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TIME-HARMONIC ACOUSTIC SCATTERING FROM LOCALLY
PERTURBED PERIODIC CURVES\ast 

GUANGHUI HU\dagger , WANGTAO LU\ddagger , AND ANDREAS RATHSFELD\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . For the Dirichlet rough-surface scattering problem in two dimensions, we prove that
the Green's function defined with the angular spectrum representation radiation condition satisfies
the Sommerfeld radiation condition over the half-plane. To the best of our knowledge, such an
outgoing property has not been rigorously justified in the literature. We prove well-posedness for the
time-harmonic acoustic scattering of plane waves from locally perturbed periodic surfaces. It will be
shown that the scattered wave of an incoming plane wave is the sum of the scattered wave for the
unperturbed periodic surface plus an additional scattered wave satisfying Sommerfeld's condition
on the half-plane. Whereas the scattered wave for the unperturbed periodic surface has a far field
consisting of a finite number of propagating plane waves, the additional field contributes to the far
field by a far-field pattern defined in the half-plane directions similarly to the pattern known for
bounded obstacles.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . scattering problem, two-dimensional Helmholtz equation, locally perturbed peri-
odic boundary curve, half-plane Sommerfeld radiation condition, sound-soft boundary condition

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 74J20, 76B15, 35J50, 35J08

\bfD \bfO \bfI . 10.1137/19M1301679

1. Introduction. Scattering theory for periodic structures has many applica-
tions in near-field optics, microelectronics, nondestructive testing, and the design of
photonic crystals. We refer to [42] for an introduction and historical remarks on the
electromagnetic theory of gratings. Over the last twenty years, significant progress has
been made concerning the mathematical analysis and the numerical approximation
of grating diffraction problems for the case of incident acoustic or electromagnetic
waves, using boundary integral equation (BIE) methods (e.g., [37, 39, 41, 43, 46])
and variational methods (e.g., [6, 19, 20, 29, 44]). This paper is concerned with the
analysis and computation of time-harmonic scattering by a one-dimensional perfectly
conducting grating with local perturbation. Physically, the local perturbation of a
perfectly periodic surface can be used to model optical devices with localized defects,
for instance, unmade or distorted grooves on the surface of diffraction gratings.

The diffracted field for a plane wave incident onto a perfect grating is well-known
to be quasi-periodic due to the periodicity of the scattering surface and the quasi-
periodicity of the incoming wave. The presence of defects will break down the quasi-
periodicity property, leading to essential difficulties in the reduction of the analysis
and simulation to problems over bounded domains. A limited number of approaches
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2570 GUANGHUI HU, WANGTAO LU, AND ANDREAS RATHSFELD

have been proposed so far for treating grating problems with local perturbations. To
solve transmission problems for periodic interfaces perturbed by compact aperiodic
inclusions below the interface, Ammari and Bao [1] proposed an integral equation
approach. This integral equation is defined over \BbbR 2 or \BbbR 3 and includes a Fourier
transform as well as a kernel function, which is defined by the solution of a family
of variational equations. The approach relies on strong presumptions (for instance,
absence of surface waves and the unique solvability of a periodic equation; see equa-
tion (3.1) in [1]), and the mathematical analysis of the unique solvability and the
decay behavior of the unperturbed fields seem still to be unclear in general. Bonnet-
Bendhia and Ramdani [5] treated such compact inclusions if the space beneath a
planar interface is filled with media periodic in the interface direction. They em-
ployed Floquet--Bloch transforms, variational formulations, and BIE techniques. Joly
et al. established an exact boundary condition with a map of Dirichlet-to-Neumann
type for numerically solving an inhomogeneous source problem in a closed periodic
waveguide with a local junction [27] and then extended the approach to an open wave-
guide, where the unperturbed medium was periodic in two directions [21]. Here and
in other publications, the Floquet--Bloch transform was employed to handle scattering
problems in a locally perturbed periodic medium; see [16] for a line defect, Haddar
and Nguyen [24] in periodic layered medium, Lechleiter and Zhang [34] for locally
perturbed sound-soft surfaces, and Hu and Lu [25] for a biperiodic photonic crystal
with a bended tunnel. The resulting numerical schemes of [24, 34] required the cal-
culation of inverse and forward Floquet--Bloch transforms or variational equations for
Floquet--Bloch transformed solutions.

Motivated by recent studies on wave scattering from flat surfaces with local per-
turbations [2, 4, 45], in this paper we consider plane-wave scattering by a periodic
grating with local perturbation and prove that the total field can be uniquely de-
composed into three parts (see Theorem 3.1): the incoming wave vin, the reflected
field vsc corresponding to the unperturbed periodic scattering interface, and the per-
turbed wave u0 caused by the presence of local perturbations. We verify that u0

satisfies the half-space Sommerfeld radiation condition (see Definition 2.1). This, in
particular, implies that a local perturbation cannot give rise to any surface wave (see
Remark 3.1). The characterization of the asymptotic behavior of u0 in a periodic
background medium seems to be missing in the literature and turns out to be non-
trivial. In the case of flat surfaces with local perturbations, it is easy to prove that u0

fulfills the strong Sommerfeld radiation condition uniformly for all outgoing directions
in the upper half-space. Note that the splitting u=vin+vsc+u0 is a special case of the
representation u - vin=upr+uev+ucon suggested by DeSanto and Martin for general
rough surfaces in [18, eq. (12)] but rigorously justified for special locally perturbed flat
surfaces only. In that representation vsc=upr+uev is a finite sum of propagating and
generalized (evanescent) plane-wave modes, and u0=ucon is an integral of plane-wave
modes satisfying Sommerfeld's radiation condition.

The decomposition of the scattered fields into reflected fields and Sommerfeld-
type outgoing fields also applies to other cases of local perturbations, e.g., a bounded
obstacle embedded in periodic background media, including inhomogeneous periodic
layered media. Hence, the proposed approach can be used to handle general grating
diffraction problems with defects. This requires the determination of the solution
for the unperturbed periodic surface and an efficient forward solver for computing
the Green's function G to the unperturbed grating diffraction problems, i.e., the
computation of the total fields excited by incoming point-source waves. Since such
incident waves are not quasi-periodic, special methods of computation are required.
One can apply the Floquet--Bloch transform to the calculation of G (see, e.g., [33]).
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SCATTERING BY DEFECTED PERIODIC CURVES 2571

The splitting u=vin+vsc+u0 follows straightforwardly from the properties of the
corresponding Green's function in the half-space. We shall prove that this Green's
function, and even the non-quasi-periodic Green's function G to domains above
aperiodic rough surfaces of perfectly conducting materials, fulfill this half-space Som-
merfeld radiation condition (see Theorem 2.2). This includes periodic surfaces with
local perturbation. For compactly supported source radiating problems, a similar
property has been discussed in [12, Thm. 5.1] where the sound-soft scattering surface
was supposed to be the graph of a C1,1-smooth function. However, to the best of the
authors' knowledge, a rigorous proof of the Sommerfeld outgoing property for half-
space scattering problems is still open. From our proof of the Sommerfeld condition
for the Green's function, we obtain Corollary 2.1, where we show that the solution
to a boundary value problem for the Helmholtz equation satisfies the half-plane Som-
merfeld radiation condition, provided the boundary data on a rough surface fulfills
properly decaying conditions. Of course this decay excludes plane-wave incidence.

Now, for the scattering by a locally perturbed periodic grating, the above radia-
tion condition satisfied by the Green's function enables us to establish an equivalent
variational formulation over a bounded domain containing the defect. The formula-
tion is based on a boundary integral representation of u0 in terms of the quasi-periodic
Green's function G. Thanks to solvability results for general rough surfaces [10], we
show that u=vin+vsc+u0 is the unique solution in certain weighted Sobolev spaces
over a strip above the scattering surface. By the classical grating theory, the reflected
field vsc fulfills the upward Rayleigh expansion radiation condition. Together with the
half-space Sommerfeld radiation condition for u0, we obtain that the scattered field
vsc+u0 still satisfies the upward angular spectral representation ([10, 11]) or, equiv-
alently, the upward propagating radiation condition of [14]. Finally, the estimates of
the present paper leading to Sommerfeld's radiation condition can be used as well to
derive a far-field pattern of u0. Note that the notion of far-field patterns can be used
to model the inverse problems of finding the defect surface from measured far-field
data (compare the different notion of far-field measurement in, e.g., [35]).

The remaining part of this paper is organized as follows. In the subsequent
section 2 we recall solvability results for the scattering of plane and point-source waves
from perfectly conducting gratings. The half-plane Sommerfeld radiation condition
will be given in Definition 2.1. Section 3 is devoted to the analysis of a variational
formulation over a bounded truncated domain, which is equivalent to the scattering
problem. Uniqueness and existence of weak solutions will be reported in Theorem 3.1.
The proof for the Sommerfeld radiation condition of the Green's function and of part
u0 of the scattering solution will be postponed to Appendix A.

2. Scattering from gratings.

2.1. Plane-wave incidence. Suppose that a perfectly conducting grating is
illuminated by an incident monochromatic plane wave from above and that the grating
is periodic in one surface direction and independent of the other. We consider the
transverse-electric mode of polarization and let the profile of the diffraction grating
be given by

\Gamma =
\bigl\{ 
x=(x1, x2) \in \BbbR 2 : x2=f(x1)

\bigr\} 
with a 2\pi -periodic Lipschitz function f \in C0,1

per. The unbounded domain \Omega =\Omega \Gamma above
the grating is occupied by an isotropic homogeneous background medium. For techni-
cal reasons, we assume that \Gamma contains at least one line segment in each period. Note
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2572 GUANGHUI HU, WANGTAO LU, AND ANDREAS RATHSFELD

that this condition will only be used in section 2.3 below. In two dimensions, the inci-
dent wave is supposed to be a time-harmonic plane wave of the form vin(x) exp( - i\omega t)
with angular frequency \omega >0. The spatially dependent function vin takes the form

vin(x) = exp(ik (sin \theta , - cos \theta ) \cdot x),(2.1)

where \theta \in ( - \pi /2, \pi /2) denotes the angle of incidence, k :=\omega /c0 is the wave number,
and c0>0 is the speed of sound. The wave propagation is then governed by a boundary
value problem for the Helmholtz equation

\Delta v + k2v = 0 in \Omega \Gamma , v = 0 on \Gamma (2.2)

where the total field v=vin+vsc is the sum of the incident field vin and a scattered
field vsc, which satisfies a radiation condition.

Let \alpha :=k sin \theta . Obviously, the incident field is \alpha -quasi-periodic in the sense that
vin(x) exp( - i\alpha x1) is 2\pi -periodic with respect to x1 in \Omega \Gamma . The periodicity of the
structure together with the form of the incident wave implies that the total field v
must also be \alpha -quasi-periodic. This is equivalent to

v(x1 + 2\pi n, x2) = exp(i2\pi \alpha n) v(x1, x2) for all n\in \BbbZ .

Since the domain \Omega \Gamma is unbounded, a radiation condition must be imposed at infin-
ity to ensure well-posedness of the scattering problem. For any h>max\{ x2 : x\in \Gamma \} ,
we require the scattered acoustic field vsc to admit the upward Rayleigh expansion
condition: There exist coefficients vn\in \BbbC depending on k, \theta , and \Gamma such that

vsc(x) =
\sum 
n\in \BbbZ 

vn exp(i\alpha nx1 + i\beta nx2), x \in Uh :=
\bigl\{ 
x \in \BbbR 2 : x2 > h

\bigr\} 
(2.3)

with the parameters \alpha n :=n+ \alpha \in \BbbR and \beta n\in \BbbC defined by

\beta n = \beta n(k) :=

\biggl\{ 
(k2  - | \alpha n| 2)

1
2 if | \alpha n| \leq k,

i(| \alpha n| 2  - k2)
1
2 if | \alpha n| > k.

Before stating uniqueness and existence of our scattering problem (2.1)--(2.3), we
define L2-based Sobolev spaces for a weak solution as follows. Denote by L2(\Omega \Gamma ) the
Hilbert space consisting of all square-integrable functions over \Omega \Gamma and by H1(\Omega \Gamma )
the set of those v\in L2(\Omega \Gamma ) that have a gradient \nabla v\in L2(\Omega \Gamma ) in the weak sense. Let

H1
0 (\Omega \Gamma ) be the closure of C\infty 

0 (\Omega \Gamma ) in H1(\Omega \Gamma ). The space H1,loc
0 (\Omega \Gamma ) denotes the set

of all locally square-integrable functions v : \Omega \Gamma \rightarrow \BbbC such that \chi v \in H1
0 (\Omega \Gamma ) for all

\chi \in C\infty 
0 (\BbbR 2).

Lemma 2.1. Suppose the plane wave vin is defined in (2.1) with k > 0 and with
\theta \in ( - \pi /2, \pi /2). For \alpha = k sin \theta , there exists a unique \alpha -quasi-periodic variational

solution v=vin+vsc to the scattering problem (2.2)--(2.3) in H1,loc
0 (\Omega \Gamma ) \cap C2(\Omega \Gamma ).

