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TIME-HARMONIC ELASTIC SCATTERING BY UNBOUNDED

DETERMINISTIC AND RANDOM ROUGH SURFACES IN THREE

DIMENSIONS

GUANGHUI HU, TIANJIAO WANG, XIANG XU, AND YUE ZHAO

Abstract. In this paper, we investigate well-posedness of time-harmonic scattering of elas-
tic waves by unbounded rigid rough surfaces in three dimensions. The elastic scattering is
caused by an L

2 function with a compact support in the x3-direction, and both determin-
istic and random surfaces are investigated via the variational approach. The rough surface
in a deterministic setting is assumed to be Lipschitz and lie within a finite distance of a
flat plane, and the scattering is caused by an inhomogeneous term in the elastic wave equa-
tion whose support lies within some finite distance of the boundary. For the deterministic
case, a stability estimate of elastic scattering by rough surface is shown at an arbitrary
frequency. It is noticed that all constants in a priori bounds are bounded by explicit func-
tions of the frequency and geometry of rough surfaces. Furthermore, based on this explicit
dependence on the frequency together with the measurability and P-essentially separability
of the randomness, we obtain a similar bound for the solution of the scattering by random
surfaces.

1. Introduction

This paper is concerned with the mathematical analysis of the time-harmonic elastic
scattering from unbounded deterministic and random rough surfaces in three dimensions.
The phrase rough means surface is a (usually nonlocal) perturbation of an infinite plane
such that the whole surface lies within a finite distance of the original plane. Rough surface
scattering problems have important applications in diverse scientific areas such as remote
sensing, geophysics, outdoor sound propagation, radar techniques (see e.g.,[1, 2] and the
references cited therein). In linear elasticity, the existence and uniqueness of solution were
studied in via the boundary integral equation method [3, 4, 5]. The variational approach was
proposed in [7, 9] to handle well-posedenss of the scattering problems in periodic structures
by using the Rayleigh expansion condition (REC) and in [8, 10] for general rigid rough
surfaces by using the angular spectrum representation (ASR).

Recently, in [11] a mathematical formulation of the elastic rough surface scattering prob-
lems was presented in three dimensions. Based on a Rellich-type identity, the uniqueness of
weak solutions to the variational problem was proved if the rigid surface was the graph of a
uniformly Lipschitz continuous function. The existence of solutions was also proved for the
case of locally perturbed scattering problems. However, the well-posedness problem for the
scattering by a general rough surface remains unsolved. Later, the authors in [14] further
derived an a priori bound which was explicitly dependent on the frequency. The main goal
of this paper is three-fold. First, we present a variational formulation of the elastic scattering
in three dimensions by a Lipschitz-type rough surface and prove its well-posedness. Second,
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we derive an a priori bound which is explicitly dependent on the frequency. Third, we utilize
the explicit bound to derive the well-posedness for scattering by random rough surfaces as
[13, 14]. As discussed in [6], we expect that the variational formulation will be suitable for
numerical solution via finite element discretization. Furthermore, the explicit bounds we
obtain should be useful in establishing the dependence of the constants in a priori error
estimates for finite element schemes on the frequency and the geometry of the domain.

This paper utilizes methods and results contained in [8, 11, 14]. As was pointed out in
[8], the elastic problem is more complicated than the acoustic case due to the coexistence
of compressional and shear waves. As a consequence, the Dirichlet-to-Neumann map for
the elastic wave equation is tensor-valued which does not have a definite real part. This
brings difficulties in deriving the a priori estimates of solutions via Rellich identities for
arbitrary frequencies. We prove that the variational problem is well-posed by the theory
of semi-Fredholm used in [8]. To this end, we first consider the case of small frequencies
in which the Lax–Milgram theorem can be applied. Then we establish several a priori
estimates. During this process, we carefully trace the dependence of the coefficients of these
bounds on the frequency. In this way, we arrive at an a priori bound for the solution to the
variational problem which is explicitly dependent on the frequency. Afterwords, inspired by
the framework for scattering by random medium in [12] and random surfaces in [13, 14], we
can obtain the well-posedness for a stochastic variation problem with an explicit a priori
bound.

The rest of this paper is outlined as follows. In Section 2 we present the variational
formulation for the elastic scattering problem. Section 3.3 is devoted to the well-posedness
of the variational problem for small frequencies. In Section 4 we derive a priori bounds and
trace the explicit dependence on the frequency and on the geometry of the domain. For
random cases, a similar bound is derived in Section 5. Conclusions are presented in Section
6.

2. Problem formulation

This section is devoted to the mathematical formulation of the three-dimensional elastic
wave scattering by unbounded rigid rough surfaces. Let D ⊂ R3 be an unbounded connected
open set such that, for some constants m < M ,

UM ⊂ D ⊂ Um, Uh := {x = (x′, x3) : x3 > h}, x′ := (x1, x2).

The space D is supposed to be filled with a homogeneous and isotropic elastic medium
with unit mass density. We assume that Γ := ∂D is an unbounded rough surface, which is
supposed to be the graph of a uniformly Lipschitz continuous function f . More precisely, we
assume

Γ = {x ∈ R
3 : x3 = f(x′), x′ = (x1, x2) ∈ R

2},
and there exists a constant L > 0 such that

|f(x′)− f(y′)| ≤ L |x′ − y′| for all x′, y′ ∈ R
2. (2.1)

Throughout the paper we fix some h > M . Let Γh = {x ∈ R3 : x3 = h} and Sh = D\Uh.
Denote the unit normal vector on Γ∪Γh by ν := (ν1, ν2, ν3) pointing into the region of x3 > h
on Γh and into the exterior of D on Γ. Assume that g ∈ L2(D)3 is an elastic source term
with supp(g) ⊂ Sh. Consider the following Navier equation in three dimensions

∆∗u+ ω2u = g in D, (2.2)
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where ∆∗ = µ∆ + (λ + µ)∇∇·, u = (u1, u2, u3)
⊤ is the elastic displacement and ω > 0 is

the angular frequency. Here λ and µ denote the Lamé constants characterizing the medium
above Γ satisfying µ > 0, λ+ 2µ/3 > 0. Since Γ is physically rigid, there holds the Dirichlet
boundary condition

u = 0 on Γ. (2.3)

As the domain D is unbounded, a proper radiation condition should be imposed on u
at infinity. In this paper we utilize the elastic Upward Propagation Radiation Condition
(UPRC) at infinity to ensure the well-posedness of the boundary value problem (2.2)-(2.3).
Below we briefly introduce this radiation condition and refer to [11, 8] for the details. We
begin with the decomposition of the wave fields into a sum of compressional and shear parts

u =
1

i
(∇ϕ+∇× ψ), ∇ · ψ = 0 in x3 > h, (2.4)

where the scalar function ϕ and the vector function ψ satisfy the homogeneous Helmholtz
equations

∆ϕ + k2pϕ = 0, ∆ψ + k2sψ = 0 in x3 > h. (2.5)

Here, kp and ks are compressional and shear wave numbers, respectively, defined by

kp :=
ω√

λ+ 2µ
, ks :=

ω√
µ
.

Denote by v̂ the Fourier transform of v in R2, i.e.,

v̂(ξ) = Fv(ξ) := 1

2π

∫

R2

v(x′)e−ix′·ξdx′, ξ = (ξ1, ξ2) ∈ R
2.

Taking the Fourier transform of (2.5) and assuming that ϕ, ψ fulfill the Upward Angular
Spectrum Representation (UASR) of the Helmholtz equation in Uh (see [6]), we obtain for
x3 ≥ h that

ϕ(x′, x3) = 1
2π

∫
R2 ϕ̂(ξ, h)e

iβ(ξ)(x3−h)eiξ·x
′

dξ,

ψ(x′, x3) = 1
2π

∫
R2 ψ̂(ξ, h)e

iγ(ξ)(x3−h)eiξ·x
′

dξ, (2.6)

where

β(ξ) :=

{
(k2p − |ξ|2)1/2, |ξ| < kp,

i(|ξ|2 − k2p)
1/2, |ξ| > kp,

and

γ(ξ) :=

{
(k2s − |ξ|2)1/2, |ξ| < ks,

i(|ξ|2 − k2s )
1/2, |ξ| > ks.

Denote the Fourier transform of ϕ(x′, h) and ψ(x′, h) by

Ap(ξ) = ϕ̂(ξ, h), Ãs(ξ) = ψ̂(ξ, h),

respectively. Noting that divψ = 0, we have (ξ, γ(ξ)) · Ãs(ξ)
⊤ = 0. For notational conve-

nience we omit the dependence of β and γ on ξ in the subsequent context.

