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Abstract. This paper is concerned with the factorization method with a sin-
gle far-field pattern to recover an arbitrary convex polygonal scatterer/source in
linear elasticity. The approach also applies to the compressional (resp. shear)
part of the far-field pattern excited by a single compressional (resp. shear)
plane wave. The one-wave factorization is based on the scattering data for a
priori given testing scatterers. It can be regarded as a domain-defined sampling
method and does not require forward solvers. We derive the spectral system
of the far-field operator for rigid disks and show that, using testing disks, the
one-wave factorization method can be justified independently of the classical
factorization method.

1. Introduction. The purpose of inverse time-harmonic elastic scattering is to
recover the position, shape and physical properties of an elastic body by using
information of the scattered wave generated by time-harmonic plane and point
source waves. We refer to [2, 6, 21] for a comprehensive introduction of mathematical
theory and inverse problems in linear elasticity.

Over the last twenty years, sampling-type methods have attracted much atten-
tion, because forward solvers and good initial approximations of the target are no
longer required, in contrast with the iterative approaches. The multi-wave sampling
methods do not require a priori information on physical and geometrical properties
of the scatterer, but usually need far-field data for a large number of incident waves.
Here we give an incomplete list of the applications to the Navier equation, including
linear sampling and factorization methods [1, 3, 7, 8, 15], singular source method
[11], orthogonal/direct sampling method [19], enclosure method [13] and the reverse
time-migration method in the frequency domain [9]. On the other hand, there also
exist the so-called one-wave sampling methods, which are usually designed to test
the analytic extensibility of the scattered field; see the monograph [29, Chapter 15]
for detailed discussions on scalar equations, for instance, range test and no-response
test [22, 24, 27] and enclosure method [16, 17]. The one-wave method requires only

Key words and phrases. factorization method, inverse elastic scattering, linear elasticity, single
far-field pattern, polygonal scatterers, corner scattering.

This work is supported by NSFC 12071236 and NSAF U1930402.
∗Corresponding author: Guanghui Hu.

1

http://dx.doi.org/10.3934/dcdsb.2022050


2 GUANQIU MA AND GUANGHUI HU

a single far-field pattern or one-pair Cauchy data, but one must pre-assume the
absence of an analytical continuation across the scattering interface.

If a single far-field pattern is available only, the inverse scattering problems be-
come severely ill-posed and thus more challenging. This paper is concerned with the
one-wave factorization method for recovering a convex rigid elastic body of polygo-
nal type from a single elastic far-field pattern. Such a method was earlier discussed
in [12] for inverse elastic scattering from rigid polygonal bodies but without too
much details. It is closet to the extended linear sampling method [25, 26] and the
one-wave range test method [22]. In the authors’ previous work [28], the one-wave
factorization method for the Helmholtz equation was rigorously established with the
help of corner scattering theory. The connections to the range test and extended
linear sampling were also discussed there. The one-wave factorization method is a
both data-driven and model driven method, and could lead to an explicit charac-
terization of an arbitrary convex scatterer of polygonal type if the testing scatterers
are chosen as disks. In this sense, it inherits merits of the classical factorization
method for precisely characterizing targets [20] but restricted to convex polygonal
scatterers/sources. The purpose of this paper is to generalize the mathematical
theory of [28] to the Navier equation. The following items can be considered as
complementary contributions to the previous work [12]: i) One-wave factorization
method using only compressional or shear waves in linear elasticity; ii) Explicit ex-
pressions of the spectral data for elastic far-field operators corresponding to rigid
disks and a straightforward verification of the one-wave factorization method by
using testing disks.

This paper is organized as follows. In Section 2, we introduce basic concepts
of the direct and inverse elastic scattering problems. In Section 3, the multi-wave
factorization method for recovering a rigid scatterer will be briefly reviewed. In
Section 4, we present a rigorous justification of the one-wave method by combining
the classical factorization method and elastic corner scattering theory. Explicit
examples by using testing disks will be presented in Section 5, including derivation
of an eigensystem of the far-field operator for a rigid disk. Finally, we describe our
imaging schemes in Section 6.

2. Preliminaries. In this paper, we will consider the scattering of elastic waves
in two-dimensional space R2. Let D ⊂ R2 be a bounded rigid elastic body with
connected exterior Dc := R2\D̄. Let Dc be filled with a homogeneous and isotropic
elastic medium. Suppose that a time-harmonic elastic plane wave of the form

ui (x; d, cp, cs) = cpdeikpx·d + csd
⊥eiksx·d, cp, cs ∈ C, |cp|+ |cs| 6= 0, (1)

is incident onto the scatterer D. Here d = (cos θd, sin θd)
T , θd ∈ [0, 2π) is the

incident direction; d⊥ := (− cos θd, sin θd)
T is a vector orthogonal to d; ω > 0 is

the frequency; kp := ω/
√
λ+ 2µ and ks := ω/

√
µ are the compressional and shear

wave numbers, respectively. Note that for simplicity the density of the background
medium has been normalized to be one and the Lame constants λ and µ satisfy
µ > 0 and λ+ 2µ > 0 in two dimensions. The propagation of time-harmonic elastic
waves in Dc is governed by the Navier equation (or system)

∆∗u+ ω2u := µ M u+ (λ+ µ)O (O · u) + ω2u = 0 in Dc, u = (u1, u2)
T
, (2)
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where u = ui + us donotes the total displacement field. By Hodge decomposition,
any solution u to (2) can be decomposed into the from

u = up + us, up := − 1

k2
p

grad div u, us :=
1

k2
s

curl
−−→
curl u, (3)

where up and us are called compressional and shear waves respectively. Note that
in (3) the two curl operators are defined as

−−→
curl u := ∂2u1 − ∂1u2, curl f = (−∂2f, ∂1f)

T
, (4)

satisfying the relation

curl
−−→
curl u = −∆u+ grad div u. (5)

Moreover, uα (α = p, s) satisfy the vector Helmholtz equations
(
∆ + k2

α

)
uα = 0 and

−−→
curl up = div us = 0 in Dc. In this paper, we require us to fulfill the Kupradze
radiation condition

∂ru
s
α − ikαusα = o

(
r−

1
2

)
as r = |x| → ∞, α = p, s, (6)

uniformly in all directions x̂ = x/|x| on the unit circle S :=
{
x ∈ R2 : |x| = 1

}
. It is

well known that the direct scattering problem admits one solution u ∈ C2(R2\D)∩
C1(R2\D) if ∂D is of C2-smooth (see [21]) and u ∈ (H1

loc(R2\D))2 if ∂D is Lipschitz
(see e.g., [4, 23]).