Note that variational solution v means vsc is a solution of a variational equation
with a sesquilinear form defined over a finite domain contained in a single period
of the periodic geometry (cf. [20]). As usual, this implies that the solution is locally
smooth and the Helmholtz equation is fulfilled in the classical sense in the open set \Omega \Gamma .
Furthermore, for variational solutions v, the Dirichlet boundary condition is fulfilled
in the sense of traces of functions from H1,loc(\Omega \Gamma ) or, equivalently, as v\in H1,loc

0 (\Omega \Gamma ).
The above well-posedness result was proved by Elschner and Yamamoto in [20]. In
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SCATTERING BY DEFECTED PERIODIC CURVES 2573

an earlier paper by Kirsch [29], Lemma 2.1 was proved for the case where the periodic
surface is given by the graph of a C2-smooth function. Chandler-Wilde and Monk [11]
proved uniqueness and existence for rough-surface scattering problems if the incident
wave is generated by a compact source term and if the domain \Omega \Gamma fulfills the following
weak assumption:

(x1, x2) \in \Omega \Gamma \Rightarrow (x1, x2 + s) \in \Omega \Gamma for all s>0.(2.4)

Note that our assumption on \Gamma (that is, \Gamma is given by the graph of some Lipschitz
function) excludes vertical straight-line segments in \Gamma and, thus, is stronger than
(2.4). It deserves mention that Lemma 2.1 remains true even for periodic Lipschitz
curves \Gamma satisfying the above weak assumption (2.4), since the classical variational
theory implies Fredholm property and index zero for all Lipschitz curves and since
the rough-surface result provides uniqueness for curves with (2.4) (see [10, Cor. 5.2]).
In particular, the periodic \Gamma could be the curve of a binary grating. Indeed, the case
of plane-wave incidence and sound-soft boundary conditions even for rough surfaces
in two dimensions was treated in [10].

The uniqueness proofs in the above mentioned papers depend heavily on the
use of Rellich's identity for scattering surfaces given by the graph of a uniformly
Lipschitz function. Uniqueness to scattering problems in periodic structures cannot
hold in the general case. We refer to [6] for nonuniqueness examples in inhomogeneous
periodic media and to [23, 26, 28] for uniqueness examples for scattering from perfectly
conducting gratings. In closed waveguides and in stratified media we refer to [22, 30,
31, 32, 47] and references therein for discussions on uniqueness, existence, and the
construction of radiation conditions in an open periodic waveguide.

2.2. Point-source incidence. We now fix a y\in \Omega \Gamma and consider the case where
the incident wave Gin is a non-quasi-periodic cylindrical wave of the form

Gin(x) = Gin(x; y) := \Phi (x; y) :=
i

4
H

(1)
0 (k| x - y| ), x \not = y, x \in \Omega \Gamma .(2.5)

Here H
(1)
0 (\cdot ) stands for the Hankel function of the first kind and of order zero. The

function \Phi (x; y) is the free-space fundamental solution of the Helmholtz equation
(\Delta +k2I)u = 0. Since the incoming wave Gin is no longer quasi-periodic, the Rayleigh
expansion condition (2.3) is not applicable to point-source incidence of the form (2.5).
Instead we suppose that the scattered field Gsc(x; y) :=u(x) satisfies the upward an-
gular spectrum representation (ASR) proposed in [11]:

(2.6) u(x) =
1\surd 
2\pi 

\int 
\BbbR 
exp
\Bigl( 
i[(x2  - h)

\sqrt{} 
k2  - \xi 2 + x1\xi ]

\Bigr) 
\^uh(\xi ) d\xi , x \in Uh,

for all h>max\{ x2 : x\in \Gamma \} . Here,
\sqrt{} 
k2 - \xi 2= i

\sqrt{} 
\xi 2 - k2 for \xi 2>k2, and \^uh(\xi ) denotes

the Fourier transform of uh(x1) :=u(x1, h) with respect to x1, i.e.,

\^uh(\xi ) :=
1\surd 
2\pi 

\int 
\BbbR 
exp( - ix1\xi ) u(x1, h) dx1, \xi \in \BbbR .

If uh \in L2(\BbbR ), the radiation condition (2.6) is equivalent to the representation (see,
e.g., [11] and [9, p. 821])

u(x) = 2

\int 
\Gamma h

\partial \Phi \ast 
h(x; y)

\partial y2
u(y1, h) ds(y), x \in Uh,
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2574 GUANGHUI HU, WANGTAO LU, AND ANDREAS RATHSFELD

which is known as the upward propagating radiation condition (UPRC) proposed
in [13]. Here, we use \Gamma h :=\{ x\in \BbbR 2 : x2=h\} and \Phi \ast 

h(x; y) :=\Phi (x; y) - \Phi (x; y\ast h) with
y\ast h :=2h - y2. If uh\in BC(\Gamma h), it was shown in [3, Prop. 5] that the integral in
the ASR can be interpreted as the bilinear duality between \^uh(\xi )\in H - \sigma (\BbbR ) and

\xi \rightarrow exp(i[(x2  - h)
\sqrt{} 
k2 - \xi 2+x1\xi ]) \in H\sigma (\BbbR ) for \sigma \in (1/2, 1), which was also proved to

be equivalent to a ``pole condition"" for rough surface scattering problems. If u is
\alpha -quasi-periodic in Uh, it is known from [7, 9] that the above UPRC (and thus ASR)
is equivalent to the upward Rayleigh expansion condition (2.3).

In the case that u=Gsc(\cdot ; y) with a fixed y\in \Omega \Gamma , the ASR (2.6) can be understood
as the duality between weighted Sobolev spaces over \Gamma h following the arguments
presented in [10]. We shall explain this in more detail as follows. First we state
the well-posedness of the scattering problem for point-source incidence in weighted
Sobolev spaces. Denote the infinite strip between \Gamma and \Gamma h by \Omega \Gamma ,h :=\{ x\in \Omega \Gamma : x2<h\} 
and recall Uh := \{ x \in \BbbR 2 : x2 > h\} (cf. Figure 2.1, upper part). Define the weighted
Sobolev space Vh,\varrho , for \rho \in \BbbR , as the closure of all u| \Omega \Gamma ,h

with u\in C\infty 
0 (\Omega \Gamma ) w.r.t. the

norm

\| u\| Vh,\varrho 
:=

\Biggl[ \int 
\Omega \Gamma ,h

\biggl\{ \bigm| \bigm| (1+| x1| 2)\varrho /2u(x)
\bigm| \bigm| 2 + \bigm| \bigm| \bigm| \nabla \Bigl[ (1+| x1| 2)\varrho /2u(x)

\Bigr] \bigm| \bigm| \bigm| 2\biggr\} dx

\Biggr] 1/2
.

Setting Hs
\varrho (\cdot ) :=(1 + x2

1)
 - \varrho /2Hs(\cdot ) for \varrho , s\in \BbbR , we have the identity Vh,\varrho =H1

\varrho (\Omega \Gamma ,h)\cap 
\{ u : u| \Gamma =0\} and, if \varrho = 0, the equality Hs

\varrho (\BbbR )=Hs(\BbbR ), where the Hs(\BbbR ) are the
usual nonweighted Sobolev spaces. By definition, the relation Vh,\varrho 1

\subset Vh,\varrho 2
holds if

\varrho 1>\varrho 2. Let y \in \Omega \Gamma be the position of the source of the incident wave. For the
scattering problem with incident wave Gin(\cdot ; y), we look for the total field G(\cdot ; y)=
Gin(\cdot ; y)+Gsc(\cdot ; y) with Gsc(\cdot ; y)\in H1

\varrho (\Omega \Gamma ,h) such that

Fig. 2.1. Geometry of unperturbed grating (upper part) and locally perturbed grating (lower
part). \Omega \Gamma and \Omega \Lambda denote the domains above the unperturbed curve \Gamma and the perturbed curve \Lambda ,
respectively.
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SCATTERING BY DEFECTED PERIODIC CURVES 2575

\Delta Gsc(\cdot ; y)+k2Gsc(\cdot ; y)=0 on \Omega \Gamma ,(2.7)
Gsc(\cdot ; y)= - Gin(\cdot ; y) on \Gamma , Gsc(\cdot ; y) satisfies ASR .

Note that the Dirichlet conditionGsc(\cdot ; y)= - Gin(\cdot ; y) on \Gamma is equivalent toG(x; y)=0
for any x\in \Gamma . As usual, the inhomogeneous Dirichlet problem for the homogeneous
Helmholtz equation is reformulated into a homogeneous Dirichlet problem for the
inhomogeneous Helmholtz equation. In other words, the variational problem cor-
responding to (2.7) is formulated with respect to the unknown solution Gsc

v (\cdot ; y) :=
Gsc(\cdot ; y)+Gin

c (\cdot ; y) \in Vh,\varrho , where Gin
c (\cdot ; y)\in H1

\varrho (\Omega \Gamma ,h) is a fixed continuation of the

Dirichlet data Gin(\cdot ; y)| \Gamma from \Gamma to \Omega \Gamma ,h. Such a continuation can be chosen as the
product of Gin(\cdot ; y) times a cutoff function, which cuts off the singularity at the crit-
ical source point y, which is identically one over \Gamma , and which is zero at x with large
x2. For the details and a proof of the following theorem, we refer to the arguments
of [10, Thm. 4.1] (also cf. [35, sect. 2.3]).

Theorem 2.1. The scattering problem (2.7) for the incident point-source wave
Gin(x; y) with fixed y\in \Omega \Gamma has exactly one variational solution, Gsc(x; y)= - Gin

c (x; y)
+Gsc

v (x; y) with Gin
c (\cdot ; y) in H1

\varrho (\Omega \Gamma ,h), with the variational solution Gin
c (\cdot ; y)| \Gamma =

Gin(\cdot ; y)| \Gamma , and with Gsc
v (\cdot ; y)\in Vh,\varrho for all heights h>max\{ x2 : x\in \Gamma \} and  - 1<\varrho <0

(cf. the variational problem in [10, Thm. 4.1]). In particular, we get Gsc(\cdot ; y)\in H1
\varrho (\Omega \Gamma ,h)

\cap C2(\Omega \Gamma ,h), \rho < 0.

Clearly, the function G = Gin+Gsc is the Green's function of the boundary value
problem (2.2) with the radiation condition ASR.

The proof of Theorem 2.1 relies essentially on the decay property of Gin on \Gamma . For
three dimensions, it was proved in [10] that Gsc(\cdot ; y)\in H1

\varrho (\Omega \Gamma ,h) with \varrho \in ( - 1, - 1/2).
The two-dimensional case can be treated analogously with the index \rho \in ( - 1, 0) (see
also the arguments presented in Appendix A). We remark that, in two dimensions,

the previous well-posedness results imply that Gsc
h :=Gsc(\cdot ;h)\in H

1/2
\varrho (\Gamma h) and thus,

by Fourier transform, \^Gsc
h \in H\varrho 

1/2(\Gamma h). On the other hand, it was proved in [10] for the

case h=0 that the function y1\rightarrow \partial \Phi \ast 
h(x; y1, h)/\partial y2 belongs to H

 - 1/2
 - \rho (\BbbR ) if and only if

\rho > - 1. Hence, the integral on the right-hand side of of (2.6) can be understood as the

duality between \^uh= \^Gsc
h \in H\varrho 

1/2(\Gamma h) and the function \xi \rightarrow exp(i[(x2 - h)
\sqrt{} 
k2  - \xi 2+x1\xi ])

in the dual space H - \varrho 
 - 1/2(\Gamma h) for \rho \in ( - 1, 0) (see [10]).

For any r>0, write S\Gamma 
r := Sr := \{ x\in \Omega \Gamma : | x| =r\} . In other words, Sr is a circular

arc centered at the origin and of radius r in \Omega \Gamma with endpoints located at \Gamma . Below
we shall prove that, for point-source incidence, the upward ASR (2.6) is equivalent
to the Sommerfeld outgoing radiation condition in a half-plane, which is defined as
follows.

Definition 2.1. Let v\in C\infty (\Omega \Gamma \cap \{ x\in \BbbR 2 : | x| >R\} ) for a sufficiently large R>0.
Then we say that v satisfies the half-plane Sommerfeld radiation condition (HPSRC)
if, for any positive number h>max\{ x2 : x\in \Gamma \} , the function v is in H1

\varrho (\Omega \Gamma ,h\cap \{ x\in \BbbR 2 :
| x1| >R\} ) for all \varrho <0 and if

sup
x\in Sr\cap Uh

r1/2 | \partial \nu v(x) - ikv(x)| \rightarrow 0, r \rightarrow \infty , sup
x\in \Omega \Gamma \cap Uh:| x| \geq R

| x| 1/2 | v(x)| < \infty .(2.8)

If v satisfies the HPSRC with ( 2.8) replaced by\int 
Sr\cap Uh

| \partial \nu v  - ikv| 2 ds \rightarrow 0, r \rightarrow \infty , sup
0<r

\int 
Sr\cap Uh

| v| 2 ds < \infty ,(2.9)
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2576 GUANGHUI HU, WANGTAO LU, AND ANDREAS RATHSFELD

then we shall say that v fulfills the weak half-plane Sommerfeld radiation condition
(wHPSRC).

