sufficient condition to ensure trivial intersections of the ranges of two
data-to-pattern operators corresponding to different trajectories.
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Lemma 3.3. Let Γa = {y : y = a(t), t ∈ [tmin, tmax]} ⊂ R3 and Γb = {y : y = b(t), t ∈
[tmin, tmax]} ⊂ R3 be C1-smooth curves such that(

inf
t∈[tmin,tmax]

(t− |x− a(t)|), sup
t∈[tmin,tmax]

(t− |x− a(t)|)

)
⋂ (

inf
t∈[tmin,tmax]

(t− |x− b(t)|), sup
t∈[tmin,tmax]

(t− |x− b(t)|)

)
= ∅. (3.23)

Let L(x)
a and L(x)

b be the data-to-pattern operators associated with Γa and Γb, respectively. Then
Range(L(x)

a ) ∩ Range(L(x)
b ) = {0}.

Proof. Let fa, fb ∈ L2(tmin, tmax) be such that (L(x)
a fa)(τ) = (L(x)

b fb)(τ) := Q(τ, x). We need to
prove Q(·, x) ≡ 0. By the definition of L (see (2.12)), the function

τ → Q(τ, x) =

∫ tmax

tmin

e−iτ(t−|x−a(t)|)fa(t) dt =

∫ tmax

tmin

e−iτ(t−|x−b(t)|)fb(t) dt

belongs to L2(0,K). Since Q(τ, x) is analytic in τ ∈ R, the previous relation is well defined for
any τ ∈ R. By Definition 3.1, we suppose that {tj}n−1

j=1 and {t̃j}m−1
j=1 are division points of the

functions ha(t) = t − |x − a(t)| and hb(t) = t − |x − b(t)|, respectively. Analogously we define
hj,a(t) := t − |x − aj(t)|, hj,b(t) := t − |x − bj(t)|, and Ja := {j ∈ N : 1 ≤ j ≤ n, h′j,a(t) ≡ 0, t ∈
(tj−1, tj)}, Jb := {j ∈ N : 1 ≤ j ≤ m,h′j,b(t) ≡ 0, t ∈ (t̃j−1, t̃j)}. Denote hj,a(t) ≡ cj,a for j ∈ Ja
and hj,b(t) ≡ cj,b for j ∈ Jb. Using the formula (3.21), the function Q(·, x) can be rewritten as
the Fourier transforms:

Q(τ, x) =

∫
R
e−iτξga(ξ, x) dξ =

∫
R
e−iτξgb(ξ, x) dξ, (3.24)

with

ga(ξ, x) =
∑
j /∈Ja

fa(h
−1
j,a(ξ)) |(h−1

j,a(ξ))′|+
∑
j∈Ja

δ(ξ − cj,a)
∫ tj

tj−1

fa(t) dt,

gb(ξ, x) =
∑
j /∈Jb

fb(h
−1
j,b (ξ)) |(h−1

j,b (ξ))′|+
∑
j∈Jb

δ(ξ − cj,b)
∫ t̃j

t̃j−1

fb(t) dt.

This implies ga(ξ, x) = gb(ξ, x) for all ξ ∈ R. On the other hand, the support sets of ga and gb
satisfy

supp ga(·, x) ⊂

(
inf

t∈[tmin,tmax]
(t− |x− a(t)|), sup

t∈[tmin,tmax]
(t− |x− a(t)|)

)
,

supp gb(·, x) ⊂

(
inf

t∈[tmin,tmax]
(t− |x− b(t)|), sup

t∈[tmin,tmax]
(t− |x− b(t)|)

)
.

Hence, by the condition (3.23) we obtain ga(ξ, x) = gb(ξ, x) ≡ 0 for all ξ ∈ R . In view of (3.24),
we get Q(·, x) ≡ 0.
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For any y ∈ R3, define the parameter-dependent test functions φ(x)
y ∈ L2(0,K) by

φ(x)
y (k) =

1

|tmax − tmin|

∫ tmax

tmin

e−ik(t−|x−y|)dt, k ∈ (0,K). (3.25)

Here we stress that the test function φ(x)
y depends on both the observation point x ∈ SR and the

test point y ∈ R3. The supporting information of the inverse Fourier transform of the above test
function is described as follows.

Lemma 3.4. We have

[F−1φ(x)
y ](τ) =

{ √
2π/|tmax − tmin| if τ ∈ [tmin − |x− y|, tmax − |x− y|],

0 if otherwise.
(3.26)

Proof. Let τ = t− |x− y|, we can rewrite the function φ(x)
y as

φ(x)
y (k) =

∫
R
e−ikτgy(τ, x) dτ,

where

gy(τ, x) :=


1

|tmax − tmin|
if τ ∈ [tmin − |x− y|, tmax − |x− y|],

0 if otherwise.

Therefore, [F−1φ
(x)
y ](τ) =

√
2πgy(τ, x).

In the following we present a necessary condition imposed on the observation point x and
radiating period T := tmax − tmin to ensure that the test function φ(x)

y lies in the range of the
data-to-pattern operator.

Lemma 3.5. If φ(x)
y ∈ Range(L(x)) for some y ∈ R3, we have ξ(x)

max − ξ(x)
min ≥ T . Here ξ(x)

max and
ξ

(x)
min are defined by (3.17).

Proof. If φ(x)
y ∈ Range(L(x)), there exists a function ψ ∈ L2(tmin, tmax) such that φ(x)

y = L(x)ψ

in L2(0,K). Since both φ
(x)
y and L(x)ψ are analytic functions over R, it holds that φ(x)

y (k) =

(L(x)ψ)(k) for all k ∈ R. Then their support sets must be identical, i.e., supp(F−1φ
(x)
y ) =

supp(F−1L(x)φ) ⊂ [ξ
(x)
min, ξ

(x)
max], where we have used Lemma 3.2. Hence, the length of

supp(F−1φ
(x)
y ), which can be seen from Lemma 3.4, must be less than or equal to that of

[ξ
(x)
min, ξ

(x)
max], i.e.,

ξ(x)
max − ξ

(x)
min ≥ tmax − tmin = T.

From the above lemma we conclude that φ(x)
y /∈ Range(L(x)) for all y ∈ R3, if ξ(x)

max−ξ(x)
min < T .