This paper is concerned with the inverse scattering problem of recovering ∂D
from the information of the far-field pattern of a single incoming plane wave. The
compressional and shear parts usα (α = p, s) of the radiating solution us admit an
asymptotic behavior of the form [12, 14]

usp (x) =
eikpr√
r

{
u∞p (x̂) x̂+O

(
1

r

)}
,

uss (x) =
eiksr√
r

{
u∞s (x̂) x̂⊥ +O

(
1

r

)} (7)

as r = |x| → ∞, where u∞p and u∞s are both scalar functions defined on S. Hence,
a Kupradze radiating solution has the asymptotic behavior

us (x) =
eikpr√
r
u∞p (x̂) x̂+

eiksr√
r
u∞s (x̂) x̂⊥ +O

(
1

r
3
2

)
as r →∞. (8)

The far-field pattern u∞ of us is defined as

u∞ (x̂) := u∞p (x̂) x̂+ u∞s (x̂) x̂⊥. (9)

Then the compressional and shear parts of the far field are uniquely determined by
u∞ as

u∞p (x̂) = u∞ (x̂) · x̂, u∞s (x̂) = u∞ (x̂) · x̂⊥. (10)

Introduce the compressional and shear parts of ui by

uip (x; d) := ui (x; d, 1, 0) , uis (x; d) := ui (x; d, 0, 1) . (11)

Obviously,

ui(x; d, cp, cs) = cpu
i
p(x; d) + csu

i
s(x; d). (12)
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Introducing the notations

u∞pp (x̂; d) := u∞p (x̂; d, 1, 0) ,

u∞sp (x̂; d) := u∞s (x̂; d, 1, 0) ,

u∞ps (x̂; d) := u∞p (x̂; d, 0, 1) ,

u∞ss (x̂; d) := u∞s (x̂; d, 0, 1) ,

(13)

we obtain

u∞(x̂; d, cp, cs) =
(
cpu
∞
pp(x̂) + csu

∞
ps(x̂)

)
x̂+

(
cpu
∞
sp(x̂) + csu

∞
ss(x̂)

)
x̂⊥, (14)

where the dependence of u∞αβ (α, β = p, s) on d has been omitted for simplicity. In
this paper, the following inverse elastic scattering problems will be considered:

IP-P: Reconstruct the shape and position of the scattere D from knowledge of
the compressional part u∞pp(x̂) of the far-field pattern due to one incident compres-
sional wave uip.

IP-S: Reconstruct the shape and position of D from knowledge of the shear part
u∞ss(x̂) of the far-field pattern due to one incident shear wave uis.

IP-F: Reconstruct the shape and position of D using the entire far-field pattern
u∞(x̂) due to one incident wave ui.

3. Factorization method with infinitely many plane waves.

3.1. Review of the classical Factorization method for inverse elastic scat-
tering. Given a vector field g(d) = gp(d)d+ gs(d)d⊥ ∈

(
L2(S)

)2, the superposition
of plane waves

vg(x) := e−i
π
4

∫
S

{√
kp
ω
deikpx·dgp(d) +

√
ks
ω
d⊥eiksx·dgs(d)

}
ds(d) (15)

is denoted as the elastic Herglotz wave function with density g. The Green’s tensor
of the Navier equation in free space, also called Kupradze’s tensor (see e.g., [3]), is
denoted by

Γ(x, y) :=
i

4µ
H

(1)
0 (ks|x− y|)I +

i

4ω2
O⊥x Ox

(
H

(1)
0 (ks|x− y|)−H(1)

0 (kp|x− y|)
)
, x, y ∈ R2

, x 6= y,

(16)

where H(1)
0 is the Hankel function of the first kind and of order zero. For any

y ∈ R2 and any direction a ∈ S, an elastic point source emiting from y with the
polarization a is given by

u(x) = Γ(x, y)a, x ∈ R2\{y}. (17)

The far-field pattern Γ∞(·, y; a) of this point source is given by

Γ∞(x̂, y; a) =
k2
p

ω2

ei
π
4√

8πkp
e−ikpx̂·y(x̂ · a)x̂+

k2
s

ω2

ei
π
4

√
8πks

e−iksx̂·y(x̂⊥ · a)x̂⊥, (18)

with the compressional and shear parts:

Γ∞p (x̂, y; a) = Γ∞(x̂, y; a) · x̂, Γ∞s (x̂, y; a) = Γ∞(x̂, y; a) · x̂⊥. (19)

In this paper we define the elastic far-field operator as follows.
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Definition 3.1. The far-field operator FD :
(
L2(S)

)2 → (
L2(S)

)2 is defined by

(FDg)(x̂) := e−i
π
4

∫
S

u∞D

(
x̂; d,

√
kp
ω
gp(d),

√
ks
ω
gs(d)

)
ds(d)

= e−i
π
4

∫
S

{√
kp
ω
u∞D (x̂; d, 1, 0)gp(d) +

√
ks
ω
u∞D (x̂; d, 0, 1)gs(d)

}
ds(d).

(20)

For rigid elastic bodies, it is well known that FD is a normal operator. It was
proved in [3, Theorem 4.3] that the operator FD can be decomposed into the form

FD = −
√

8πωGDS
∗
DG
∗
D. (21)

Here the data-to-patten operator GD :
(
H1/2(∂D)

)2 → (
L2(S)

)2 is defined by
GDh := u∞, where u∞ is the far-field pattern of the solution to the Dirichlet
boundary value problem of the Navier equation with the boundary value h. The
operator S∗D :

(
H−1/2(∂D)

)2 → (
H1/2(∂D)

)2
is the adjoint of the elastic single

layer potential operator SD, given by

SDφ(x) :=

∫
∂D

Γ(x, y)φ(y)ds(y), x ∈ ∂D. (22)

By the Factorization method, the far-field pattern Γ∞(·, z; a) belongs to the range
of GD if and only if z ∈ D (see [3, Theorem 4.7]). Moreover, the (F ∗F )1/4-method
(see [3, Theorem 4.8]) verifies the relation Range(GD) = Range((F ∗DFD)1/4) if ω2

is not an eigenvalue of −∆∗ over D. Hence, by the Picard theorem, the scatterer
D can be characterized by the spectra of FD as follows.