Remark 2.1. A plane wave of the form (2.1) belongs to H1
\varrho (\Omega \Gamma ,h\cap \{ x\in \BbbR 2 :

| x1| >R\} ) with \varrho <  - 1/2; for the cylindrical wave \Phi (x, y) this holds for \varrho < 0 for
R> | y1| . Hence, the upper bound \rho =0 in the Definition 2.1 includes cylindrical waves
but excludes plane and surface waves.

The integrals in (2.9) are defined over Sr\cap Uh rather than Sr, because the normal
derivative \partial \nu v on Sr \cap \Omega \Gamma ,h might not exist in the L2-sense. The connections between
the different radiation conditions are summarized as follows: Obviously, HPSRC im-
plies wHPSRC. On the other hand, any Helmholtz solution v= u0 over the domain
\Omega \Gamma (or the perturbed domain \Omega \Lambda in section 3) satisfying the wHPSRC and v| \Gamma = 0
(or v| \Lambda =0) can be represented as (3.7) (cf. the arguments leading to (3.7)), and the
subsequent Lemma 3.1 implies the HPSRC. Furthermore, note that the wHPSRC for
Helmholtz solutions is stronger than the ASR (cf. (2.6)). Indeed, by [15, Thm. 2.9]
it holds that such a v satisfies the UPRC and equivalently the ASR (cf. [10]). Vice
versa, the ASR together with the decay condition v| \Gamma h\cap \{ x\in \BbbR 2: | x| >R\} \in L2

\varrho , with a \varrho s.t.
1/2<\varrho <1, implies the HPSRC (cf. the proof of LemmaA.2). Hence in many cases,
HPSRC, wHPSRC, and ASR are equivalent.

The function x\rightarrow \Phi (x; y) with y\in \BbbR 2 satisfies (2.8). For functions satisfying
the HPSRC, we define the far-field pattern over the set of directions \^x\in \BbbS + with
\BbbS + :=\{ x\in \BbbR 2 : x2>0, | x| =1\} .

Definition 2.2. Let v\in C\infty (\Omega \Gamma \cap \{ x\in \BbbR 2 : | x| >R\} ) for a sufficiently large R>0.
We shall call the continuous function v\infty \in C(\BbbS +) the far-field pattern of v if there is
an h>maxx\in \Gamma \{ x2\} s.t.

sup
x=r\^x\in Sr\cap Uh

\bigm| \bigm| \bigm| \bigm| v(x) - exp(ikr)

r1/2
v\infty (\^x)

\bigm| \bigm| \bigm| \bigm| r1/2  - \rightarrow 0, r \rightarrow \infty .(2.10)

In other words, by Definition 2.2, v\infty is the far-field pattern of v in \Omega \Gamma if the
asymptotic behavior

v(x) =
eik| x| \sqrt{} 

| x| 
v\infty (\^x) + o(| x|  - 1/2) as | x| \rightarrow \infty 

holds uniformly in all x \in Uh for some h>maxx\in \Gamma \{ x2\} . We note that the above
definition of far-field pattern is independent of the choice of h. The lemma below
shows that the scattered field caused by Gin also fulfills the stronger condition of
Definition 2.1 and admits an asymptotic behavior like in (2.10). The same is true for
the derivatives of G.

Lemma 2.2. For any fixed y\in \Omega \Gamma and the Green's function G(\cdot ; y)=Gin(\cdot ; y)+
Gsc(\cdot ; y) with Gsc(\cdot ; y) of Theorem 2.1, the scattered field Gsc(\cdot ; y) satisfies the HP-
SRC and has a far-field pattern in C(\BbbS +). Moreover, G(\cdot ; y) \in H1

\varrho (\Omega \Gamma ,h\cap \{ x \in \BbbR 2 :
| x1| >R\} ) for any | \varrho | <1 and R> | y1| .

Lemma 2.3. Suppose lj , j=1, 2, are nonnegative integers. The assertion of
Lemma 2.2 holds for G(\cdot ; y) replaced by the derivative \partial l1

y1
\partial l2
y2
G(\cdot ; y).

For \Gamma the graph of a C1,1-smooth function and for an incident wave with com-
pactly supported source in \Omega \Gamma at a positive distance from \Gamma , the assertion of Lemma
2.2 is discussed already in [12, Thm. 5.1] but without proofs. If \Gamma is the graph of a C1,1-
function, the second condition in (2.8) and the relation G(\cdot ; y)\in H1

\varrho (\Omega \Gamma ,h\cap \{ x\in \BbbR 2 :
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SCATTERING BY DEFECTED PERIODIC CURVES 2577

| x1| >R\} ) for any | \varrho | <1 and R> | y1| are implicitly contained in [40, Cors. 4.2 and
4.4]. In the special case \Gamma =\Gamma 0 :=\{ x\in \BbbR 2 : x2 = 0\} , Lemma 2.2 follows straightfor-
wardly from the explicit formula

G(x; y) = \Phi (x; y) - \Phi (x; y\ast ), y\ast := (y1, - y2).

In Appendix A we shall present a proof valid for a Lipschitz (nonperiodic) rough sur-
face satisfying (2.4), which means an infinite boundary surface \Gamma of a simply connected
domain \Omega \Gamma such that U0\subset \Omega \Gamma \subset Uh\Gamma 

for a real h\Gamma >0 and that, for fixed numbers \varepsilon \Gamma >0
and C\Gamma >0 and for each x0\in \Gamma , the set \{ x\in \Gamma : | x - x0| < \varepsilon \Gamma \} is a rotated graph of a
Lipschitz function with Lipschitz constant C\Gamma . Collecting the assertions of Theorem
2.1 and Lemma 2.2 together we get the following.

Theorem 2.2. For a sound-soft rough surface satisfying the condition (2.4), equa-
tions (2.7) have a unique solution Gsc(\cdot ; y)\in H1

\varrho (\Omega \Gamma ,h) for all h>max\{ x2 : x\in \Gamma \} and

 - 1<\varrho <0 so that the Green's function G(\cdot ; y)=Gin(\cdot ; y)+Gsc(\cdot ; y) (cf. (2.5)) is well
defined. Moreover, Gsc(\cdot ; y) satisfies the HPSRC and has a far-field pattern in C(\BbbS +),
and G(\cdot ; y)\in H1

\varrho (\Omega \Gamma ,h\cap \{ x\in \BbbR 2 : | x1| >R\} ) for any | \varrho | <1 and R> | y1| .
We note that, using the approach of approximating the boundary curve of [10],

even a larger class of nonsmooth surfaces, namely, graphs of arbitrary bounded con-
tinuous functions, can be treated.

Remark 2.2. The assertion of Lemma 2.2 does not hold for the scattered field
generated by plane-wave incidence, due to the appearance of propagating wave modes,
which do not decay at infinity.

As a consequence of the proof of Theorem 2.2 in Appendix A, we obtain the
following well-posedness result on rough surface scattering problems.

Corollary 2.1. Suppose that the boundary curve \Gamma is uniformly Lipschitz con-

tinuous, the domain \Omega \Gamma fulfills the condition (2.4), and that f\Gamma \in H
1/2
\varrho (\Gamma ) for some

\varrho >1/2. Moreover, suppose there exists an extension w\in H1
\varrho (\Omega \Gamma ) of f\Gamma (i.e., w| \Gamma =f\Gamma )

s.t., additionally, \Delta w\in L2
\varrho (\Omega \Gamma ). Then the boundary value problem v=f\Gamma on \Gamma for \Delta v+

k2v=0 in \Omega \Gamma under the condition ASR admits a unique solution v\in H1
\rho (\Omega \Gamma ,h)\cap C2(\Omega \Gamma ,h)

for all h>max\{ x2 : x\in \Gamma \} , which satisfies the HPSRC and has a far-field pattern in
C(\BbbS +).

Remark 2.3. (i) If \Gamma is a bounded closed surface, the existence of w in Corollary
2.1 follows directly from the extension theorem of [38]. However, we do not know the
corresponding extension theory for unbounded surfaces.

(ii) The condition on the index of decay \varrho >1/2 seems not to be sharp. For instance,

the function \Phi (\cdot ; y)| \Gamma for y\in \BbbR 2\setminus \Omega \Gamma belongs to H
1/2
\varrho (\Gamma ) with \varrho <0, and \Phi (\cdot ; y) still

fulfills the HPSRC.

2.3. Local behavior of the Green's function and boundary integral op-
erators based on the Green's function. Recalling that the unperturbed grating
surface \Gamma contains at least one line segment in each period, for any R>0, we can
choose two line segments \Gamma a and \Gamma b contained in \Gamma \cap \{ x\in \BbbR 2 : | x| >R\} , \Gamma a on the left of
\Gamma \cap \{ x\in \BbbR 2 : | x| <R\} and \Gamma b on the right. Let the curve CR with CR\subset \Omega \Gamma \cap \{ x : | x| >R\} 
be an open curve with endpoints located at \Gamma a and \Gamma b, respectively. We emphasize
that the restriction to interfaces containing straight-line segments is a technical con-
dition needed to control the behavior of the Green's function close to the intersection
of the interface and of special arcs for potential operators. This condition is needed
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2578 GUANGHUI HU, WANGTAO LU, AND ANDREAS RATHSFELD

in subsection 2.3 and in section 3 only. We suppose that, using perturbation tech-
niques and defining the subsequent lines La and Lb as the tangential lines at a and
b, respectively, the straight-line segments can be replaced by arcs of finite degree of
smoothness. To derive the results for general Lipschitz interfaces by the arguments
of the present paper might be difficult.

In section 3 we shall use the single and double layer operators defined over CR,
where the fundamental solution in the kernel function is replaced by the Green's
function G. To give the correct definition of these operators and to obtain the usual
strong ellipticity and compactness, respectively, we first have to look at the local
behavior of the Green's kernel. Since the endpoints of CR are chosen to be located at
\Gamma , the behavior close to the grating surface \Gamma is important.

As usual, for any bounded domain of positive distance to the boundary \Gamma , the
Green's function G(\cdot ; y) is the sum of the free-space fundamental solution \Phi (\cdot , y)
plus a smooth function. However, the behavior of the Green's function close to the
boundary is hard to predict. Additional assumptions on the curve are needed. We
consider bounded subdomains \Omega a, \Omega b, and \Omega c of \Omega \Gamma (cf. Figure 2.2) such that, for a
fixed positive \varepsilon ,

\Omega a \cap \Gamma \subset \{ x \in \Gamma a : dist(x,\Gamma \setminus \Gamma a) \geq \varepsilon \} ,

\Omega b \cap \Gamma \subset \{ x \in \Gamma b : dist(x,\Gamma \setminus \Gamma b) \geq \varepsilon \} ,

\Omega c \subset \{ x \in \Omega \Gamma : dist(x,\Gamma ) \geq \varepsilon \} .

For y\in \Omega a, we compare G(x; y) with Ga(x; y) the Green's function of the half-space
\Omega hs

a bounded by the straight line La containing \Gamma a such that \Omega hs
\Gamma and \Omega a are on the

same side of \Gamma a. Clearly, Ga(x; y)=\Phi (x; y) - \Phi (x; y\ast a), where we denote the mirror
image of y \in \BbbR 2 w.r.t. line La by y\ast a. Finally, we assume that the reflected closed

domain \Omega 
\ast 
a :=\{ y\ast a : y\in \Omega a\} does not intersect \Omega b and \Omega c. In Appendix A we shall

prove the following lemma.

Lemma 2.4. For x\in \Omega a\cup \Omega b\cup \Omega c and y\in \Omega a, the Green's function G over \Omega \Gamma takes
the form G(x; y)=Ga(x; y)+R(x; y), where the remainder function R is smooth in the
sense that R and all its derivatives are bounded and continuous over (\Omega a \cup \Omega b \cup \Omega c)\times 
\Omega a.

Now we consider an open curve CR with the following properties: The curve
should be a twice continuously differentiable curved arc connecting the midpoints a of
\Gamma a and b of \Gamma b. We assume that CR has no self-intersections and that CR\subset \Omega \Gamma \cup \{ a, b\} .

Γ

Γ
Ω

Ω

. .

