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Abstract. The paper is concerned with well-posedness of TE and TM polarizations
of time-harmonic electromagnetic scattering by perfectly conducting periodic surfaces
and periodically arrayed obstacles with local perturbations. The classical Rayleigh Ex-
pansion radiation condition does not always lead to well-posedness of the Helmholtz
equation even in unperturbed periodic structures. We propose two equivalent radiation
conditions to characterize the radiating behavior of time-harmonic wave fields incited
by a source term in an open waveguide under impenetrable boundary conditions. With
these open waveguide radiation conditions, uniqueness and existence of time-harmonic
scattering by incoming point source waves, plane waves and surface waves from locally
perturbed periodic structures are established under either the Dirichlet or Neumann
boundary condition. A Dirichlet-to-Neumann operator without using the Green’s func-
tion is constructed for proving well-posedness of perturbed scattering problems.

Keywords: Helmholtz equation, periodic structures, radiation condition, uniqueness,
existence, Dirichlet boundary condition, Neumann boundary condition.

1. Introduction

The electromagnetic scattering theory in periodic structures has many applications in
micro-optics, radar imaging and non-destructive testing. We refer to [23] for historical
remarks and details of these applications. As a standard model, we consider a time-
harmonic electromagnetic plane wave incident onto a perfectly reflecting periodic surface
or periodically arrayed conducting obstacles which remain invariant in the x3-direction.
Without loss of generality the direction of periodicity is supposed to be x1 and the ar-
rayed obstacles lie in a layer of finite height in the x2-direction. We consider both the
TE polarization case where the electric field is transversal to the ox1x2-plane by assum-
ing E(x) = (0, 0, u(x1, x2)) and the TM polarization case where the magnetic field is
transversal to the ox1x2-plane by assuming H(x) = (0, 0, u(x1, x2)). The background
medium above the periodic surface or in the exterior of the periodically arrayed obstacles
is supposed to be homogeneous and isotropic. The time-harmonic Maxwell’s equations for
(E(x), H(x)) will be reduced to the scalar Helmholtz equation for u(x1, x2) over the ox1x2-
plane together with the Dirichlet/Neumann boundary condition in TE/TM case and with
proper radiation conditions as |x2| → ∞; see Figure 1 (a) and (b) for illustration of the
scattering problems.

In periodic structures, a frequently used radiation condition is the so-called quasi-periodic
Rayleigh expansion (see (2b)), which was firstly used by Lord Rayleigh in 1907 [21] for
plane wave incidence. The Rayleigh expansion consists of a finite number of plane waves

Date: February 20, 2024.
1

ar
X

iv
:2

40
2.

11
23

0v
1 

 [
m

at
h.

A
P]

  1
7 

Fe
b 

20
24



2π
x1

x2

Γh

Wh

Uh

Qh

Q∞

Γ

(a) A Lipschitz periodic curve

x2

x1

(b) Periodically arrayed obstacles

Figure 1. Illustration of wave scattering from (a) a perfectly reflecting
periodic curve and (b) perfectly conducting obstacles. Guided waves might
exist in (a)-(b), leading to difficulties in establishing well-posedness of the
scattering problem with the classical Rayleigh Expansion radiation condi-
tion (2b).

and infinitely many evanescent waves. However, such a radiation condition does not
always lead to uniqueness of solutions for all frequencies due to the presence of evanes-
cent/surface waves propagating along the unbounded periodic curve, or due to the exis-
tence of guided waves propagating between the arrayed obstacles, both of them decaying
exponentially in x2. Examples of surface waves for unbounded periodic curves of Dirichlet
kind were constructed in [24] where the reflecting curve is not a graph and in [14] under
the Neumann boundary condition. We also refer to [1] for non-uniqueness examples of
solutions incited by periodically arrayed obstacles immersed in a dielectric layer. On the
other hand, it is well known that surface waves do not exist if a Dirichlet periodic curve
is given by the graph of some function or satisfies the geometrical condition (20); see
[4, 6, 15] for different regularity and geometry assumptions made on the reflecting curve.
We also mention that the Rayleigh expansion condition does not apply to incoming source
waves given by the fundamental solution of the Helmholtz equation and does not hold for
scattering by compactly supported source terms. In these cases the incident waves lose
the quasi-periodicity in x1. It was firstly discussed in [2] that the radiated field should
satisfy a Sommerfeld-type radiation condition and was recently proved in [11] for Dirich-
let rough surfaces given by graphs and in [19] for periodic inhomogeneous layers. Hence,
the radiating behavior of wave fields in periodic structures also depends on the type of
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incident waves. To sum up, precise and sharp radiation conditions are still needed in
order to mathematically interpret the radiating behavior of time-harmonic wave fields in
periodic structures, in particular for non-quasiperiodic incoming waves or when guided
waves exist.

In recent years, a new radiation condition has been derived from the limiting absorption
principle for scattering by layered periodic media in R2 and by periodic tubes in R3;
see [9, 16, 17, 18, 19, 20]. Such a radiation condition turns out to be equivalent to the
radiation condition based on dispersion curves for closed periodic wave guides (see e.g.,
[8] and [19, Remark 2.4]). By this new radiation condition, the diffracted fields caused by
a compactly supported source term or a local defect can be decomposed into the sum of
a radiating part and a propagating (guided) part. The former decays as |x1|−3/2 in the
horizontal direction x1 and decays as |x|−1/2 in the radical direction, whereas the latter is
a finite number of quasi-periodic left-going and right-going evanescent modes which decay
exponentially in the vertical direction x2 ([19]). Moreover, this new radiation condition
is stronger than the angular spectrum representation [4] and the upward propagating
radiation condition [3] for rough surface scattering problems. It can also be used for
proving well-posedness of scattering by locally perturbed inhomogeneous layers in the
presence of guided waves; see [9, 18, 19].

The aim of this paper is to investigate well-posedness of time-harmonic scattering by
locally perturbed periodic curves and periodically arrayed obstacles of Dirichlet and Neu-
mann kinds. The main results of this paper are summarized as follows.

(i) Propose two equivalent radiation conditions to prove uniqueness of weak solu-
tions for periodic Lipschitz interfaces with local perturbations. The first radiation
condition was adapted from [18, 19] for characterizing left-going and right-going
evanescent waves of the propagating part of wave fields. It is referred to as the
open waveguide radiation condition, in comparision with the closed waveguide
radiation condition of [8]. The second radiation condition, which modifies the
asymptotic behavior of radiating part of the first one, was motivated by the Som-
merfeld radiation condition justified in [11] and [19, Section 6] for point source
waves. The second radiation condition extends the well-posedness result of [11]
to general periodic Lipschitz curves of Dirichlet or Neumann kind, in particular
when guides waves are present. Since the decaying condition of Sommerfeld type
contains more information on the radiating part, the second radiation condition
yields a simplified proof of the uniqueness; see Theorem 2.15.

(ii) Existence of solutions for incoming plane waves, surfaces waves and point source
waves in a locally perturbed periodic structure under a priori assumptions (Sec-
tions 4). Unlike the scattering by inhomogeneous periodic layers with local per-
turbations [18, 19, 9], there is no analogue of the Lippmann-Schwinger integral
equation under the Dirichlet and Neumann boundary conditions. This leads to
difficulties in the analysis of wave scattering from perfectly reflecting periodic
curves with local perturbations. Our idea is to reduce the scattering problem to a
bounded domain enclosing the perturbed part by constructing the DtN operator.
For this purpose, we construct a Dirichlet-to-Neumann operator without using the
Green’s function for proving well-posedness of the perturbed scattering problem.
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The remaining part of the paper is organized as follows. We first consider the per-
turbed/unperturbed scattering problem due to a compact source term. In Section 2, we
describe an open waveguide radiation condition and its equivalent version, and use them
to prove the uniqueness results. In comparison with the results for layered media [18, 19],
a more general transmission problem and the scattering by exponentially decaying source
terms without a compact support will be investigated in the unperturbed periodic domain
(see Theorems 3.4 and 3.5). In Section 4, we prove well-posedness results for incoming
point source waves, plane waves as well as surface waves in the perturbed setting. Finally,
concluding remarks will made in Section 5 on how to carry out the analysis for unbounded
periodic Dirichlet curves to Neumann curves and to periodically arrayed obstacles with
boundary conditions.

2. Scattering by Dirichlet periodic curves with local perturbations:
radiation condition and uniqueness

2.1. Notations. Let D ⊂ R2 be a 2π-periodic domain with respect to the x1-direction.
The boundary Γ := ∂D is supposed to be given by a non-self-intersecting Lipschitz curve
which is bounded in x2-direction and 2π-periodic with respect to x1. Therefore, in this
paper we exclude the case of Figure 1 (b) but refer to Section 5. Let D̃ be a local
perturbation of D in the way that Γ \ Γ̃ and Γ̃ \ Γ are bounded where Γ̃ = ∂D̃ is the
perturbed boundary which is also assumed to be a non-self-intersecting curve. Suppose
that D̃ is filled by a homogeneous and isotropic medium and that Γ̃ is a perfectly reflecting
curve of Dirichlet kind. Denote by f ∈ L2(D̃) a source term of compact support which
radiates wave fields at the wavenumber k > 0.

We consider the problem of determining the radiated wave u ∈ H1
loc(D̃) :=

{
w|D̃ : w ∈

H1
loc(R2)

}
such that

(1) ∆u+ k2u = −f in D̃ , u = 0 on Γ̃ ,

and complemented by the open waveguide radiation condition explained in the next sec-
tion. Without loss of generality (changing the period of the periodic structure if otherwise)
we can assume that the perturbations Γ \ Γ̃ and Γ̃ \ Γ and also the support of f are con-
tained in the disc {x ∈ R2 : (x1 − π)2 + x22 < π2}. We fix R > π and h0 > π throughout
this paper and use the following notations for h > π (see Figure 1 (a) and Figure 2).

Qh := {x ∈ D : 0 < x1 < 2π, x2 < h} ,
Q∞ := {x ∈ D : 0 < x1 < 2π} ,
Γh := (0, 2π)× {h} ,

Wh := {x ∈ D : x2 < h} ,
Uh := {x ∈ D : x2 > h} ,
CR := {x ∈ D : (x1 − π)2 + x22 = R2},
ΣR := {x ∈ D : (x1 − π)2 + x22 > R2} ,
DR := {x ∈ D : (x1 − π)2 + x22 < R2} ,
D̃R := {x ∈ D̃ : (x1 − π)2 + x22 < R2}.
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In the unperturbed setting we introduce the following function spaces 1.

H1
loc,0(D̃) :=

{
u ∈ H1

loc(D̃) : u = 0 on ∂D̃
}
,

H1
∗ (D̃) :=

{
u ∈ H1

loc(D̃) : u|Wh∩D̃ ∈ H1(Wh ∩ D̃) for all h > h0,
}
,

H1
∗ (ΣR) :=

{
u ∈ H1

loc(ΣR) :
u|Wh∩ΣR

∈ H1(Wh ∩ ΣR) for all h > h0,
u = 0 on ∂ΣR ∩ ∂D

}
,

H1
α,loc(D) :=

{
u ∈ H1

loc(D) : u(·, x2) is α-quasi-periodic
}
,

H1
α,loc,0(D) :=

{
u ∈ H1

α,loc(D) : u = 0 on ∂D
}
.

2.2. The Open Waveguide Radiation Condition And An Energy Formula. As
mentioned in the introduction part the diffracted field will have a decomposition into a
(guided) propagating part and a radiating part. The loss of exponential decay of the
radiating part is a consequence of the existence of cut-off values while the propagative
wave numbers determine the behavior of the guided part along the waveguide. We first
recall that a function ϕ ∈ L2

loc(R) is called α-quasi-periodic if ϕ(x1 + 2π) = e2παiϕ(x1) for
all x1 ∈ R.