Theorem 3.2. ([3, Theorem 4.8]) Assume that ω2 is not a Dirichlet eigenvalue
of −∆∗ over D. Denote by (λ

(n)
D , ϕ

(n)
D ) a spectral system of the far-field operator

FD :
(
L2(S)

)2 → (
L2(S)

)2. Then,

z ∈ D ⇐⇒ I(z) :=
∑
n∈Z

∣∣∣〈Γ∞(·, z; a), ϕ
(n)
D

〉
S

∣∣∣2∣∣∣λ(n)
D

∣∣∣ < +∞. (23)

By Theorem 3.2, the sign of the indicator function I(z) can be regarded as
the characteristic function of D. We note that in (23), z ∈ R2 are the sampling
variables/points and the spectral data (λ

(n)
D , ϕ

(n)
D ) are determined by the far-field

patterns u∞D (x̂, d) over all observation and incident directions x̂, d ∈ S.
Below we state the Factorization method which involves only the compressional

or shear plane waves. Introduce the projection spaces

L2
p(S) :=

{
gp : S→ C, gp(d) = g(d) · d, |gp| ∈ L2(S)

}
and L2

s(S) :=
{
gs : S→ C, gs(d) = g(d) · d⊥, |gs| ∈ L2(S)

}
. Define the projection

operators Pp :
(
L2(S)

)2 → L2
p(S) and Ps :

(
L2(S)

)2 → L2
s(S) by (see e.g., [15])

Ppg(d) := gp(d), Psg(d) := gs(d). (24)

Thus, we can define the P-part and S-part of the far-field operator FD.

Definition 3.3. The far-field operator F (p)
D : L2

p(S)→ L2
p(S) is defined by

F
(p)
D gp(d) := PpFDP

∗
p gp(d). (25)
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Analogously, the far-field operator F (s)
D : L2

s(S)→ L2
s(S) is defined by

F
(s)
D gs(d) := PsFDP

∗
s gs(d). (26)

Here P ∗p and P ∗s are the adjoint operators of Pp and Ps, respectively.

By (21), we have the factorization

F
(α)
D = −

√
8πω(PαGD)S∗D(PαGD)∗, (27)

where α = p, s. Based on (27), the F#-method (see [15, Lemma 3.5]) verifies
the relation Range(PαGD) = Range((F (α)

D,#)1/2), provided ω2 is not a Dirichlet
eigenvalue of −∆∗ over D. Here the operator F# is defined by

F# := |ReF |+ |ImF |, ReF :=
1

2
[F + F ∗], ImF :=

1

2i
[F − F ∗]. (28)

Hence, the scatterer D can be characterized by the spectra of F (α)
D as follows.

Theorem 3.4. ([15, Theorem 3.7, 3.8]) Assume that ω2 is not a Dirichlet eigen-
value of −∆∗ over D. Denote by (λ

(n)
D,α, ϕ

(n)
D,α) a spectral system of the positive

operator F (α)
D,#. Then,

z ∈ D ⇐⇒ I(α)(z) :=
∑
n∈Z

∣∣∣〈Γ∞α (·, z; a), ϕ
(n)
D,α

〉
S

∣∣∣2∣∣∣λ(n)
D,α

∣∣∣ < +∞, α = p, s. (29)

3.2. Further discussions on Factorization method. Before stating the one-
wave version of the factorization method for inverse elastic scattering, we first
present a corollary of Theorem 3.2. Denote by Ω ⊂ R2 a convex and bounded
Lipschitz domain which represents a rigid elastic scatterer. Here we use a new no-
tation Ω in order to distinguish from our target scatterer D. The far-field operator
FΩ :

(
L2(S)

)2 → (
L2(S)

)2 corresponding to Ω is therefore defined by

(FΩg)(x̂) := e−i
π
4

∫
S

{√
kp
ω
u∞Ω (x̂; d, 1, 0)gp(d) +

√
ks
ω
u∞Ω (x̂; d, 0, 1)gs(d)

}
ds(d),

(30)
where u∞Ω (x̂; d, 1, 0) and u∞Ω (x̂; d, 0, 1) are the far-field patterns corresponding to
the elastic plane waves uip(x; d) and uis(x; d) incident onto Ω, respectively. The
eigenvalues and eigenfunctions of FΩ will be denoted by (λ

(n)
Ω , ϕ

(n)
Ω ). The following

corollaries can be derived straightforwardly from the classical Factorization method
in the previous subsection.

Corollary 1. Let v∞ ∈
(
L2(S)

)2 and assume that ω2 is not a Dirichlet eigenvalue
of −∆∗ over Ω. Then

I(Ω) =
∑
n∈Z

∣∣∣〈v∞, ϕ(n)
Ω

〉
S

∣∣∣2∣∣∣λ(n)
Ω

∣∣∣ < +∞ (31)

if and only if v∞ is the far-filed pattern of some Kupradze radiating solution vs,
where vs satisfies the Navier equation

∆∗vs + ω2vs = 0 in R2\Ω, (32)

with the boundary data vs|∂Ω ∈
(
H1/2(∂Ω)

)2
.
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Proof. By (21), we have FΩ = −
√

8πωGΩS
∗
ΩG
∗
Ω, where GΩ :

(
H1/2(∂Ω)

)2 →(
L2(S)

)2 is the data-to-pattern operator corresponding to Ω. Obviously, I(Ω) <

+∞ if and only if v∞ ∈ Range((F ∗ΩFΩ)1/4). Since Range((F ∗ΩFΩ)1/4) = Range(GΩ),
we get v∞ ∈ Range(GΩ) if and only if I(Ω) < +∞. Recalling the definition of GΩ,
it follows that vs satisfies the Navier equation (32) and the Kupradze radiation
condition (6) with the boundary data vs|∂Ω ∈

(
H1/2(∂Ω)

)2
.