Substituting (2.6) into (2.4), we obtain for x3 ≥ h that

u(x) =
1

2π

∫

R2

[
Ap(ξ) (ξ, β)

⊤eiβ(x3−h) +As(ξ) e
iγ(x3−h)

]
eiξ·x

′

dξ, (2.7)
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where As = (A
(1)
s , A

(2)
s , A

(3)
s )⊤(ξ) := (ξ, γ)⊤ × Ãs(ξ). It follows from (2.7) and the orthogo-

nality (ξ, γ) ·A⊤
s = 0 that

[
û(ξ, h)

0

]
=




ξ1 1 0 0
ξ2 0 1 0
β 0 0 1
0 ξ1 ξ2 γ




[
Ap(ξ)

As(ξ)

]
:= D̃(ξ)A(ξ),

which gives

A(ξ) =

[
Ap

As

]
(ξ) = D̃

−1(ξ)

[
û(ξ, h)

0

]
= D(ξ) û(ξ, h). (2.8)

Here D is a 4× 3 matrix given by

D(ξ) =
1

βγ + |ξ|2




ξ1 ξ2 γ
βγ + ξ22 −ξ1ξ2 −ξ1γ
−ξ1ξ2 βγ + ξ2 −ξ2γ
−ξ1β −ξ2β |ξ|2


 .

Using (2.7)–(2.8) yields the expression of u in Uh:

u(x) =
1

2π

∫

R2

{ 1

β γ + |ξ|2
(
Mp(ξ)e

i(ξ·x′+β(x3−h)) +Ms(ξ)e
i(ξ·x′+γ(x3−h))

)
ûsc(ξ, h)

}
dξ, (2.9)

where

Mp(ξ) =:



ξ21 ξ1ξ2 ξ1γ
ξ1ξ2 ξ22 ξ2γ
ξ1β ξ2β βγ


 and Ms(ξ) =



βγ + ξ22 −ξ1ξ2 −γξ1
−ξ1ξ2 βγ + ξ21 −γξ2
−ξ1β −ξ2β |ξ|2


 .

The representation (2.9) will be referred to as the upward radiation condition for rough
surface scattering problems in linear elasticity.

Define the surface traction operator

Tu := 2µ∂νu+ λ(∇ · u)ν + µν × (∇× u), (2.10)

where ν = (ν1, ν2, ν3) stands for the normal vector on the surface. Plugging (2.9) into (2.10)
yields the Dirichlet-to-Neumann (DtN) operator on Γh (cf [11])

Tu = T u(x′) := i

2π

∫

R2

M(ξ)û(ξ)eiξ·x
′

dξ, (2.11)

where M(ξ) is given by

M(ξ) =
1

|ξ|2 + βγ

×




µ[(γ − β)ξ22 + k2sβ] −µξ1ξ2(γ − β) (2µ|ξ|2 − ω2 + 2µβγ)ξ1

−µξ1ξ2(γ − β) µ[(γ − β)ξ21 + k2sβ] (2µ|ξ|2 − ω2 + 2µβγ)ξ2

−(2µ|ξ|2 − ω2 + 2µβγ)ξ1 −(2µ|ξ|2 − ω2 + 2µβγ)ξ2 γω2


 .

The boundary operator T is non-local and is equivalent to the upward radiation condi-
tion (2.9). It is also called the transparent boundary condition (TBC) for time-harmonic
scattering problems in unbounded domains.
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Based on the above DtN operator, the wave scattering problem (2.2)-(2.3) can be reduced
to a boundary value problem over Sh:

µ∆u+ (λ+ µ)∇∇ · u+ ω2u = g in Sh

u = 0 on Γ

Tu = T u on Γh.

To introduce the variational formulation, we introduce the energy space Vh for h > M
as the closure of C∞

0 (Sh ∪ Γh)
3 in the H1 norm

‖u‖Vh = (‖∇u‖2L2(Sh)3
+ ‖u‖L2(Sh)3)

1/2.

Multiplying the Navier equation in (2.2) by the complex conjugate of the test function v ∈ Vh
and using Betti’s formula yield

∫

Sh

E(u, v̄)− ω2u · v̄ dx−
∫

Γh

v̄ · Tuds =
∫

Sh

g · v̄ dx,

where the bilinear form E(·, ·) is defined by

E(u, v) := 2µ
3∑

j,k=1

∂kuj∂kvj + λ∇ · u∇ · v − µ∇× u · ∇ × v, ∀u, v ∈ Vh.

Define the sesquilinear form B : Vh × Vh → C by

B(u, v) =

∫

Sh

E(u, v̄)− ω2u · v̄ dx−
∫

Γh

v̄ · T uds. (2.12)

Now we can formulate the variational problem as follows:

Variational Problem I: find u ∈ Vh such that

B(u, v) = −
∫

Sh

g · v̄ dx for all v ∈ Vh. (2.13)

The variational problem is equivalent to the boundary value problem: given g ∈ L2(D)3,
with supp(g) ⊂ Sh for some h > M , find u ∈ H1

loc(D)3 such that u|Sh
∈ Vh for every

h > M (implying u = 0 on Γ), the Navier equation (△∗ + ω2) u = g in D holds in a
distributional sense, and the radiation condition (2.9) is satisfied with u|Γh

∈ H1/2(Γh)
3 by

the trace theorem.

The main theorem of this paper can now be stated as follows.

Theorem 2.1. For any ω > 0, the Variational Problem I (2.13) is uniquely solvable in Vh.
Moreover, there exists a constant C independent of ω, h and the Lipschitz constant L of f
such that the solution satisfies the estimate

‖u‖Vh ≤ (h−m+ 2)
(
C4(ω, h) + C5(ω, h)

2 + C6(ω, h, L)
)
‖g‖Vh (2.14)

where

C4(ω, h) = C(h+ 1−m)ω, C5 = C
√
1 + ω−1C3(ω, h)

and

C6 = C(ω−1 + 1)C1(ω, h, L)C2(ω, h, L)
2.
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Here

C1(ω, h, L) = Cω3(1 + L2)1/2(h−m+ 1),

C2(ω, h, L) = C(1 + L2)1/4
√
h + 1−m(1 + ω(h+ 1−m)),

C3(ω, h) = C(h+ 1−m)(1 + ω(h+ 1−m))2/ω.

The constants C1-C6 are derived from a priori bounds of the variational solution, which
exhibit explicit dependence on the frequency ω and the geometry of the rough surface. They
lead to the explicit a priori bound of the solution of the elastic scattering problem in three
dimensions.

By the semi-Fredholm theory in [8], the results of Theorem 2.1 follow from the well-
posedness of the variational problem at small frequencies (cf Theorem 3.3) and an a priori
bound of the solution to the variational problem at an arbitrary frequency (cf Theorem
4.3). Thus, in the subsequent two sections we shall focus on mathematical analysis at small
frequencies and a priori estimate at an arbitrary frequency.

3. Analysis of the variational problem for small frequency

We first investigate mapping properties the DtN operator in three dimensions. For a
matrix M(ξ) ∈ C3×3 depending on ξ, let ReM(ξ) := (M(ξ) + M(ξ)∗)/2. We shall write
ReM(ξ) > 0 if ReM(ξ) is positive definite. Here M∗(ξ) is the adjoint of M with respect to
the scalar product (·, ·)C3×3 in C3×3.

Lemma 3.1. Let M(ξ) be defined in (2.11) and let h > M .

(1) There exists a constant K independent of ω such that Re(−iM)(ξ) > 0 for all |ξ| >
Kω, where

K =
λ+ 2µ

µ
√
λ+ µ

>
1√
µ
.

(2) The DtN map T is a bounded operator from H1/2(Γh)
3 to H−1/2(Γh)

3.
(3) For |ξ| < Kω there holds

‖M(ξ)‖ ≤ CK ω (3.1)

where

CK = 2(λ+ 4µ)K + (µ(λ+ 2µ)K2 + 2(λ+ 2µ)/µ)

√
λ+ µ

µ(λ+ 2µ)

is a constant independent of ω, ξ and the norm

‖M(ξ)‖ = max
1≤i,j≤3

|Mij(ξ)|.

Here K is the constant specified in item (1) and Mij(ξ), 1 ≤ i, j ≤ 3 denote the
entries of M(ξ).

Remark 3.2. In comparison with properties of the matrix M in two dimensions, we provide
explicit constants K and CK in terms of the Lame coefficients.
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Proof. Item (2) has been proved in [11, Lemma 3.2]. Thus we only need to prove items (1)
and (3).