Definition 2.1. (i) α ∈ [−1/2, 1/2] is called a cut-off value if there exists ℓ ∈ Z such
that |α + ℓ| = k.
(ii) α ∈ [−1/2, 1/2] is called a propagative wave number if there exists a non-trivial
ϕ ∈ H1

α,loc,0(D) such that

(2a) ∆ϕ+ k2ϕ = 0 in D ,

and ϕ satisfies the upward Rayleigh expansion

(2b) ϕ(x) =
∑
ℓ∈Z

ϕℓ e
i(ℓ+α)x1 ei

√
k2−(ℓ+α)2(x2−h0) for x2 > h0

for some ϕℓ ∈ C where the convergence is uniform for x2 ≥ h0 + ε for every ε > 0. The
functions ϕ are called guided (or propagating or Floquet) modes.

In all of the paper, we choose the square root function to be holomorphic in the cutted
plane C \ (iR≤0). In particular,

√
t = i

√
|t| for t ∈ R<0. In Definition 2.1 we restrict

the quasi-periodic parameter α to the interval [−1/2, 1/2], because an α-quasi-periodic
function must be also (α + j)-quasi-periodic for any j ∈ N. Throughout this paper we
make the following assumptions.

Assumption 2.2. Let |ℓ + α| ≠ k for every propagative wave number α ∈ [−1/2, 1/2]
and every ℓ ∈ Z; that is, no cut-off value is a propagative wave number.

Under Assumption 2.2 it can be shown (see, e.g. [18] for the case of a flat curve Γ = Γ0

and an additional index of refraction) that at most a finite number of propagative wave
numbers exists in the interval [−1/2, 1/2]. Furthermore, if α is a propagative wave number
with mode ϕ then −α is a propagative wave number with mode ϕ. Therefore, we can
number the propagative wave numbers in [−1/2, 1/2] such that they are given by {α̂j :
j ∈ J} where J ⊂ Z is finite and symmetric with respect to 0 and α̂−j = −α̂j for j ∈ J .
Furthermore, it is known that (under Assumption 2.2) every mode ϕ is evanescent; that

1The definitions hold also for D instead of D̃
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is, exponentially decaying as x2 tends to infinity in D; that is, satisfies |ϕ(x)| ≤ c e−δ|x2|

for x2 ≥ h0 and some c, δ > 0 which are independent of x. The corresponding space

(3) Xj :=
{
ϕ ∈ H1

α̂j ,loc,0
(D) : u satisfies (2a) and (2b) for α = α̂j

}
of modes is finite dimensional with some dimension mj > 0. On Xj we define the sesqui-
linear form B : Xj ×Xj → C by

(4) B(ϕ, ψ) := −2i

∫
Q∞

∂ϕ

∂x1
ψ dx , ϕ, ψ ∈ Xj .

Note that B is hermitian. We make the assumption that B is non-degenerated on every
Xj; that is,

Assumption 2.3. For every j ∈ J and ψ ∈ Xj, ψ ̸= 0, the linear form B(·, ψ) : Xj → C
is non-trivial on Xj; that is, there exists ϕ ∈ Xj with B(ϕ, ψ) ̸= 0.

The hermitian sesqui-linear form B defines the cones {ψ ∈ Xj : B(ψ, ψ) ≷ 0} of prop-
agating waves traveling to the right and left, respectively. We construct a basis of Xj

with elements in these cones by taking any inner product (·, ·)Xj
and consider the follow-

ing eigenvalue problem in Xj for every fixed j ∈ J . Determine λℓ,j ∈ R and non-trivial

ϕ̂ℓ,j ∈ Xj with

(5) B(ϕ̂ℓ,j, ψ) = −2i

∫
Q∞

∂ϕ̂ℓ,j
∂x1

ψ dx = λℓ,j
(
ϕ̂ℓ,j, ψ

)
Xj

for all ψ ∈ Xj

and ℓ = 1, . . . ,mj. We normalize the basis such that
(
ϕ̂ℓ,j, ϕ̂ℓ′,j

)
Xj

= δℓ,ℓ′ for ℓ, ℓ′ =

1, . . . ,mj. Then λℓ,j = B(ϕ̂ℓ,j, ϕ̂ℓ,j) and the function ψ ∈ Xj in Assumption 2.3 must

take the form ψ =
∑mj

ℓ=1 cℓϕ̂ℓ,j with cℓ ̸= 0 for some ℓ = 1, 2, · · · ,mj. Choosing ϕ = ϕ̂ℓ,j,
one deduces B(ϕ, ψ) = cℓλℓ,j. Hence, the Assumption 2.3 is equivalent to λℓ,j ̸= 0 for all
ℓ = 1, . . . ,mj and j ∈ J .

Remark 2.4. (i) The set of propagative wave numbers obviously depends on k ∈ R+.
Analogously, one may define kℓ = kℓ(α) for α ∈ [−1/2, 1/2] as the wave number if
the problem (2a) and (2b) admits a non-trivial solution. Since the solutions are
in H1

α,loc,0(D) the values kℓ(α) are just eigenvalues of −∆ with respect to α-quasi-
periodic boundary conditions on the vertical boundary of Q∞ and homogeneous
Dirichlet boundary condition on Γ. The functions α → kℓ(α) are well known as
the dispersion relations/curves. Throughout our paper the wavenumber k is fixed.
Under the Assumption 2.2, the set {(α̂j(k0), k0)}j∈J constitutes the intersection
points of the dispersion curves with the line k = k0 in the (α, k)-plane. Assump-
tion 2.2 implies the absence of flat dispersion curves.

(ii) The eigenvalue problem (5) originates from the limiting absorption principle (LAP)
by applying an abstract functional theorem that goes back to [18]. We refer to
[8, 20] for detailed discussions in justifying the radiation conditions for closed full
and half-waveguide problems. Note that the choice of the inner product in Xj relies
on the way how to perturb the original scattering problem by applying the LAP. For
example, if the LAP is applied to the wavenumber k then (ϕ, ψ)Xj

=
∫
Q∞

ϕψdx.
6



In all of the paper we make Assumptions 2.2 and 2.3 without mentioning this always.
The one-dimensional Fourier transform is defined as

(Fϕ)(ω) :=
1√
2π

∞∫
−∞

ϕ(s) e−isω ds , ω ∈ R .

It can be considered as an unitary operator from L2(R) onto itself. Now we are able to
formulate the radiation condition caused by compactly supported source terms, which will
also serve as the radiation condition of the Green’s function to perturbed and unperturbed
scattering problems (see Theorem 4.1 and Remark 4.2).

Definition 2.5. Let ψ+, ψ− ∈ C∞(R) be any functions with ψ±(x1) = 1 for ±x1 ≥ σ0
(for some σ0 > max{R, 2π}+ 1) and ψ±(x1) = 0 for ±x1 ≤ σ0 − 1.

A solution u ∈ H1
loc(ΣR) of (1) satisfies the open waveguide radiation condition with respect

to an inner product (·, ·)Xj
in Xj if u has in ΣR a decomposition into u = urad + uprop

which satisfy the following conditions.

(a) The propagating part uprop has the form

(6) uprop(x) =
∑
j∈J

[
ψ+(x1)

∑
ℓ:λℓ,j>0

aℓ,j ϕ̂ℓ,j(x) + ψ−(x1)
∑

ℓ:λℓ,j<0

aℓ,j ϕ̂ℓ,j(x)

]
for x ∈ ΣR and some aℓ,j ∈ C. Here, for every j ∈ J the scalars λℓ,j ∈ R
and ϕ̂ℓ,j ∈ X̂j for ℓ = 1, . . . ,mj are given by the eigenvalues and corresponding
eigenfunctions, respectively, of the self adjoint eigenvalue problem (5). Note that
by the choice of ψ± the propagating part vanishes for |x1| < σ0−1 and is therefore
well defined in ΣR.

(b) The radiating part urad ∈ H1
∗ (ΣR) satisfies the generalized angular spectrum radi-

ation condition

(7)

∞∫
−∞

∣∣∣∣∂(Furad)(ω, x2)∂x2
− i

√
k2 − ω2 (Furad)(ω, x2)

∣∣∣∣2 dω −→ 0 , x2 → ∞ .

The radiation condition (7) can be used to prove well-posedness of the Helmholtz equation
with a source term which is supported in x1-direction and exponentially decays in x2 (see
(9a)). It has been shown in [18] for the case of a half plane problem with an inhomogeneous
period layer that the radiation condition of Definition 2.5 for the inner product (ϕ, ψ)Xj

=

2k
∫
Q∞

nϕψ dx is a consequence of the limiting absorption principle by replacing k with

k + iϵ, ϵ > 0. In this paper we will not justify this radiation condition, although we
are sure that this can be done in the same way as [18, 20]. A second motivation of our
radiation condition is the following result on the direction of the energy flow which will
play a central role in the proof of uniqueness.

Lemma 2.6. Let u =
∑

j∈J
∑mj

ℓ=1 aℓ,jϕ̂ℓ,j for some aℓ,j ∈ C and write q+Q∞ := {x ∈ D :

q < x1 < q + 2π} for q ∈ R. Then we have

2 Im

∫
q+Q∞

u
∂u

∂x1
dx =

∑
j∈J

mj∑
ℓ=1

λℓ,j |aℓ,j|2 .
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By Lemma 2.6, the propagating part uprop satisfies the energy formula

2 Im

∫
q+Q∞

uprop
∂uprop
∂x1

dx =


∑
j∈J

∑
λℓ,j>0

λℓ,j |aℓ,j|2 , q > σ0 ,∑
j∈J

∑
λℓ,j<0

λℓ,j |aℓ,j|2 , q < −σ0 ,

where σ0 > 2π + 1 is the number specified in Definition 2.5. To prove Lemma 2.6, we
have to modify the arguments of [19] for inhomogeneous layered media, because solutions
of the Dirichlet and Neumann boundary value problems are in H1

loc(D̃) but fail to be in

H2
loc(D̃) if Γ̃ is Lipschitz. For C2-smooth boundaries, the quantity in Lemma 2.6 also

equals to 4π Im
∫
D∩{x1=q} u

∂u
∂x1

ds; see [18, Lemma 6.3] and [19, Lemma 2.6].

Proof of Lemma 2.6. We recall the following form of Green’s formula valid in any
Lipschitz domain Ω: For u ∈ H1(Ω) with ∆u ∈ L2(Ω) we have∫

Ω

[∇u · ∇ψ + ψ∆u] dx = 0 for all ψ ∈ H1
0 (Ω) .

Let j ∈ {1, 2}. First we show for αj-quasi-periodic solutions uj ∈ H1
loc(D) of ∆uj+k

2uj =
0 in D with uj = 0 on Γ and αj ∈ (−1/2, 1/2] with α1 ̸= α2 that

(8)

∫
q+Q∞

[
u2
∂u1
∂x1

− u1
∂u2
∂x1

]
dx = 0 .

Indeed, defining ψ(x1) := 1 − |x1 − q|/(2π) and applying Green’s theorem in Ω := {x ∈
D : q−2π < x1 < q+2π} yields (note that uj decay exponentially as x2 tends to infinity)

0 =

∫
Ω

[∇u1 · ∇(ψu2)− k2(ψu2)u1] dx

=

∫
Ω

ψ [∇u1 · ∇u2 − k2u2 u1] dx +

∫
Ω

ψ′ u2
∂u1
∂x1

dx .