Inspired by this fact we introduce the concept of observable points.
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Definition 3.6. Let ξ(x)
min and ξ(x)

max be the maximum and minimum of the function h(t) = t −
|x − a(t)| ∈ C1[tmin, tmax] (see (3.17)), respectively. The point x ∈ R3 is called an observable
point if ξ(x)

max − ξ(x)
min ≥ T . The point x is called non-observable if ξ(x)

max − ξ(x)
min < T .

We remark that the set of observable points is uniquely determined by the orbit function a(t)

together with the starting and terminal time points tmin and tmax. For non-observable points x,
one cannot extract information on the orbit function by our approach, which will be explained
in the second assertion of Theorem 4.1 below. If x is observable and x−a(t)

|x−a(t)| · a
′(t) ≥ 0 for all

t ∈ [tmin, tmax], the smallest annulus containing the trajectory and centered at x can be recovered.
If x is observable but x−a(t)

|x−a(t)| ·a
′(t) ≥ 0 for all t ∈ [tmin, tmax] is not valid, another thinner annulus

centered at x can be imaged. Below we derive the observable points for orbit functions given by
a straight line (see Fig. 2) and a semi-circle (see Fig. 3) in there dimensions.

Example 1: A straight line segment in R3.
Suppose that an acoustic point source is moving along a straight line.

Lemma 3.7. Define the orbit function a(t) := (0, 0, 2t) ∈ R3 for t ∈ [1, 2]. Then the point
x = (x1, x2, x3) ∈ R3, |x| = 6 is observable if x3 ∈ [−6, 3−

√
33

2 ]
⋃

[3, 6].

Proof. From the expression of the orbit function a(t), we have

h(t) = t− |x− a(t)| = t−
√
x2

1 + x2
2 + (x3 − 2t)2 = t−

√
(2t− x3)2 + 36− x2

3,

h′(t) = 1− |x− a(t)|′ = 1− 2(2t− x3)√
(2t− x3)2 + 36− x2

3

.

We notice that h′(t) ≥ 0 as t ≤ t0 and h′(t) < 0 as t > t0, where t0 := x3
2 +

√
3− x23

12 . Hence,
there are three cases for the relationship between t0 and [1, 2].

Case (i): If t0 ≤ 1, then x3 − 2 ≤ −
√

12− x23
3 , which means x3 ∈ [−6, 3−

√
33

2 ]. In this case,
h(t) is monotonically decreasing in [1, 2]. So, if x is observable, we have

h(1)− h(2) ≥ 1,

that is,
√

13− 2x3 ≥
√

10− x3.

Thus, x ∈ S6 is an observable point if x3 ∈ [−6, 3−
√

33
2 ].

Case (ii): If t0 ∈ [1, 2], then 2− x3 ≤
√

12− x23
3 ≤ 4− x3, which means x3 ∈ [3−

√
33

2 , 3−
√

6].
In this case, h(t) is monotonically increasing in [1, t0] and monotonically decreasing in [t0, 2]. We
notice that

h(t0)−min{h(1), h(2)} < 1,

for all x3 ∈ [3−
√

33
2 , 3−

√
6].

12



x1

x3
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−8
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−2

2

4
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8

a(tmin)

a(tmax)

x3 = 3

x3 = 3−
√

33
2

Figure 2: Illustration of observable (green arc) and non-observable (dotted arc) points for the
trajectory a(t) = (0, 0, 2t) for t ∈ [1, 2] in the xOz plane.

Case (iii): If t0 ≥ 2, then x3 − 4 ≤ −
√

12− x23
3 , which means x3 ∈ [3 −

√
6, 6]. In this case,

h(t) is monotonically increasing in [1, 2]. So, if x is observable, we have

h(2)− h(1) ≥ 1,

that is,
√

13− 2x3 ≤
√

10− x3.

Thus, x ∈ S6 is an observable point if x3 ∈ [3, 6].
To sum up, we deduce that an observable point x ∈ R3, |x| = 6 should fulfill the relation

x3 ∈ [−6,
3−
√

33

2
]
⋃

[3, 6].

Example 2: A semi-circle in R3.
Suppose that an acoustic point source is moving along the semi-circle centered at z =

(z1, z2, z3) ∈ R3.

Lemma 3.8. Let the orbit function be a(t) = (0.5 cos t+z1, 0.5 sin t+z2, z3) ∈ R3 for t ∈ [π, 2π].
Then x = (x1, x2, x3) /∈ Γ is observable if x1 ≥ z1.
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Proof. From the orbit function a(t), we have

h(t) = t− |x− a(t)| = t−
√

(x1 − z1 − 0.5 cos t)2 + (x2 − z2 − 0.5 sin t)2 + (x3 − z3)2.

It is obvious that |a′(t)| < 1 and then get h′(t) > 0 for all t ∈ [π, 2π]. That means the function
h(t) is monotonically increasing in [π, 2π]. So, there is

ξ
(x)
min = π −

√
(x1 − z1 + 0.5)2 + (x2 − z2)2 + (x3 − z3)2,

ξ(x)
max = 2π −

√
(x1 − z1 − 0.5)2 + (x2 − z2)2 + (x3 − z3)2.

If x is observable, we have

ξ(x)
max − ξ

(x)
min = π −

√
(x1 − z1 − 0.5)2 + (x2 − z2)2 + (x3 − z3)2

+
√

(x1 − z1 + 0.5)2 + (x2 − z2)2 + (x3 − z3)2

≥ T = π,

that is,
(x1 − (z1 − 0.5))2 ≥ (x1 − (z1 + 0.5))2.

One can find x1 ≥ z1 through simple calculations.

x1

x2

−2 −1 1 2

−2

−1

1

2

a(tmin) a(tmax)

Γ

Figure 3: Illustration of the observable (green area removes the portion that intersects trajectory
Γ) and non-observable (red area) points for the trajectory a(t) = (0.5 cos t, 0.5 sin t, 0) with
t ∈ [π, 2π] in the xOy plane.
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Given the trajectory Γ = {y : y = a(t), t ∈ [tmin, tmax]}, the set

ΛΓ := {y ∈ R3 : inf
z∈Γ
|x− z| ≤ |x− y| ≤ sup

z∈Γ
|x− z|}

denotes the smallest annulus containing Γ and centered at the point x. One can at most expect
to recover this annulus from the multi-frequency data taken at a single observation point. If x
is an observable point, we define the annulus (see Fig. 4)

A
(x)
Γ := {y ∈ R3 : tmax − ξ(x)

max ≤ |x− y| ≤ tmin − ξ(x)
min} ⊂ R3. (3.27)

Remark 3.9. If the point source keeps stationary at z ∈ R3, that is, Γ = {z}, then each point
x ∈ R3\{z} is observable. In this case, the annulus A(x)

Γ degenerates into a ring. It can be said
that the concept of non-observable points is produced by the movement of the point source.