(1) Since |ξ| > Kω > ks, we have β = i|β| and γ = i|γ|, which implies

iM(ξ) =
−1

|ξ|2 − |β||γ|




a1(ξ) b(ξ) −ic(ξ)ξ1
b(ξ) a2(ξ) −ic(ξ)ξ2
ic(ξ)ξ1 ic(ξ)ξ2 a3(ξ)


 :=

−1

|ξ|2 − |β||γ|M
′(ξ) (3.2)

with

a1(ξ) = µ[ξ22(|γ| − |β|) + k2s |β|], a2(ξ) = µ[ξ21(|γ| − |β|) + k2s |β|], a3(ξ) = ω2|γ|,
b(ξ) = −µξ1ξ2(|γ| − |β|), c(ξ) = 2µ|ξ|2 − ω2 + 2µ|β||γ|.

It is obvious that ai(ξ), b(ξ), c(ξ) ∈ R. Then from (3.2) we obtain

ℜ(−iM(ξ)) =
1

|ρ|M
′(ξ)

with ρ(ξ) = |ξ|2 + βγ. Hence it remains to prove M′(ξ) is positive-definite when |ξ| > Kω.
To this end, we should verify

i) a1(ξ) > 0, ii)

∣∣∣∣
a1(ξ) b(ξ)
b(ξ) a2(ξ)

∣∣∣∣ > 0, iii) detM′(ξ) > 0.

i) By direct calculation, it is obvious that

a1(ξ) = µ[(|γ| − |β|)ξ22 + k2s |β|]

= µ
ξ22(|γ|2 − |β|2) + k2s(|β|2 + |β||γ|)

|γ|+ |β|

= µ
ξ1k

2
s + ξ2k

2
p + k2s |β||γ| − k2pk

2
s

|γ|+ |β|

≥ µ
(|ξ|2 − k2s)k

2
p + k2s |β||γ|

|γ|+ |β| > 0. (3.3)

Here the condition |ξ| > Kω > ks is used in the last step.

ii) Denote g(ξ) = (|γ| − |β|)|ξ|2 + k2s |β|. Similar as (3.3) we have g(ξ) > 0. Then one
arrives at
∣∣∣∣
a1(ξ) b(ξ)
b(ξ) a2(ξ)

∣∣∣∣ = a1a2 − b2

= µ2[(|γ| − |β|)|ξ1|2 + k2s |β|][(|γ| − |β|)|ξ2|2 + k2s |β|]− µ2ξ21ξ
2
2(|γ| − |β|)2

= µ2k2s |β|g(ξ) > 0.

iii) Denote h(ξ) = 2ξ1ξ2b(ξ)− a1(ξ)ξ
2
2 − a2(ξ)ξ

2
1, then it can be verified that

det(M′(ξ)) = a3(ξ)

∣∣∣∣
a1(ξ) b(ξ)
b(ξ) a2(ξ)

∣∣∣∣ + (−a1(ξ)c(ξ)2ξ22 + 2b(ξ)c(ξ)2ξ1ξ2 − a2(ξ)c(ξ)
2ξ21)

= µ2k2s |β||γ|g(ξ)ω2 + c(ξ)2h(ξ). (3.4)
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Direct calculation implies

h(ξ) = −2µξ21ξ
2
2(|γ| − |β|)− µξ21 [ξ

2
1(|γ| − |β|) + k2s |β|]

− µξ22 [ξ
2
2(|γ| − |β|) + k2s |β|]

= −µ(|γ| − |β|)|ξ|4 − µk2s |β||ξ|2 = −µ|ξ|2g(ξ). (3.5)

Combining (3.4)-(3.5) gives

det(M′(ξ)) = µ3g(ξ){k4s |β||γ| − |ξ|2[2|γ|(|γ| − |β|) + k2s ]}

= µ3g(ξ)

{
k4s |β||γ| −

[
2|γ|(k2p − k2s)

|β|+ |γ| + k2s

]2}

= µ3g(ξ)
d(ξ)

(|γ|+ |β|)2
with

d(ξ) = k4s(|γ||β| − |ξ|2)(|γ|+ |β|)2 + 4|γ|(k2s − k2p)(|γ|k2p + |β|k2s)|ξ|2.
Hence we only need to verify d(ξ) > 0 for |ξ| > Kω. Taking |ξ|2 = K ′k2s implies

d(ξ) = k8s [(
√

(K ′ − α)(K ′ − 1)−K ′)(
√
K ′ − 1 +

√
K ′ − α)2

+ 4(1− α)K ′
√
K ′ − 1(

√
K ′ − α + α

√
K ′ − 1)]

> k8s [−(
√
K ′ − α +

√
K ′ − 1)2 + 4(1− α)K ′

√
K ′ − 1α(

√
K ′ − α+

√
K ′ − 1)]

with α := k2p/k
2
s = µ/(λ+ 2µ) < 1. In order to show d(ξ) > 0, we will verify

2(1− α)αK ′
√
K ′ − 1 >

√
K ′ − α,

i.e.

K ′

√
K ′ − 1

K ′ − α
>

1

2(1− α)α
. (3.6)

To guarantee (3.6), let √
K ′ − 1

K ′ − α
>

1

2
, C >

1

α(1− α)
,

i.e.

K ′ > max

{
4− α

3
,

1

α(1− α)

}
=

1

α(1− α)
=

(λ+ 2µ)2

µ(λ+ µ)
.

Hence, supposing that

|ξ| >
√
K ′

µ
ω =

λ+ 2µ

µ
√
λ+ µ

ω

guarantees d(ξ) > 0, which implies detM′(ξ) > 0.

(3) For ρ(ξ) = |ξ|2 + βγ, direct calculation gives




k2p ≤ |ρ| ≤ kpks, 0 ≤ |ξ| ≤ kp;
k2p ≤ |ρ| ≤ k2s , kp ≤ |ξ| ≤ ks;
cKω

2 ≤ |ρ| ≤ k2s , ks ≤ |ξ| ≤ Kω,
(3.7)

with

cK = K2 −
√

(K2 − 1/µ)(K2 − 1/(λ+ 2µ)) > 1/(λ+ 2µ).
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Here to derive the inequality for ks ≤ |ξ| ≤ Kω we have used the fact that the function

ρ(ξ) = |ξ|2 −
√
k2p − |ξ|2

√
k2s − |ξ|2

is decreasing with respect to |ξ| for |ξ| ≥ ks. We also consider γ − β which is

γ − β =
√
k2s − |ξ|2 −

√
k2p − |ξ|2 =





|γ| − |β|, 0 < |ξ| ≤ kp,
|γ| − i|β|, kp < |ξ| ≤ ks,
i(|γ| − |β|), |ξ| > ks.

Then we immediately obtain
{ |γ − β| ≤

√
k2s − k2p, 0 < |ξ| ≤ kp or |ξ| > ks,

|γ − β| =
√
|γ|2 + |β|2 =

√
k2s − k2p, kp < |ξ| ≤ ks.

(3.8)

(3) To prove the third result, it suffices to verify the inequalityMij ≤ Cω, for i, j = 1, 2, 3
and |ξ| ≤ Kω. For M33, by (3.7) we have

|M33| =
∣∣∣∣
γω2

ρ

∣∣∣∣ ≤





ω2ks/k
2
p = ω(λ+ 2µ)/

√
µ, 0 ≤ |ξ| ≤ kp,

ω2
√
k2s − k2p/k

2
p = ω

√
(λ+ µ)(λ+ 2µ)/µ, kp ≤ |ξ| ≤ ks,

ω
√
K2ω2 − k2s/cKω

2 = ω
√
K2 − 1/µ/cK , ks ≤ |ξ| ≤ Kω.

(3.9)

Similarly, M23 and M32 can be estimated using (3.7) by

|M23| = |M32|

=

∣∣∣∣
2µρξ2 − ω2ξ2

ρ

∣∣∣∣ ≤





2µkp + ω2/kP = ω(2µ/
√
λ+ 2µ+

√
λ+ 2µ), 0 ≤ |ξ| ≤ kp,

2µks + ωks/k
2
p = ω(2

√
µ+ (λ+ 2µ)/

√
µ), kp ≤ |ξ| ≤ ks,

2µKω +Kω3/cKω
2 = ω(2µK +K/cK), ks ≤ |ξ| ≤ Kω.

(3.10)

It is obvious that |M13| = |M31| can also be estimated by the right-hand side of (3.10). It
remains to estimate M11, M22, M12 and M21. For convenience, denote

√
k2s − k2p = ω

√
λ + µ

µ(λ+ 2µ)
:= Cλ,µω.