Interchanging the roles of u1 and u2 and subtraction yields

0 =

∫
Ω

ψ′
[
u2
∂u1
∂x1

− u1
∂u2
∂x1

]
dx

=

∫
q+Q∞

ψ′
[
u2
∂u1
∂x1

− u1
∂u2
∂x1

]
dx+

∫
q−2π+Q∞

ψ′
[
u2
∂u1
∂x1

− u1
∂u2
∂x1

]
dx

=
1

2π

∫
q+Q∞

[
u2
∂u1
∂x1

− u1
∂u2
∂x1

]
dx− 1

2π

∫
q−2π+Q∞

[
u2
∂u1
∂x1

− u1
∂u2
∂x1

]
dx

=
(
1− e2πi(α2−α1)

) 1

2π

∫
q+Q∞

[
u2
∂u1
∂x1

− u1
∂u2
∂x1

]
dx

where we used the quasi-periodicity of uj. This yields (8).
8



Now we rewrite u as

u =
∑
j∈J

mj∑
ℓ=1

aℓ,j ϕ̂ℓ,j =
∑
j∈J

uj with uj :=

mj∑
ℓ=1

aℓ,j ϕ̂ℓ,j.

Then uj is α̂j-quasi-periodic. Using (8) and the orthonormalization of ϕ̂ℓ,j, we arrive at

2i Im

∫
q+Q∞

u
∂u

∂x1
dx =

∫
q+Q∞

[
u
∂u

∂x1
− u

∂u

∂x1

]
dx

=
∑
j∈J

∑
j′∈J

∫
q+Q∞

[
uj
∂uj′

∂x1
− uj′

∂uj
∂x1

]
dx =

∑
j∈J

∫
q+Q∞

[
uj
∂uj
∂x1

− uj
∂uj
∂x1

]
dx

= 2i Im
∑
j∈J

∫
q+Q∞

uj
∂uj
∂x1

dx = iRe

[
−2i

∑
j∈J

∫
Q∞

uj
∂uj
∂x1

dx

]
= i

∑
j∈J

mj∑
ℓ=1

λℓ,j |aℓ,j|2 ,

which proves the lemma. □

Below we review a result on the asymptotic behavior of urad which will be needed in the
proof of uniqueness. By (1) and (6), the radiating part urad to the scattering problem
satisfies

(9a) ∆urad + k2 urad = −f −
∑
j∈J

mj∑
ℓ=1

aℓ,jφℓ,j in D̃ , urad = 0 on Γ̃ ,

where

(9b) φℓ,j(x) =

{
2ψ′

+(x1)
∂ϕ̂ℓ,j(x)

∂x1
+ ψ′′

+(x1) ϕ̂ℓ,j(x) if λℓ,j > 0 ,

2ψ′
−(x1)

∂ϕ̂ℓ,j(x)

∂x1
+ ψ′′

−(x1) ϕ̂ℓ,j(x) if λℓ,j < 0 .

We note that f has compact support in Qh0 and φℓ,j vanish for |x1| ≤ σ0−1 and |x1| ≥ σ0,
and are evanescent; that is, there exist ĉ, δ > 0 with |φℓ,j(x)| ≤ ĉ exp(−δx2) for all x2 ≥ h0.
Furthermore, urad satisfies the generalized angular spectrum radiation condition (7). In
[19] the following result has been shown.2

Lemma 2.7. Let Assumptions 2.2 and 2.3 hold, and let u ∈ H1
loc(D) be a solution of (1)

satisfying the radiation condition of Definition 2.5. Then the radiating part urad satisfies
a stronger form of the radiation condition (7), namely,

(10)

∣∣∣∣∂(Furad)(ω, x2)∂x2
− i

√
k2 − ω2 (Furad)(ω, x2)

∣∣∣∣ ≤ c

δ +
√

|ω2 − k2|
e−δx2

for almost all ω ∈ R and x2 > h0 where c > 0 is independent of ω and x.

Furthermore, there exists c > 0 with

(11)
∣∣urad(x)∣∣ +

∣∣∇urad(x)∣∣ ≤ c (1 + |x2|) ρ(x1)

2These properties are consequences of the differential equation and radiation condition above the line
x2 = h0 solely and are therefore independent of the differential equation or boundary condition below
this line.
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for all x ∈ D̃ with x2 ≥ h0 + 1, where ρ ∈ L2(R) ∩ L∞(R) is given by

(12) ρ(x1) :=

∫
R

|urad(y1, h0)|
(1 + |x1 − y1|)3/2

dy1 +
1

1 + |x1|3/2
, x1 ∈ R .

2.3. A Modified Open Waveguide Radiation Condition. In this subsection we
propose another open waveguide radiation condition that is equivalent to the Def. 2.5.
We first define the half-plane Sommerfeld radiation condition used in [11, 19]. Introduce
the weighted Sobolev space H1

ρ(Ω) by

H1
ρ(Ω) :=

{
u : (|1 + |x1|2)ρ/2u ∈ H1(Ω)

}
, ρ ∈ R .

Definition 2.8. A function v ∈ C∞(Uh0 ∩ΣR) satisfies the Sommerfeld radiation condi-
tion in Uh0 ∩ ΣR if v ∈ H1

ρ(Wh ∩ ΣR) for all h > h0 and all ρ < 0 and

sup
x∈Ca∩Uh

|x|1/2
∣∣∂v(x)
∂r

− ikv(x)
∣∣ → 0 , a→ ∞ , sup

x∈Uh

|x|1/2|v(x)| < ∞(13)

for all h > h0 where r = |x|.

Remark 2.9. Since Φ(x, y) = O(|x|−1/2) and ∂Φ(x,y)
∂r

− ikΦ(x, y) = O(|x|−3/2) as r =
|x| → ∞, it holds that Φ(·, y) ∈ H1

ρ(Wh∩ΣR) for all ρ < 0 if R > |y1−π|. Hence, the above
Sommerfeld radiation condition covers two-dimensional point source waves, but excludes
plane waves and surface (evanescent) waves, which do not decay along the horizontal
direction.

If Γ is a Lipschitz function, it was shown in [11] that the scattered field caused by a
point source source must satisfy the above Sommerfeld radiation condition. However, the
total field (i.e., the Green’s function to the rough surface scattering problem) satisfies an
analogous condition but with the weighted index ρ < 1 in place of ρ < 0. Motivated
by this fact, we define a modified open waveguide radiation condition by changing the
generalized angular spectrum radiation condition of the radiating part of Def. 2.5.

Definition 2.10. A solution u ∈ H1
loc(ΣR) of (1) satisfies the modified open waveguide

radiation condition with respect to an inner product (·, ·)Xj
in Xj if u has a decomposition

into u = urad + uprop in ΣR where uprop satisfied the same condition specified as in Def.
2.5 (a) and urad fulfills the Sommerfeld radiation condition of Def. 2.8 but with the index
ρ < 1.

Below we prove the equivalence of the two open waveguide radiation conditions.

Theorem 2.11. The open waveguide radiation condition of Def. 2.5 and the modified
one given by Def. 2.10 are equivalent.

Proof. Write u = urad + uprop where urad ∈ H1
∗ (D̃) denotes the radiating part and uprop

the propagating part. First we suppose that urad fulfills the generalized angular spectrum
radiation condition (7). By arguing analogously to [19, Theorem 6.2] for compact source
terms, one can show the asymptotics urad(x) = O(|x1|−3/2) as |x1| → ∞ in Wh. This
gives urad ∈ H1

ρ(Wh ∩ ΣR) for all h > h0, ρ < 1 and proves the modified open waveguide
radiation condition of Definition 2.10; see [19, Section 6] for details.
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Now it remains to justify the generalized angular spectrum radiation condition of urad,
under the assumption that urad satisfies the Sommerfeld radiation condition of Def. 2.8

but with the index ρ < 1. Since urad|Γh0
∈ H

1/2
ρ (R) for all 1/2 < ρ < 1, we recall from

[11, Lemma A.2, Appendix] (see also [19]) that the function

v(x) = 2

∫
Γh0

∂G(x, y)

∂y2
urad(y) ds(y), x2 > h0,

satisfies the homogeneous Helmholtz equation together the Sommerfeld radiation condi-
tions 13 and the boundary value v = urad on x2 = h0. Hence, the function w := urad − v
satisfies 13 in x2 > h0 and the boundary value problem

∆w + k2w = φ in x2 > h0, w = 0 on x2 = h0,

where φ is given by the right hand side of (9a).This implies that w can be represented as

w(x) =

∫ σ0

−σ0

∫ ∞

h0

[G(x, y)−G(x, y∗)]φ(y) dy2dy1, x2 > h0,

with y∗ := (y1−2h0−y2)⊤. Now, following the proof of [19, Lemma 7.1] one can show that
w satisfies the stronger form (10) of the radiation condition (7).This proves the generalized
angular spectrum radiation condition of urad. □
We would like to extend the Sommerfeld radiation condition up to the boundary Γ.
However, since Γ is only Lipschitz, in general the derivatives ∂v/∂r do not exist up to the
boundary. We can, however, define a weaker form which models the integral form of the
Sommerfeld radiation condition as follows. The connection between these two radiation
conditions will be described in Lemma 2.13.

Definition 2.12. Let aj be a sequence in R such that aj → ∞ and D̃aj are Lipschitz
domains. A solution v ∈ H1

loc(ΣR) satisfies the Sommerfeld radiation condition in integral
form if ∥∥∥∥∂v∂r − ikv

∥∥∥∥
H−1/2(Caj )

−→ 0 , j → ∞ ,

where r = |x|.
Lemma 2.13. If v satisfies the Sommerfeld radiation condition of Definition 2.8 with
the index ρ ≥ 0, then v also fulfills the integral form of the radiation condition defined by
Definition 2.12.

Proof. Without loss of generality we suppose that aj+1−aj ≥ 1 for all j ∈ N. Let h0 > 0
be the number specified in Definition 2.8. We set h := h0 + 1 and choose ψ ∈ C∞(R2)
such that ψ(x) = 0 for x ∈ Uh and ψ(x) = 1 for x /∈ Uh−ε. We decompose Caj into

Caj =
(
Caj ∩ Uh

)
∪
(
Caj \ Uh

)
. Then∥∥∥∥∂v∂r − ikv

∥∥∥∥
H−1/2(Caj )

=

∥∥∥∥ψ(∂v∂r − ikv

)∥∥∥∥
H−1/2(Caj )

+

∥∥∥∥(1− ψ)

(
∂v

∂r
− ikv

)∥∥∥∥
H−1/2(Caj )

≤
∥∥∥∥ψ∂v∂r

∥∥∥∥
H−1/2(Caj )

+ k
∥∥ψv∥∥

H−1/2(Caj )

+

∥∥∥∥(1− ψ)

(
∂v

∂r
− ikv

)∥∥∥∥
H−1/2(Caj )

.(14)
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The last integral converges to zero because, by the Sommerfeld radiation condition of
(13), ∥∥∥∥(1− ψ)

(
∂v

∂r
− ikv

)∥∥∥∥
H−1/2(Caj )

≤ C

∥∥∥∥∂v∂r − ikv

∥∥∥∥
L2(Caj∩Uh−ϵ)

−→ 0

as j → ∞. It remains to discuss the first two integrals on the right hand side of (14). Let

Ej : H
1/2
0 (Caj) → H1(Daj+1 \Daj) be extension operators which are uniformly bounded

with respect to j. In fact, given φ ∈ H
1/2
0 (Caj) we define Ejφ = wj in Daj+1

\Daj where
wj is the unique solution to the boundary value problem

∆wj = 0 in Daj+1
\Daj ,

wj = φ on Caj , wj = 0 on ∂(Daj+1
\Daj) \ Caj .