Corollary 2. Let w∞αα ∈ L2
α(S)(α = p, s) and assume that ω2 is not a Dirichlet

eigenvalue of −∆∗ over Ω. Denote by (λ
(n)
Ω,α, ϕ

(n)
Ω,α) a spectral system of the positive

operator F (α)
Ω,#. Then

I(α)(Ω) =
∑
n∈Z

∣∣∣〈w∞αα, ϕ(n)
Ω,α

〉
S

∣∣∣2∣∣∣λ(n)
Ω,α

∣∣∣ < +∞ (33)

if and only if w∞αα = Pαv
∞, where v∞ is the far-field pattern of some Kupradze

radiating solution vs, which is defined in R2\Ω and vs|∂Ω ∈
(
H1/2(∂Ω)

)2
. That is,

w∞αα is the far-field pattern of some Sommerfeld radiating solution wsαα, fulfilling
the relations

wspp = − 1

k2
p

div vs if α = p; wsss =
1

k2
s

curl vs if α = s, (34)

where vs satisfies the boundary value problem of the Navier equation

∆∗vs + ω2vs = 0 in R2\Ω, vs|∂Ω ∈
(
H1/2(∂Ω)

)2

. (35)

Similar to Corollary 1, Corollary 2 can be proved by using the projection operator
Pα and the F#-method.

Proof. Without loss of generality, we assume that the relation (33) holds with α = p.
By the Picard theorem, w∞pp ∈ Range(F (p)

Ω,#) = Range(PpGΩ) if and only if the
indicator function I(p)(Ω) < +∞. This means that w∞pp = Ppv

∞, where v∞ is
the far-field pattern of a Kupradze’s radiating solution vs to the boundary value
problem (35). Using the Hodge decomposition, we see w∞pp is the far-field pattern
of wspp, where wspp = − 1

k2p
divvs.

On the other hand, let vs be a solution to the boundary value problem (35) and
define wspp := − 1

k2p
div vs. Suppose that w∞pp is the far-field pattern of wspp. Then,

by the Hodge decomposition it follows that w∞pp = Ppv
∞ = PpGΩ(vs|∂Ω), implying

that w∞pp ∈ Range(PpGΩ) = Range(F (p)
Ω,#). Applying the Picard theorem yields

I(p)(Ω) < +∞.

Remark 1. It follows from (34) that the restrictions of wspp, wsss to ∂Ω lie in the
space H−1/2(∂Ω).

4. Factorization method with one plane waves. In our applications of Corol-
lary 1 (resp. Corollary 2), we will take v∞ to be the measurement data u∞D (x̂; d0, cp, cs)

(resp. u∞D,αα(x̂; d0), α = p, s) corresponding to our target scatterer D and the inci-
dent elastic plane wave ui(x; d0, cp, cs) (resp. uiα(x̂; d0)) for some fixed d0 ∈ S. We
shall omit the dependance on d0 if it is always clear from the context. Our purpose
is to extract the geometrical information on D from the domain-defined indicator
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functions I(Ω) and I(α)(Ω) (α = p, s). By Corollary 1, I(Ω) < ∞ if the scattered
field usD(x) = us(x; d0, D) can be extended to the domain R2\Ω as a solution to
the Navier equation. Below we shall discuss the absence of the analytic extension
of usD, u

s
D,p and usD,s around a planer corner point of D.

Lemma 4.1. Assume that D is a rigid elastic scatterer occupying a convex polygon.
Then the scattered fields usD(x; d0), usD,p(x; d0) and usD,s(x; d0) cannot be analytically
extended from R2\D into D across any corner of D.

Proof. We shall carry out the proof by contradiction.
(i) Assume on the contrary that usD(x; d0) can be analytically continued across

a corner of ∂D. By coordinate translation and rotation, we may suppose that
this corner coincides with the origin, so that usD(x; d0) and also the total field
uD = usD(x; d0) + ui(x; d0, cp, cs) satisfy the Navier equation (2) in Bε(O) for some
ε > 0. Since uD is real analytic in (R2\D) ∪Bε(O) and D is a convex polygon, uD
satisfies the Navier equation on the closure of an infinite sector Σ ⊂ R2\D which
extends the finite sector Bε(O)∩D to R2\D. In particular, the total field uD fulfills
the Dirichlet boundary condition on the two half lines ∂Σ starting from the corner
point O. Since usD(x; d0) fulfills the Kupradze’s radiation condition, it holds that

lim
|x|→∞

ui(x; d0, cp, cs) = − lim
|x|→∞

usD(x; d0, cp, cs) = 0, x ∈ ∂Σ.

However, this is impossible for an elastic plane wave incidence of the form (1).
(ii) Suppose that usD,p can be analytically extended from R\D̄ into D across

a corner O of D. That is, usD,p extends to a function which satisfies the vector
Helmholtz equation ∆usD,p + k2

pu
s
D,p = 0 in Bε(O) for some ε > 0. By the Hodge

decomposition of the total field uD = uD,p + uD,s = Oϕ + curlψ, the function ϕ
can be also extended to Bε(O) as a solution to the scalar Helmholtz equation. Here
we have used the fact that the incident wave ui is an entire solution to the Navier
equation. In particular, this implies that the normal and tangential derivatives
(∂nϕ, ∂τϕ) of ϕ are both piecewise analytic on ∂D∩Bε(O). Recalling the Dirichlet
boundary condition of uD, we have

uD · n =
∂ϕ

∂n
+
∂ψ

∂τ
= 0

uD · τ =
∂ϕ

∂τ
− ∂ψ

∂n
= 0

on ∂D ∩Bε(O). (36)

Hence, (∂τψ, ∂nψ) = (−∂nϕ, ∂τϕ) on ∂D ∩ Bε(O) and thus the Cauchy data of
ψ are also piecewise analytic. By the Cauchy-Kovalevskaya theorem, the function
ψ admits an extension from Bε(O) ∩ (R2\D) to Bε(O) ∩ D, as a solution to the
scalar Helmholtz equation with the wave number ks. Hence, the total field can be
continued to Bε(O)∩D, which however is impossible by the first part of the proof.