Combining (3.7)-(3.8) gives

|M11| ≤ µ

∣∣∣∣
(γ − β)ξ22 + k2sβ

ρ

∣∣∣∣

≤





µ(ωCλ,µ + k2s/kp) = ω(µCλ,µ +
√
λ+ 2µ), 0 ≤ |ξ| ≤ kp,

µ(Cλ,µωk
2
s/k

2
p + ωCλ,µk

2
s/k

2
p) = 2ωCλ,µ(λ+ 2µ)/µ, kp ≤ |ξ| ≤ ks,

ω(µCλ,µK
2/cK +

√
K2 − 1/(λ+ 2µ)/cK), ks ≤ |ξ| ≤ Kω.

(3.11)

Obviously, |M22| can also be estimated by the right-hand side of (3.11). For |M12| and |M21|,
we combine (3.7)-(3.8) to obtain

|M12| = |M21|

≤ µ

∣∣∣∣
ξ1ξ2(γ − β)

ρ

∣∣∣∣ ≤





ωµCλ,µ, 0 ≤ |ξ| ≤ kp,
µk2sωCλ,µ/k

2
p = ω(λ+ 2µ)Cλ,µ, kp ≤ |ξ| ≤ ks,

µK2Cλ,µω
3/cKω

2 = ω(µK2Cλ,µ)/cK , ks ≤ |ξ| ≤ Kω.
(3.12)
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Combining the above results (3.9)-(3.12), we have

‖M‖ ≤





CK,1ω, 0 ≤ |ξ| ≤ kp,
CK,2ω, kp ≤ |ξ| ≤ ks,
CK,3ω, ks ≤ |ξ| ≤ Kω

with

CK,1 = max

{
λ+ 2µ√

µ
,

2µ√
λ+ 2µ

+
√
λ+ 2µ, µCλ,µ +

√
λ+ 2µ, µCλ,µ

}
,

CK,2 = max

{
(λ+ 2µ)Cλ,µ, 2

√
µ+

λ+ 2µ√
µ

,
2Cλ,µ(λ+ 2µ)

µ

}
,

CK,3 = max





√
K2 − 1

µ

cK
, 2µK +

K

cK
,
µK2Cλ,µ

cK
,
µK2Cλ,µ

cK
+

√
K2 − 1

λ+2µ

cK



 .

It can be verified that

CK,1 ≤ 2
λ+ 2µ√

µ
, CK,2 ≤

λ+ 2µ√
µ

+ 2
λ+ 2µ

µ
Cλ,µ + 2

√
µ

and

CK,3 ≤
K

cK
+
µK2Cλ,µ

cK
+ 2µK.

Recalling that cK > 1/(λ+ 2µ), we have

max{CK,1, CK,2, CK,3} ≤ 2(λ+ 4µ)K + (µ(λ+ 2µ)K2 + 2(λ+ 2µ)/µ)Cλ,µ

= 2(λ+ 4µ)K + (µ(λ+ 2µ)K2 + 2(λ+ 2µ)/µ)

√
λ+ µ

µ(λ+ 2µ)
.

The proof is completed. �

Recall that there exists a constant C0 = C0(h, L,m,M) > 0 independent of ω such that

‖∇u‖2L2(Sh)3
≥ 1/C0 ||u||2Vh, ||u||2H1/2(Γh)

≤ C0 ||u||2Vh, (3.13)

for all u ∈ Vh. The well-posedness result for small frequencies is stated below.

Theorem 3.3. Let K,CK > 0 be given as in Lemma 3.1. Then there exists a small frequency
ω0 > 0 such that the variational problem admits a unique solution in Vh for all ω ∈ (0, ω0].
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Proof. It is clear that ‖∇× u‖2L2(Sh)3
≤ ‖∇u‖2L2(Sh)3

. Now it follows from the definition of B

and Lemma 3.1 that

ℜB(u, u) = 2µ‖∇u‖2L2(Sh)3
+ λ‖∇ · u‖2L2(Sh)3

− µ‖∇ × u‖2L2(Sh)3

− ω2‖u‖2L2(Sh)3
− ℜ

∫

Γh

ū · T uds

= 2µ‖∇u‖2L2(Sh)3
+ λ‖∇ · u‖2L2(Sh)3

− µ‖∇ × u‖2L2(Sh)3
− ω2‖u‖2L2(Sh)3

(3.14)

+

∫

|ξ|≤Kω

Re(−iM(ξ))û · ¯̂udξ +
∫

|ξ|>Kω

Re(−iM(ξ))û · ¯̂udξ

≥ µ‖∇u‖2L2(Sh)3
− ω2‖u‖2L2(Sh)3

+

∫

|ξ|≤Kω

Re(−iM(ξ))û · ¯̂udξ

≥ µ‖∇u‖2L2(Sh)3
− ω2‖u‖2L2(Sh)3

− CK C0ω‖u‖2Vh, (3.15)

where the constant CK > 0 is given by Lemma 3.1 (3) and the constant C0 is specified in
(3.13). By Lemma 3.4 in [6] we have the following Poincare’s inequality

‖u‖2L2(Sh)3
≤ (h−m)‖∂3u‖2L2(Sh)3

≤ (h−m)‖∇u‖2L2(Sh)3
, u ∈ Vh. (3.16)

Using (3.14)-(3.16), we obtain the estimate

ℜB(u, u) ≥
(
µ/C0 − ωC0CK − ω2(h−m)

)
‖u‖2Vh

≥
(
µ/C0 − ω0C0CK − ω2

0(h−m)
)
‖u‖2Vh

for all u ∈ Vh and ω ∈ (0, ω0]. Choose ω0 sufficiently small such that

µ/C0 − ω0C0CK − ω2
0(h−m) > 0.

The proof is completed by applying the Lax-Milgram theorem. �

4. An a priori bound for smooth rough surfaces

In this section, we establish an a priori bound for a smooth rough surface at any fre-
quency. The attractive feature is that all constants in the a priori estimates are bounded by
explicit functions of ω, h,m,M and L.

Lemma 4.1. Let u ∈ Vh be a variational solution to (2.13) with g ∈ Vh. We have

‖∇ · u‖2L2(Γ), ‖∇ × u‖2L2(Γ)3 ≤ C1 ‖g‖L2(Sh)3‖∂3u‖L2(Sh)3 ,

where C1 = 4µ−1(1 + L2)1/2(ω/
√
µ (h−m) + 1).

Proof. By [11, Lemma 4.1](see also [9, Lemma 5] for the periodic version) we have the
following Rellich identity

2ℜ
∫

Sh

(µ∆u+ (λ+ µ)∇∇ · u+ ω2u) · ∂3ūdx

=
(
−
∫

Γ

+

∫

Γh

){
2ℜ(Tu · ∂3ū)− ν3E(u, ū) + ω2|u|2

}
ds, (4.1)

and

Tu · ∂3ū = ν3E(u, ū) = µ|∂νu|2ν3 + ν3(λ+ µ)|∇ · u|2. (4.2)
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From [11, Lemma 4.2 (ii)] we also have the following two identities
∫

Γh

{
2ℜ(Tu · ∂3ū)− E(u, ū) + ω2|u|2

}
ds

= 2ω2

∫

|ξ|<kp

β2(ξ)|Ap(ξ)|2 dξ + 2µ

∫

|ξ|<ks

γ2(ξ)|As(ξ)|2 dξ (4.3)

= 2ω2
{∫

|ξ|<kp

β2(ξ)|Ap(ξ)|2 dξ +
∫

|ξ|<ks

γ2(ξ)|Ãs(ξ)|2 dξ
}
,

ℑ
∫

Γh

Tu · ūds =
∫

|ξ|<kp

ω2β(ξ)|Ap(ξ)|2dξ +
∫

|ξ|<ks

µγ(ξ)|As(ξ)|2dξ

= ω2
{∫

|ξ|<kp

β(ξ)|Ap(ξ)|2dξ +
∫

|ξ|<ks

γ(ξ)|Ãs(ξ)|2dξ
}
. (4.4)

Here we have used the relation |As(ξ)|2 = k2s |Ãs(ξ)|2. Note that the identity (4.3) corrects
a mistake made in [11, Formula (4.1)]. Hence, combing (4.1) and (4.2) gives

−
∫

Γ

µ|∂νu|2ν3 + ν3(λ+ µ)|∇ · u|2 ds

=

∫

Γh

2ℜ(Tu · ∂3ū)− ν3E(u, ū) + ω2|u|2 ds− 2ℜ
∫

Sh

g∂3ū dx. (4.5)