The norm of such an extension operator depends only on the Lipschitz constants of
Daj+1

\Daj , which are uniformly bounded in j. Then we have∥∥∥∥ψ ∂v∂r
∥∥∥∥
H−1/2(Caj )

+ k
∥∥ψv∥∥

H−1/2(Caj )

≤
∥∥∥∥∂(ψv)∂r

∥∥∥∥
H−1/2(Caj )

+

∥∥∥∥v ∂ψ∂r
∥∥∥∥
H−1/2(Caj )

+ k
∥∥ψv∥∥

H−1/2(Caj )

≤ sup
∥φ∥

H
1/2
0 (Caj )

=1

⟨∂r(ψv), φ⟩ + c
∥∥v∥∥

H1/2(Caj \Uh)

= sup
∥φ∥

H
1/2
0 (Caj )

=1

∫
Daj+1\Daj

[
∇(ψv) · ∇Ejφ− k2ψv Ejφ

]
dx + c

∥∥v∥∥
H1/2(Caj \Uh)

≤ c ∥v∥H1(Zj)

where Zj = {x ∈ Daj+1
: |x| > aj , x2 < h} and c > 0 is independent of j. Simple

estimates show that Zj is contained in the set {x ∈ D : aj − ε < x1 < aj+1, x2 < h}.
From v ∈ H1(Wh) we conclude that ∥v∥H1(Zj) tends to zero. □

2.4. Uniqueness Of Solutions Of The Perturbed And Unperturbed Problems.
First we show that the propagating part uprop of the open waveguide radiation condition
2.5 has to vanish, if f = 0.

Theorem 2.14. Let u ∈ H1
loc,0(D̃) be a solution of ∆u + k2u = 0 in D̃ satisfying the

open waveguide radiation condition of Definition 2.5. Then uprop vanishes; that is, all the
coefficients aℓ,j vanish.

Proof. Choose ψN ∈ C∞(R) and φH ∈ C∞(R) with ψN(x1) = 1 for |x1| ≤ N and
ψN(x1) = 0 for |x1| ≥ N + 1 and φH(x2) = 0 for x2 ≥ H + 1 and φH(x2) = 1 for x2 ≤ H.
For N > σ0+1 and H > h0+1 we define the regions DN,H := {x ∈ D̃ : |x1| < N, x2 < H}
and W−

N,H := {x ∈ D̃ : −N − 1 < x1 < −N, x2 < H} and W+
N,H := {x ∈ D̃ : N < x1 <

N + 1, x2 < H} and the horizontal line segments ΓN,H := (−N,N) × {H}. We apply

Green’s theorem in DN+1,H+1 to v(x) := ψN(x1)u(x) and v(x)φH(x2). First we note that
12



∆v ∈ L2(DN+1,H+1) because ∆u = −k2u. Furthermore vφ ∈ H1
0 (DN+1,H+1), therefore,

0 =

∫
DN+1,H+1

[
∇v · ∇(v φH) + (v φH)∆v

]
dx

=

∫
DN+1,H

[
|∇v|2 + v∆v

]
dx +

∫
DN+1,H+1\DN+1,H

[
∇v · ∇(v φH) + (v φH)∆v

]
dx

=

∫
DN+1,H

[
|∇v|2 + v∆v

]
dx −

∫
ΓN+1,H

v
∂v

∂x2
ds

where we applied the classical Green’s theorem in the rectangle (−N−1, N+1)×(H,H+1)
to the second integral for the smooth function v. Therefore,∫

ΓN+1,H

ψ2
N u

∂u

∂x2
ds =

∫
ΓN+1,H

v
∂v

∂x2
ds =

∫
DN+1,H

[∣∣∇v∣∣2 + v∆v
]
dx

=

∫
DN,H

[∣∣∇u∣∣2 + u∆u
]
dx+

∫
W+

N,H

[∣∣∇v∣∣2 + v∆v
]
dx +

∫
W−

N,H

[∣∣∇v∣∣2 + v∆v
]
dx ;

that is, with ∆u = −k2u,

(15) Im

∫
ΓN+1,H

ψ2
N u

∂u

∂x2
ds = Im

∫
W+

N,H

[∣∣∇v∣∣2 + v∆v
]
dx + Im

∫
W−

N,H

[∣∣∇v∣∣2 + v∆v
]
dx .

The decomposition u = urad + uprop yields four terms in each of the integrals of (15).
(a) First, we look at the two integrals on the right hand side of (15). We define v(1) :=
ψNurad and v

(2) = ψNuprop and estimate the terms

a±N,H(j, ℓ) :=

∫
W±

N,H

[
∇v(j) · ∇v(ℓ) + v(j) ∆v(ℓ)

]
dx

for j, ℓ ∈ {1, 2}. Then |a±N,H(1, 1)|, |a±N,H(1, 2)|, and |a±N,H(2, 1)| are estimated as in the
proof of [19, Theorem 2.2]:

|a±N,H(1, 1)| ≤ c γN,H , |a±N,H(1, 2)| + |a±N,H(2, 1)| ≤ c
√
γN,H

with

(16) γN,H := ∥urad∥2H1(QN ) + H3

∫
N<|x1|<N+1

ρ(x1)
2 dx1

and QN := {x ∈ D̃ : N < |x1| < N + 1, x2 < h0 + 1}.
For a±N,H(2, 2) we need to argue differently as in the proof of [19, Theorem 3.2] to avoid

the integral over the vertical boundaries of W±
N,H . We recall that

a+N,H(2, 2) =

∫
W+

N,H

[
|∇(ψN uprop)|2 + (ψN uprop)∆(ψNuprop)

]
dx

13



and note that ∆(ψN uprop) = −k2ψN uprop + 2ψ′
N

∂uprop
∂x1

+ ψ′′
N uprop. Therefore,

Im a+N,H(2, 2) = 2 Im

∫
W+

N,H

ψN ψ
′
N uprop

∂uprop
∂x1

dx = Im

∫
W+

N,H

d

dx1
ψ2
N uprop

∂uprop
∂x1

dx

= Im

∫
W+

N,H

[
∇uprop · ∇(ψ2

N uprop)− k2(ψ2
N uprop)uprop

]
dx

= Im

∫
N+Q∞

[
∇uprop · ∇(ψ2

N uprop)− k2(ψ2
N uprop)uprop

]
dx − β+

N,H

where again N +Q∞ = {x ∈ D̃ : N < x1 < N + 2π} and

|β+
N,H | =

∣∣∣∣ ∫
(N+Q∞)\W+

N,H

[
∇uprop · ∇(ψ2

N uprop)− k2(ψ2
N uprop)uprop

]
dx

∣∣∣∣ ≤ c e−2δH .

Now we set φ(x1) = 1− (x1 −N)/(2π) and observe that ψ2
N −φ vanishes for x1 = N and

x1 = N + 2π. Green’s theorem implies that∫
N+Q∞

[
∇uprop · ∇

(
(ψ2

N − φ)uprop
)
− k2

(
(ψ2

N − φ)uprop
)
uprop

]
dx = 0

and thus

Im a+N,H(2, 2) = Im

∫
N+Q∞

[
∇uprop · ∇(φuprop)− k2(φuprop)uprop

]
dx − β+

N,H

= − 1

2π
Im

∫
N+Q∞

uprop
∂uprop
∂x1

dx − β+
N,H

= − 1

4π

∑
j∈J

∑
λℓ,j>0

λℓ,j |aℓ,j|2 − β+
N,H

where we used the results of Lemma 2.7 above. The same estimates hold for a−N,H(j, ℓ);

that is, the integrals over W−
N,H . Therefore, we have shown that

Im

∫
W+

N,H

[∣∣∇v∣∣2 + v∆v
]
dx + Im

∫
W−

N,H

[∣∣∇v∣∣2 + v∆v
]
dx(17)

≤ − 1

4π

∑
j∈J

∑
λℓ,j>0

λℓ,j |aℓ,j|2 +
1

4π

∑
j∈J

∑
λℓ,j<0

λℓ,j |aℓ,j|2 + c e−2δH + c [γN,H +
√
γN,H ] .

(b) Now we look at the left hand side of (15). The line integrals are outside of the layer
Wh0 . Their estimates in [19] (proof of Theorem 3.2) are independent of the equation
or boundary condition below the line x2 = h0. In [19] we have shown the existence of
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sequences (Nm) and (Hm) converging to infinity such that γNm,Hm → 0 and

(18) lim sup
m→∞

[
Im

∫
ΓNm+1,Hm

ψ2
Nm

u
∂u

∂x2
ds

]
≥ 0 .

From (17) we conclude that

lim sup
m→∞

[
Im

∫
W+

Nm,Hm

[∣∣∇v∣∣2 + v∆v
]
dx + Im

∫
W−

Nm,Hm

[∣∣∇v∣∣2 + v∆v
]
dx

]

≤ − 1

4π

∑
j∈J

∑
λℓ,j>0

λℓ,j |aℓ,j|2 +
1

4π

∑
j∈J

∑
λℓ,j<0

λℓ,j |aℓ,j|2 .

Combining this estimate with (18) and (15) yields that aℓ,j = 0 for all ℓ and j. □

Below we sketch another proof based on the modified open waveguide radiation condition.

Theorem 2.15. Let u ∈ H1
loc,0(D̃) be a solution of ∆u + k2u = 0 in D̃ satisfying the

modified open waveguide radiation condition of Definition 2.10. Then uprop vanishes.

Proof. Choose a > 0 and suppose without loss of generality that D̃a is a Lipschitz
domain. Applying Green’s formula for u to D̃a gives∫

D̃a

|∇u|2 − k2|u|2 dx+
∫
Ca

∂νuu ds = 0.

Here we have used the Dirichlet boundary condition on ∂D̃. Taking the imaginary part
and using u = urad + uprop yields

0 = Im

∫
Ca

∂νuu ds = Im

∫
Ca

[∂νuradurad + ∂νuraduprop + ∂νupropurad + ∂νupropuprop] ds

Recalling the Sommerfeld radiation condition of urad, one can show that the integrals
involving the term urad on the right hand side all vanish as a → ∞; see the proof of [12,
Theorem 3.1] for details. Therefore, one arrives at

0 = lim
a→∞

Im

∫
Ca

∂νuprop uprop ds = lim
a→∞

Im

∫
D̃a

(∆ + k2)uprop uprop dx,

because uprop vanishes on ∂D̃. Rcalling the representation of uprop (see (6)) and using the
definition of ψ±, one deduces that (see e.g., [12, Lemma 2.3])

∫
D̃a

(∆ + k2)uprop uprop dx =

∫
γ+a

−
∫
γ−a

uprop
∂uprop
∂x1

ds +

∫
S+
a ∪S−

a

uprop
∂uprop
∂ν

ds(19)

where γ±a = D̃a ∩ {x1 = ±σ0} and S±
a = {x ∈ D̃a : |x| = a, σ0 − 1 < ±x1 < σ0}. Note

that here have supposed that {x ∈ D̃a : σ0 − 1 < ±x1 < σ0} are both Lipschitz domains
by the choice of σ0 > max{R, 2π} + 1 and that the integrals over γ±a are understood in

the dual form between H−1/2(γ±a ) and H
1/2
0 (γ±a ). The second term on the right hand side
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of (19) tends to zero as a → ∞, due to the exponential decay of uprop as x2 → ∞. For
the imaginary part of the first term, we have the limit (see [19, Lemma 2.6])

Im

∫
D̃∩{x1=±σ0}

uprop
∂uprop
∂x1

ds =
1

2π
Im

∫
D̃∩{±σ0+Q∞}

uprop
∂uprop
∂x1

dx

=
1

4π

∑
j∈J

∑
±λℓ,j>0

λℓ,j |aℓ,j|2.