If h′(t) > 0 for t ∈ (tmin, tmax), we have

A
(x)
Γ = {y ∈ R3 : |x− a(tmax)| ≤ |x− y| ≤ |x− a(tmin)|}

which is a subset of ΛΓ and coincides with ΛΓ when x−a(t)
|x−a(t)| · a

′(t) > 0 for all t ∈ [tmin, tmax];
If h′(t) < 0 for t ∈ (tmin, tmax), there holds

A
(x)
Γ = {y ∈ R3 : |x− a(tmin)|+ T ≤ |x− y| ≤ |x− a(tmax)| − T},

which is also a subset of ΛΓ; see Lemma 3.10 below.

Lemma 3.10. Let x ∈ SR be an observable point. We have

inf
z∈Γ
|x− z| ≤ |x− y| ≤ sup

z∈Γ
|x− z| for all y ∈ A(x)

Γ .

Proof. Suppose that

ξ
(x)
min = t1 − |x− a(t1)|, ξ(x)

max = t2 − |x− a(t2)|, for some t1, t2 ∈ [tmin, tmax].

Therefore,

tmin − ξ(x)
min = tmin − t1 + |x− a(t1)| ≤ |x− a(t1)| ≤ sup

z∈Γ
|x− z|,

tmax − ξ(x)
max = tmax − t2 + |x− a(t2)| ≥ |x− a(t2)| ≥ inf

z∈Γ
|x− z|.

This implies that for y ∈ A(x)
Γ ,

|x− y| ≥ tmax − ξ(x)
max ≥ inf

z∈Γ
|x− z|, |x− y| ≤ tmin − ξ(x)

min ≤ sup
z∈Γ
|x− z|.
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x1

x3

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Γ

R
(x)
Γ

x = (2, 0,−1)

sup
z∈Γ
|x− z|

inf
z∈Γ
|x− z|

Figure 4: Illustration of the annulus A(x)
Γ (blue area) with x = (2, 0, 1) in the xOz plane. Here the

curve a(t) = (−1, 0, 4− t), t ∈ [1, 6] denotes the orbit (the red segment) of a point source moving
from below to above. There holds |x−a(tmax)| =

√
10, |x−a(tmin)| = 5, inf

z∈Γ
|x−z| = 3, sup

z∈Γ
|x−

z| = 5. In this case the annulus A(x)
Γ is a subset of {y ∈ R3 : inf

z∈Γ
|x− z| ≤ |x− y| ≤ sup

z∈Γ
|x− z|}.

If x ∈ SR is observable, we shall prove that the test function φ(x)
y lies in the range of L(x) if

and only if y ∈ A(x)
Γ . This together with (2.15) establishes a computational criterion for imaging

A
(x)
Γ from the multi-frequency near-field data u(x, k) with k ∈ [kmin, kmax]. We also need to

discuss non-observable points.

Lemma 3.11. (i) If x is non-observable, we have φ(x)
y /∈ Range(L(x)) for all y ∈ R3.

(ii) If x is an observable point, we have φ(x)
y ∈ Range(L(x)) if and only if y ∈ A(x)

Γ .

Proof. (i) The first assertion follows directly from Lemma 3.5 and the Definition 3.6 for non-
observable points.

(ii) If x is an observable point, we have ξ(x)
max − ξ(x)

min ≥ T . If φ(x)
y ∈ Range(L(x)), one can

find a function φ satisfying φ
(x)
y = L(x)φ. Then their support sets must fulfill the relation

supp(F−1φ
(x)
y ) = supp(F−1L(x)φ) ⊂ [ξ

(x)
min, ξ

(x)
max] by Lemma 3.3. Using Lemma 3.4 yields

[tmin − |x− y|, tmax − |x− y|] ⊂ [ξ
(x)
min, ξ

(x)
max].

Hence, tmin − |x− y| ≥ ξ(x)
min and tmax − |x− y| ≤ ξ(x)

max, leading to

tmax − ξ(x)
max ≤ |x− y| ≤ tmin − ξ(x)

min.

This proves y ∈ A(x)
Γ .
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On the other hand, if y ∈ A(x)
Γ , we have

[tmin − |x− y|, tmax − |x− y|] ⊂ [ξ
(x)
min, ξ

(x)
max].

Setting

ψ(t) :=
eik(|x−a(t)|−|x−y|)

T
∈ L2(tmin, tmax),

we find φ(x)
y (k) = (L(x)ψ)(k). Therefore, φ(x)

y (k) ∈ Range(L(x)).

4 Indicator functions and uniqueness

If x is an observable point, we know from Lemma 3.11 that the test functions φ(x)
y can be utilized

to characterize A(x)
Γ through (2.15). Hence, we define the indicator function

W (x)(y) :=

 ∞∑
n=1

|〈φ(x)
y , ψ

(x)
n 〉|2L2(0,K)

|λ(x)
n |

−1

, y ∈ R3. (4.28)

Combining Theorem 2.4, Lemma 3.11 and Picard theorem, we obtain

Theorem 4.1. If x is an observable point, it holds that

W (x)(y) =

{
0 if y /∈ A(x)

Γ ,

finite positive number if y ∈ A(x)
Γ .

If x is non-observable, we have W (x)(y) = 0 for all y ∈ R3.

Hence, for observable points the values ofW (x) in the annulus A(x)
Γ should be relatively bigger

than those elsewhere. The values of W (x) vanished identically in R3 if x is non-observable.

Remark 4.2. The trajectory Γ can not be uniquely determined by one observable point x. For
example, let Γ1 = {z1} and Γ2 = {z2} be given by two stationary points such that

z1 6= z2, |x− z1| = |x− z2|.