Γ Γ
b

a

R

R

*

ΩR

R
−

*

ba

ν

ν
ν

Ω Ω

Ωc

ba

C

C

Fig. 2.2. Straight-line segments \Gamma a and \Gamma b, examples of domains \Omega a, \Omega b, and \Omega c as well as
curves CR and C\ast 

R.
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SCATTERING BY DEFECTED PERIODIC CURVES 2579

Moreover, we assume that CR intersects \Gamma a and \Gamma b at a and b under a right angle
(cf. Figure 2.2). If all this is satisfied, then there exists a second arc C\ast 

R connecting a
and b such that C\ast 

R has no self-intersections, that C\ast 
R\subset (\BbbR 2\setminus \Omega \Gamma )\cup \{ a, b\} , and that C\ast 

R

intersects \Gamma a and \Gamma b at a and b under a right angle. We may suppose that, for an rR>0,
the arc \{ x\in C\ast 

R : | x - a| <rR\} coincides with the reflected arc \{ x\ast 
a : x\in CR, | x - a| <rR\} 

and that an analogous condition holds close to b (cf. Figure 2.2). In other words, CR

is a subarc of the close curve \widetilde CR :=CR\cup C\ast 
R, which is twice continuously differentiable.

The single and double layer operator over CR based on the Green's function are defined
by

(\scrS p)(x) := (\scrS CR
p)(x) :=

\int 
CR

G(x; y)p(y) ds(y), x \in CR,(2.11)

(\scrD q)(x) := (\scrD CR
q)(x) :=

\int 
CR

\partial \nu (y)G(x; y)q(y) ds(y), x \in CR,(2.12)

where \nu (y) is the unit vector normal to \widetilde CR at y\in \widetilde CR pointing into the exterior of the

domain \widetilde \Omega R enclosed by \widetilde CR.
To get the mapping properties of \scrS and \scrD , we need special Sobolev spaces. We

choose cutoff functions \chi a, \chi b\in C\infty 
0 (\BbbR 2) such that, for the rR used before (2.11),

\{ x \in \BbbR 2 : | x - a| < rR/2\} \subset \{ x \in \BbbR 2 : \chi a(x) = 1\} \subset supp\chi a \subset \{ x \in \BbbR 2 : | x - a| < rR\} ,
\{ x \in \BbbR 2 : | x - b| < rR/2\} \subset \{ x \in \BbbR 2 : \chi b(x) = 1\} \subset supp\chi b \subset \{ x \in \BbbR 2 : | x - b| < rR\} .

With these and with x\ast 
b defined for b analogously as x\ast 

a for a, we introduce the Sobolev
spaces

(2.13)\widetilde H1/2(CR)

:=
\Bigl\{ 
u| CR

: u\in H1/2( \widetilde CR) s.t. [\chi au](x)= - [\chi au](x
\ast 
a) and [\chi bu](x)= - [\chi bu](x

\ast 
b)
\Bigr\} 
,

(2.14)

H - 1/2(CR)

:=
\Bigl\{ 
v| CR

: v\in H - 1/2( \widetilde CR) s.t. [\chi av](x)= - [\chi av](x
\ast 
a) and [\chi bv](x)= - [\chi bv](x

\ast 
b)
\Bigr\} 
,

where \chi av, \chi bv, [\chi av](x
\ast 
a), and [\chi bv](x

\ast 
b) are defined in the distributional sense. It

is not hard to see that \widetilde H1/2(CR) and H - 1/2(CR) are dual spaces, where the duality
extends the scalar product of L2(CR) such that

(2.15)\int 
CR

[\chi au]| CR
[\chi av]| CR

=
1

2

\int 
\widetilde CR

[\chi au][\chi av],

\int 
CR

[\chi bu]| CR
[\chi bv]| CR

=
1

2

\int 
\widetilde CR

[\chi bu][\chi bv],

which serves as the definition for (\chi av)| CR
and (\chi bv)| CR

. Now introduce the do-
mains \Omega  - 

R and \Omega \ast 
R as those enclosed by \Gamma together with CR and C\ast 

R, respectively.

The trace U | CR
of a function U \in H1(\Omega  - 

R ) with U | \Gamma \equiv 0 is in \widetilde H1/2(CR) since \chi aU

can be extended to \Omega \ast 
R by [\chi aU ](x) := - [\chi aU ](x\ast 

a) such that [\chi aU ]\in H1(\widetilde \Omega R) and

[\chi au] :=[\chi aU ]| \widetilde CR
\in H1/2( \widetilde CR) satisfies [\chi aU | CR

](x)= - [\chi aU | CR
](x\ast 

a). Similarly, the

trace \partial \nu V | CR
of a function V \in H1(\Omega  - 

R ) with (\Delta +k2I)V \equiv 0 over \Omega  - 
R and with V | \Gamma \equiv 0

is in H - 1/2(SR). Indeed, defining [\chi aV ](x) := - [\chi aV ](x\ast 
a), we get [\chi aV ]\in H1(\widetilde \Omega ) andD
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2580 GUANGHUI HU, WANGTAO LU, AND ANDREAS RATHSFELD\int 
\widetilde CR

[\chi aU ]| \widetilde CR
\partial \nu [\chi aV ]| \widetilde CR

=  - 
\int 
\Gamma a\cap \widetilde \Omega R

[\chi aU ](x)
\Bigl[ 
\partial x1

[\chi aV ](x1, x2 + 0) - \partial x1
[\chi aV ](x1, x2  - 0)

\Bigr] 
dx1

+

\int 
\widetilde \Omega R

[\chi aU ]\{ (\Delta + k2I)[\chi aV ]\} +
\int 
\widetilde \Omega R

\bigl\{ 
\nabla [\chi aU ] \cdot \nabla [\chi aV ] - k2[\chi aU ][\chi aV ]

\bigr\} 
=

\int 
\widetilde \Omega  - 
R

\bigl\{ 
\nabla [\chi aU ] \cdot \nabla [\chi aV ] - k2[\chi aU ][\chi aV ]

\bigr\} 
,\int 

CR

[\chi aU ]| CR
\partial \nu [\chi aV ]| CR

=

\int 
\Omega  - 
R

\bigl\{ 
\nabla [\chi aU ] \cdot \nabla [\chi aV ] - k2[\chi aU ][\chi aV ]

\bigr\} 
,

which defines a continuous functional.
Recalling the local behavior G(x; y)=Ga(x; y)+R(x; y) of the Green's function,

(2.12) turns to the representation

(\scrD [\chi aU ])(x) =

\int 
CR

\partial \nu (y)R(x; y)[\chi aU ](y) ds(y)

+

\int 
CR

\partial \nu (y)\Phi (x; y)[\chi aU ](y) ds(y) - 
\int 
CR

\partial \nu (y)\Phi (x; y
\ast 
a)[\chi aU ](y) ds(y)

=

\int 
CR

\partial \nu (y)R(x; y)[\chi aU ](y) ds(y) +

\int 
\widetilde CR

\partial \nu (y)\Phi (x; y)[\chi aU ](y) ds(y).

Hence, \scrD is well defined over \widetilde H1/2(CR). The boundedness and compactness of \scrD \widetilde CR

over H1/2( \widetilde CR) implies the boundedness and compactness of \scrD :=\scrD CR
in the space\widetilde H1/2(CR). Similarly,

(\scrS [\chi aU ])(x) =

\int 
CR

R(x; y)[\chi aU ](y) ds(y) +

\int 
\widetilde CR

\Phi (x; y)[\chi aU ](y) ds(y).

In view of (2.15), we conclude\int 
CR

\Bigl[ 
\scrS [\chi aU ]

\Bigr] 
[\chi aU ] =

\int 
CR

\biggl[ \int 
CR

R(\cdot ; y)[\chi aU ](y) ds(y)

\biggr] 
[\chi aU ]

+
1

2

\int 
\widetilde CR

\biggl[ \int 
\widetilde CR

\Phi (\cdot ; y)[\chi aU ](y) ds(y)

\biggr] 
[\chi aU ].

Hence, \scrS is well defined as an operator, mapping H - 1/2(CR) into \widetilde H1/2(CR). The

boundedness and strong ellipticity of \scrS \widetilde CR
, mapping H - 1/2( \widetilde CR) into H1/2( \widetilde CR), imply

the boundedness and strong ellipticity of \scrS :=\scrS CR
.

3. Scattering from locally perturbed periodic surfaces. Now consider a
one-dimensional Lipschitz curve \Lambda \subset \BbbR 2 different from \Gamma , and suppose (2.4) for \Lambda 
instead of \Gamma . The curve \Lambda is said to be a local perturbation of the periodic interface
\Gamma if \Lambda coincides with \Gamma in \{ x\in \BbbR 2 : | x1| >R\} for some fixed R>0. In other words, \Lambda 
differs from \Gamma in a compact set which may stand for a defect of \Gamma . The presence of
the defect causes a perturbation u of the total wave field v=vin+vsc that corresponds
to the perfectly periodic interface \Gamma . In this section we show the relation between
the perturbed and unperturbed scattering problems. We keep the notation used in
section 2 and choose a curve CR in accordance with the assumptions in subsection 2.3
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SCATTERING BY DEFECTED PERIODIC CURVES 2581

following Lemma 2.4 such that the perturbation \Lambda \setminus \Gamma of \Gamma is located beneath CR, and
we set (cf. Figure 2.1, lower part)

\Lambda R := \{ x \in \Lambda : x between a and b\} , \Gamma R := \{ x \in \Gamma : x between a and b\} ,(3.1)

\Omega  - 
R := \{ x \in \Omega \Lambda : x between CR and \Lambda R\} , \Omega +

R := \Omega \Lambda \setminus \Omega  - 
R .

Here, \Omega \Lambda denotes the unbounded Lipschitz domain above \Lambda , which is supposed to
fulfill the geometrical condition (2.4). This admits the perturbed part \Lambda R to contain
vertical line segments. Assume a plane wave vin(x; \theta ) of the form (2.1) is incident
onto \Lambda from \Omega \Lambda . We seek the total field u\in H1

loc(\Omega \Lambda ) such that\left\{   \Delta u+ k2u = 0 in \Omega \Lambda ,
u = 0 on \Lambda ,
u0 := u - v satisfies the HPSRC in \Omega \Lambda \cap \Omega \Gamma ,

(3.2)

where v=vin+vsc is the total field generated by the unperturbed surface \Gamma . Whereas
any weak solution of the Helmholtz equation over \Omega \Lambda is twice continuously differen-
tiable at any point x of \Omega \Lambda with \Delta u(x)+k2u(x)=0, the Dirichlet condition u=0 over

\Lambda is defined in the sense of traces H1/2,loc(\Lambda )\ni u| \Lambda =0, i.e., u\in H1,loc
0 (\Omega \Lambda ). We shall

call the u with these properties a solution of (3.2) in H1,loc
0 (\Omega \Lambda )\cap C2(\Omega \Lambda ). Since both

u and v vanish on \Lambda \setminus \Lambda R, the function u0 should also vanish on \Lambda \setminus \Lambda R.
Next we derive a variational formulation for the problem (3.2) (cf. the subsequent

(3.10)). Define the energy space XR over the truncated domain \Omega  - 
R as XR := \{ u \in 

H1(\Omega  - 
R) : u=0 on \Lambda R\} , which is equipped with the usual H1-norm

\| u\| 2XR
:=

\int 
\Omega  - 

R

\bigl\{ 
| \nabla u| 2 + | u| 2

\bigr\} 
dx.