In this step we have used the fact ±σ0 + Q∞ are Lipschitz domains and Lemma 2.6.
Finally, taking the imaginary part in (19) and letting a → ∞, we obtain al,j = 0 for all
j ∈ J and l = 1, 2, · · · ,mj. This proves uprop ≡ 0. □

Having proved the unique determination of the propagating part, we can show uniqueness
of solutions of the unperturbed and perturbed boundary value problems following almost
the same lines in the proof of [19, Theorem 3.3]. We omit the proof of Theorem 2.16
below.

Theorem 2.16. Let the Assumptions 2.2 and 2.3 hold.

(i) Let u ∈ H1
loc,0(D) be a solution of ∆u+k2u = 0 in D satisfying the open waveguide

radiation condition of Definition 2.5. Then u ≡ 0.
(ii) In the perturbed case we have u ≡ 0, if there are no bound states to the problem

(1), that is, any solution u ∈ H1
0 (D̃) of ∆u+k2u = 0 in D̃ must vanish identically.

In the remaining part we suppose that there are no bound states for the perturbed scat-
tering problem, so that uniqueness always holds true by Theorem 2.16 (ii). Note that this
assumption can be removed, if the domain D̃ fulfills the following condition (see [4]):

(20) (x1, x2) ∈ D̃ =⇒ (x1, x2 + s) ∈ D̃ for all s > 0 .

Obviously, the geometrical condition (20) can be fulfilled if the boundary Γ̃ is given by
the graph of some continuous function. But then also the existence of guided modes is
excluded.

3. Construction of the Dirichlet-to-Neumann (DtN) operator

For simplicity we suppose that there is an open arc of the form CR := {x ∈ D : |x1 −
π|2 + |x2|2 = R2} for some R > π such that the domain DR is Lipschitz (otherwise we
can replace CR by an open curve with a slightly different shape). This implies that the
perturbed defect Γ \ Γ̃ always lies below CR. We refer to Figure 2 for a typical situation.
To reduce the scattering problem to a bounded domain, we need Sobolev spaces defined
on an open arc. Define the Sobolev spaces (see [22])

H
1/2
0 (CR) :=

{
f ∈ H1/2(∂DR) : f = 0 on ∂D \ CR

}
,

H1/2(CR) :=
{
f |CR

: f ∈ H1/2(∂DR)
}
.

An important property of H
1/2
0 (CR) is that the zero extension of u to ∂DR belongs to

H1/2(∂DR). We remark that in the previous definitions the closed boundary ∂DR can be
replaced by other closed boundaries. If u ∈ H1(DR) with u = 0 on Γ∩DR, then we have
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the traces u|CR
∈ H

1/2
0 (CR). The spaces H

1/2
0 (CR) and H

−1/2(CR) are (anti-linear) dual
spaces in the sense that

⟨ϕ, ψ⟩
H

1/2
0 (CR),H−1/2(CR)

= ⟨ϕ̃, ψ⟩H1/2(∂DR),H−1/2(DR) ,

where ϕ̃ denotes the zero extension of ϕ to ∂DR. We further remark that for any a >

R there exists a bounded extension operator E from H
1/2
0 (CR) into H1

0 (Da). Indeed,

extending ψ ∈ H
1/2
0 (CR) by zero in ∂DR∩Γ we observe that this extension is inH1/2(∂DR).

By well known results for Lipschitz domains there exists a bounded extension operator

E1 from H1/2(∂DR) into H
1(DR). In the same way one extends ψ ∈ H

1/2
0 (CR) by zero in

∂Da\DR and constructs an extension operator E2 fromH1/2(∂(Da\DR)) intoH
1(Da\DR)

with zero boundary values for |x| = a.

Below we recall the definition of the Floquet-Bloch transform to be used later.

Definition 3.1. For g ∈ C∞
0 (R), the Floquet-Bloch transform F is defined by

(Fg)(x1, α) :=
∑
n∈Z

g(x1 + 2πn) e−i2πnα , x1 ∈ R, α ∈ [−1/2, 1/2] .

The Floquet-Bloch transform F extends to an unitary operator from L2(R) to L2((0, 2π)×
(−1/2, 1/2)). If g depends on two variables x1 and x2 then the symbol F means the
Floquet-Bloch transform with respect to x1.

In the next subsection we prepare several auxiliary results before constructing the DtN
operator.

3.1. Existence Results For Some Unperturbed Problems. The first result is well
known and a simple application of the Theorem of Riesz. Define the weighted Sobolev
spaces Hs

(ρ) =
{
u ∈ Hs

0(D) : wρu ∈ Hs(D)
}
where wρ(x) = eρ|x| for ρ ≥ 0.

Theorem 3.2. Let φ ∈ H−1/2(CR) and ρ ∈ (0, 1). Then there exists a unique solution
v ∈ H1

0 (D) of

(21)

∫
D

[∇v · ∇ψ + v ψ] dx =

∫
CR

φψ ds for all ψ ∈ H1
0 (D) .

Note that we have written the dual form ⟨φ, ψ⟩ on the right hand side as integral. Here we

need that the trace ψ|CR
∈ H

1/2
0 (CR). Furthermore, v ∈ H1

(ρ)(D) and φ 7→ v is bounded

from H−1/2(CR) into H1
(ρ)(D) and even compact from H−1/2(CR) into L2

(ρ′)(D) for all

ρ′ < ρ.

Proof: The left hand side is just the inner product in H1(D), and the right hand side is
estimated by∣∣∫

CR

φψ ds
∣∣ ≤ ∥φ∥H−1/2(CR) ∥ψ∥H1/2

0 (CR)
≤ c∥φ∥H−1/2(CR) ∥ψ∥H1(D).

Therefore, Riesz’s theorem implies uniqueness and existence of a solution in H1
0 (D). Set

ṽ = wρv and ψ̃ = 1
wρ
ψ. Then ∇ψ = ∇wρψ̃ + wρ∇ψ̃ and ∇v = − ṽ

w2
ρ
∇wρ + 1

wρ
∇ṽ.
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Substituting this into the variational equation yields∫
D

[
∇ṽ · ∇ψ̃ + ψ̃

∇wρ
wρ

· ∇ṽ − ṽ
∇wρ
wρ

· ∇ψ̃ − |∇wρ|2
w2
ρ

ṽ ψ̃ + ṽ ψ̃

]
dx =

∫
CR

φ ψ̃ wρ ds .

We observe that the left hand side defines a sesqui-linear form on H1(D) which is coercive

for ρ < 1 because |∇wρ|
wρ

= ρ. The right hand side defines again a bounded linear form

on H1(D). Therefore, Lax-Milgram yields existence and uniqueness. This proves that
v ∈ H1

(ρ)(D) and that φ 7→ v is bounded from H−1/2(CR) into H
1
(ρ)(D).

Finally we show that H1
(ρ)(D) is compactly imbedded in L2

(ρ′)(D) for all ρ′ < ρ. Let (vj)

be a sequence in H1
(ρ)(D) which converges weakly to zero. Set again ṽj = wρvj. Then (ṽj)

converges weakly to zero in H1(D) and is thus bounded. Therefore, there exists c > 0
with ∥ṽj∥L2(D) ≤ c for all j. We estimate for any a > 0∫

D\Da

w2
ρ′(x) |vj(x)|2 dx =

∫
D\Da

w2
ρ(x) |vj(x)|2 e−2(ρ−ρ′)|x| dx

≤ e−2(ρ−ρ′)a
∫
D

w2
ρ(x) |vj(x)|2 dx ≤ c2 e−2(ρ−ρ′)a .

Given ε > 0 we choose a > 0 with c2 e−2(ρ−ρ′)a < ε2

2
and keep r fixed. Since (ṽj) tends to

zero weakly in H1(D) it tends to zero weakly in H1(Da). Therefore, ∥ṽj∥L2(Da) tends to
zero and thus also

∫
Da
w2
ρ′|vj|2dx because on Da the norms ∥wηv∥L2(Da) are all equivalent.

Thus, for sufficiently large j the term
∫
Da
w2
ρ′|vj|2dx is less than ε2

2
. □

The proofs of most existence results for the Helmholtz equation in periodic structures are
based on the following result for quasi-periodic problems. For a proof we refer to [19,
Theorems 4.2, 4.3, and Remark 4.4] adopted to the present situation.

Theorem 3.3. Let Assumptions 2.2 and 2.3 hold and let gα ∈ L2(Q∞) for α ∈ [−1/2, 1/2]
depend continuously differentiable on α in [−1/2, 1/2]. Let there exist ĉ > 0 and δ > 0 with
|gα(x)|+|∂gα(x)/∂α| ≤ ĉe−δx2 for almost all x ∈ Q∞ with x2 > h0 and all α ∈ [−1/2, 1/2].
Furthermore, let G ∈ H−1(Qh0) = H1

0 (Qh0)
∗ and assume that for any propagative wave

number α̂j ∈ [−1/2, 1/2] the orthogonality condition

(22) ⟨G, ϕ̂⟩ +

∫
Q∞

gα̂j
(x) ϕ̂(x) dx = 0

hold for all modes ϕ̂ ∈ Xj corresponding to the propagative wave number α̂j. Here, ⟨·, ·⟩
denotes the dual (bi-linear) form.

Then for every α ∈ [−1/2, 1/2] there exists an α−quasi-periodic solution vα ∈ H1
α,loc,0(D)

of the equation

(23) ∆vα + k2vα = −gα − G in Q∞

satisfying the generalized Rayleigh radiation condition

(24)
∑
n∈Z

∣∣∣∣∂vα,n(x2)∂x2
− i

√
k2 − (α + n)2 vα,n(x2)

∣∣∣∣2 → 0 , x2 → +∞ .

18



Here, vα,n(x2) = 1√
2π

∫ 2π

0
vα(x1, x2)e

−i(n+α)x1dx1 are the Fourier coefficients of vα(·, x2),
and (23) is understood in the variational sense∫

Q∞

[
∇vα · ∇ψ − k2vα ψ

]
dx = ⟨G,ψ⟩ +

∫
Q∞

gα ψ dx

for all ψ ∈ H1
α,loc,0(D) which vanish for x2 > h for some h > h0.

Furthermore, vα can be chosen to depend continuously on α, and for every h > h0 there
exists ch > 0 with

∥vα∥H1(Qh) ≤ ch
[

sup
β∈[−1/2,1/2]

∥gβ∥L(1,2)(Q∞)+ sup
β∈[−1/2,1/2]

∥∂gβ/∂β∥L(1,2)(Q∞) + ∥G∥H−1(Qh0
)

]
for all α ∈ [−1/2, 1/2] where we used the notation ∥ϕ∥L(1,2)(Q∞) := ∥ϕ∥L1(Q∞)+∥ϕ∥L2(Q∞).

We will apply this result to the following two problems.
Given φ ∈ H−1/2(CR), consider the problem of determining u ∈ H1

loc(D) such that

(25) ∆u+ k2u = 0 in D \ CR , u = 0 on Γ ,
∂u−
∂ν

− ∂u+
∂ν

= φ on CR ,

and that u satisfies the open waveguide radiation condition of Definition 2.5. Here the
normal direction ν is supposed to direct into the exterior ΣR. Well-posedness of the
variational formulation corresponding to the problem (25) is stated as follows.

Theorem 3.4. Let φ ∈ H−1/2(CR). Then there exists a unique solution u ∈ H1
loc,0(D) of

(26)

∫
D

[∇u · ∇ψ − k2uψ] dx =

∫
CR

φψ ds for all ψ ∈ H1
0,c(D)

satisfying the open waveguide radiation condition. Here,

H1
0,c(D) :=

{
ψ ∈ H1

0 (D) : there exists a > 0 with ψ(x) = 0 for |x| > a
}
.

Furthermore, the mapping φ 7→ u|CR
is bounded from H−1/2(CR) into H

1/2
0 (CR).