Then, by the definition (4.28) of W (x), we have A(x)
Γ1

= A
(x)
Γ2

= {y ∈ R3 : |x − y| = |x − zj |, j =

1, 2}.

In the case of sparse observable points {xj ∈ SR : j = 1, 2, · · · ,M}, we shall make use of the
following indicator function:

W (y) =

 M∑
j=1

1

W (xj)(y)

−1

=

 M∑
j=1

∞∑
n=1

|〈φ(xj)
y , ψ

(xj)
n 〉|2L2(0,K)

|λ(xj)
n |

−1

, y ∈ R3. (4.29)
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Define the domain DΓ associated with the observable points {xj : j = 1, 2, · · · ,M} as

DΓ :=
⋂

j=1,2,··· ,M
A

(xj)
Γ . (4.30)

We can reconstruct DΓ from the multi-frequency near-field data measured at sparse observable
points.

Theorem 4.3. It holds that 0 < W (y) < +∞ if y ∈ DΓ and W (y) = 0 if y /∈ DΓ.

Proof. If y ∈ DΓ, it means that y ∈ A(xj)
Γ for j = 1, 2, · · · ,M . By Theorem 4.1,

∞∑
n=1

|〈φ(xj)
y , ψ

(xj)
n 〉|2L2(0,K)

|λ(xj)
n |

< +∞ for all j = 1, 2, · · · ,M. (4.31)

Then the finite sum over the index j must fulfill the relation 0 < W (y) < +∞.
If y /∈ DΓ, we may suppose without loss of generality that y /∈ A(x1)

Γ . By Theorem 4.1,

[W (x1)(y)]−1 =

∞∑
n=1

|〈φ(x1)
y , ψ

(x1)
n 〉|2L2(0,K)

|λ(x1)
n |

=∞.

Together with the definition of W , this gives

W (y) <

 ∞∑
n=1

|〈φ(x1)
y , ψ

(x1)
n 〉|2L2(0,K)

|λ(x1)
n |

−1

= 0.

Consequently, we arrive at the following uniqueness results, which seem unknown in the
literature.

Theorem 4.4. Denote by Γ = {a(t) : t ∈ [tmin, tmax]} the trajectory of a moving point source
where a ∈ C1[tmin, tmax].

(i) The domain DΓ associated with all observable points x ∈ SR (see (4.30)) can be uniquely
determined by the multi-frequency data {u(x, k) : x ∈ SR, k ∈ (kmin, kmax)}.

(ii) Let x ∈ SR be an arbitrarily fixed observable point. Then the annulus A(x)
Γ (see (3.27)) can

be uniquely determined by the multi-frequency data {u(x, k) : k ∈ (kmin, kmax)}. In particular,
the annulus ΛΓ can be uniquely recovered if x−a(t)

|x−a(t)| · a
′(t) > 0 in [tmin, tmax].

Remark 4.5. Physically, the condition x−a(t)
|x−a(t)| · a

′(t) > 0 in the second assertion of Theorem
4.4 means that the function h(t) = t − |x − a(t)| is monotonically increasing and the function
|x− a(t)| is monotonically decreasing in [tmin, tmax].

The second assertion of Theorem 4.4 answers the question what kind of information can be
extracted from the multi-frequency data measured at a single observable point. Unfortunately, we
do not know whether an observation point is observable or not, if there is no a priori information
on the orbit function.
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5 Numerical implements

In this section, we conducted a couple of numerical experiments to validate our algorithm in
three dimensions. In practice, the time-domain data is usually Fourier transformed to the multi-
frequency data. However, to simplify the numerical procedures for simulation, we carried out
computational tests only in the frequency domain. Our goal is to extract information on the
trajectory of a moving point source from multi-frequency near-field data that were taken at one
or sparce observation points.

Assuming a wave-number-dependent source termf(x, k) , as defined in (1.5), we can synthe-
size the near-field pattern using equation (1.9)

w(x, k) =
1√

32π3

∫ tmax

tmin

e−ik(t−|x−a(t)|)

|x− a(t)|
g(t) dt, x ∈ SR , k ∈ (kmin, kmax), (5.32)

where SR = {x ∈ R3 : |x| = R}. The signal strength function g(t) is defined as g(t) = (t + 1)2

fulfilling the coercivity constraint in our numerical examples below. Now we will introduce the
process of the inversion algorithm. The frequency interval (0,K) can be discretized by defining

kn = (n− 0.5)∆k, ∆k :=
K

N
, n = 1, 2, · · · , N.

To approximate the integral in (2.10), we adopt 2N − 1 samples w(x, κ + kn), n = 1, 2, · · · , N
and w(x, κ− kn), n = 1, 2, · · · , N − 1, of the near field and apply the midpoint rule. Therefore,
we have

(N (x)φ)(τn) ≈
N∑
m=1

w(x, κ+ τn − sm)φ(sm)∆k, (5.33)

where τn := n∆k and sm := (m − 0.5)∆k, n,m = 1, 2, · · · , N . The Toeplitz matrix provides a
discrete approximation of the near field operator N (x):

N (x) := ∆k



w(x̂, κ+ k1) w(x̂, κ− k1) · · · w(x̂, κ− kN−2) w(x̂, κ− kN−1)

w(x̂, κ+ k2) w(x̂, κ+ k1) · · · w(x̂, κ− kN−3) w(x̂, κ− kN−2)
...

...
...

...
w(x̂, κ+ kN−1) w(x̂, κ+ kN−2) · · · w(x̂, κ+ k1) w(x̂, κ− k1)

w(x̂, κ+ kN ) w(x̂, κ+ kN−1) · · · w(x̂, κ+ k2) w(x̂, κ+ k1)


(5.34)

where N (x) is a N ×N complex matrix. For any point y ∈ R3 we define the test function vector
φ

(x)
y ∈ CN from (3.25) by

φ(x)
y :=

(
1

tmax − tmin

∫ tmax

tmin

e−iτ1(t−|x−y|)dt, · · · , 1

tmax − tmin

∫ tmax

tmin

e−iτN (t−|x−y|)dt

)
. (5.35)

Denoting by
{

(λ̃
(x)
n , ψ

(x)
n ) : n = 1, 2, · · · , N

}
an eigen-system of the matrix N (x) (5.34), then

one deduces that an eigen-system of the matrix (N (x))# := |Re(N (x))| + |Im(N (x))| is
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{
(λ

(x)
n , ψ

(x)
n ) : n = 1, 2, · · · , N

}
, where λ(x)

n := |Re(λ̃(x)
n )| + |Im(λ̃

(x̂)
n )|. We truncate the indi-

cator function W (x) (4.28) by

W (x)(y) :=


N∑
n=1

∣∣∣∣φ(x)
y · ψ(x)

n

∣∣∣∣2
|λ(x)
n |


−1

, y ∈ Rd, (5.36)

where · denotes the inner product in R3 and N is consistent with the dimension of the Toeplitz
matrix (5.34).