Using (4.3) and (4.4) and taking the imaginary part of (2.13), we get
∫

Γh

{
2ℜ(Tu · ∂3ū)− E(u, ū) + ω2|u|2

}
ds ≤ 2ksℑ

∫

Γh

Tu · ūds

≤ 2ksℑ
∫

Sh

g · ūds. (4.6)

Combing (4.5) and (4.6) then gives the estimates

−
∫

Γ

µ|∂νu|2ν3 + ν3(λ+ µ)|∇ · u|2 ds

≤ 2ksℑ
∫

Sh

g · ūdx− 2ℜ
∫

Sh

g · ∂3ūdx

≤ 2‖g‖2L2(Sh)3

( ω√
µ
‖u‖2L2(Sh)3

+ ‖∂3u‖2L2(Sh)3

)

≤ 2(ω/
√
µ (h−m) + 1)‖g‖2L2(Sh)3

‖∂3u‖2L2(Sh)3
, (4.7)

where the last identity follows from (3.16). Since

ν3(x) = − 1√
1 + |∇x′f |2

< −(1 + L2)−1/2 < 0 on Γ, (4.8)

from (4.7) we obtain that

‖∇ · u‖2L2(Γ) + ‖∂νu‖2L2(Γ)3

≤ 2µ−1(1 + L2)1/2(ω/
√
µ (h−m) + 1)‖g‖2L2(Sh)3

‖∂3u‖2L2(Sh)3
. (4.9)

Finally, using u = 0 on Γ and the identities in [9, (4.17)] we have that

ν3|∇ × u|2 = ν3(|∇u|2 − |∇ · u|2) = ν3(|∂νu|2 − |∇ · u|2) on Γ.
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Thus, ‖∇ × u‖L2(Γ)3 can also be bounded by the right-hand side of (4.9) multiplied by two.

�

We next need to derive estimates for the L2 norms of the scalar function ∇ · u and the
vector function ∇×u on the artificial boundary ΓH and the strip SH where H = h+1. The
derivation is based on the a priori bound for the Helmholtz equation in [6]. By (2.4), we
define

ϕ := − i

k2p
∇ · u, ψ :=

i

k2s
∇× u, in x3 > h.

Since both ϕ and ψ satisfy the Helmholtz equation (2.5) and the UASR (2.6), one has the
following Dirichlet-to-Neumann map on the artificial boundary ΓH :

T̃ w = F−1(iηFw), w ∈ H1/2(ΓH), (4.10)

where w = ϕ, ψ, and η = β, γ, respectively. Moreover, T̃ is a bounded linear map of
H1/2(ΓH) to H

−1/2(ΓH) by [6, Lemma 2.4]. From Lemma 4.1 we can estimate the L2 norm
of the trace w on Γ as

‖w‖2L2(Γ)3 ≤ C1(ω, h, L)‖g‖L2(SH )3‖∂3u‖L2(SH )3 . (4.11)

The following lemma provides estimates for w on SH and the trace of w on ΓH .

Lemma 4.2. Assume that w satisfies the Helmholtz equation

∆w + k2w = g0 in SH , T̃ w = F−1(i
√
k2 − ξ2Fw) on ΓH (4.12)

where g0 ∈ L2(SH). Then there holds the estimate

‖w‖L2(ΓH )3 ≤ ‖w‖L2(SH )3 ≤ C̃2(L, k, h)‖w‖L2(Γ)3 + C̃3(k, h)‖g0‖L2(SH )3 (4.13)

with
C̃2(L, k, h) = C(1 + L2)1/4

√
H −m(1 + k(H −m))

and
C̃3(k, h) = C(H −m)(1 + k(H −m))2/k.

Proof. Consider the boundary value problem of finding v ∈ H1(SH) such that

(△+ k2)v = w̄ in SH , v = 0 on Γ, ∂3v = T̃ v on ΓH . (4.14)

By [6, Lemma 4.6] the boundary value problem (4.14) is well-posed with the following esti-
mate

‖∇v‖L2(SH ) + k‖v‖L2(SH ) ≤ C(1 + k(H −m))2(H −m)‖w‖L2(SH ). (4.15)

We first prove that ‖∂νv‖2L2(Γ)3 ≤ C‖w‖2L2(SH )3 for some constant C > 0 depending

explicitly on ω,H and the Lipschitz constant L of Γ. The Rellich identity for the Helmholtz
equation gives:

2ℜ
∫

SH

∂3v̄(∆v + k2v)dx

=
(∫

Γ

+

∫

ΓH

)
{2ℜ(∂νv∂3v̄)− ν3|∇v|2 + ν3k

2|v|2}ds, (4.16)
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which can be proved in the same way as (4.1). From the proof of [6, Lemma 4.6] it holds
that

∫

ΓH

{2ℜ(∂νv∂3v̄ − ν3|∇v|2 + ν3k
2|v|2)}ds ≤ 2kℑ

∫

ΓH

v̄T̃ vds

≤ 2kℑ
∫

SH

v̄w̄dx. (4.17)

Moreover, using the identities in (4.17) of [9] on Γ and the bound for ν3 in (4.8) one has

−
∫

ΓH

{2ℜ(∂νv∂3v̄ − ν3|∇v|2 + ν3k
2|v|2)}ds = −

∫

Γ

ν3|∂νv|2ds

≥ (1 + L2)−1/2‖∂νv‖2L2(Γ). (4.18)

Plugging (4.17) and (4.18) into (4.16) and using (4.15) yield the estimate

‖∂νv‖2L2(Γ) ≤ (1 + L2)1/2
{
− 2ℜ

∫

SH

w̄∂3vdx+ 2kℑ
∫

SH

w̄v̄dx
}

≤ 2(1 + L2)1/2‖w‖L2(SH )(k‖v‖L2(SH ) + ‖∇v‖L2(SH ))

≤ C(1 + L2)1/2(H −m)(1 + k(H −m))2‖w‖2L2(SH ), (4.19)

where the constants C is independent of w.

Now we prove the second inequality in (4.13). Following the approach of [8, Lemma 7],
we obtain that

∫

SH

{w∆v − v∆w}dx =

∫

ΓH

{w∂νv − v∂νw}ds+
∫

Γ

w∂νds

=

∫

ΓH

{wT̃v − vT̃w}ds+
∫

Γ

w∂νvds

=

∫

Γ

w∂νvds.

Note that v = 0 on Γ, and the Dirichlet-to-Neumann operator T̃ defined in (4.10) is sym-
metric (see Lemma 3.2 in [6]). Thus,

∫

SH

|w|2dx =

∫

SH

w(∆v + k2v)dx

=

∫

SH

v(∇w + k2w)dx+

∫

Γ

w∂νvds

=

∫

SH

vgdx+

∫

Γ

w∂νvds.

Noting (4.15) and (4.19) one has

‖w‖2L2(SH ) ≤ ‖v‖2L2(SH )‖g‖2L2(SH ) + ‖w‖2L2(Γ)‖∂νv‖2L2(Γ)

≤ C
√
H −m(1 + L2)1/4(1 + k(H −m))‖w‖L2(SH )‖w‖L2(Γ)

+ C(H −m)
(1 + k(H −m))2

k
‖w‖L2(SH )‖g0‖L2(SH ).
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Then the following inequality is proved

‖w‖L2(SH ) ≤ C̃2(L, k, h)‖w‖L2(Γ) + C̃3(k, h)‖g0‖L2(SH ). (4.20)

To estimate the first inequality in (4.13) we use
∫

ΓH

|w|2ds ≤
∫

Γc

|w|2ds, for all c ∈ (h,H ],

which follows from the proof of [6, Lemma 2.2]. Then we have

(H − h)

∫

ΓH

|w|2dx ≤
∫

SH\Sh

|w|2ds ≤
∫

SH

|w|2ds. (4.21)

The estimate (4.13) is proved by combing (4.20) and (4.21).

�

Next we prove the estimates of the L2 norms of ∇ · u and ∇× u on SH and ΓH . Using
Lemma 4.2 for v = ϕ and ψ with g0 = −(i/ω2)∇ · g and (i/ω2)∇× g in (4.12) , respectively,
and (4.11), we obtain the estimate

‖∇ · u‖2L2(SH ) + ‖∇ × u‖2L2(SH )3

≤ C2(ω, h, L)
2C1(ω, h, L)‖g‖Vh‖∂3u‖L2(SH )3 + C3(ω, h)

2‖g‖2Vh, (4.22)

where

C2(ω, h, L) = C(1 + L2)1/4
√
H −m(1 + ω(H −m))

and

C3(ω, h) = C(H −m)(1 + ω(H −m))2/ω.