Proof: Uniqueness follows directly from Theorem 2.14, part (i). To prove existence, we
suppose without loss of generality that CR is chosen to lie in Qh0 and define the coefficients
aℓ,j explicitly as

(27) aℓ,j :=
2πi

|λℓ,j|

∫
CR

φ(x) ϕ̂ℓ,j(x) ds(x) , ℓ = 1, . . . ,mj , j ∈ J .

Then the propagating part uprop is defined, and the radiating part urad has to satisfy∫
D

[∇urad · ∇ψ − k2urad ψ] dx(28)

= −
∫
D

[∇uprop · ∇ψ − k2uprop ψ] dx +

∫
CR

φψ ds

=
∑
j∈J

mj∑
ℓ=1

aℓ,j

∫
D

φℓ,j ψ dx +

∫
CR

φψ ds for all ψ ∈ H1
0,c(D)
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and the generalized angular spectrum radiation condition (7). Here, φℓ,j are given by
(9b). Defining the distribution fφ ∈ H−1(D) as

⟨fφ, ψ⟩ :=

∫
CR

φψ ds for all ψ ∈ H1
0 (D) ,

where the right hand side is understood as the duality between H−1/2(CR) and H
1/2
0 (CR),

we observe that the variational equation represents the differential equation

∆urad + k2urad = −
∑
j∈J

mj∑
ℓ=1

aℓ,j φℓ,j − fφ .

One now applies Theorem 3.3 to gα =
∑

j∈J
∑mj

ℓ=1 aℓ,j Fφℓ,j and G = fφ. The orthog-

onality condition (22) is satisfied by the choice of the coefficients (27) (see [19, Lemma
5.1]). Therefore, for all α ∈ [−1/2, 1/2] there exists a solution v̂(·, α) ∈ H1

α,loc,0(D) of the
α−quasi-periodic problems∫

Q∞

[
∇v̂(·, α) · ∇ψ̂ − k2v̂(·, α) ψ̂

]
dx(29)

=
∑
j∈J

mj∑
ℓ=1

aℓ,j

∫
Q∞

(Fφℓ,j)(·, α) ψ̂ dx +

∫
CR

φ ψ̂ ds

for all ψ̂ ∈ H1
α(D) which vanish for x2 > h for some h > h0 satisfying the generalized

Rayleigh radiation condition (24). Furthermore, v̂(·, α) depends continuously on α and
for every h > h0 there exists ch > 0 with

(30) ∥v̂(·, α)∥H1(Qh) ≤ ch

[∑
j∈J

mj∑
ℓ=1

|aℓ,j| + sup
∥ψ∥H1(Q∞)=1

∣∣∣∣∫
CR

φψ ds

∣∣∣∣] ≤ ch ∥φ∥H−1/2(CR) .

By the properties of the Floquet-Bloch transform the inverse transform

urad(x) := (F−1v̂)(x) =

1/2∫
−1/2

v̂(x, α) dα

is in H1
∗ (D). Furthermore, taking ψ ∈ C∞

0 (D) we substitute ψ̂ := (Fψ)(·, α) into the
variational equation (29) and integrate with respect to α; that is,

1/2∫
−1/2

∫
Q∞

[
∇v̂(x, α) · ∇(Fψ)(x, α)− k2v̂(x, α) (Fψ)(x, α)

]
dx dα

=
∑
j∈J

mj∑
ℓ=1

aℓ,j

1/2∫
−1/2

∫
Q∞

(Fφℓ,j)(x, α) (Fψ)(x, α) dx dα+

1/2∫
−1/2

∫
CR

φ(x) (Fψ)(x, α) ds(x) dα

Noting that
∫ 1/2

−1/2
(Fψ)(·, α) ds = ψ and using the unitarity of the Floquet-Bloch transform

we observe that this is exactly the equation (28). Boundedness of φ→ u|CR
is now easily
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seen from (30) and the unitarity of F and the fact that uprop depends explicitly on φ
through aℓ,j. □

A second application is the following result where the source fails to be compactly sup-
ported.

Theorem 3.5. Let f ∈ L2
(ρ)(D) for some ρ ∈ (0, 1). Then there exists a unique solution

w ∈ H1
loc,0(D) of ∆w+k2w = −f in D satisfying the open waveguide radiation condition.

Furthermore, for every a > R the mappings f 7→ w|Da and f 7→ w|CR
are bounded from

L2
(ρ)(D) into H1(Da) and H

1/2
0 (CR), respectively.

Proof: Since f decays exponentially, its Floquet-Bloch transform Ff is well defined and
continuously differentiable with respect to α. Instead of (29) we now solve∫

Q∞

[
∇ŵ(·, α) · ∇ψ̂ − k2ŵ(·, α ψ̂

]
dx

=
∑
j∈J

mj∑
ℓ=1

aℓ,j

∫
Q∞

(Fφℓ,j)(·, α) ψ̂ dx +

∫
Q∞

(Ff)(·, α) ψ̂ dx

for all ψ̂ ∈ H1
α(D) which vanish for x2 > h for some h > h0 and the generalized Rayleigh

radiation condition (24).
The coefficients aℓ,j have to be chosen as

aℓ,j =
2πi

|λℓ,j|

∫
Q∞

(Ff)(x, α̂j) ϕ̂ℓ,j(x) dx , ℓ = 1, · · · ,mj , j ∈ J ,

so that the right hand side is always orthogonal to the nullspace of the homogeneous
equation. Using the estimate

∥(Ff)(·, β)∥2L2(Q∞) =

∫
Q∞

∣∣(Ff)(x, β∣∣2dx ≤
∫
Q∞

[∑
ℓ∈Z

|f(x1 + 2πℓ, x2)|
]2
dx

=

∫
Q∞

[∑
ℓ∈Z

(1 + ℓ2)−1/2
∣∣(1 + ℓ2)1/2f(x1 + 2πℓ, x2)

∣∣]2dx
≤

∫
Q∞

∑
ℓ∈Z

1

1 + ℓ2

∑
ℓ∈Z

(1 + ℓ2)|f(x1 + 2πℓ, x2)|2 dx

≤ c

∫
D

(1 + x21) |f(x)|2 dx ≤ c ∥f∥2L2
(ρ)

(D)

and analogously for ∥(Ff)(·, β)∥2L1(Q∞) and the derivatives with respect to β we can repeat

the proof of Theorem 3.4. □

3.2. The DtN Operator. Now we turn to the construction of the Dirichlet-to-Neumann
operator on the artificial boundary CR. In the remaining part of this paper we make the
following assumption.
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Assumption 3.6. Assume that k2 is not the Dirichlet eigenvalue of −∆ in the Lipschitz
domain DR and there are no bound states of the Helmholtz equation over the domain ΣR;
that is, if u ∈ H1

0 (ΣR) solves ∆u+ k2u = 0 in ΣR, then u must vanish identically.

As usual, the DtN operator Λ should be defined as follows.

Definition 3.7. The Dirichlet-to-Neumann operator Λ : H
1/2
0 (CR) → H−1/2(CR) is de-

fined by Λ g = ∂νu|CR
where u ∈ H1

loc(ΣR) is the unique solution to

(31) ∆u+ k2u = 0 in ΣR u = g on CR , u = 0 on Γ ∩ ∂ΣR ,

which fulfills the open waveguide radiation condition of Definition 2.5. Here the unit
normal vector ν at CR is supposed to direct into ΣR.

The above definition assumes already the solvability of a boundary value problem in
the perturbed region ΣR – which to show is the purpose of the forthcoming Section 4.
However, the perturbed region ΣR is a subset of D (in contrast to the more general
perturbation D̃) which allows the application of an integral equation approach with the
Dirichlet-Green’s function of D. Before we explain the construction we note that an
explicit representation in form of a series can be obtained if Γ is a straight line parallel
to the x1-axis. In this exceptional case the propagating part (guided waves) vanishes
identically and the radiating part fulfills the classical Sommerfeld radiation condition.

Consequently, the function g ∈ H
1/2
0 (CR) can be expanded into g(θ) =

∑
n∈N0

gn sinnθ
with θ ∈ (0, π) and the DtN operator takes the explicit form

(Λg)(θ) =
∑
n∈N0

gn
k H

(1)′
n (kR)

H
(1)
n (kR)

sinnθ for θ ∈ (0, π) .

Here, H
(1)
0 denotes the Hankel function of the first kind of order zero. In the general case

that Γ is a periodic curve, we will express the field in ΣR as a single layer potential with
density φ and the Green’s function as kernel. As usual, φ is determined from g by solving
an integral equation for the single layer boundary operator. We divide our arguments
into two steps.

(A) Construction of the single layer boundary operator. As a motivation we recall that
for smooth data the single layer boundary operator with the Green’s function as kernel
is given by Sφ = u|CR

where u ∈ H1
loc(D) satisfies the transmission problem (25) and the

open waveguide radiation condition. In this way we avoid the explicit use of the Green’s
function. For given φ ∈ H−1/2(CR), the variational form of (25) is given by (26) and has
been studied in Theorem 3.4.
We take the solution of this transmission problem as the definition of the single layer oper-
ator, namely Sφ := u|CR

where u ∈ H1
loc,0(D) is the unique solution of (26) satisfying the

open waveguide radiation condition. Then S is bounded from H−1/2(CR) into H
1/2
0 (CR)

by Theorem 3.4. To show the injectivity of S, we suppose that Sφ = 0. Then u = 0 in ΣR

and u = 0 in DR by the Assumption 3.6 and the uniqueness result of Theorem 2.16. From
the variational equation (26) we conclude that

∫
CR
φψ ds = 0 for all ψ which implies that

φ vanishes. This proves the injectivity of S. Next we show that S is boundedly invertible.

Let Si be the operator corresponding to wave number k = i. Then, setting Siφ = v|CR
,

we get ⟨φ, Siφ⟩ =
∫
CR
φv ds by the definition of the dual form ⟨·, ·⟩ (see Theorem 3.2)
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and v ∈ H1
0 (D) solves (21). Setting ψ = v ϕa in (21) where ϕa ∈ C∞

0 (D) satisfies ϕa = 1
for |x| ≤ a and letting a tend to infinity shows that

⟨φ, Siφ⟩ =

∫
CR

φv ds =

∫
D

[|∇v|2 + |v|2] dx = ∥v∥2H1(D) .

Next we note that ∥φ∥H−1/2(CR) = sup
{
|⟨φ, ψ⟩| : ∥ψ∥

H
1/2
0 (CR)

≤ 1
}
. For ψ ∈ H

1/2
0 (CR)

with ∥ψ∥
H

1/2
0 (CR)

≤ 1 we set ψ̃ = Eψ with the extension operator E from H
1/2
0 (CR) into

H1
0 (Da) for some a > R and estimate

|⟨φ, ψ⟩| =

∣∣∣∣∫
CR

φψ ds

∣∣∣∣ = ∣∣∣∣∫
D

[∇v · ∇ψ̃+ v ψ̃] dx

∣∣∣∣ ≤ c ∥ψ̃∥H1(D) ∥v∥H1(D) ≤ c ∥E∥ ∥v∥H1(D)

for ∥ψ∥
H

1/2
0 (CR)

≤ 1 and thus ∥φ∥H−1/2(CR) ≤ c ∥E∥ ∥v∥H1(D). Combining this with the

previous estimate yields coercivity of Si; that is,

⟨φ, Siφ⟩ ≥ 1

c2∥E∥2 ∥φ∥
2
H−1/2(CR) .