(iii) The case of usD,s can be proved similarly to the second step for usD,p.

As in the acoustic case [28], our approach applies to inverse source problems as
well. For this purpose, we need to justify the absence of analytical extension for
elastic source scattering problems in a corner domain, which is closet to studies of
non-radiating elastic sources given in [5].

Lemma 4.2. Let χD be the characteristic function for the convex polygon D. If
u ∈

(
H2
loc(R2)

)2 is a radiating solution to

∆∗u(x) + ω2u(x) = χD(x)f(x) in R2, (37)
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where f ∈ L∞(R2) is Hölder continuous near the corner point O of D satisfying
f(O) 6= 0. Then u cannot be analytically extended from R2\D to D across the
corner O.

O

D
+

D
-

D

Γ

Γ

B
δ
(O)

Figure 4.1. Illustration of a convex polygonal source term where
O is corner point of D.

Proof. Without loss of generality, the corner point O is supposed to coincide with
the origin. Set v± = u|D± where D+ := Bδ(O) ∩ (R2\D) and D− := Bδ(O) ∩D.
Assume that v+ can be analytically extended from R2\D to Bδ(O) for some δ > 0
(see Figure 4.1), as a solution of the Navier equation. This implies that ∆∗v+ +
ω2v+ = 0 in Bδ(O), with the Cauchy data

v− = v+, Tνv− = Tνv+ on Γ := ∂D ∩Bδ(O).

Here, the boundary traction operator Tν is defined as

Tνu = 2µ
∂u

∂ν
+ λνO · u+ µν⊥(∂2u1 − ∂1u2)

in the two-dimensional case. Since ∆∗v− + ω2v− = f in Bδ(O) ∩D, the difference
w := u− − u+ is a solution to

∆∗w + ω2w = f in Bδ(O) ∩D, w = Tνw = 0 on Γ. (38)

By [5, Proposition 3.2], it follows that f(O) = 0, which is in contradiction with our
assumption that f(O) 6= 0.

To state the one-wave factorization method, we shall restrict our discussions to a
convex polygonal rigid elastic scatterer D. Let Ω be another convex rigid scatterer
for detecting D such that ω2 is not the Dirichlet eigenvalue of −∆∗ in Ω. Denote by
(λ

(n)
Ω , ϕ

(n)
Ω ) the eigenvalues and eigenfunctions of the far-field operator FΩ. Below

we characterize the inclusion relationship between our target scatterer D and the
test domain Ω by the measurement data u∞D and the spectra of FΩ.

Theorem 4.3. Define

W (Ω) :=
∑
n∈Z

∣∣∣〈u∞D , ϕ(n)
Ω

〉
S

∣∣∣2∣∣∣λ(n)
Ω

∣∣∣ . (39)

Then W (Ω) <∞ if and only if D ⊆ Ω.
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Proof. By Corollary 1, W (Ω) < +∞ implies that usD(x; d0) is analytic in R2\Ω. If
D * Ω, three cases might happen: (i) Ω ⊂ D; (ii) Ω ∩D = ∅; (iii) Ω ∩D 6= ∅ and
Ω ∩ (R2\D) 6= ∅. In either of these cases, we observe that there is always a corner
O ∈ D and O /∈ Ω by the convexity of both Ω and D. Then, usD(x; d0) can be
analytically continued from R2\D to D across the corner O of ∂D, which however
is impossible by Lemma 4.1. This proves the relationship D ⊆ Ω.

Now assume that D ⊆ Ω. Then the scattered field usD(x; d0) satisfies the Navier
equation ∆∗usD(x; d0) + ω2usD(x; d0) = 0 in R2\Ω with the boundary data f :=

usD(x; d0)|∂Ω ∈
(
H1/2(∂Ω)

)2
. This implies that u∞D = GΩ(f). Hence, we get

W (Ω) < +∞ by applying Corollary 1.

For the operator F (α)
Ω (α = p, s), denote by (λ

(n)
Ω,α, ϕ

(n)
Ω,α) the eigenvalues and eigen-

functions of the positive operator F (α)
Ω,#. Using Corollary 2 and arguing analogously

to the proof of Theorem 4.3, we obtain

Theorem 4.4. Define

W (α)(Ω) :=
∑
n∈Z

∣∣∣〈u∞D,αα, ϕ(n)
Ω,α

〉
S

∣∣∣2∣∣∣λ(n)
Ω,α

∣∣∣ , (40)

where u∞D,αα is defined the same as (13) for the scatterer D, α = p, s. Then
W (α)(Ω) <∞ if and only if D ⊆ Ω.

5. Explicit examples when Ω is a disk. Theorems 4.3 and 4.4 rely essentially
on the factorization form (see e.g., (21)) of the far-field operator for the elastic
scatterer Ω. Below we show that the results of Theorems 4.3 and 4.4 can be justified
independently of the factorization form, as long as the test domain Ω is chosen to
be a rigid elastic disk. This is mainly due to the explicit form of the far-field pattern
for a rigid disk in terms of special functions; see Subsection 5.1 below. Then we
can get an explicit spectral system of the far-field operator FBR in Subsection 5.2.
The proofs of Corollaries 1 and 2 will be shown in Subsection 5.3. Note that this
section is of independent interests, since as shown in the subsequent sections, the
derivation of eigenvalues and eigenfunctions of FBR turns out to be non-trivial,
which is in contrast to the Helmholtz equation in the acoustic case.