In a similar way, from the estimates (4.13) and (4.11) we have the bound

‖∇ · u‖2L2(ΓH ) + ‖∇ × u‖2L2(ΓH )3

≤ C2(ω, h, L)
2C1(ω, h, L)‖g‖Vh‖∂3u‖L2(SH )3 + C3(ω, h)

2‖g‖2Vh. (4.23)

The following theorem provides the a priori bound for the solution toVariational Problem
I dependent on the frequency and geometry of the rough surface.

Theorem 4.3. Assume that Γ is given by the graph of a Lipschitz function f satisfying
(2.1), and that u ∈ Vh is a solution to the variational problem (2.13). Then there exists a
constant C independent of ω, h and the Lipschitz constant L of f such that the following a
priori bound holds

‖u‖Vh ≤ (h−m+ 2)(C4(ω, h) + C5(ω, h) + C6(ω, h, L))‖g‖Vh,

where

C4(ω, h) = C(h+ 1−m)ω, C5 = C
√
1 + ω−1C3(ω, h),

C6 = C(ω−1 + 1)C1(ω, h, L)C2(ω, h, L)
2.
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Proof. We first assume that f is smooth. Multiplying both sides of the Navier equation by
(x3 −m)∂3ū and using integration by parts yields

2ℜ
∫

SH

(△∗ + ω2)u · (x3 −m)∂3ūdx

=

∫

SH

{
E(u, ū)− 2ℜ

{ 3∑

j=1

E(u, (x3 −m)ej)∂3ūj

}
− ω2|u|2

}
dx

+
(∫

ΓH

+

∫

Γ

)
[−ν3E(u, ū) + 2ℜ(Tu · ∂3ū) + ν3ω

2|u|2](x3 −m)ds. (4.24)

Letting v = u in the variational formulation (2.13) gives

∫

SH

{E(u, ū)− ω2|u|}dx−ℜ
∫

|ξ|>Kω

M(ξ)û(ξ,H) · ¯̂u(ξ,H)dξ

= −ℜ
∫

SH

g · ūdx+ ℜ
∫

|ξ|≤Kω

M(ξ)û(ξ,H) · ¯̂u(ξ,H)dξ. (4.25)

Taking the real part and using Lemma 3.1 we have

∫

SH

{E(u, ū)− ω2|u|}dx

≤ − ℜ
∫

SH

g · ūdx+ ℜ
∫

|ξ|≤Kω

M(ξ)û(ξ,H) · ¯̂u(ξ,H)dξ. (4.26)

From (4.24) and using (4.26) and (4.2), we have

∫

SH

2ℜ
{ 3∑

j=1

E(u, (x3 −m)ej)∂3ūj

}
dx

−
∫

Γ

(x3 −m){µ|∂νu|2 + (λ+ µ)|∇ × u|2}ν3ds

=

∫

SH

{E(u, ū)− ω2|u|2}dx− 2ℜ
∫

SH

(△∗ + ω2)u · (x3 −m)∂3ūdx

+ (H −m)

∫

ΓH

{2ℜ(Tu · ∂3ū)− E(u, ū) + ω2|u|2}ds

≤
∫

SH

{−g · u+ 2ℜ(g · ∂3ū)(x3 −m)}dx+ ℜ
∫

|ξ|≤Kω

M(ξ) ûH(ξ) · ¯̂uH(ξ)dξ

+ (H −m)

∫

ΓH

{2ℜ(Tu · ∂3ū)− E(u, ū) + ω2|u|2}ds. (4.27)

As ‖M(ξ)‖ ≤ Cω for all |ξ| < Kω, one has

ℜ
∫

|ξ|≤Kω

M(ξ) ûH(ξ) · ¯̂uH(ξ)dξ ≤ Cω

∫

|ξ|≤Kω

|ûH(ξ)|2dξ. (4.28)
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Using (4.28) and (4.23) gives

ℜ
∫

|ξ|≤Kω

M(ξ) ûH(ξ) · ¯̂uH(ξ)dξ ≤ Cωk2s

∫

|ξ|≤Kω

{|Ap(ξ)|2 + |As(ξ)|2}dξ

≤ Cωk2s(‖Ap‖2L2(R2) + ‖As‖2L2(R2)3)

≤ Cω−1
(
C2(ω, h, L)

2C1(ω, h, L)‖g‖Vh‖∂3u‖L2(SH )3 + C3(ω, h)
2‖g‖2Vh

)
. (4.29)

From the estimates (4.6) and (3.16) we have the following estimate for the last term in
(4.27):

∫

Γh

{2ℜ(Tu · ∂3ū− E(u, ū) + ω2|u|2)}ds ≤ 2ksℑ
∫

SH

g · ūdx

≤ 2ks‖g‖Vh‖u‖L2(SH )3

≤ C(H −m)ks‖g‖Vh‖∂3u‖L2(SH )3 . (4.30)

Combing (4.29)–(4.30) and (4.27) and noting that the second term in (4.27) is nonnegative,
we have

∫

SH

2ℜ
{ 3∑

j=1

E(u, (x3 −m)ej)∂3ūj

}
dx

≤ C(H −m)ω‖g‖L2(SH )3‖∂3u‖L2(SH )3 + C(ω−1 + 1)

×
(
C2(ω, h, L)

2C1(ω, h, L)‖g‖Vh‖∂3u‖L2(SH )3 + C3(ω, h)
2‖g‖2Vh

)
. (4.31)

Direct calculations yield

E(u, (x3 −m)e1)∂3ū1 = 2µ|∂3u1|2 − µ(∂3u1 − ∂1u3) ∂3u1,

E(u, (x3 −m)e2)∂3ū2 = 2µ|∂3u2|2 + µ(∂2u3 − ∂3u2) ∂3u2,

E(u, (x3 −m)e3)∂3ū3 = (λ+ 2µ)|∂3u3|2 + λ(∂1u1 + ∂2u2) ∂3u3.

Hence,

∫

SH

2ℜ
{ 3∑

j=1

E(u, (x3 −m)ej)∂3ūj

}
dx

= 2(λ+ 2µ)‖∂3u3‖2L2(SH )3 + 4µ(‖∂3u1‖2L2(SH )3 + ‖∂3u2‖2L2(SH )3)

+ 2λ
(
ℜ
∫

SH

∂1u1∂3ū3dx+ ℜ
∫

SH

∂2u2∂3ū3dx
)

− 2µℜ
{∫

SH

(∂3u1 − ∂1u3)∂3ū1 − (∂2u3 − ∂3u2)∂3ū2dx

}
. (4.32)

Choosing C > 0 to be sufficiently large, we get

∫

SH

2ℜ
{ 3∑

j=1

E(u, (x3 −m)ej)∂3ūj

}
dx+ C‖∇ · u‖2L2(SH ) + C‖∇ × u‖2L2(SH )3

= I1 + I2 + I3 + C‖∂1u2 − ∂2u1‖2L2(SH ), (4.33)
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where

I1 := [C + 2(λ+ 2µ)]‖∂3u3‖2L2(SH )3 + C‖∂1u1‖2L2(SH )3 + C‖∂2u2‖2L2(SH )3

+ (C + 2λ)
(
ℜ
∫

SH

∂1u1∂3ū3dx+ ℜ
∫

SH

∂2u2∂3ū3dx
)
+ Cℜ

∫

SH

∂1u1∂2ū2dx,

=

∫

SH

A[∂1u1, ∂2u2, ∂3u3]
⊤ · [∂1ū1, ∂2ū2, ∂3ū3]⊤dx,

A :=




C C/2 λ+ C/2
C/2 C λ+ C/2

λ+ C/2 λ+ C/2 C + 2(λ+ 2µ)


 ,

I2 := 4µ‖∂3u1‖2L2(SH )3 + C‖∂3u1 − ∂1u3‖2L2(SH ) − 2µℜ
∫

SH

(∂3u1 − ∂1u3)∂3ū1dx,

I3 := 4µ‖∂3u2‖2L2(SH )3) + C‖∂2u3 − ∂3u2‖2L2(SH ) + 2µℜ
∫

SH

(∂2u3 − ∂3u2)∂3ū2dx.