Now we show that S − Si is compact. We observe that (S − Si)φ = w|CR
where w =

u− v ∈ H1
loc(D) satisfies

∆w + k2w = −(k2 + 1) v in D , w = 0 on Γ ,

and the open waveguide radiation conditions. Here, v corresponds to the solution of
(21) with k = i as before. By Theorem 3.2 we know that φ 7→ v is compact from
H−1/2(CR) into L2

(ρ′)(D) for all ρ′ < ρ. Furthermore, by Theorem 3.5 (for ρ′ replacing

ρ) the mapping (1 + k2)v 7→ w|CR
is bounded from L2

(ρ′)(D) into H
1/2
0 (CR). Combining

this yields compactness of φ 7→ w|CR
; that is, compactness of S−Si from H−1/2(CR) into

H
1/2
0 (CR).

Therefore, the operator equation Sφ = g can be written as Siφ + (S − Si)φ = g. This
shows that S is a Fredholm operator with index zero. By the Fredholm alternative, the
injectivity implies the invertibility of S.

(B) Construction of the Dirichlet-to-Neumann operator. Given g ∈ H
1/2
0 (CR) we define

φ := S−1g ∈ H−1/2(CR). Then, by definition, g = Sφ = u|CR
where u satisfies (26); in

particular ∆u+k2u = 0 in ΣR and u = 0 on Γ∩∂ΣR, complemented by the open waveguide
radiation condition. Consequently, the Neumann boundary data can be defined by Green’s

first formula; that is, the DtN operator Λ from H
1/2
0 (CR) into H

−1/2(CR) =
(
H

1/2
0 (CR)

)∗
can be defined as follows.

Definition 3.8. Let a > R be fixed. Then Λ : H
1/2
0 (CR) → H−1/2(CR) =

(
H

1/2
0 (CR)

)∗
is

defined as

(32) ⟨Λg, ψ⟩ = −
∫

Da\DR

[
∇u · ∇(Eψ)− k2u (Eψ)

]
dx , ψ ∈ H

1/2
0 (CR) ,
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where E : H
1/2
0 (CR) → H1

0 (Da) is again a fixed extension operator and u ∈ H1
loc(D) is the

single layer potential with density φ := S−1g ∈ H−1/2(CR); that is, the unique solution of
(26) studied in Theorem 3.4.

We note that the definition is independent of a > R or the choice of the extension operator
E. This follows from Green’s identity

∫
Da\DR

[
∇u ·∇(ψ1−ψ2)− k2u (ψ1−ψ2)

]
dx = 0 for

all ψj ∈ H1
0 (Da) with ψ1 = ψ2 on CR.

We finish this section by proving some mapping properties of Λ.

Lemma 3.9. The DtN operator Λ : H
1/2
0 (CR) → H−1/2(CR) is bounded. Moreover,

the operator −Λ can be decomposed into the sum of a coercive operator and a compact
operator.

Proof. By the trace lemma and (32), the boundedness of Λ follows from the estimate

∥Λg∥H−1/2(CR) = sup
∥ψ∥

H
1/2
0 (CR)

=1

|⟨Λg, ψ⟩| ≤ c ∥u∥H1(Da\DR) ≤ c ∥g∥H1/2(CR) ,

where we have used the boundedness of the extension operator E and the continuous

dependence of u from g. Define Λi : H
1/2
0 (CR) → H−1/2(CR) as the DtN operator for the

wave number k = i; that is,

⟨Λig, ψ⟩ = −
∫

Da\DR

[∇v · ∇ψ̃ + v ψ̃] dx , ψ ∈ H
1/2
0 (CR) ,

where v ∈ H1
0 (D) solves (21) for φ := S−1

i g ∈ H−1/2(CR), and ψ̃ ∈ H1
0 (Da) is an extension

of ψ. The operator −Λi is coercive over H
1/2
0 (CR). Indeed, choose ϕa ∈ C∞(R2) with

ϕa = 1 for |x| < R and ϕa = 0 for |x| > a − 1 and set ψ̃ = v ϕa for a > R + 1. Then

ψ̃ ∈ H1
0 (Da) and thus

−⟨Λig, g⟩ = ∥v∥2H1(Da−1\DR) +

∫
Da\Da−1

[∇v · ∇(vϕa) + ϕa|v|2] dx .

Now we let a tend to infinity and use that v ∈ H1(D). Therefore,

−⟨Λig, g⟩ = ∥v∥2H1(D\DR) ≥ c ∥v∥2H1/2(CR) = c ∥g∥2H1/2(CR)

where we used the boundedness of the trace operator in the inequality. Furthermore, the
operator Λ− Λi is compact. Indeed, this follows from

⟨(Λ− Λi) g, ψ⟩ = −
∫

Da\DR

[
∇(u− v) · ∇(Eψ)− (k2u+ v)Eψ

]
dx , ψ ∈ H

1/2
0 (CR) ,

and the compactness of the mapping g 7→ (u− v)|Da\DR
from H

1/2
0 (CR) into H

1(Da \DR)
(by the same arguments as in the proof of the compactness of S−Si) and the boundedness

of g 7→ k2u+ v from H
1/2
0 (CR) into H

1(Da \DR) and the compact embedding of H1(Da \
DR) into L

2(Da \DR). □
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4. Existence of Solutions of the Perturbed Problem

In this section we investigate well-posedness of time-harmonic scattering of an incoming
wave uin from a locally perturbed periodic curve Γ̃ = ∂D̃ of Dirichlet kind; see Figure 2.
We consider three kinds of incoming waves:

(i) Point source wave: uin(x) := Φ(x, y) = i
4
H

(1)
0 (k|x − y|) with the source position

y ∈ D̃. Without loss of generality we suppose that y ∈ D̃R.

(ii) Plane wave: uin(x) = eikx·θ̂ where θ̂ = (sin θ,− cos θ) is the incident direction
with some incident angle θ ∈ (−π/2, π/2). In this case the incoming wave is
incident onto Γ̃ from above, and the parameter α := k sin θ is supposed to be not
a propagative wavenumber (see Definition 2.1 (ii)).

(iii) uin(x) = ϕ̂ℓ,j(x) is a right (resp. left) going surface wave at the propagative
wavenumber α̂j for some j ∈ J which corresponds to the spectral problem (5)
with the eigenvalue λℓ,j > 0 (resp. λℓ,j < 0).

2π
x1

x2

CR

D̃R

ΣR

Γ̃

Figure 2. Illustration of wave scattering from perfectly reflecting periodic
curves with a local perturbation.

We denote by uscunpert the unperturbed scattered field, defined in D, which is caused by the

unperturbed curve Γ. In ΣR the total field u can be decomposed into u = uin + uscunpert +
uscpert, and u

sc
pert can be considered as the scattered part induced by the defect. The field

uscpert is supposed to fulfill the open waveguide radiation condition of Definition 2.5 for all
of the cases (i), (ii), (iii).

Define the spaces

YR :=
{
v ∈ H1(D̃R) : v = 0 on Γ̃ ∩ ∂D̃R

}
,

where y ∈ D̃. Well-posedness of our scattering problems will be stated separately for
different incoming waves.

Theorem 4.1 (Well-posedness for point source waves). Let uin := Φ(·, y) be an incoming
point source wave with y ∈ D̃R. Then the locally perturbed scattering problem admits a
unique solution u such that u−uin ∈ H1

loc(D̃) and u satisfies the open waveguide radiation
conditions of Definitions 2.5 and 2.10.
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In this theorem, the total field u is required to satisfy the open waveguide radiation
condition of Definition 2.5, because u is nothing else but the Green’s function of the
perturbed problem. We remark that in ΣR the scattered field u− uin does not fulfill this
radiation condition, since uin = Φ(·, y) does not belong to H1(Wh ∩ ΣR) for any h > h0.
If both Γ and Γ̃ can be represented as graphs of Lipschitz functions, the propagating part
uprop vanishes identically (see [4, 5]) and thus u = urad. In such a case, it was verified
in [11, Theorem 2.2] that u = u(·, y) ∈ H1

ρ(Wh ∩ ΣR) with R > |y1 − π| for all ρ < 1

and that u(·, y) − Φ(·, y) ∈ H1
ρ(Wh) for all ρ < 0. In addition, both u and u − Φ satisfy

the Sommerfeld radiation condition of Definition 2.8. The above results of Theorem 4.1
have generalized those of [11] to non-graph curves where guided (propagating) waves may
occur. On the other hand, the technical assumption made in [11, Section 2.3] that Γ
should contain at least one line segment in each period was removed in this paper by
constructing a new form of the DtN operator; see subsection 3.2.

Proof of Theorem 4.1. Since the incident field is singular at y, we transform our
scattering problem to an equivalent source problem of the form (1). Introduce a smooth
cut-off function χ : R2 → R such that χ(x) = 1 for |x − y| < ϵ/2 and χ(x) = 0 for
|x − y| ≥ ϵ. Here ϵ > 0 is chosen to be less than the distance between y and ∂D̃R. We
make the ansatz on the total field u as

u(x) = χ(x) Φ(x, y) + v(x, y) , x ∈ D̃, x ̸= y .

Then the scattering problem is equivalent of finding v(·, y) ∈ H1
0,loc(D̃) such that{

∆xv(·, y) + k2v(·, y) = −gy in D̃, v(·, y) = 0 on Γ̃,
v(·, y) satisfies the open waveguide radiation condition of Definition 2.5

with

gy := ∆χΦ(·, y) + 2∇χ · ∇xΦ(·, y) ∈ L2(D̃) .

Note that the source term gy is compactly supported in D̃R. By the DtN operator Λ,
this problem can be reduced to an equivalent boundary value problem over the truncated
domain D̃R. Consequently, we get the following variational formulation. Determine v ∈
YR such that∫

D̃R

∇v · ∇ψ − k2v ψ dx −
∫
CR

Λv ψds =

∫
D̃R

gy ψ ds for all ψ ∈ YR .(33)

Here the integral over CR is understood as the duality between H−1/2(CR) and H
1/2
0 (CR).

In view of Lemma 3.9, the sesqui-linear form defined by the left hand side of (33) is
strongly elliptic, leading to a Fredholm operator with index zero over YR. By Theorem 2.16
we have uniqueness and thus also existence of v(·, y) ∈ YR by the Fredholm alternative.
This solution can be extended to the exterior ΣR by solving the problem of Theorem 3.2
with φ := S−1(v|CR

) ∈ H−1/2(CR).

Finally we note that u − uin = v + (χ − 1)Φ(·, y) ∈ H1
loc(D̃) because χ vanishes in a

neighborhood of y, and u = v in ΣR because χ vanishes in ΣR. This ends the proof. □

26



Remark 4.2. If we decompose the field u into u = uin + uscunpert + uscpert in ΣR then we

observe that also uscpert satisfies the open radiation condition because u and uin + uscunpert
do, the latter because it is the total field corresponding to the unperturbed problem.

We proceed with the scattering problem for plane waves.

Theorem 4.3 (Well-posedness for plane waves). Let α := k sin θ be not a propagative
wavenumber (see Definition 2.1 (ii)). Then the perturbed scattering problem for a plane

wave incidence uin(x) = eikx·θ̂ admits a unique solution u = uin+usc ∈ H1
loc,0(D̃) such that

the scattered part usc has a decomposition in the form usc = uscunpert+u
sc
pert in the region ΣR

where uscunpert ∈ H1
α,loc(D) is the scattered field corresponding to the unperturbed problem

that satisfies the upward Rayleigh expansion (2b) with the quasi-periodic parameter α =
k sin θ. The part uscpert ∈ H1

loc(ΣR) fulfills the open waveguide radiation conditions defined
by Def. 2.5 and Def. 2.10.