5.1. Far-field pattern of a rigid disk BR. Assume that BR := {x : |x| < R} is
a rigid disk centered at the origin with radius R > 0. Let x̂ = (cos θx, sin θx)

T ∈ S
be an observation direction (or variable) of the elastic far-field pattern. According
to the Hodge decomposition (3), we can introduce scalar functions ϕ (r, θx) and
ψ (r, θx) such that in polar coordinates x = (r, θx),

us(r, θx) = grad ϕ(r, θx) + curl ψ(r, θx). (41)

Recall the relationship between the Cartesian and polar coordinates for gradient:(
∂1

∂2

)
=

(
cos θ − 1

r sin θ
sin θ 1

r cos θ

)(
∂r
∂θ

)
. (42)

Noting that ϕ and ψ are both Sommerfeld radiating solutions, we make the following
ansatz:

ϕ =
∑
n∈Z

1√
kp
AnH

(1)
n (kpr)einθx , ψ =

∑
n∈Z

1√
ks
BnH

(1)
n (ksr)einθx .
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We can get from (41) that

us(r, θx) =

(
cos θx∂rϕ− 1

r sin θx∂θxϕ
sin θx∂rϕ+ 1

r cos θx∂θxϕ

)
+

(
− sin θx∂rψ − 1

r cos θx∂θxψ
cos θx∂rψ − 1

r sin θx∂θxψ

)
=
∑
n∈Z

einθx

r

[(√
kprH

(1)′
n (kpr)An −

in√
ks
H(1)
n (ksr)Bn

)(
cos θx
sin θx

)

+

(
in√
kp
H(1)
n (kpr)An +

√
ksrH

(1)′
n (ksr)Bn

)(
− sin θx
cos θx

)]
.

(43)

Using the asymptotic property of Hankel functions

H(1)
n (z) =

√
2

πz
ei(z−

nπ
2 −

π
4 )

(
1 +O(

1

z
)

)
, z →∞,

H(1)′
n (z) =

√
2

πz
ei(z−

nπ
2 +π

4 )

(
1 +O(

1

z
)

)
, z →∞,

(44)

we have

us(x) =
eikpr√
r

√
2

π

∑
n∈Z

e−i(
nπ
2
−π

4
)Aneinθx x̂+

eiksr√
r

√
2

π

∑
n∈Z

e−i(
nπ
2
−π

4
)Bneinθx x̂⊥+O( 1

r3/2
).

(45)
Thus,

u∞p (x̂) =

√
2

π
ei
π
4

∑
n∈Z

i−nAneinθx , u∞s (x̂) =

√
2

π
ei
π
4

∑
n∈Z

i−nBneinθx . (46)

Now, setting tα = kαR with α = p, s, we get

us(r, θx)|r=R =
∑
n∈Z

(
ν τ

)(tpH(1)′
n (tp) −inH(1)

n (ts)

inH
(1)
n (tp) tsH

(1)′
n (ts)

)(
1√
kp

0

0 1√
ks

)(
An
Bn

)
einθx

R
,

(47)
where ν = (cos θx, sin θx)T and τ = (− sin θx, cos θx)T are tangential and normal
directions of ∂BR respectively, and that (ν τ) is a 2-by-2 matrix. Set

Hn :=

(
tpH

(1)′
n (tp) −inH(1)

n (ts)

inH
(1)
n (tp) tsH

(1)′
n (ts)

)
and Q :=

(
1√
kp

0

0 1√
ks

)
. (48)

From (47) and (48), we have

us(r, θx)|r=R =
∑
n∈Z

(
ν τ

)
HnQ

(
An
Bn

)
einθx

R
. (49)

Remark 2. By [4, Lemma 2.11] and [23, Remark 3.2], it follows that |Hn| =

tptsH
(1)′
n (tp)H

(1)′
n (ts) − n2H

(1)
n (tp)H

(1)
n (ts) 6= 0 for any n ∈ Z. Hence the matrix

Hn is always invertible.

Having expanded the scattered field into the series (49), now we need to rep-
resent an elastic plane wave in terms of the special functions on |x| = R. Let
d = (cos θd, sin θd)

T ∈ S be the incident direction. By the Jacobi-Anger expansion
(see e.g., [10, Formula (3.89)]), we see

eikx·d =
∑
n∈Z

inJn (k|x|) einθ, x ∈ R2, (50)
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where θ = θx − θd denotes the angle between x̂ and d. Let d⊥ = (− sin θd, cos θd)
T

be a vector perpendicular to d. Recalling the compressional part uip of the incident
wave ui,

uip(x) = d eikpx·d, (51)

and inserting (50) to (51), we get the form of uip over ∂BR as

uip|r=R =
∑
n∈Z

dJn(tp)i
neinθ. (52)

Using the formulas

cos θ =
1

2

(
eiθ + e−iθ

)
, sin θ =

1

2i

(
eiθ − e−iθ

)
(53)

and the following properties of Bessel functions

2J ′n(x) = Jn−1(x)− Jn+1(x), Jn−1(x) + Jn+1(x) =
2n

x
Jn(x), (54)

we can get from (52) that

uip · ν|r=R =
1

2

∑
n∈Z

(
eiθ + e−iθ

)
Jn(tp)i

neinθ =
∑
n∈Z

J ′n(tp)i
n−1einθ, (55)

uip · τ |r=R =
1

2i

∑
n∈Z

(
e−iθ − eiθ

)
Jn(tp)i

neinθ =
∑
n∈Z

n

tp
Jn(tp)i

neinθ. (56)

We use the notation vs to denote the scattered field produced by the compres-
sional part uip of the incident wave ui. Note that vs is usually different from the
compressional part of the scattered field for ui. By (49), we can represent vs(r, θx)
on |x| = R as the series

vs(r, θx)|r=R =
∑
n∈Z

(
ν τ

)
HnQ

(
An,v
Bn,v

)
einθx

R
, (57)

where the coefficients An,v, Bn,v ∈ C are associated with vs. Making use of the
Dirichlet boundary condition uip = −vs on ∂BR, we have(

uip · ν
uip · τ

)∣∣∣∣
r=R

= −
(
vs · ν
vs · τ

)∣∣∣∣
r=R

,

which together with (55) and (56) leads to∑
n∈Z

(
J ′n(tp)
in
tp
Jn(tp)

)
in−1einθxe−inθd = −

∑
n∈Z
HnQ

(
An,v
Bn,v

)
einθx

R
. (58)

By the arbitrariness of θx, we can get(
iJ ′n(tp)
− n
tp
Jn(tp)

)
ine−inθd =

HnQ
R

(
An,v
Bn,v

)
,

implying the relation(
An,v
Bn,v

)
= Q−1H−1

n

(
iJ ′n(tp)
− n
tp
Jn(tp)

)
Rine−inθd . (59)

Thus, we obtain the P-part and S-part of the far-field patterns of vs as follows:(
u∞pp(x̂)
u∞sp(x̂)

)
=

√
2

π
ei
π
4 iR

∑
n∈Z

Q−1H−1
n

(
J ′n(tp)
in
tp
Jn(tp)

)
einθ. (60)
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The far-field pattern excited by the S-part of an elastic plane wave can be treated
similarly. The shear part uis of the incident wave ui takes the form

uis(x) = d⊥eiksx·d, (61)

which together with (50) gives rise to

uis|r=R =
∑
n∈Z

d⊥Jn(ts)i
neinθ. (62)

Correspondingly, we have

uis · ν|r=R = −
∑
n∈Z

n

ts
Jn(ts)i

neinθ, uis · τ |r=R =
∑
n∈Z

J ′n(ts)i
n−1einθ.