The visualization of strip A(x)
Γ can be obtained by plotting W (x)(y) and contains information

about the source trajectory when an observable point, x ∈ SR, is considered. This information
can be used to image the trajectory of moving point sources represented by straight lines or
arcs. The exact trajectory of the moving source is shown using red solid lines in the figures
below. We investigate imaging of the moving point sources using near-field data from one or a
sparse observation points. In all our numerical examples below, if not otherwise specified, we
set kmin = 0 for simplicity. The bandwidth can be extended from (0, kmax) to (−kmax, kmax) by
w(x,−k) = w(x, k). Then, one deduces from these new measurement data with kmin = −kmax
that κ = 0 andK = kmax. The frequency band is represented by the interval (0, 6) with kmax = 6,
N = 15 and ∆k = 2/5.

5.1 One observation point

In the following numerical examples of this subsection, the search domain is selected as a cube
of the form [−2, 2] × [−2, 2] × [−2, 2] and the observation points are chosen from the set {x ∈
R3 : |x| = 2}. The observation points are then set on a shere with a radius of 2, such that
x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ) for θ ∈ [0, 2π] and ϕ ∈ [0, π]. Figures below illustrate the
slices at y1 = 0 or y2 = 0.

Example 1: A straight line segment in R3

We examine a straight line segment from Example 1, outlined in Section 3. Suppose that
the trajectory of the moving point source is give by a(t) = (0, 0, t − 2), where t ∈ [1, 3] and
x ∈ SR = {x ∈ R3 : |x| = R} represent the observation points. Initially, we must assess the
observable and non-observable points. According to the orbit function, we have

h(t) = t− |x− a(t)| = t−
√
x2

1 + x2
2 + (x3 − (t− 2))2,

h′(t) = 1 +
x3 − (t− 2)√

x2
1 + x2

2 + (x3 − (t− 2))2
.

As the second term on the right-hand side of the above equation always falls in the range [−1, 1],
it is evident that h′(t) > 0 for all t ∈ [1, 3], indicating that the function h(t) is monotonically
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increasing over [1, 3] Consequently, ξ(x)
min = h(1) and ξ

(x)
max = h(3) as described in (3.17). We

know that the points satisfying h(3) − h(1) ≥ 3 − 1 are all observable points as illustrated in
Definition 3.6. By simple calculations similar to the proof of Lemma 3.7, x3 ≥ 0 can be obtained.
Consequently, the observation points x = (x1, x2, x3) /∈ Γ satisfying x3 ≥ 0 are all observable.
Further more, if x−a(t)

|x−a(t)| · a
′(t) = x3−(t−2)

|x−a(t)| ≥ 0, then x3 ∈ [1, 2]. Thus, the smallest annulus Λ
(x)
Γ

centered at x and containing the trajectory can be recovered if and only if the observable points
x satisfies 1 ≤ x3 ≤ 2. If not, one can only get a slimmer annulus A(x)

Γ ⊂ Λ
(x)
Γ . Moreover, all

observation points x where x3 < 0 are non-observable. The corresponding numerical results are
presented in Figs.5, 6 and 7.

(a) θ = 0, ϕ = 0 (b) θ = π/4, ϕ = 2π/9 (c) θ = 2π/4, ϕ = 3π/9

(d) θ = 3π/4, ϕ = π/9 (e) θ = 4π/4, ϕ = 2π/9 (f) θ = 5π/4, ϕ = 3π/9

(g) θ = 6π/4, ϕ = π/9 (h) θ = 7π/4, ϕ = 2π/9 (i) θ = 8π/4, ϕ = 3π/9

Figure 5: Reconstruction from a single observable point x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [0, 2π] and ϕ ∈ [0, π/3] for a straight line segment a(t) = (0, 0, t − 2) where t ∈ [1, 3].
Here it holds that A(x)

Γ = Λ
(x)
Γ .
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In Fig.5, we examine various observable points x, where θ ∈ [0, 2π] and ϕ ∈ [0, π/3]. Specifi-
cally, we restrict ϕ to the range [0, π/3], which corresponds to 1 ≤ x3 ≤ 2. We observe that for all
t ∈ [1, 3], x−a(t)

|x−a(t)| · a
′(t) ≥ 0. Consequently, our theoretical predictions ensure that the trajectory

of the moving point source can be fully enclosed within the smallest annulus Λ
(x)
Γ centered at x.

Notably, our numerical examples demonstrate that A(x)
Γ = Λ

(x)
Γ .

(a) θ = 0, ϕ = 6π/13 (b) θ = π/5, ϕ = 8π/17 (c) θ = 2π/5, ϕ = π/2

(d) θ = 3π/5, ϕ = 6π/13 (e) θ = 4π/5, ϕ = 8π/17 (f) θ = 5π/5, ϕ = π/2

(g) θ = 6π/5, ϕ = 6π/13 (h) θ = 7π/5, ϕ = 8π/17 (i) θ = 8π/5, ϕ = π/2

Figure 6: Reconstruction from a single observable point x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [0, 2π] and ϕ ∈ (π/3, π/2] for a straight line segment a(t) = (0, 0, t− 2) where t ∈ [1, 3].
Here it holds that A(x)

Γ ⊂ Λ
(x)
Γ .