Direct calculations show that Det(A) ∼ C2/8 as C → ∞. Hence the matrix A ∈ R3×3 must
be strictly positive for sufficiently large C > 0. This gives

I1 ≥ C0 (‖∂1u1‖2L2(SH ) + ‖∂2u2‖2L2(SH ) + ‖∂3u3‖2L2(SH )), (4.34)

where the constant C0 > 0 only depends on λ and µ. By arguing in the same manner one
has for C > µ2/4 that

I2 ≥ C0 (‖∂3u1‖2L2(SH ) + ‖∂3u1 − ∂1u3‖2L2(SH )), (4.35)

I3 ≥ C0 (‖∂3u2‖2L2(SH ) + ‖∂3u2 − ∂2u3‖2L2(SH )). (4.36)

Hence, it follows from (4.33)-(4.36) that

∫

SH

2ℜ
{ 3∑

j=1

E(u, (x3 −m)ej)∂3ūj

}
dx+ C‖∇ · u‖2L2(SH ) + C‖∇ × u‖2L2(SH )3

≥ C0 (‖∂1u1‖2L2(SH ) + ‖∂2u2‖2L2(SH ) + ‖∂3u3‖2L2(SH ) + ‖∂1u2 − ∂2u1‖2L2(SH ))

+ C0 (‖∂3u1‖2L2(SH ) + ‖∂1u3‖2L2(SH ) + ‖∂3u2‖2L2(SH ) + ‖∂2u3‖2L2(SH )), (4.37)

provided C > 0 is sufficiently large. Combining (4.22), (4.31) and (4.37) and using Young’s
inequality gives

Right hand side of (4.37) ≤ (C4(ω, h)
2 + C5(ω, h)

2 + C6(ω, h, L)
2)‖g‖2Vh. (4.38)

However, we still need to estimate ‖∂1u2‖2L2(SH ) and ‖∂2u1‖2L2(SH ). Since ‖∂3u‖2L2(SH )3 can

also be bounded by the right hand side of (4.38), we have (see [6, Lemma 3.4])

‖u‖2L2(SH ) ≤ C0 ‖∂3u‖2L2(SH )3 ≤ (C4(ω, h)
2 + C5(ω, h)

2 + C6(ω, h, L)
2)‖g‖2Vh. (4.39)

Now, using (4.26), (4.29) and (4.39) we arrive at

E(u, ū) ≤ (C4(ω, h)
2 + C5(ω, h)

2 + C6(ω, h, L)
2)‖g‖2Vh. (4.40)

Recalling the expression of E , we find

2µ(∂1u2 + ∂2u1) = E(u, u)− λ∇ · u− µ∇× u− 2µ(∂1u3 + ∂1u1 + ∂2u2 + ∂2u3 +

3∑

j=1

∂3uj).
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It follows from (4.40), (4.22) and (4.38) that each term on the right hand side of the previous
identity can be bounded by the right hand side of (4.40), leading to the same upper bound for
||∂1u2+∂2u1||L2(SH ). Finally, recalling the upper bound for the difference ||∂1u2−∂2u1||L2(SH )

(see (4.37)) we obtain the estimates for ||∂1u2||2L2(SH ) ,||∂2u1||2L2(SH ) and thus also for ||∇u||.
Using the L2-estimate for u (see (4.39)) we obtain

||u||2Vh ≤ (C4(ω, h)
2 + C5(ω, h)

2 + C6(ω, h, L)
2)‖g‖2Vh.

Now the a priori bound for f being smooth has been proved. It can be extended to the
case of a general Lipschitz function by the method of approximation in [8]. This completes
the proof.

�

5. Well-posedness for random rough surfaces

In this section, we investigate the well-posedness of elastic scattering by a random rough
surface. Let (Ω,A,P) be a complete probability space. Denote by S(η) a random surface

Γ(η) := {x ∈ R
3 : x3 = f(η; x1, x

′), η ∈ Ω, x′ ∈ R
2}.

Similarly, D(η) and Sh(η) represent the random counterparts of D and Sh, respectively.
Assume f(η; x′) is a Lipschitz continuous function with Lipschitz constant L(η) for all η ∈ Ω
and it also satisfies m < f(η; x′) < M . The random source g(η) is assumed to satisfy
g(η) ∈ L2(D(η))3 with its support in Sh(η). Similarly as the deterministic case, we can give
the following random boundary value problem.

∆∗u(η; ·) + ω2u(η; ·) = g(η; ·) in Sh(η),
u(η; ·) = 0 on Γ(η),

Tu(η; ·) = T u(η; ·) on Γh.

For simplicity, let Vh(η) = Vh(Sh(η)). Define a sesquilinear form B̃η on Vh(η)× Vh(η) by

B̃η(u, v) =

∫

Sh(η)

E(u, v̄)− ω2u · v̄ dx−
∫

Γh

T u · v̄ ds, (5.1)

and an antilinear functional G̃η on Vh(η) by

G̃η(v) := −
∫

Sh(η)

g(η) · v̄ dx. (5.2)

To define the stochastic variation problem directly is not suitable since Vh(η) is dependent
on η. We take a variable transform to give a new sesquilinear form defined on Vh × Vh. Let
f0 = f(η0) and g0 = g(η0) for some fixed η0 ∈ Ω and write D = D(η0), Sh = Sh(η0) and
Vh = Vh(η0) for convenience. In addition, we assume that g(η) ∈ H1(D(η))3 and

‖f(η)− f0‖1,∞ ≤M0, ∀η ∈ Ω,

with some constant M0 > 0. Moreover, the truncated height h is chosen such that

(M −m)/γ < 1, (5.3)

where γ = h − sup
x′
f0(x

′). This condition ensures the invertiblity of the variable transform

H which will be introduced later. Since Γh is artificial, choosing sufficiently large h will be
enough.
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Denote by Lip(R2) the set including all Lipschitz continuous functions on R2. Then
define a product topology space

C = C1 × C2,
where

C1 := {v ∈ Lip(R2) : m < v < M, ‖v − f0‖1,∞ ≤M0},
with constant M0 > 0 and

C2 := H1
0(Sh)

3.

The topology of C1 and C2 are respectively given by the norms ‖ · ‖1,∞ and ‖ · ‖H1(Sh)3 .

Consider the transform H: Sh → Sh(η) defined by

H(y) = y + α(y3 − f0(y
′))(f(η; y′)− f0(y

′))e3, y ∈ Dh,

where e3 is the unit vector in x3 direction and α(x) is a cutoff function which satisfies

α(x) =

{
0, x < δ,
1, x > γ,

with sufficiently small δ. It is also required to satisfy

|α′| < 1/(γ − 2δ). (5.4)

The Jacobi matrix of H is

JH = I3 +




0 0 0
0 0 0
J1 J2 J3


 ,

where

Ji = α(y3 − f0(y
′))(∂if(η; y

′)− ∂if0(y
′))− α′(y3 − f0(y

′))∂if0(y1)(f(η; y
′)− f0(y

′)), i = 1, 2

and

J3 = α′(y3 − f0(y
′))(f(η; y′)− f0(y

′)).

Since matrix JH is required to be non-singular so that H is invertible, according to (5.4),
we obtain

|J3| <
M −m

γ − 2δ
.

Hence, by (5.3), we can choose δ sufficiently small such that

|J3| <
M −m

γ − 2δ
< 1,

which implies that H is invertible. It is easy to verify H(Γh) = Γh. Set

A = (α1, α2, α3), B
⊤ = (β1, β2, β3) ∈ C

3×3,

then denote

A : B = tr(B⊤A)

and

A⊗ B =




α2 · β3 − α3 · β2
α3 · β1 − α1 · β3
α1 · β2 − α2 · β1


 .
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For u, v ∈ Vh(η), taking x = H(y) in (5.1) yields

B̃η(u, v) =2µ

∫

Sh

3∑

j=1

∇ũjJH−1J ⊤
H−1∇¯̃vj detJH dy

+ λ

∫

Sh

(∇ũ : J ⊤
H−1)(∇¯̃v : J ⊤

H−1) detJH dy

− µ

∫

Sh

(JH−1 ⊗∇ũ)(JH−1 ⊗∇¯̃v) detJH dy

− ω2

∫

Sh

ũ · ¯̃v detJH dy −
∫

Γh

T ũ · ¯̃v ds(y),

where ũ = u ◦ H, ṽ = v ◦ H. Similarly, for v ∈ Vh(η), let x = H(y) in (5.2),

G̃η(v) = −
∫

Dh

g̃(η) · ¯̃v detJH dx.

Recall that we require g(η) ∈ H1(D(η))3 and the support of g(η) is in Sh(η), we have
g̃(η) ∈ H1

0 (Sh)
3 for all η. So we can define the input map c : Ω → C by

c(η) := (f(η), g̃(η)).