Again using (49), we can represent the scattered field produced by uis in the form
of

ws(r, θx)|r=R =
∑
n∈Z

(
ν τ

)
HnQ

(
An,w
Bn,w

)
einθx

R
. (63)

Combining the previous two identities together with the boundary condition uis =
−ws on ∂BR, we arrive at(

An,w
Bn,w

)
= Q−1H−1

n

(
n
ts
Jn(ts)

iJ ′n(ts)

)
Rine−inθd . (64)

Thus, we obtain u∞ps and u∞ss as follows:(
u∞ps(x̂)
u∞ss(x̂)

)
=

√
2

π
ei
π
4 iR

∑
n∈Z

Q−1H−1
n

(
− ints Jn(ts)

J ′n(ts)

)
einθ. (65)

This enables us to define the matrix

U∞BR :=

(
u∞pp(x̂) u∞ps(x̂)
u∞sp(x̂) u∞ss(x̂)

)
=

√
2

π
ei
π
4 i
∑
n∈Z

Q−1H−1
n

(
RJ ′n(tp) − in

ks
Jn(ts)

in
kp
Jn(tp) RJ ′n(ts)

)
einθ.

(66)
Setting

Jn :=

(
tpJ
′
n(tp) −inJn(ts)

inJn(tp) tsJ
′
n(ts)

)
, (67)

we can rewrite U∞BR as

U∞BR(x̂) =

√
2

π
ei
π
4 i
∑
n∈Z

Q−1H−1
n JnQ2einθ. (68)

To sum up, for the elastic plane wave ui of the general form (1), by linear
superposition its far-field pattern u∞ takes the form of (14), where the P-part and
S-part for uip and uis are given in the matrix U∞BR (see also (60) and (65)).

5.2. Spectral system of the far-field operator FBR . Now, we need to derive
eigenvalues and the associated eigenfunctions of the far-field operator FBR defined
by (e.g. (30))

(FBRg)(x̂) = e−i
π
4

∫
S

{√
kp
ω
u∞BR(x̂; d, 1, 0)gp(d) +

√
ks
ω
u∞BR(x̂; d, 0, 1)gs(d)

}
ds(d).

(69)
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Obviously, the spectral system of FBR should be connected to the spectral system of
the matrix UBR . To disclose this relation, we retain the notations from the previous
subsection to define Σ̃n := Q−1H−1

n JnQ.

Lemma 5.1. If (λn, X̃n) is the spectral pair of Σ̃n, that is, Σ̃nX̃n = λnX̃n, X̃n =

(X̃
(1)
n , X̃

(2)
n )T . Then

(FBRg)(x̂) =

√
8π

ω
iλn g(x̂), g(x̂) := (X̃(1)

n x̂+ X̃(2)
n x̂⊥)einθx . (70)

Proof. Let g ∈
(
L2(S)

)2 be given as in (70). It is easy to see the P- and S-component
of g as gp(d) = X̃

(1)
n einθd , gs(d) = X̃

(2)
n einθd . It then follows from the definition of

FBR in (69) that

(FBRg) (x̂) =
1√
ω

e−i
π
4

∫
S
gp(d)

[√
kpu
∞
pp(x̂; d)x̂+

√
kpu
∞
sp(x̂; d)x̂⊥

]
+ gs(d)

[√
ksu
∞
ps(x̂; d)x̂+

√
ksu
∞
ss(x̂; d)x̂⊥

]
ds(d)

=
1√
ω

e−i
π
4

∫
S

[
X̃(1)
n

√
kpu
∞
pp(x̂; d)x̂+ X̃(1)

n

√
kpu
∞
sp(x̂; d)x̂⊥

]
einθd

+
[
X̃(2)
n

√
ksu
∞
ps(x̂; d)x̂+ X̃(2)

n

√
ksu
∞
ss(x̂; d)x̂⊥

]
einθdds(d)

=
1√
ω

e−i
π
4

∫
S

[(
X̃(1)
n

√
kpu
∞
pp(x̂; d) + X̃(2)

n

√
ksu
∞
ps(x̂; d)

)
x̂

+
(
X̃(1)
n

√
kpu
∞
sp(x̂; d) + X̃(2)

n

√
ksu
∞
ss(x̂; d)

)
x̂⊥
]
einθdds(d)

=
1√
ω

e−i
π
4

∫
S

(
x̂ x̂⊥

)
U∞BRQ

−1X̃neinθdds(d)

=

√
2

ωπ
i

∫
S

∑
m∈Z

(
x̂ x̂⊥

)
Σ̃mX̃neimθxeinθdds(d).

Using the orthogonality of einθd for n ∈ Z and the fact that Σ̃n and X̃n are inde-
pendent of d, we arrive at

(FBRg) (x̂) =

√
2

ωπ
i

∫
S

(
x̂ x̂⊥

)
Σ̃nX̃neinθxds(d)

=

√
8π

ω
i
(
x̂ x̂⊥

)
Σ̃nX̃neinθx

=

√
8π

ω
i
(
x̂ x̂⊥

)
λnX̃neinθx

=

√
8π

ω
iλng(x̂).

As a consequence of Lemma 5.1, we obtain the spectral pair of FBR as follows.

Lemma 5.2. The spectral pair of FBR is given by

(λ
(n)
BR
, X

(n)
BR

) =

(√
8π

ω
iλn,

(
x̂ x̂⊥

)
Q−1Xneinθx

)
,
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where (λn, Xn) is the spectral pair of Σn := H−1
n Jn.