In Fig.6, we collect data at the observable points x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ) where
θ ∈ [0, 2π] and ϕ ∈ (π/3, π/2], such that 0 ≤ x3 < 1. However, we note that x−a(t)

|x−a(t)| ·a
′(t) ≥ 0 no

longer holds for all t ∈ [1, 3]. Although these observation points x belong to the observable set,
the corresponding annulus A(x)

Γ are slimmer than the smallest annulus which encompasses the
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trajectory of the moving source and is centered at x. This is because A(x)
Γ ⊂ Λ

(x)
Γ , as asserted by

Lemma 3.10.
The observation points x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ) are non-observable when θ ∈

[0, 2π] and ϕ ∈ (π/2, π]. Numerical results in Fig.7 indicate that the corresponding indicator
values are consistently much smaller than 10−2. This is consistent with the outcome of Theorem
4.1, which implies that it is not possible to reconstruct the annulus centered at x which contains
partial or whole information on the trajectory of the moving source. The further the non-
observable points are from the observable region, the lower the corresponding indicator values.
Fig.7 shows that partial information on the trajectory can still be retrieved by our indicator
function even at non-observable points, which is an intriguing observation that requires further
investigation.
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(a) θ = 0, ϕ = 5π/8 (b) θ = π/4, ϕ = 6π/8 (c) θ = 2π/4, ϕ = 7π/8

(d) θ = 3π/4, ϕ = 5π/8 (e) θ = 4π/4, ϕ = 6π/8 (f) θ = 5π/4, ϕ = 7π/8

(g) θ = 6π/4, ϕ = 5π/8 (h) θ = 7π/4, ϕ = 6π/8 (i) θ = 8π/4, ϕ = 8π/8

Figure 7: Reconstruction from a single non-observable point x = (2 sinϕ cos θ, 2 sinϕ sin θ,

2 cosϕ) with θ ∈ [0, 2π] and ϕ ∈ (π/2, π] for a straight line segment a(t) = (0, 0, t − 2) with
t ∈ [1, 3].

Example 2: An arc in R3

As demonstrated in Example 2 of Section 3, we consider the trajectory of the moving point
given by a(t) = (0, cos t, sin t) where t ∈ [0, π]. From the orbit function, we obtain

h(t) = t− |x− a(t)| = t−
√
x2

1 + (x2 − cos t)2 + (x3 − sin t)2,

h′(t) = 1 +
x− a(t)

|x− a(t)|
· a′(t) = 1 +

−x2 sin t+ x3 cos t

|x− a(t)|
.

It is evident that |a′(t)| = 1, thus h′(t) ≥ 0 for all t ∈ [0, π], which indicates the function
h(t) monotonically increases over [0, π]. Subsequently, we have ξ(x)

min = h(0) and ξ(x)
max = h(π).
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According to Definition 3.6, observable points are those that satisfy h(π) − h(0) ≥ π − 0. By
simple calculations similar to the proof of Lemma 3.8 one can infer that x2 ≤ 0. Therefore, the
observation points x = (x1, x2, x3) /∈ Γ that satisfy x2 ≤ 0 are all observable. Furthermore, the
statement x−a(t)

|x−a(t)| · a
′(t) = −x2 sin t+x3 cos t

|x−a(t)| ≥ 0 is equivalent to

−x2 sin t+ x3 cos t =
√
x2

2 + x2
3

(
x3√
x2

2 + x2
3

sin t− x2√
x2

2 + x2
3

cos t

)
=

√
x2

2 + x2
3 sin(α− t) ≥ 0,

where cosα = x3√
x22+x23

and x2√
x22+x23

. If for all t ∈ [0, π] it holds that −x2 sin t + x3 cos t ≥ 0,

then it is evident that α = π, meaning x3 = 0. The smallest annulus Λ
(x)
Γ , centered at x and

containing the trajectory of the moving source, is recoverable only when the observable points
x satisfy x3 = 0. Otherwise, a slimmer annulus A(x)

Γ ⊂ Λ
(x)
Γ can be obtained. Additionally, all

observation points x with x2 > 0 are non-observable. The numerical results are presented in
Figs.8, 10 and 11.

Fig.8 demonstrates the reconstruction of an arc from observable points x =

(2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ) with θ ∈ [π, 2π] and ϕ = π/2. We conclude that the trajectory
of the moving point source perfectly lies in the smallest annulus centered at x and containing
its trajectory. This is due to the selection of observable points x with x3 = 0 and x2 ≤ 0, such
that x−a(t)

|x−a(t)| · a
′(t) ≥ 0. Here, we have A(x)

Γ = ΛΓ. This effectively demonstrates the effectiveness
of our algorithm for imaging an arc in R3. It is worthy noting that although the arc trajectory
of the moving source lies in the annulus depicted in subfigures (a),(b),(c),(g),(h) and (i), they
can not be seen clearly since the slice is set at y1 = 0. Therefore, corresponding isosurfaces of
the reconstruction are plotted in Fig. 9, showing the trajectory of the moving source perfectly
located between the isosurfaces as predicted by our theory.
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(a) θ = π, ϕ = π/2 (b) θ = 9π/8, ϕ = π/2 (c) θ = 10π/8, ϕ = π/2

(d) θ = 11π/8, ϕ = π/2 (e) θ = 12π/8, ϕ = π/2 (f) θ = 13π/8, ϕ = π/2

(g) θ = 14π/8, ϕ = π/2 (h) θ = 15π/8, ϕ = π/2 (i) θ = 2π, ϕ = π/2

Figure 8: Reconstruction from a single observable point x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [π, 2π] and ϕ = π/2 for an arc a(t) = (0, cos t, sin t) where t ∈ [0, π]. Here it holds that
A

(x)
Γ = Λ

(x)
Γ .

Fig.10 displays the reconstructed annulus A(x)
Γ which are slimmer than Λ

(x)
Γ . This is due

to our selection of observable points x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ) with θ ∈ [π, 2π] and
ϕ = [0, π/2)∪(π/2, π] implying x2 ≤ 0 and x3 6= 0, making it unsuitable to apply x−a(t)

|x−a(t)| ·a
′(t) ≥

0. This results in A
(x)
Γ ⊂ Λ

(x)
Γ , limiting the retrieval of partial trajectory information. Since

h′(t) > 0 for t ∈ [0, π], it is possible to capture the starting and end points of the trajectory by
A

(x)
Γ = {y ∈ R3 : |x− a(tmax)| ≤ |x− y| ≤ |x− a(tmin)|}. It should be noted that the size of the

annulus depends on the location of the observation points. The numerical results presented in
Fig.10 are in agreement with our theory predictions.