Note that ũ, ṽ ∈ Vh. Thus we can define a continuous sesquilinear form Bc(η)(u, v) on Vh×Vh
by

Bc(η)(u, v) :=2µ

∫

Sh

3∑

j=1

∇ujJH−1J ⊤
H−1∇v̄j detJH dy

+ λ

∫

Sh

(∇u : J ⊤
H−1)(∇v̄ : J ⊤

H−1) detJH dy

− µ

∫

Sh

(JH−1 ⊗∇u)(JH−1 ⊗∇v̄) detJH dy

− ω2

∫

Sh

u · v̄ detJH dy −
∫

Γh

T u · v̄ ds(y). (5.5)

It is easy to see
B̃η(u, v) = Bc(η)(ũ, ṽ).

Similarly we can define an antilinear functional Gc(η) on Vh by

Gc(η)(v) := −
∫

Sh

g̃(η) · v̄ detJH dx. (5.6)

Obviously, there holds the identity

Gc(η)(ṽ) = G̃η(v).

Then the sesquilinear form B̃ on L2(Ω;Vh)× L2(Ω;Vh) can be defined by

B(u, v) :=
∫

Ω

Bc(η)(u, v) dP(η)

and the antilinear functional G is defined on L2(Ω;Vh) by

G(v) :=
∫

Ω

Gc(η)(v) dP(η).
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For convenience, we regard the sesquilinear form Bc(η) : Vh × Vh → C as the same operator
in B(Vh, V

∗
h ) generated by it. Here V ∗

h is the dual space of Vh and B(X, Y ) denote the space
including all bounded linear operators X → Y . Similarly to (5.5)-(5.6), we can define the
sesquilinear form B(φ,ψ) and the antilinear functional G(φ,ψ) for all (φ, ψ) ∈ C. Then we can
define the map B: C → B(Vh, V

∗
h ) by

B((φ, ψ)) := B(φ,ψ)

and the map G : C → V ∗
h by

G ((φ, ψ)) := G(φ,ψ).

Now we can define the stochastic variation problem as follows.

Variational Problem II: find u ∈ L2(Ω;Vh) such that

B(u, v) = G(v), ∀v ∈ L2(Ω;Vh). (5.7)

We will consider the well-posedness of the stochastic variation problem (5.7). Firstly we
show both the sesquilinear form B and the antilinear functional G are well-defined which
is based on measurability and P-essentially separability of c. For measurability and P-
essentially separability of c, the following condition is necessary.

Condition 5.1. The map c1: Ω → C1 defined by

c1(η) = f(η)

satisfies c1 ∈ L2(Ω; C1) and the map c2: Ω → C2 defined by

c2(η) = g̃(η)

satisfies c2 ∈ L2(Ω; C2).

It implies the following lemma (see Lemma 4.1 in [14]).

Lemma 5.1. Under Condition 5.1, the map c is measurable and P-essentially separable.

Then we can prove that the sesquilinear form B is well-defined by the continuity of B

and the regularity of B ◦ c.

Lemma 5.2. (i) The map B: C → B(Vh, V
∗
h ) is continuous.

(ii) The map B ◦ c ∈ L∞(Ω;B(Vh, V
∗
h )).

(iii) The sesquilinear form B is well-defined on L2(Ω;Vh)× L2(Ω;Vh).

Proof. We only prove (i), since (ii),(iii) can be verified similarly as the two-dimensions case in
[14]. For convenience, we only prove the continuity at the point (f0, g0) ∈ C since for other
points the proof is similar. Consider the sequence {(fm, gm)} ⊂ C such that (fm, gm) →
(f0, g0) in C when m→ ∞. Denote the transform by

Hm(y) = y + α(y3 − f0(y
′))(fm(y

′)− f0(y
′))e3, y ∈ Dh.
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For any u, v ∈ Vh,

B(fm,gm)(u, v)−B(u, v) = 2µ

∫

Sh

2∑

j=1

∇uj(I3 − JH−1
m
J ⊤

H−1
m

detJHm)∇v̄j dx

+ λ

∫

Sh

(∇ · u)(∇ · v̄)− (∇ũ : JH−1
m
)(∇¯̃v : J ⊤

H−1
m
) detJHm dx

− µ

∫

Sh

(JH−1
m

⊗∇ũ)(JH−1
m

⊗∇¯̃v) detJHm − (∇× u) · (∇× v̄) dx

− ω2

∫

Sh

u · v̄(detJHm − 1) dx.

By direct calculations, we have

detJHm = 1 +O(‖fm − f0‖1,∞), JH−1
m

= I3 +O(‖fm − f0‖1,∞),

which imply that

|B(fm,gm)(u, v)−B(u, v)| ≤ C‖u‖H1(Dh)2‖v‖H1(Sh)3‖fm − f0‖1,∞.
It turns out when m→ ∞,

‖B(fm,gm) − B‖B(Vh,V
∗

h ) ≤ C‖fm − f0‖1,∞ → 0.

This completes the proof. �

Next we give a similar lemma for the antilinear functional G.
Lemma 5.3. (i) The map G : C → V ∗

h is continuous.
(ii) The map G ◦ c ∈ L2(Ω;V ∗

h ).
(iii) The antilinear functional G is well-defined on L2(Ω;Vh).

The proof is similar to Lemma 4.3 in [14]. For any given sampling η, we consider the
following deterministic Variational Problem III.

Find u(η) ∈ Vh such that

Bc(η)(u(η), v) = Gc(η)(v), ∀v ∈ Vh. (5.8)

The existence and uniqueness of solutions of the problem (5.8) has been given in Theorem
2.1. The a priori bound in Lemma 4.2 can also be used for (5.8). Notice that for any η we
have the upper bound

L(η) ≤ L+M0.

Lemma 5.4. For any given η, the variational problem (5.8) admits a unique solution u(η) ∈
Vh. Moreover, the a priori bound

‖u∗(η)‖H1(Sh(η))3 ≤ (h−m+ 2)(C4(ω, h) + C5(ω, h) + C6(ω, h, L0))‖g(η)‖H1(Sh(η))3

holds for u∗(η) = u(η) ◦ H−1 with L0 =M0 + L.

Proof. If u(η) is a solution to Variational Problem III (5.8), then u∗(η) = u(η) ◦ H−1 is
solution to Variational Problem I (2.13) corresponding to f(η) and g(η). Conversely, if u(η) is
solution to Variational Problem I (2.13) corresponding to f(η) and g(η), then ũ(η) = u(η)◦H
is solution to Variational Problem III (5.8). So Theorem 2.1 implies existence and uniqueness
of solutions to the variation problem (5.7), and Theorem 4.3 implies the a priori bound. �
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Lemma 5.4 shows the existence of a solution u(η) to (5.8) for given η. In fact, the
following lemma shows u(η) ∈ L2(Ω;Vh).

Lemma 5.5. For the solution u(η) to Variational Problem III (5.8), we have u(η) ∈ L2(Ω;Vh).

The proof is omitted here since it is similar to the two-dimensions case in Lemma 4.4
in [14]. Based on Lemmas 5.2 - 5.5, we can conclude the well-posedness of (5.7) in the
framework of [12, 13, 14] and extend the a priori bound to random case as follows.

Theorem 5.6. (i) The Variational Problem II (5.7) admits a unique solution u ∈ L2(Ω, Vh).
(ii) Let u ∈ Vh(η) be a solution to the Variation Problem I (2.13) corresponding to f(η)

and g(η) with η ∈ Ω, and let ũ(η) ∈ L2(Ω;Vh) be the solution to the Variational
Problem II (5.7). Then u and ũ satisfy respectively the bound

∫

Ω

‖u‖2H1(Sh(η))3
dP

≤ (h−m+ 2)2(C4(ω, h) + C5(ω, h) + C6(ω, h, L0))
2

∫

Ω

‖g‖2H1(Sh(η))3
dP,

and ∫

Ω

‖ũ‖2H1(Sh)3
dP

≤ (h−m+ 2)2(C4(ω, h) + C5(ω, h) + C6(ω, h, L0))
2

∫

Ω

‖g̃‖2H1(Sh)3
dP.

6. Conclusion

We establishes the well-posedness of the time-harmonic elastic scattering from general
unbounded rough surfaces in three dimensions at an arbitrary frequency. A priori bounds
which are explicit dependent on the frequency and on the geometry of the rough surface are
derived both for deterministic and random cases. A possible continuation of this work is to
study the elastic scattering by incident plane waves, spherical or cylindrical waves. We hope
to report the progress on these results in subsequent publications.
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