We introduce the Sobolev spaces on the open arc CR by (2.13) and (2.14). It is easy
to derive the following variational formulation for u:\int 

\Omega  - 
R

\bigl\{ 
\nabla u \cdot \nabla \phi  - k2u\phi 

\bigr\} 
dx - 

\int 
CR

\partial \nu u\phi ds = 0 for all \phi \in XR,

where \nu is the unit normal on SR pointing into \Omega +
R. Equivalently, we have\int 

\Omega  - 
R

\bigl\{ 
\nabla u \cdot \nabla \phi  - k2u\phi 

\bigr\} 
dx - 

\int 
CR

\partial \nu u0 \phi ds =

\int 
CR

\partial \nu v \phi ds for all \phi \in XR.(3.3)

Choosing R1>R sufficiently large and applying Green's formula to u0, we see

u0(x) =

\Biggl( 
 - 
\int 
SR1

+

\int 
CR

\Biggr) \bigl[ 
u0(y)\partial \nu (y)G(x; y) - \partial \nu (y)u0(y)G(x; y)

\bigr] 
ds(y)(3.4)

for x\in \Omega an
R :=\{ x\in \Omega \Gamma : | x| >R1\} \cap \Omega +

R. Note that the annular domain \Omega an
R is a Lipschitz

domain by our assumption on \Gamma . Moreover, both u0 and G=G\Gamma vanish on \Lambda \setminus \Lambda R.
Recall the definition of Uh from (2.3) and \Omega \Gamma ,h :=\Omega \Gamma \setminus Uh. Taking h>max\{ x2 : x\in \Gamma \} 
and making use of the wHPSRC of u0 and G yield
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2582 GUANGHUI HU, WANGTAO LU, AND ANDREAS RATHSFELD\int 
SR1

\cap Uh

\bigl[ 
u0(y)\partial \nu (y)G(x; y) - \partial \nu (y)u0(y)G(x; y)

\bigr] 
ds(y)(3.5)

=

\int 
SR1

\cap Uh

\bigl\{ 
u0(y)[\partial \nu (y)G(y;x) - ikG(y;x)] - [\partial \nu (y)u0(y) - iku0(y)]G(y;x)

\bigr\} 
ds(y)

\leq | | u0| | L2(SR1
\cap Uh) | | \partial \nu G(\cdot ;x) - ikG(\cdot ;x)| | L2(SR1

\cap Uh)

+| | G(\cdot ;x)| | L2(SR1
\cap Uh) | | \partial \nu u0  - iku0| | L2(SR1

\cap Uh)

\rightarrow 0

as R1 \rightarrow \infty . Here we have used the symmetry G(x; y) =G(y;x) (cf., e.g., [35, Thm.
7]), which can be proved following the lines in the proof of Theorem 3.1.4 of [36] and
using Lemma 2.2 (apply arguments like in (3.5) and (3.6) to derive the formula before
equation (3.12) of [36] to prove Theorem 3.1.4 in [36]). Further, the integral over the
remaining part SR1,h :=SR1

\cap \Omega \Gamma ,h of SR1
can be estimated by

(3.6)\int 
SR1,h

\bigl[ 
u0(y)\partial \nu (y)G(x; y) - \partial \nu (y)u0(y)G(x; y)

\bigr] 
ds(y)

\leq | | u0(1 + | y1| \varrho )| | \widetilde H1/2(SR1,h)
| | \partial \nu (y)G(x; \cdot )(1 + | y1|  - \varrho )| | H - 1/2(SR1,h)

+ | | \partial \nu u0(1 + | y1| \varrho )| | H - 1/2(SR1,h) | | G(x; \cdot )(1 + | y1|  - \varrho )| | \widetilde H1/2(SR1,h)

\leq | | u0| | \widetilde H1/2
\varrho (SR1,h)

| | \partial \nu (y)G(x; \cdot )| | 
H

 - 1/2
 - \varrho (SR1,h)

+ | | \partial \nu u0| | H - 1/2
\varrho (SR1,h)

| | G(x; \cdot )| | \widetilde H1/2
 - \varrho (SR1,h)

\leq C | | u0| | H1
\varrho (\Sigma R1,h) | | G(x; \cdot )| | H1

 - \varrho (\Sigma R1,h).

Here, we choose \varrho \in ( - 1, 0) from the wHPSRC for u0 and take \Sigma R1,h\subset \Omega \Gamma ,h as a small
region with fixed area that contains SR1,h inside. In view of the wHPSRC relation
u0\in H1

\varrho (\{ x\in \Omega \Gamma ,h : | x1| >R\} ) and of the fact that G(x; \cdot )\in H1
 - \varrho (\{ x\in \Omega \Gamma ,h : | x1| >R\} ),

the right-hand side of the previous inequality tends to zero as R1\rightarrow \infty . This together
with (3.5) implies that\int 

SR1

\bigl[ 
u0(y)\partial \nu (y)G(x; y) - \partial \nu (y)u0(y)G(x; y)

\bigr] 
ds(y) \rightarrow 0 as R1 \rightarrow \infty .

Hence, letting R1\rightarrow \infty in (3.4), we can represent the function u0 as

u0(x) =

\int 
CR

\bigl[ 
u0(y)\partial \nu (y)G(x; y) - \partial \nu (y)u0(y)G(x; y)

\bigr] 
ds(y), x \in \Omega +

R.(3.7)

Take the limit of (3.7) for x tending to a point x\in CR, and set p :=\partial \nu u0| CR
\in H - 1/2(CR)

q :=u0| CR
\in \widetilde H1/2(CR); we then arrive at the integral equation\Bigl( 1

2
I  - \scrD 

\Bigr) 
q + \scrS p = 0 on CR.(3.8)

Here \scrD and \scrS are the double and single layer potentials over CR defined by (2.11)
and (2.12), respectively. Note that the classical jump relations apply for the special
Green's function. Indeed, on \Omega \Gamma the function G is locally the sum of the classical full-
space Green's function \Phi plus a smooth function since the solution of the Helmholtz
equation is analytic in any domain away from the boundary. Recalling q=(u - v)| CR

,
we can rewrite (3.8) as\Bigl( 1

2
I  - \scrD 

\Bigr) 
(u| CR

) + \scrS p =
\Bigl( 1
2
I  - \scrD 

\Bigr) 
(v| CR

) on CR.(3.9)
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The equations (3.3) and (3.9) give the variational formulation for the unknown solu-
tion u\in XR and p\in H - 1/2(CR):

A
\bigl( 
(u, p), (\varphi , \chi )

\bigr) 
:= a1

\bigl( 
(u, p), (\varphi , \chi )

\bigr) 
+ 2 a2

\bigl( 
(u, p), (\varphi , \chi )

\bigr) 
=

\int 
CR

\partial \nu v \varphi ds + 2

\int 
CR

(
1

2
I  - \scrD )(v| CR

)\chi ds(3.10)

for all (\varphi , \chi )\in XR\times H - 1/2(CR), where

a1
\bigl( 
(u, p), (\varphi , \chi )

\bigr) 
:=

\int 
\Omega  - 

R

\bigl\{ 
\nabla u \cdot \nabla \varphi  - k2u\varphi 

\bigr\} 
dx - 

\int 
CR

p\varphi | CR
ds,

a2
\bigl( 
(u, p), (\varphi , \chi )

\bigr) 
:=

\int 
CR

\biggl[ 
(
1

2
I  - \scrD )(u| CR

) + \scrS p
\biggr] 
\chi ds.

The variational formulation (3.10) couples the variational approach for the Helmholtz
equation over \Omega  - 

R and the variational approach for the nonlocal boundary condition
on CR. Altogether, we have shown that (u, p) is a solution of (3.10). Recall that
u\in XR is the restriction to \Omega  - 

R of the solution u to the Helmholtz problem

\Delta (u - vin) + k2(u - vin) = 0 in \Omega \Lambda , u = 0 on \Lambda , u - vin satisfies ASR

in the variational sense of [10, Thm. 4.1]. The difference u0 :=u - vin - vsc satisfies
the HPSRC by assumption, and the solution function p is the trace of the normal
derivative of u0 on CR. On the other hand, a solution u\in XR, obtained from (3.10),
can be extended from \Omega  - 

R to \Omega \Lambda via u=vin+vsc+u0, where u0 is expressed over
\{ x\in \BbbR 2 : | x| >R\} by (3.7) with the traces u0| CR

and \partial \nu u0| CR
replaced by (u - v)| CR

and the solution p of (3.10), respectively. Moreover, the extension is a solution of
the Helmholtz equation and thus analytic at the interior points of CR (observe that
the second variational equation in (3.10) yields the continuity of the extension over
CR and the first equation that of the normal derivatives), and the difference of the
extension and the solution v satisfies the HPSRC due to the next lemma, which will
be proved in Appendix A.

Lemma 3.1. The function u0 defined in (3.7) fulfills the HPSRC in \Omega +
R and has

a far-field pattern in the space C(\BbbS +).

Denoting the domain enclosed between CR and \Gamma R (cf. (3.1)) by \widetilde \Omega  - 
R, we state the

uniqueness and existence of solutions to (3.10) as follows.

Lemma 3.2. Suppose the squared wavenumber k2 is not an eigenvalue for the
negative Laplacian over the domain \widetilde \Omega  - 

R. Then there exists a unique solution (u, p)\in 
XR\times H - 1/2(CR) of the variational equation (3.10).

Proof. For the quadratic form A((u, p), (u, p)) of the sesquilinear form A in (3.10)
we conclude

ReA
\bigl( 
(u, p), (u, p)

\bigr) 
=

\int 
\Omega  - 

R

\bigl\{ 
| \nabla u| 2  - Re k2| u| 2

\bigr\} 
dx - Re

\int 
CR

p u| CR
ds

+Re

\int 
CR

[(I  - 2\scrD )(u| CR
) + 2\scrS p] p ds

=

\int 
\Omega  - 

R

\bigl\{ 
| \nabla u| 2  - Re k2| u| 2

\bigr\} 
dx+Re 2

\int 
CR

\scrS pp ds - Re 2

\int 
CR

\scrD (u| CR
)pds.
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Using the compactness of \scrD and the strong ellipticity of \scrS (cf. subsection 2.3) and
arguing the same way as in [4], one can prove that the sesquilinear form satisfies
a G\r arding inequality. Such a sesquilinear form is called strongly elliptic over the
space XR\times H - 1/2(CR), and the corresponding variational equation (3.10) satisfies
Fredholm's alternative. Let us prove that the solution for a zero right-hand side
is trivial. The condition A((u, p), (\varphi , 0))=a1((u, p), (\varphi , 0))=0 yields that u satisfies
the Helmholtz equation in \Omega  - 

R and that \partial \nu u=p over CR. Introducing the function
\~u :=

\int 
CR

\{ \partial \nu G(\cdot ; y)u(y) - G(\cdot ; y)p(y)\} over \Omega \Gamma \setminus CR, the condition A((u, p), (0, \chi ))=

2a2((u, p), (0, \chi ))=0 yields that the trace on CR of u from \Omega  - 
R coincides with the

trace of \~u from \Omega +
R . Consequently, the jump relation for the integrals in the definition

of \~u implies that the trace on CR of \~u from \widetilde \Omega  - 
R is zero. In other words, the restriction

\~u| \widetilde \Omega  - 
R
is a solution of the homogeneous Dirichlet problem for the Helmholtz equation

over \widetilde \Omega  - 
R. If there is no nontrivial solution of the Dirichlet problem, then \~u| \widetilde \Omega  - 

R
=0 and

the trace on CR of \partial \nu \~u from \widetilde \Omega  - 
R vanishes. The jump relation for the integrals in the

definition of \~u implies that the trace of \partial \nu \~u from \Omega +
R is equal to p. If we define the

function w by w(x) :=u(x) for x\in \Omega  - 
R and w(x) := \~u(x) for x\in \Omega +

R , then w and \partial \nu w
are continuous over CR. In other words, w is a solution of the homogeneous Dirich-
let problem for the Helmholtz equation over \Omega \Lambda =\Omega +

R \cup CR\cup \Omega  - 
R , which satisfies the

radiation condition. The uniqueness of the solution to this boundary value problem
(cf. [10, Thm. 4.1]) implies w=0 s.t. the solutions u and p=\partial \nu u vanish. Hence, the
null space of the operator defined by the left-hand side of (3.10) is trivial. Apply-
ing Fredholm's alternative, we obtain existence and uniqueness of weak solutions to
(3.10).

For h >max\{ x2 : x \in \Lambda \cup \Gamma \} , denote the strip between \Lambda and the straight line
\Gamma h :=\{ x\in \BbbR 2 : x2=h\} by \Omega \Lambda ,h. The space defined as Vh,\varrho but with \Omega \Gamma ,h replaced by
\Omega \Lambda ,h is denoted by V \prime 

h,\varrho . Well-posedness of the perturbed scattering problem is stated
below.

Theorem 3.1. Let vin be a plane wave, and let \Lambda be the local perturbation of \Gamma 
described above. Suppose further that the perturbed domain \Omega \Lambda fulfills the condition
(2.4). Then the wave scattering problem (3.2) over \Omega \Lambda admits a unique solution

u\in H1,loc
0 (\Omega \Lambda )\cap C2(\Omega \Lambda ) such that the difference u - vin - vsc fulfills the HPSRC in

\Omega \Gamma \cap \Omega \Lambda and has a far-field pattern in C(\BbbS +). Moreover, for any index  - 1 < \varrho <
 - 1/2, the restriction u| \Omega \Lambda ,h

is the unique variational solution of (3.2) over \Omega \Lambda ,h in
the weighted Sobolev space V \prime 

h,\varrho (cf. [10, Thm. 4.1]). Clearly, u| \Omega \Lambda ,h
\in C2(\Omega \Lambda ,h).

Proof. If the diameter of \widetilde \Omega  - 
R in the x2-direction is sufficiently small, then the

variational form of the Helmholtz operator is positive definite and k2 is not an ei-
genvalue for the negative Laplacian over \widetilde \Omega  - 

R. Now it is not hard to construct an

analytic family of domains \widetilde \Omega  - 
R(\lambda ), 0<\lambda <1 all having the same lower boundary as\widetilde \Omega  - 

R and with an analytic family of upper boundaries CR(\lambda ) such that \widetilde \Omega  - 
R(\lambda ) has a

small diameter in x2-direction for 0<\lambda <\varepsilon and \Lambda \setminus \Gamma \subset \widetilde \Omega  - 
R(\lambda ) for 1 - \varepsilon <\lambda <1. Hence,

k2 is an eigenvalue for the negative Laplacian over \widetilde \Omega  - 
R(\lambda ) for \lambda in at most a count-

able set of (1 - \varepsilon , 1). In other words, it is possible to choose CR such that k2 is not

an eigenvalue for the negative Laplacian over \widetilde \Omega  - 
R. Furthermore, it is easy to check

that a plane wave belongs to H1
\varrho (\Omega \Lambda ,h) for any h>max\{ x2 : x\in \Lambda \} and \varrho \in ( - 1, - 1/2).