Fig.11 presents indicator functions for various non-observable points x =
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(2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ) with θ ∈ (0, π) and ϕ ∈ [0, π], i.e., x2 > 0. It can be
observed that the values of the indicator functions are significantly smaller than 10−3.

(a) θ = π, ϕ = π/2 (b) θ = 9π/8, ϕ = π/2 (c) θ = 10π/8, ϕ = π/2

(d) θ = 14π/8, ϕ = π/2 (e) θ = 15π/8, ϕ = π/2 (f) θ = 2π, ϕ = π/2

Figure 9: Iso-surfaces of reconstruction from a single observable point x =

(2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ) with θ ∈ [π, 2π] and ϕ = π/2 for an arc a(t) = (0, cos t, sin t)

where t ∈ [0, π]. Here it holds that A(x)
Γ = Λ

(x)
Γ .
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(a) θ = π, ϕ = 0 (b) θ = 6π/5, ϕ = π/4 (c) θ = 7π/5, ϕ = π/4

(d) θ = 8π/5, ϕ = π/4 (e) θ = 9π/5, ϕ = π/4 (f) θ = 6π/5, ϕ = 3π/4

(g) θ = 7π/5, ϕ = 3π/4 (h) θ = 8π/5, ϕ = 3π/4 (i) θ = 9π/5, ϕ = 3π/4

Figure 10: Reconstruction from a single observable point x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [π, 2π] and ϕ = [0, π/2)∪ (π/2, π] for an arc a(t) = (0, cos t, sin t) where t ∈ [0, π]. Here
it holds that A(x)

Γ ⊂ Λ
(x)
Γ .
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(a) θ = π/4, ϕ = π/4 (b) θ = π/4, ϕ = 2π/4 (c) θ = π/4, ϕ = 3π/4

(d) θ = 2π/4, ϕ = π/4 (e) θ = 2π/4, ϕ = 2π/4 (f) θ = 2π/4, ϕ = 3π/4

(g) θ = 3π/4, ϕ = π/4 (h) θ = 3π/4, ϕ = 2π/4 (i) θ = 3π/4, ϕ = 3π/4

Figure 11: Reconstruction from a single non-observable point x = (2 sinϕ cos θ, 2 sinϕ sin θ,

2 cosϕ) with θ ∈ (0, π) and ϕ ∈ [0, π] for an arc a(t) = (0, cos t, sin t) where t ∈ [0, π].

5.2 Sparse observation points

In this subsection, we extend Examples 1 and 2 to include multi-frequency near-field data mea-
sured at sparse points. To truncate the indicator function (4.29), we introduce the following
expression:

W (y) :=


M∑
j=1

N∑
n=1

∣∣∣∣φ(xj)
y · ψ(xj)

n

∣∣∣∣2
|λ(xj)
n |


−1

, y ∈ R3. (5.37)
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In this definition,M > 0 denotes the number of sparse observation points distributed on S2. Also,
the test function φ(xj)

y has the same definition as in (5.35), and
{

(λ
(xj)
n , ψ

(xj)
n ) : n = 1, · · · , N

}
denotes an eigensystem of the operator (F (xj))#. Notably, xj (j = 1, 2, · · · ,M) may contain
both observable and non-observable points. To eliminate the terms similar to

w̃j =

N∑
n=1

∣∣∣∣φ(xj)
y · ψ(xj)

n

∣∣∣∣2
|λ(xj)
n |

, j = 1, 2, ...W

from the sum in (5.37), we set a threshold M ′ > 0. Precisely, if min(w̃j(y)) > M ′, the point xj
can be categorized as a non-observable point through the second assertion of Theorem 4.1.

(a) A slice at y2 = 0 (b) Iso-surface level = 2

Figure 12: Reconstruction from sparse observation points x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [0, 2π) and ϕ ∈ [0, π/3] for a straight line segment a(t) = (0, 0, t − 2) where t ∈ [1, 3].
Here M = 13 denotes the number of the observation points and we take θ = (j − 1)π/2,
j = 1, · · · , 4 and ϕ = (j − 1)π/9, j = 1, · · · , 3 such that A(xj)

Γ = Λ
(xj)
Γ .

Firstly, assuming that all the selected observation points are observable, and that the angle
between the vector connecting these observable points and the trajectory points, and the velocity
vector of the moving point source, lies within the range of [0, π/2], implying x−a(t)

|x−a(t)| ·a
′(t) ≥ 0 . For

every observation point, it is possible to extract the smallest annulus centered at the observation
point and containing the trajectory of the moving point source. In Figs.12 and 13, we use 13
observation points to reconstruct a straight line segment a(t) = (0, 0, t − 2) with t ∈ [1, 3] in
Example 1 and 9 observation points to reconstruct an arc a(t) = (0, cos t, sin t) with t ∈ [0, π]

in Example 2, respectively. The reconstructed slice and iso-surface are shown in Figs.12 and 13,
where it is evident that the trajectories are enclosed by the intersections of the smallest annulus
Λ

(xj)
Γ centered at xj and containing their own trajectories. However, since we have only chosen

a partial set of observation points, we are not able to reconstruct the trajectories perfectly.
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(a) A slice at y1 = 0 (b) Iso-surface level = 1

Figure 13: Reconstruction from sparse observation points x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [0, 2π) and ϕ = π/2 for an arc a(t) = (0, cos t, sin t) where t ∈ [0, π]. Here M = 9

denotes the number of the observation points and we take θ = π+ (j− 1)π/8, j = 1, · · · ,M and
ϕ = π/2 such that A(xj)

Γ = Λ
(xj)
Γ .