Proof. In the unperturbed case, uniqueness and existence of the field uscunpert ∈ H1
α,loc(D)

can be justified using standard variational arguments in the truncated periodic cell Qh (for
some h > h0) by enforcing the α−quasi-periodic DtN mapping on the artificial bound-
ary Γh. Uniqueness follows from the assumption that α = k sin θ is not a propagative
wavenumber, and existence is a consequence of the Fredholm alternative.

Set ũin = uin + uscunpert ∈ H1
α,0(D). This field is well defined in ΣR. We make the ansatz

for the perturbed problem in the form u = ũin + uscpert in ΣR and u = uin + usc in D̃R.

Since uscpert ∈ H1
loc(ΣR) is required to fulfill the open waveguide radiation condition and

uscpert = 0 on Γ \ D̃R, it has to satisfy

∂νu
sc
pert

∣∣
+

= Λ(uscpert|+) , thus ∂νu
∣∣
− = ∂ν ũ

in
∣∣
+

+ Λ(u|− − ũin|+) on CR

where |+ and |− denote the traces from ΣR and D̃R, respectively. Therefore, we have to
determine the total field u ∈ YR such that∫

D̃R

∇u · ∇ψ − k2uψ dx −
∫
CR

Λuψds =

∫
CR

[∂ν ũ
in − Λũin]ψ ds(34)

for all ψ ∈ YR. Application of Lemma 3.9, Theorem 2.16 and the Fredholm alternative
yields the uniqueness and existence of u ∈ YR. This also gives the scattered field usc =
u − uin ∈ H1(D̃R) and the trace of the perturbed scattered field g := uscpert|CR

= (usc −
uscunpert)|− on CR. Finally, u

sc
pert can be extended to ΣR by solving the problem of Theorem

3.2 with φ = S−1(g). □

Remark 4.4. Suppose in Theorem 4.3 that k sin θ = α̂j is a propagative wavenumber for
some fixed j ∈ J . Then it is well known that there exists still a α̂j−quasi-periodic solution
uunpert,0 = uin + uscunpert of the unperturbed problem. However, the solution is not unique,
and the general solution is given by

(35) uunpert = uunpert,0 +

mj∑
ℓ=1

cℓ ϕ̂ℓ,j in D
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where ϕ̂ℓ,j ∈ Xj (see (3) and (5)) and cℓ ∈ C are arbitrary. In our paper [12] we derive a
new radiation condition based on the limiting absorption principe to prove uniqueness of
the unperturbed scattering problem, even if k sin θ is a propagative wavenumber.

Now we consider the case that uin = ϕ̂ℓ,j for some ℓ ∈ {1, . . . ,mj} and j ∈ J is an
incoming surface wave corresponding to the propagative wavenumber α̂j; that is,{

∆uin + k2uin = 0 in D, uin = 0 on Γ,
uin is α̂j-quasi-periodic in x1 and exponentially decays in the x2-direction.

Since uin vanishes already on Γ and satisfies the radiation condition we conclude that
the variational formulation for u ∈ YR takes the same form as in (34) with ũin = uin.
Analogously to the proof of Theorem 4.3, we obtain

Theorem 4.5 (Well-posedness for incoming surface waves). Given an incoming surface

wave uin = ϕ̂ℓ,j for some ℓ ∈ {1, . . . ,mj} and j ∈ J , the perturbed scattering problem

admits a unique solution u = uin + usc ∈ H1
loc,0(D̃) such that usc ∈ H1

loc(D̃) fulfills the
open waveguide radiation conditions of Def. 2.5 and Def. 2.10.

By Theorem 4.5, each surface wave ϕ̂ℓ,j produces a non-trivial scattered field to the locally
defected problem. Combining Theorems 4.3, 4.5 and Remark 4.4, we can get a general
solution for plane wave incidence when k sin θ is a progagative wavenumber.

Corollary 4.6. Let uin be a plane wave and suppose that k sin θ = α̂j is a propagative
wavenumber for some fixed j ∈ J . The general solution of the perturbed scattering problem
for plane wave incidence takes the form

(36) u = uunpert,0 + uscpert +

mj∑
ℓ=1

cℓ ϕ̂ℓ,j +

mj∑
ℓ=1

cℓ u
sc
ℓ in ΣR .

Here, uscpert is the open waveguide radiation solution determined in Theorem 4.3 excited by

the incoming reference wave ũin = uunpert,0 = uin + uscunpert, and u
sc
ℓ is the scattered field

specified in Theorem 4.5 with uin := ϕ̂ℓ,j.

5. Scattering by Neumann curves and by periodically arrayed obstacles

With slight changes our solvability results presented in Section 4 carry over to periodic and
locally perturbed periodic curves of Neumann kind. Below we only remark the necessary
modifications.

In the Neumann case, α ∈ [−1/2, 1/2] is called a propagative wave number if there exists
a non-trivial ϕ ∈ H1

α,loc(D) such that

∆ϕ+ k2ϕ = 0 in D ,
∂ϕ

∂ν
= 0 on Γ ,

and ϕ satisfies the Rayleigh expansion (2b). Here ν denotes the normal direction at
Γ pointing into D. Under the Assumption 2.2, one can still prove that there exist at
most a finite number of propagative wavenumvers in the interval [−1/2, 1/2]. The finite
dimensional eigenspaceXj can be defined similarly to (3) but with the Neumann boundary
condition on Γ. The definition of the space H1

∗ (ΣR) should be replaced by

H1
∗ (ΣR) :=

{
u ∈ H1

loc(ΣR) : ∂νu = 0 on Γ ∩ ∂ΣR, u ∈ H1(Wh ∩ ΣR) for all h > h0
}
.
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In this case, a bound state of the perturbed scattering problem is defined as a solution
u ∈ H1(D̃) to the Helmholtz equation (∆ + k2)u = 0 in D̃ satisfying the Neumann
boundary condition ∂νu = 0 on Γ̃. Assuming that there are no bound states in D̃, one
can prove uniqueness to the perturbed scattering problem analogously to Theorem 2.16.
To construct the DtN operator, we consider the problem of determining u ∈ H1

loc(D) such

that, for ϕ ∈ H
−1/2
0 (CR),

∆u+ k2u = 0 in D \ CR , ∂νu = 0 on Γ ,
∂u−
∂ν

− ∂u+
∂ν

= φ on CR ,(37)

and that u satisfies the open waveguide radiation condition in ΣR. The variational form
of this transmission problem is to determine u ∈ H1

loc(D) such that∫
D

[∇u · ∇ψ − k2uψ] dx =

∫
CR

φψ ds for all ψ ∈ H1
c (D) ,(38)

together with the open waveguide radiation condition. Here,

H1
c (D) := {ψ ∈ H1(D) : there exists a > 0 with ϕ(x) = 0 for all |x| > a}.

Note that the right hand side of (38) is understood as the duality between H
−1/2
0 (CR)

and H1/2(CR). The mapping Sφ = u|CR
defines the single layer operator under the

Neumann boundary condition. Choose the open arc CR such that the mixed boundary
value problem

(∆ + k2)u = 0 in DR , u = 0 on CR , ∂νu = 0 on ∂DR \ CR ,
admits the trivial solution only. We make the assumption that every solution u ∈ H1(ΣR)
to the exterior boundary value problem

(∆ + k2)u = 0 in ΣR , u = 0 on CR , ∂νu = 0 on Γ ∩ ∂ΣR ,

must vanish identically, that is, there are no bound states to this special perturbation prob-

lem. The previous two conditions ensure that the single layer operator S : H
−1/2
0 (CR) →

H1/2(CR) is injective and boundedly invertible. The DtN operator Λ from H1/2(CR) into

H
−1/2
0 (CR) takes the explicit form

⟨Λg, ψ⟩ = −
∫

Da\DR

[∇u · ∇ψ̃ − k2u ψ̃] dx , ψ ∈ H1/2(CR) ,

where ψ̃ = Eψ is a bounded extension operator from H1/2(CR) to H
1
0 (Da \DR) for some

a > R. Here u is the single layer potential with density φ := S−1g ∈ H
−1/2
0 (CR); that

is, the open waveguide radiation solution to the boundary value problem (37). Mapping
properties of Λ can be proved in the same way as Lemma 3.9. Finally, well-posedness
results for scattering of point source waves, plane waves and surface waves from locally
perturbed Neumann curves can be verified in the same manner as in the proofs of Theo-
rems 4.1, 4.3 and 4.5,

Let us now consider the TE and TM polarizations of time-harmonic electromagnetic
scattering by periodically arrayed obstacles. Define the boundary conditions Bu := u
in the TE case and Bu := ∂νu in the TM case. Let Ω ⊂ R × (−H,H) be a domain

29



x2

x1

x2 = −H

x2 = H

K ∩ D̃Σ

C

Figure 3. Illustration of the artificial boundary C := ∂K ⊂ D (in this
case a circle) on which the DtN operator Λ (see Definition 3.7) is defined
for scattering by periodically arrayed obstacles with a local defect.

which is 2π−periodic with respect to x1 such that the exterior D := R2 \Ω is connected.
Then α ∈ [−1/2, 1/2] is called a propagative wave number if there exists a non-trivial
ϕ ∈ H1

α,loc(D) such that

∆ϕ+ k2ϕ = 0 in D , Bϕ = 0 on ∂D ,

and ϕ satisfies the Rayleigh expansions

ϕ(x) =
∑
ℓ∈Z

ϕ±
ℓ e

i(ℓ+α)x1 e±i
√
k2−(ℓ+α)2(x2∓H) for x2 ≷ ±H

for some ϕ±
ℓ ∈ C. Then the spaces Xj of modes and their basis {ϕ̂ℓ,j : ℓ = 1, . . . ,mj}

are defined as in (3)–(5). Furthermore, let Ω be locally defected such that the periodic
domain D is replaced by a perturbed connected domain D̃. We assume that there exists
a bounded Lipschitz domain K which contains the defect (D \ D̃)∪ (D̃ \D) and such that
C := ∂K is contained in D. Defining Σ := D \K and the Sobolev space

H1
∗ (Σ) :=

{
u ∈ H1

loc(Σ) : Bu = 0 on ∂D ∩ ∂Σ , u ∈ H1(Wh ∩ Σ) for all h > H
}
,

where now Wh := R× (−h, h). Then the radiation conditions of Definitions 2.5, 2.8, and
2.12 carry over. C, K, and Σ correspond to CR, DR, and ΣR, respectively. A situation
where C can be chosen as a circle CR is sketched in Figure 3. The Dirichlet-to-Neumann
operator Λ is again defined as Λg = ∂νu|C where u ∈ H1

loc(Σ) is the unique solution of

∆u+ k2u = 0 in Σ , u = g on C , Bu = 0 on ∂D ∩ ∂Σ ,(40)

together with the open waveguide radiation condition. We remark that the domain and
range space of Λ relies on the boundary condition under consideration. With proper
assumptions on the domain K, one can construct an invertible single layer operator Sφ =
u|C , where u ∈ H1

loc(D) is the radiating solution of the transmission problem

∆u+ k2u = 0 in D \ C , Bu = 0 on ∂D ,
∂u−
∂ν

− ∂u+
∂ν

= φ on C .
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Then one can define the DtN operator via Green’s formula, analogously to the scattering
by Dirichlet and Neumann curves. The well-posedness results of Section 4 can be justified
in the same manner.

Remark 5.1. Exact boundary conditions (DtN maps) were also constructed for wave
propagating in a closed periodic waveguide [13] and in a photonic crystal [7] containing
a local perturbation. In comparision with [7], the DtN map defined by (40) applies to
artificial boundary curves of arbitrary shape (although circular curves are used in this
paper) and the medium is periodic in one direction only. The exact boundary condition
of [7] is defined along square-shaped artificial boundaires, and the medium is periodic in
two directions. In this paper the DtN map relies heavily on the open waveguide radiation
condition of Def. 2.5.
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