Under the condition (2.4), the locally perturbed scattering problem admits a unique
solution u such that u - vin satisfies the ASR (2.6) and belongs to the same space as
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the incoming wave (cf. [10, Thm. 4.1]). On the other hand, for the unique solution
u to the variational problem (3.10) the difference u - vin = vsc+u0 can be extended
to a solution over \Omega \Lambda . In particular, the extension of u0 for | x| >R is given by (3.7).
In view of Lemma 3.1, u0 fulfills the HPSRC and has a far-field pattern. Moreover,
vsc+u0 is in H1

\varrho (\Omega \Lambda ,h) and satisfies the ASR (2.6), since both vsc and u0 are in
H1

\varrho (\Omega \Lambda ,h) and fulfill the ASR. Theorem 3.1 then follows from the uniqueness result of
[10, Thm. 4.1].

In one of the authors' previous works [4], results similar to Theorem 3.1 were ob-
tained in the case that \Lambda is a local perturbation of the ground floor \Gamma =\{ x\in \BbbR 2 : x2=0\} 
on which an impedance boundary condition of the total field is imposed. In that case,
the Green's function G(x; y) to the unperturbed scattering problem is given in an
explicit form, and significantly simplified arguments can be applied.

Remark 3.1. The result of Theorem 3.1 extends naturally to other incoming waves
belonging to the weighted Sobolev space V \prime 

h,\varrho for some h > \{ x2 : x \in \Gamma \cup \Lambda \} and

\rho \in ( - 1, - 1/2). By Theorem 3.1, the perturbed wave field u0 = u - vin - vsc caused
by a local defect fulfills the HPSRC and thus decays as | x1| \rightarrow \infty in the strip \Omega \Lambda ,h

for any h >maxx\in \Lambda \cup \Gamma \{ x2\} . Since it is the unique solution in the weighted Sobolev
space V \prime 

h,\varrho , Theorem 3.1 implies that a local perturbation of a grating surface does
not excite any surface wave (x1, x2) \mapsto \rightarrow c exp(i\alpha x1 + i\beta x2) with i\beta < 0 different from
those of the unperturbed grating if the domain above it still satisfies condition (2.4).
Note that surface waves propagate along the grating surface and decay exponentially
in the vertical direction. They belong to V \prime 

h,\varrho for any \varrho < - 1/2.

Appendix A.
In this section, we give the proofs to the Lemmata 2.2--2.4 and 3.1 and

Theorem 2.2. We suppose that \Gamma is a two-dimensional rough surface (cf. the defi-
nition before Theorem 2.2). In particular, any periodic surface is a special rough
surface. Additionally, we suppose condition (2.4). All other definitions from the
previous sections are retained. We prepare our proofs with two technical lemmata.

Lemma A.1. Fix real numbers h and h\prime with h\prime >h, and let \Gamma h :=\{ z\in \BbbR 2 : z2=h\} .
Suppose that g\in L2

\varrho (\Gamma h) with 1/2<\varrho <1. If n+\varrho >1/2, then there is a constant C>0
s.t., for all x\in \BbbR 2 with x2\geq h\prime ,\int 

\{ z\in \Gamma h: | z1| >1\} 

| g(z)| 
| x - z| n

ds(z) \leq C\| g\| L2
\varrho (\Gamma h)

\Biggl\{ 
| x2|  - n if | x1| \leq | x2| ,\bigl[ 
| x1|  - n + | x2|  - n+1/2| x1|  - \varrho 

\bigr] 
else.

Proof. It follows from g\in L2
\varrho (\Gamma h) that\bigm| \bigm| \bigm| \int 

\{ z\in \Gamma h: | z1| >1\} 

| g(z)| 
| x - z| n

ds(z)
\bigm| \bigm| \bigm| 2 \leq | | g| | 2L2

\varrho (\Gamma h)

\int 
\{ z\in \Gamma h: | z1| >1\} 

1

| x - z| 2n | z1| 2\varrho 
ds(z) .

Hence, we only need to estimate the integral I=I(x1) on the right-hand side. Addi-
tionally, since | x - (0, h)| \sim | x| for | x| \rightarrow \infty , we may suppose h=0 .

First we show the estimate I(x1)\leq C| x2|  - 2n. Under the assumption | x1| \leq C0x2

with C0 :=1/(2h\prime ) this implies the estimate of the lemma. However, for the case
| x1| >Cx2, it is weaker than the estimate of the lemma. Without loss of gener-
ality, we may suppose that x1=0 and x=(0, x2) lying on the positive x2-axis, so
that | x| =x2. Indeed, we can argue as follows. Since x2\geq h\prime >h=0 and | y1| \leq 1+h\prime 

imply | x - (y1, 0) - z| \sim | x - z| , we get I(y1)\leq CI(0). Therefore, it remains to show
I(x1)\leq CI(0) for x1>1+h\prime . We get
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I(x1) :=

\int 
\{ z\in \Gamma 0: | z1| >1\} 

| x - z|  - 2n| z1|  - 2\varrho ds(z) = I1 + I2 + I3,(A.1)

I1 :=

\int  - 1

 - \infty 
[x2

2 + (x1 + | z1| )2] - n| z1|  - 2\varrho dz1 \leq 
\int  - 1

 - \infty 
[x2

2 + | z1| 2] - n| z1|  - 2\varrho dz1 \leq I(0),

I2 :=

\int x1

1

[x2
2 + (x1  - z1)

2] - n| z1|  - 2\varrho dz1

=

\int (1+x1)/2

1

\bigl\{ 
[x2

2 + (x1  - z1)
2] - n| z1|  - 2\varrho + [x2

2 + (z1  - 1)2] - n| 1 + x1  - z1|  - 2\varrho 
\bigr\} 
dz1

\leq 
\int (1+x1)/2

1

\bigl\{ 
[x2

2 + (z1  - 1)2] - n| z1|  - 2\varrho + [x2
2 + (z1  - 1)2] - n| z1|  - 2\varrho 

\bigr\} 
dz1 \leq 2I(1)

\leq CI(0),

I3 :=

\int \infty 

x1

[x2
2 + (z1  - x1)

2] - n| z1|  - 2\varrho dz1 \leq 
\int \infty 

1

[x2
2 + (z1  - 1)2] - n| z1 + x1  - 1|  - 2\varrho dz1

\leq 
\int \infty 

1

[x2
2 + (z1  - 1)2] - n| z1|  - 2\varrho dz1 \leq I(1) \leq CI(0).

In other words, I(x1)\leq CI(0). Hence, it is really sufficient to estimate I(0), and we
may suppose x1=0.

Now denote the angle formed by x - z and the positive x2-axis by \varphi \in (0, \pi /2).
Then it is easy to see that x2 = | x - z| cos\varphi and | z1| = x2 tan\varphi . Changing variables,
we find\int 

\{ z\in \Gamma 0: | z1| >1\} 

1

| x - z| 2n | z1| 2\varrho 
ds(z) \leq C

| x2| 2(n+\varrho  - 1/2)

\int \pi /2

arctan(1/x2)

(cos\varphi )2(n - 1)

(tan\varphi )2\varrho 
d\varphi 

\leq C

| x2| 2(n+\varrho  - 1/2)

\Biggl\{ 
1 +

\int \pi /2

arctan(1/x2)

\varphi  - 2\varrho d\varphi 

\Biggr\} 

\leq C

| x2| 2(n+\varrho  - 1/2)

\bigl\{ 
1 + arctan(1/x2)

 - 2\varrho +1
\bigr\} 

\leq C

| x2| 2n
.

Next we consider the case C0x2\leq | x1| , and, without loss of generality, we suppose
C0x2\leq x1. We set C1 := C0/2 and get x1 - C1x2\geq C0x2 - C1x2=C0/2 x2\geq C0/2 h\prime =1
such that (cf. (A.1)) I(x1)=I1+I \prime 2+I \prime 3 +I \prime 4 with

I \prime 2 :=

\int x1 - C1x2

1

f(x, z1) dz1, I \prime 3 :=

\int x1+C1x2

x1 - C1x2

f(x, z1) dz1,

I \prime 4 :=

\int \infty 

x1+C1x2

f(x, z1) dz1, f(x, z1) := [x2
2 + (x1  - z1)

2] - n| z1|  - 2\varrho .

Then x1 - c1x2\leq z1\leq x1+c1x2 implies x2
2+(x1  - z1)

2\sim x2
2 and z1\sim x1, and we arrive

at

I \prime 3 \leq C

\int x1+C1x2

x1 - C1x2

x - 2n
2 | x1|  - 2\varrho dz1 \leq C x1 - 2n

2 x - 2\varrho 
1 .(A.2)
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For x1+C1x2\leq z1, we get x2
2+(x1  - z1)

2\sim (z1  - x1)
2. Again, x1+C1x2\leq z1\leq 2x1

implies z1\sim x1, whereas 2x1\leq z1 leads to | z1 - x1| \sim z1. We obtain

I \prime 4 \leq C

\int 2x1

x1+C1x2

| z1  - x1|  - 2nx - 2\varrho 
1 dz1 + C

\int \infty 

2x1

z
 - 2(n+\varrho )
1 dz1

\leq C[C1x2]
1 - 2nx - 2\varrho 

1 + Cx
 - 2(n+\varrho  - 1/2)
1 \leq Cx1 - 2n

2 x - 2\varrho 
1 .(A.3)

Similarly, we conclude

I1 =

\int \infty 

1

| z1 + x1|  - 2nz - 2\varrho 
1 dz1(A.4)

\leq C

\int x1

1

x - 2n
1 z - 2\varrho 

1 dz1 + C

\int \infty 

x1

z
 - 2(n+\varrho )
1 dz1

\leq C x - 2n
1 ,

I \prime 2 \leq C

\int x1/2

1

x - 2n
1 z - 2\varrho 

1 dz1 + C

\int x1 - C1x2

x1/2

| x1  - z1|  - 2nx - 2\varrho 
1 dz1(A.5)

\leq Cx - 2n
1 + Cx - 2\varrho 

1 x1 - 2n
2 .

The formulas (A.4), (A.5), (A.2), and (A.3) provide us with the estimate for the case
C0x2\leq | x1| . This finishes the proof of LemmaA.1.

Lemma A.2. Consider fixed numbers h, h\prime , and \varrho s.t. h>h\prime >0 and 1/2<\varrho <1,
and suppose CR is a curve satisfying the conditions of subsection 2.3 following Lemma
2.4. Choose a function f \in L1(CR), and suppose that \scrS y\in L2

\varrho (\Omega \Gamma , h\prime ), y\in CR, is a fam-
ily of functions, which depend continuously on y. Extend \scrS y to \Omega \Gamma by \scrS y(x) :=0 for
x2>h\prime . By w denote the y dependent solution of the homogeneous Dirichlet prob-
lem for \Delta w(\cdot ; y)+k2w(\cdot ; y)=\scrS y over the domain \Omega \Gamma s.t.w(\cdot ; y) satisfies the con-
dition ASR (cf. [10, Thm. 4.1]). Then the functions w(\cdot ; y), y\in CR and wI(\cdot ) :=\int 
CR

w(\cdot ; y)f(y)dy defined over \Omega \Gamma satisfy the HPSRC and have a far-field pattern

in C(\BbbS +).