Next, assuming that all the selected observation points may contain both observable and
non-observable points. In the presented numerical examples below, we set the threshold value as
M ′ = 5×102. Figs.14 and 15 demonstrate the reconstructed trajectory for orbit functions a(t) =

(0, 0, t − 2) with t ∈ [1, 3] using sparse observation points and varying frequency bandwidths.
Although sparse observation points data are used, the trajectory cannot be fully determined
from Figs.14 and 15. When M = 4, 6, 13, there always exist observation points xj such that
A

(xj)
Γ ⊂ Λ

(xj)
Γ similar to Fig.6. For such observation points, reconstructed annulus A(xj)

Γ may be
too narrow and the intersections of the annulus A(x̂j)

Γ can only reveal the starting and ending
points of the trajectory of the moving point source. Figs.16 and 17 illustrate visualizations of
the reconstructed trajectory for orbit functions a(t) = (0, cos t, sin t) with t ∈ [0, π] and varying
frequency bandwidths using sparse observation points. The starting and ending points of the arc
trajectory can be determined from these visualizations.
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(a) M = 4 (b) M = 6 (c) M = 13

Figure 14: Reconstruction from sparse observation points x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [0, 2π) and ϕ ∈ [0, π] for a straight line segment a(t) = (0, 0, t − 2) where t ∈ [1, 3].
Here M denotes the number of the observation points. (a) θ = (j − 1) ∗ 2π/4, j = 1, · · · , 4 and
ϕ = π/2; (b) ϕ = 0; θ = (j − 1) ∗ 2π/4, j = 1, · · · , 4 and ϕ = π/2; ϕ = π; (c) θ = (2j − 1) ∗ π/4,
j = 1, · · · , 4, ϕ = π/3; θ = (j − 1) ∗ 2π/4, j = 1, · · · , 4, ϕ = π/2; θ = j ∗ 2π/3, j = 1, · · · , 5,
ϕ = 2π/3.

(a) M = 4 (b) M = 6 (c) M = 13

Figure 15: Reconstruction from sparse observation points x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [0, 2π) and ϕ ∈ [0, π] for a straight line segment a(t) = (0, 0, t − 2) where t ∈ [1, 3].
Here M denotes the number of the observation points. (a) θ = (j − 1) ∗ 2π/4, j = 1, · · · , 4 and
ϕ = π/2; (b) ϕ = 0; θ = (j − 1) ∗ 2π/4, j = 1, · · · , 4 and ϕ = π/2; ϕ = π; (c) θ = (2j − 1) ∗ π/4,
j = 1, · · · , 4, ϕ = π/3; θ = (j − 1) ∗ 2π/4, j = 1, · · · , 4, ϕ = π/2; θ = j ∗ 2π/3, j = 1, · · · , 5,
ϕ = 2π/3. We take kmin = 1 and kmax = 5.
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(a) M = 4 (b) M = 6

Figure 16: Reconstruction from sparse observation points x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [0, 2π) and ϕ ∈ [0, π] for a straight line segment a(t) = (0, cos t, sin t) where t ∈ [0, π].
Here M denotes the number of the observation points. (a) θ = (j − 1) ∗ 2π/4, j = 1, · · · , 4 and
ϕ = π/2; (b) θ = (j − 1) ∗ 2π/4, j = 1, · · · , 4 and ϕ = π/2; ϕ = 0; ϕ = π.

(a) M = 4 (b) M = 6

Figure 17: Reconstruction from sparse observation points x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ ∈ [0, 2π) and ϕ ∈ [0, π] for a straight line segment a(t) = (0, cos t, sin t) where t ∈ [0, π].
Here M denotes the number of the observation points. (a) θ = (j − 1) ∗ 2π/4, j = 1, · · · , 4 and
ϕ = π/2; (b) θ = (j− 1) ∗ 2π/4, j = 1, · · · , 4 and ϕ = π/2; ϕ = 0; ϕ = π. We take kmin = 1 and
kmax = 5.

Finally, we aim to reconstruct the trajectories of a straight line segment and an arc using
uniformly distributed observation points on a sphere with a radius of 2. We consider sets of 20,
30, and 40 points for this purpose. Fig.18 displays the location of the 40 uniformly distributed
points. While increasing the number of observation points, Fig.19 and 20 demonstrate that only
the starting and ending points of the trajectories can be determined. This limitation is a result
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of the observation points in the observable set with A(x)
Γ ⊂ Λ

(x)
Γ .

Figure 18: 40 uniformly distributed points on a sphere with a radius of 2.

(a) M = 20 (b) M = 30 (c) M = 40

Figure 19: Reconstruction from sparse uniformly distributed observation points on a sphere with
a radius of 2 for a straight line segment a(t) = (0, 0, t−2) where t ∈ [1, 3]. Here we take different
numbers of observation points M .

34



(a) M = 20 (b) M = 30 (c) M = 40

Figure 20: Reconstruction from sparse uniformly distributed observation points on a sphere with
a radius of 2 for an arc a(t) = (0, cos t, sin t) where t ∈ [0, π]. Here we take different numbers of
observation points M .

5.3 Noisy test

We evaluate sensitivity with respect to the noisy data by selecting Example 1, which involves a
line segment recovery. The near-field data are corrupted with Gaussian noise, as shown below:

wδ(x, k) := Re [w(x, k)]
(
1 + δ γ1

)
+ iIm[w(x, k)]

(
1 + δ γ2

)
where δ > 0 represents the noise level and γj ∈ [−1, 1] (j = 1, 2) denote Gaussian random
variables.

To accomplish this test, we assigned δ = 5%, 10%, 15%, 20% and plot the indicator functions
in Figs.21 and 22 using one and sparse observation points, respectively. The images are clearly
getting distorted at higher noise levels, but the starting and the ending points of the trajectory
of the moving source using the data measured at sparse points can still be well-captured. A
reconstruction in the noise-free case is not presented since the effectiveness is demonstrated in
the other examples.
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(a) δ = 5% (b) δ = 10%

(c) δ = 15% (d) δ = 20%

Figure 21: Reconstruction of a straight line segment a(t) = (0, 0, t − 2), t ∈ [1, 3] from noisy
data with different levels δ measured at a single observable point x = (2 sinϕ cos θ, 2 sinϕ sin θ,

2 cosϕ) with θ = π and ϕ = 2π/9.
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(a) δ = 5% (b) δ = 10%

(c) δ = 15% (d) δ = 20%

Figure 22: Reconstruction of a straight line segment a(t) = (0, 0, t−2), t ∈ [1, 3] from noisy data
with different levels δ measured at sparse observable point x = (2 sinϕ cos θ, 2 sinϕ sin θ, 2 cosϕ)

with θ = 0, π/2, π, 3π/2 and ϕ = π/2.
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