Proof. We only prove the more involved case of wI . From [10, Thm. 4.1] we
infer that the family of solutions CR\ni y \mapsto \rightarrow w(\cdot ; y)\in Vh,\varrho is continuous for the fixed \varrho .
Hence, wI \in Vh,\varrho , and, for the HPSRC, it remains to prove (2.8) with v=wI . Recall
\Gamma h :=\{ x\in \BbbR 2 : x2=h\} . We observe that w(\cdot ; y) is analytic near \Gamma h as a Helmholtz

solution and that w(\cdot ; y)| \Gamma h
belongs to the space H

1/2
\varrho (\Gamma h) for the \varrho with 1/2<\varrho <1

and depends continuously on y\in CR. Hence, gh :=wI | \Gamma h
\in L2

\varrho (\Gamma h)\subset H
1/2
\varrho (\Gamma h), and gh

is analytic. Moreover, since supp\scrS y \subseteq \Omega \Gamma , h\prime , the function wI over the set Uh := \{ x\in 
\BbbR 2 : x2>h\} can be written as

wI(x) =2

\int 
\Gamma h

\partial \Phi (x; z)

\partial z2
gh(z) ds(z), x \in Uh,(A.6)

which is known as the UPRC (see [11]). Here, z\ast h denotes the image of z with respect
to reflection by the line \Gamma h, and the function \Phi h(x; z) is the Green's function to
the Helmholtz equation with the Dirichlet boundary condition on \Gamma h. The improper
integral in the above expression of wI can be understood as the duality between
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2588 GUANGHUI HU, WANGTAO LU, AND ANDREAS RATHSFELD

H
1/2
\varrho (\Gamma h) and its dual space H

 - 1/2
 - \varrho (\Gamma h) for our \varrho ; we refer to [10] for the equivalence

of the UPRC and ASR in weighted Sobolev spaces.
Using a twice differentiable cutoff function, we can represent gh as the sum

of two functions, the first with compact support and the second with support in
\{ z\in \Gamma 0 : | z1| >1\} . Correspondingly, wI is the sum of the two integrals of the type
(A.6) with gh replaced by the two functions adding up to gh. For both integrals,
we have to prove the HPSRC. The case of wI with compact support concerns a
classical double layer potential with layer function from the trace space H1/2. The
resulting wI fulfills the classical full-space Sommerfeld condition and has the well-
known far-field pattern for all directions \^x \in \BbbR 2 with | \^x| =1. The boundedness of
the norms in H1

\varrho (\Omega \Gamma ,h\cap \{ x\in \BbbR 2 : | x1| >R\} ) with  - 1<\varrho <1 follows from the estimate

| \partial z2\Phi (x; z)| \leq C(1+| x2| )| x|  - 3/2, valid for z in a bounded set and for | x| >R with suffi-
ciently large R (cf. the subsequent formulas (A.7) and (A.9)). Consequently, without
loss of generality we may suppose that the support of gh on \Gamma h is contained in the set
\{ z\in \Gamma h : | z1| >1\} , which allows us to apply LemmaA.1.

Straightforward calculations show that for x\in Uh and z=(z1, z2)\in \Gamma h,

\partial \Phi h(x; z)

\partial z2

\bigm| \bigm| \bigm| 
z2=h

=
ik(x2  - z2)H

(1)
1 (k| x - z| )

2| x - z| 

\bigm| \bigm| \bigm| 
z2=h

.(A.7)

Write x= r(cos \theta , sin \theta ), s(r, z) := k| x(r) - z| , and \^x := x/r = (cos \theta , sin \theta ). Here and

thereafter, H
(1)
n denotes the Hankel function of the first kind of order n\in \BbbZ . Then we

may rewrite the previous identity as

\partial \Phi h(x; z)

\partial z2

\bigm| \bigm| \bigm| 
z2=h

=
ik2(x2  - h)

2

H
(1)
1 (s(r, z))

s(r, z)

\bigm| \bigm| \bigm| 
z2=h

.(A.8)

Below we shall write s=s(r, z) for notational simplicity and make use of the asymp-
totic behavior of the Hankel functions for large argument as follows (cf., e.g., (3.82)
in [17]):

H(1)
n (s) =

\sqrt{} 
2

\pi s
ei(s - (2n+1)/4\pi ) +\scrO (| s|  - 3/2),

(H(1)
n )\prime (s) = i

\sqrt{} 
2

\pi s
ei(s - (2n+1)/4\pi ) +\scrO (| s|  - 3/2).

(A.9)

We choose an h\prime \prime >h and consider x\in \BbbR 2 with x2>h\prime \prime . Thus s>k(h\prime \prime  - h)>0, and
the identity (A.8) implies that there exists a constant C>0 such that\bigm| \bigm| \bigm| \bigm| \partial \Phi h(x; z)

\partial z2

\bigm| \bigm| \bigm| \bigm| \leq C(x2 + h)

s3/2
=

C(r sin(\varphi ) + h)

s3/2
(A.10)

for all x2>h\prime \prime and z2=h. Hence, by LemmaA.1 we obtain

| wI(x)| \leq 
\int 
\Gamma h

C(x2 + h)

s(r, z)3/2
| gh(z)| ds(z)

\leq C \| gh\| L2
\varrho (\Gamma h)(x2 + h)

\biggl\{ 
| x2|  - 3/2 if | x1| \leq | x2| ,\bigl[ 
| x1|  - 3/2 + | x2|  - 1| x1|  - \varrho 

\bigr] 
else.

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 1

37
.1

89
.4

0.
12

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCATTERING BY DEFECTED PERIODIC CURVES 2589

Since r\sim max\{ | x1| , | x2| \} , we arrive at

| wI(x)| \leq C \| gh\| L2
\varrho (\Gamma h)r

 - 1/2, x \in Uh\prime \prime ,(A.11)

leading to the boundedness supr>1 supx\in Sr\cap Uh\prime \prime r
1/2| wI(x)| < \infty .

Further, through direct calculations we obtain

\partial 

\partial r

\partial \Phi h(x; z)

\partial z2
=

ik2 sin \theta 

2

H
(1)
1 (s)

s
+

ik2(r sin \theta  - h)

2

d

ds

\Biggl( 
H

(1)
1 (s)

s

\Biggr) 
ds(r, z)

dr
.(A.12)

As s \rightarrow \infty , it holds that (cf. (A.9))

d

ds

\Biggl( 
H

(1)
1 (s)

s

\Biggr) 
=

H
(1)\prime 

1 (s) s - H
(1)
1 (s)

s2
= i

H
(1)
1 (s)

s
+\scrO (s - 5/2).(A.13)

It is easy to check that, for z2=h,

ds(r)

dr
= k

| x|  - \^x \cdot z
| x - z| 

,

\bigm| \bigm| \bigm| \bigm| ds(r)dr
 - k

\bigm| \bigm| \bigm| \bigm| \leq C
h+ s

s
,(A.14)

where the constant C>0 is independent of z=(z1, h) and of x\in Uh. In the last step
we have used | | x|  - \^x \cdot z| \leq h+s, which can be seen as follows. Consider the triangle
between the points (0, 0), (z1, 0), and x=(x1, x2), and suppose u=(u1, u2) is the
projection of (z1, 0) onto the line through (0, 0) and x. Then, in the rectangular
triangle between x, (z1, 0), and u, the hypotenuse between x and (z1, 0) is longer
than the side between x and u, i.e., | | x|  - \^x \cdot z| \leq | x - (z1, 0)| . Consequently, we get
| | x|  - \^x \cdot z| \leq | x - (z1, h)| +h=s+h.

Combining the relations (A.13) and (A.14) yields that, for s \rightarrow \infty ,

(A.15)

d

ds

\Biggl( 
H

(1)
1 (s)

s

\Biggr) 
ds(r)

dr
 - ik

H
(1)
1 (s)

s
=

iH
(1)
1 (s)

s

\biggl[ 
ds(r, z)

dr
 - k

\biggr] 
+\scrO (s - 5/2) = \scrO (s - 3/2).

Now we deduce from (A.8), (A.12), and (A.15) that, for z\in \Gamma h and a suitable constant
C>0, \bigm| \bigm| \bigm| \bigm| \biggl( \partial 

\partial r
 - ik

\biggr) 
\partial \Phi h(x; z)

\partial z2

\bigm| \bigm| \bigm| \bigm| \leq C

\biggl( 
sin(\theta )

s3/2
+

(x2 + h)

s3/2

\biggr) 
\leq C

(x2 + h)

s3/2
(A.16)

as s\rightarrow \infty . Similarly to the derivation of (A.11) from (A.10) and LemmaA.1, (A.16)
and LemmaA.1 imply

| \partial rwI(x) - ikwI(x)| \leq 
\int 
\{ z\in \BbbR 2: z2=h\} 

\bigm| \bigm| \bigm| \bigm| (\partial r - ik)
\partial \Phi h(x; z)

\partial z2
gh(z)

\bigm| \bigm| \bigm| \bigm| ds(z)(A.17)

\leq C\| gh\| L2
\varrho (\Gamma h)| x| 

 - 1/2

for all x \in Uh\prime \prime . Next we choose \varepsilon >0 and prove that there is a constant C independent
of \varepsilon s.t. the supremum over x\in Sr\cap Uh\prime \prime of the expression r1/2| \partial rwI(x) - ikwI(x)| is less
than C\varepsilon whenever r is larger than a suitable threshold. We choose an approximation
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\~gh of gh over \Gamma h with compact support s.t. \| \~gh - gh\| L2
\varrho (\Gamma h) <\varepsilon and define \~wI by the

integral on the right-hand side of (A.6) with gh replaced by \~gh. Then the proof of
(A.17) implies

sup
x\in Sr\cap Uh\prime \prime 

r1/2
\bigm| \bigm| \partial \nu [wI(x) - \~wI(x)] - ik[wI(x) - \~wI(x)]

\bigm| \bigm| \leq C\varepsilon .(A.18)

On the other hand, we get | | x|  - \^x \cdot z - | x - z| | <C if z is bounded, and the upper esti-
mate C(h+s)/s in (A.14) can be improved to a simple C/s. Hence, for the compactly
supported z \mapsto \rightarrow \~gh(z), derivation of (A.17) implies

| \partial \nu \~wI  - ik \~wI | \leq C

\int 
\Gamma h

\Bigl[ 
r - 1x2s

 - 3/2 + (x2 + h)s - 5/2
\Bigr] 
| \~gh| dz,

sup
x\in Sr\cap Uh\prime \prime 

r1/2 | \partial \nu \~wI  - ik \~wI | \leq C\~gh r
1/2 - \varrho \leq \varepsilon (A.19)

if r is larger than a suitable threshold. Combining (A.18) and (A.19), we get that
the supremum over x\in Sr \cap Uh\prime \prime of the expression r1/2| \partial rwI(x) - ikwI(x)| is less than
(C+1)\varepsilon if r is sufficiently large. The proof of (2.8) for v=wI is completed.

Next we have to prove the existence of the far-field pattern. We prove it for the
representation of wI by the right-hand side of (A.6). The relations (A.7) and (A.9)
lead to (cf. LemmaA.1)

wI(x) =

\int 
\Gamma h

\biggl\{ 
c
eik| x - z| (x2  - h)

| x - z| 3/2
+\scrO 

\Bigl( 
(x2  - h)| x - z|  - 5/2

\Bigr) \biggr\} 
gh(z)ds(z)

= c

\int 
\Gamma h

eik| x - z| x2

| x - z| 3/2
gL,h(z)ds(z) +\scrO 

\Bigl( 
\| gh  - gL,h\| | x|  - 1/2

\Bigr) 
+\scrO 

\bigl( 
| x|  - \varrho 

\bigr) 
,

where

gL,h(z) :=

\biggl\{ 
gh(z) if  - L<z1<L,
0 else,

c =
ik

2

\sqrt{} 
2

\pi 
e - 3i/(4\pi ).

Using that, for fixed L and | x| \gg L,

1

| x - z| 3/2
=

1

| x| 3/2
+\scrO L(| x|  - 5/2), eik| x - z| = eik| x| e - ik[x/| x| ]\cdot z \bigl[ 1 +\scrO L(| x|  - 1)

\bigr] 
,

and setting x=r\^x with r := | x| and \^x\in CR, we arrive at

wI(x) = c
eikr

r1/2
\^x2 e

 - ikh\^x2

\int L

 - L

e - ikz1\^x1gh(z1, h)dz1 + \scrO 
\Bigl( 
\| gh  - gL,h\| L2

\varrho (\Gamma h) | x| 
 - 1/2

\Bigr) 
+ \scrO L

\bigl( 
| x|  - \varrho 

\bigr) 
.

Here the \scrO L terms denote usual \scrO expressions defined with constants depending on
L. Now we get that gh\in L2

\varrho (\Gamma h)\subset L1(\Gamma h) is valid for \varrho \in (1/2, 1). So we obtain

wI(x) =
eikr\surd 
r

c \^x2e
 - ikh\^x2

\int 
\BbbR 
e - ikz1\^x1gh(z1, h)dz1 +\scrO 

\Bigl( 
\| gh  - gL,h\| L2

\varrho (\Gamma h)

\Bigr) 1\surd 
r

(A.20)

+ \scrO L(r
 - \varrho ),
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where the second term on the right-hand side is smaller than \varepsilon /2 for sufficiently large
L. Fixing such an L, the third term is less than \varepsilon /2 if r is sufficiently large. All these
estimates are uniform w.r.t. \^x s.t. the multiplicator of exp(ikr)r - 1/2 in the first term
on the right-hand side is the far-field pattern of the function wI .

Remark A.1. The relation (A.20) implies that the far-field patten wI,\infty of wI

takes the form

wI,\infty (\^x) = c \^x2e
 - ikh\^x2

\int 
\BbbR 
e - ikz1\^x1gh(z1, h)dz1, \^x = x/| x| = (\^x1, \^x2) \in \BbbS +.

In particular, we observe wI,\infty (\^x)\rightarrow 0 for \BbbS + \ni \^x\rightarrow (\pm 1, 0). Note that it is natural
to have a vanishing pattern function wI,\infty (\^x0) = 0 at the horizontal directions \^x0 :=
(\pm 1, 0) due to the Dirichlet boundary condition imposed on \Gamma .

As a corollary of the proof of the lemma and of Theorem 2.1 valid for rough
surfaces, we can prove that the Green's function to rough surface scattering problems
satisfies HPSRC, i.e., the assertions of Theorem 2.2 and Lemma 2.2.

Proof of Theorem 2.2 and Lemma 2.2. Let y \in \Omega \Gamma , and suppose without loss of
generality that \Gamma lies above \Gamma 0 := \{ x2 = 0\} . Denote the reflection image (y1, - y2)
of y = (y1, y2) with respect to the straight line \Gamma 0 by y\ast . Choose a cutoff function
\chi \in C\infty 

0 (\Omega \Gamma ) such that \chi \equiv 0 in x2 > h\prime for some h\prime > y2 > 0 and \chi \equiv 1 near y. For
the unique G of Theorem 2.1 valid for rough surfaces (cf. the arguments of [10, Thm.
4.1]), set

w(x; y) := G(x; y) - 
\bigl( 
Gin(x; y) - Gin(x; y\ast )

\bigr) 
\chi (x) x \in \Omega \Gamma .

Then it is easy to see (\Delta +k2I)w=:\scrS y\in L2
\rho (\Omega \Gamma ,h\prime ) for all \rho \in (0, 1). However, there

is a unique solution w\in Vh,\rho of (\Delta +k2I)w=\scrS y (cf. [10, Thm. 4.1]), which yields the
existence of a unique variational solution in Theorem 2.2. Applying LemmaA.2, we
get the assertions on the HPSRC, the far-field pattern, and the inclusion in the cor-
responding Sobolev space. \square 

Obviously, the cutoff function in the previous proof depends on the distance
between the source position y and the rough surface \Gamma . The corresponding estimates
blow up if this distance tends to zero. Below we present a more ingenious proof
to Lemma 2.2 and Theorem 2.2. Our approach has the merit that the constructed
Green's function depends continuously on the source position y and does not depend
on the distance between y and \Gamma . This will be important to derive Lemma 2.4.

Second proof of Lemma 2.2. Without loss of generality we may fix R>0 and
y\in \Omega \Gamma such that | y| \leq R. For a radius r > 0, we denote the circle \{ x\in \BbbR 2 : | x| <r\} 
by Br. We consider a simple, bounded, and closed Lipschitz curve \Theta \subset \BbbR 2\setminus \Omega \Gamma s.t.
\Gamma \cap B2R\subseteq \Theta \cap B2R. By G\Theta (x; y) we denote the Green's function for the Dirichlet
boundary problem with classical Sommerfeld radiation condition for the Helmholtz
equation over the domain Ext\Theta exterior to \Theta (cf. Figure A.1). Furthermore, we fix a
cutoff function as

\chi (x) =

\biggl\{ 
0 if | x| < R/3,
1 if | x| > 2R/3,

| \nabla | \alpha | \chi | < C, | \alpha | = 0, 1, 2.

Recall that \Gamma is located between \Gamma h and \Gamma 0. Then we shall prove

G(x; y) = G\Theta (x; y) - G\Theta 
\bigl( 
x+ (0, H); y

\bigr) 
+ u(x; y) + w(x; y),(A.21)

u(x; y) :=  - \chi (x - y)G\Theta (x; y) +G\Theta 
\bigl( 
x+ (0, H); y

\bigr) 
,

\scrS y(x) :=  - 
\bigl( 
\Delta x + k2

\bigr) 
u(x; y),
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supp [1−   ](.−y)χ

Fig. A.1. Closed curve \Theta having common part with periodic profile curve \Gamma .

where H is a fixed positive constant s.t. max\{ y, h\} \leq H/2 and w(\cdot ; y) is the solution
of the homogeneous Dirichlet problem for \Delta w(\cdot ; y)+k2w(\cdot ; y) = \scrS y under the con-
dition ASR. Concerning the term G\Theta (x+(0, H); y), we observe that, for x0\in \Theta , we
get G\Theta ([x0 - (0, H)]+(0, H); y)=G\Theta (x0; y), i.e., the boundary behavior of G\Theta (x0; y),
x0\in \Theta , is shifted by H into the negative x2-direction. Moreover, the weak singularity
of the Green's function at the source point appears for x+(0, H) = y, i.e., at x =
y - (0, H). In other words, the function (x, y) \mapsto \rightarrow G\Theta (x+(0, H); y) is the Green's func-
tion G\Theta  - (0,H)(x, y - (0, H)) of the domain Ext\Theta  - (0, H) at the source point y - (0, H). In
particular, G\Theta (x+(0, H); y) is an analytic function on \Omega \Gamma . Clearly, the support of the
right-hand side \scrS y over \Omega \Gamma is contained in the compact set supp [1 - \chi ](\cdot  - y)\subseteq \{ x\in \BbbR 2 :
| x - y| \leq 2R/3\} (cf. Figure A.1) and

\scrS y =  - 
2\sum 

j=1

\Bigl\{ 
2\partial xj\chi (\cdot  - y) \partial xjG

\Theta (\cdot ; y) + \partial 2
xj
\chi (\cdot  - y)G\Theta (\cdot ; y)

\Bigr\} 
\in L2

\varrho (\Omega \Gamma ).(A.22)

Therefore, the solution function w(\cdot ; y) is the solution of the variational equation
of [10, Thm. 4.1].

Let us define G by the right-hand side of (A.21). Then the equation \Delta G(\cdot ; y)+
k2G(\cdot ; y) = \delta y follows from the Green's function property of G\Theta (\cdot ; y) and G\Theta (\cdot +
(0, H); y) and from the definition of w using \scrS y. The boundary condition is fulfilled
since w(\cdot ; y)| \Gamma = 0 holds for the solution of a homogeneous Dirichlet problem, since
G\Theta (x; y) - G\Theta (x+ (0, H); y)+u(x; y) vanishes for x with \chi (x  - y) = 1, and since, for
| y| \leq R and for any x\in \Gamma with \chi (x - y) \not =1, we get \chi (x - y)G\Theta (x; y)=G\Theta (x; y)=0 by
the Dirichlet condition for the Green's function G\Theta . The condition ASR is satisfied
as we shall prove the stronger HPSRC below. In other words, the right-hand side
(A.21) is really the Green's function G(x; y) for the domain \Omega \Gamma .

Let us prove the radiation condition and the existence of the far-field pattern for
the terms on the right-hand side of (A.21). LemmaA.2 implies the HPSRC and the
existence of the far-field pattern for w(\cdot ; y). The Green's functionsG\Theta (\cdot ; y) andG\Theta (\cdot +
(0, H); y) satisfy the classical full-space Sommerfeld condition implying (2.8) and have
a far-field pattern even uniformly in all directions \theta with | \theta | =1. The boundedness of
the H1

\varrho (\Omega \Gamma ,h\cap \{ x\in \BbbR 2 : | x1| >R\} )-norms of G\Theta (\cdot ; y) - G\Theta (\cdot + (0, H); y) for  - 1<\varrho <1
follows from \Phi (x+(0, H); y)=\Phi (x; y - (0, H)) (cf. (2.5) for the definition of \Phi ) and
from the estimate\bigm| \bigm| \partial l1

y1
\partial l2
y2
\Phi (x; y) - \partial l1

y1
\partial l2
y2
\Phi 
\bigl( 
x; y  - (0, H)

\bigr) \bigm| \bigm| \leq C
1 + | x2| 
| x| 3/2

(A.23)

valid for fixed integers l1, l2\geq 0, for any y from a bounded set, and for any x>R with
sufficiently large R (see below and also [8, 9]). Indeed, we can represent G\Theta (\cdot ; y) by
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the representation formula as the sum of a single and double layer operator over
a bounded smooth curve \Theta \prime enclosing \Theta . The weight functions in these poten-
tials are smooth. Consequently, G\Theta (\cdot ; y) - G\Theta (\cdot + (0, H); y) is equal to the differ-
ence of the representation formula minus the same formula with the same weights
but on the curve \Theta \prime shifted by H in the direction of the negative x2-axis. Ap-
plying (A.23), we get the estimate | G\Theta (x; y) - G\Theta (x+ (0, H); y)| \leq C| x|  - 3/2 for large
values of | x| with x2 < h. Similarly, we can prove the estimate for the difference
of the gradients | \nabla xG

\Theta (x; y) - \nabla xG
\Theta (x+ (0, H); y)| \leq C| x|  - 3/2 for large values of | x| 

with x2 < h. It is easy to see that these estimates imply the boundedness of the
H1

\varrho (\Omega \Gamma ,h\cap \{ x\in \BbbR 2 : | x1| >R\} )-norms of the functions G\Theta (\cdot ; y) - G\Theta (\cdot + (0, H); y).

For the proof of (A.23), we observe that \partial l1
y1
\partial l2
y2
\Phi (x; y) is a derivative of the

function H
(1)
0 (k| x - y| ) multiplied by a rational function depending on the arguments

| x - y| 1/2, x1, x2, y1, and y2. The derivatives of order higher than one can be reduced
to the zero and first order derivative using Bessel's differential equation. In view
of (A.9), we can replace the derivatives of the Hankel functions by the expression
exp(i(k| x - y|  - (2n+1)/4\pi )). Simple estimates of the difference for the expressions
with y and with y replaced by y  - (0, H) give the estimate on the right-hand side of
(A.23). Indeed, estimates like\bigm| \bigm| \bigm| | x - y| 1/2  - 

\bigm| \bigm| x - 
\bigl( 
y - (0, H)

\bigr) \bigm| \bigm| 1/2\bigm| \bigm| \bigm| \leq C| x|  - 1/2,\bigm| \bigm| \bigm| exp\bigl( ik| x - y| 
\bigr) 
 - exp

\Bigl( 
ik
\bigm| \bigm| x - \bigl( y  - (0, H)

\bigr) \bigm| \bigm| \Bigr) \bigm| \bigm| \bigm| \leq C
1 + | x2| 

| x| 

lead us to the additional factor (1 + | x2| )| x|  - 1 in C(1 + | x2| )| x|  - 3/2 in comparison to
an estimate by C| x|  - 1/2 following directly from (A.9) applied to a single derivative of
\Phi . \square 

It follows from (A.23) that the function v=G\Theta (\cdot ; y) - G\Theta (\cdot ; y\ast ) decays faster than
G\Theta (\cdot ; y) in Uh. As a consequence of the proof of Lemma 2.2, we obtain the well-
posedness result on rough surface scattering problems formulated in Corollary 2.1.

Proof of Lemma 2.3. Replacing G(x; y) by \partial l1
y1
\partial l1
y1
G(x; y) in the proof of

Lemma 2.2, we conclude that the modified right-hand side of (A.21) satisfies the prop-
erties of a differentiated Green's function together with the HPSRC. Applying the
inverse operator [\partial l1

y1
\partial l1
y1
] - 1, i.e., integrations w.r.t. the variables y1 and y2, we define a

new Green's function satisfying the HPSRC. From the uniqueness of the Green's func-
tion, we obtain that the modified right-hand side of (A.21) is indeed the differentiated
Green's function G(x; y). Hence, \partial l1

y1
\partial l1
y1
G(x; y) is equal to the modified right-hand

side of (A.21), and the HPSRC is satisfied. The far-field pattern exists as well. \square 
Proof of Lemma 2.4. For definiteness, we consider the case x\in \Omega a. We simply

repeat the proof of Lemma 2.2 but with \Theta and G\Theta (x ; y) replaced by the line La

containing \Gamma a and by the Green's function Ga(x ; y)=\Phi (x ; y) - \Phi (x ; y\ast ), respectively.
Then, due to the differentiability of \scrS y in (A.22) with G\Theta replaced by Ga, the remain-
der term R(x ; y)=w(x ; y) is a solution of the boundary value problem in [10, Thm.
4.1] and, therefore, a function \Omega a\ni y \mapsto \rightarrow R(\cdot ; y)\in H1(\Omega a), which together with all de-
rivatives is continuous. By the regularity of solutions to the homogeneous Dirichlet
problem for the Helmholtz equation, the function y \mapsto \rightarrow R(\cdot ; y) maps even to the Sobolev
spaces of higher order. \square 

Proof of Lemma 3.1. We first note that the integrals on the right-hand side of
(3.7) are understood as the duality between the spaces \widetilde H1/2(CR) and H - 1/2(CR) (cf.
subsection 2.3). Applying integration by parts along the boundary CR, we get a new
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integral representation with higher order derivatives w.r.t. y on G but with smoother
weight function f . Without loss of generality we may suppose f \in L1(\Gamma 0). The proof
of Lemma 2.2 implies Lemma 3.1 if we follow the proof of Lemma 2.2 with the Green's
function replaced by its derivatives and if we apply LemmaA.2 twice with wI equal
to one of the integrals on the right-hand side of (3.7). \square 
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