Proof. Suppose that (λn, X̃n) is the spectral pair of Σ̃n. Writing Xn := QX̃n, we
have

λnX̃n = Σ̃nX̃n = Q−1ΣnQX̃n = Q−1ΣnXn. (71)
This implies that λnXn = ΣnXn. Using Lemma 5.1, we get

λ
(n)
BR

=

√
8π

ω
iλn, X

(n)
BR

(x̂) =
(
x̂ x̂⊥

)
Q−1Xneinθx .

Since the eigenvalues of FBR have appeared in the denominator of the indicator
(39) with Ω = BR, it is necessary to show λ

(n)
BR
6= 0 for all n ∈ N under an additional

assumption of the frequency.

Lemma 5.3. If ω2 is not a Dirichlet eigenvalue of −∆∗ in BR, then the eigenvalue
λn of the matrix Σn cannot vanish for any n ∈ Z.

Proof. Suppose that there exists n ∈ Z such that λn = 0 is the eigenvalue of the
matrix Σn and that Xn 6= 0 is the corresponding eigenvector. Then,

H−1
n JnXn = ΣnXn = λnXn = 0.

Since H−1
n is invertible (see Remark 2), we have JnXn = 0, implying that |Jn| = 0.

Since Xn = (X
(1)
n , X

(2)
n )T 6= 0, we may define the non-trivial function u = gradϕ+

curlψ where

ϕ =
∑
n∈Z

X(1)
n Jn(kpr)einθx , ψ =

∑
n∈Z

X(2)
n Jn(ksr)einθx .

Then it is easy to check that
u|∂BR

=
∑
n∈Z

einθx

R

[(
kpRJ

′
n(kpR)X

(1)
n − inJn(ksR)X

(2)
n

)
x̂+

(
inJn(kpR)X

(1)
n + ksRJ

′
n(ksR)X

(2)
n

)
x̂
⊥
]

=
∑
n∈Z

einθx

R

(
x̂ x̂⊥

)(tpJ′n(tp) −inJn(ts)
inJn(tp) tsJ

′
n(ts)

)(
X(1)
n

X(2)
n

)

=
∑
n∈Z

einθx

R

(
x̂ x̂⊥

)
JnXn

= 0.

On the other hand, it is obvious that u satisfies the Navier equation −∆∗u = ω2u in
BR. Hence, it is a Dirichlet eigenfunction of −∆∗ over BR, which is impossible.

To calculate the spectra of FBR , by Lemma 5.2 we need to consider the general-
ized eigenvalue problem

JnXn = λnHnXn, (72)
where λn andXn represent eigenvalues and eigenvectors of Σn. Recalling the Hankel
functions and its derivatives,

H(1)
n (z) = Jn(z) + iYn(z), H(1)′

n (z) = J ′n(z) + iY ′n(z),

and setting

Yn :=

(
tpY

′
n(tp) −inYn(ts)

inYn(tp) tsY
′
n(ts)

)
,
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we can rephrase the matrix Hn as

Hn = Jn + iYn. (73)

Below we describe an eigensystem of the generalized eigenvalue problem (72) with
the help of the decomposition (73).

Lemma 5.4. A normalized eigensystem (λn,j , Xn,j) with n ∈ N, j = 1, 2 to the
generalized eigenvalue problem (72) is given by

λn,j =
tpJ
′
n(tp) + inJn(ts)σ

(n)
j

tpH
(1)′
n (tp) + inH

(1)
n (ts)σ

(n)
j

, Xn,j =
(1, σ

(n)
j )T√

1 + |σ(n)
j |2

, (74)

with

σ
(n)
1 =

−βn +
√
β2
n − 4

2
, σ

(n)
2 =

−βn −
√
β2
n − 4

2
,

βn =
π

2in

[
n2(Jn(ts)Yn(tp)− Jn(tp)Yn(ts)) + tpts(J

′
n(tp)Y

′
n(ts)− J ′n(ts)Y

′
n(tp))

]
.

Proof. Let Xn = (1, σ(n))T be an eigenvector of the generalized eigenvalue problem
JnXn = ηnYnXn, where ηn is the eigenvalue. Using the Wronskian

Jn(t)Y ′n(t)− J ′n(t)Yn(t) =
2

πt
,

simple calculations show that σ(n) should satisfy the algebraic equation

σ(n)2 + βnσ
(n) + 1 = 0, (75)

where βn is defined as in the lemma. The two roots of (75) are given by

σ
(n)
1 =

−βn +
√
β2
n − 4

2
, σ

(n)
2 =

−βn −
√
β2
n − 4

2
.

On the other hand, one can also calculate the corresponding eigenvalues

ηn,j =
tpJ
′
n(tp) + inJn(ts)σ

(n)
j

tpY ′n(tp) + inYn(ts)σ
(n)
j

, j = 1, 2.

Using the decomposition (73), we get

HnXn = (Jn + iYn)Xn =
ηn + i

ηn
JnXn.

Therefore, ( ηn
ηn+i , Xn) is the eigensystem of the generalized eigenvalue problem

JnXn = λnHnXn. Further, we get the eigenvalues

λn,j =
ηn,j

ηn,j + i
=

tpJ
′
n(tp) + inJn(ts)σ

(n)
j

tpH
(1)′
n (tp) + inH

(1)
n (ts)σ

(n)
j

, j = 1, 2. (76)
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Combining Lemmas 5.2 and 5.4, we obtain an eigensystem of the far-field oper-
ator FBR by

λ
(n)
BR,j

=

√
8π

ω

itpJ
′
n(tp)− nJn(ts)σ

(n)
j

tpH
(1)′
n (tp) + inH

(1)
n (ts)σ

(n)
j

,

X
(n)
BR,j

=
(√

kpX
(1)
n,j x̂+

√
ksX

(2)
n,j x̂

⊥
)
einθx

=
(√

kpx̂+
√
ksσ

(n)
j x̂⊥

) einθx√
1 + |σ(n)

j |2

(77)

for n ∈ N, j = 1, 2.

Remark 3. The asymptotics of σ(n)
j can be derived as follows. Recall the asymp-

totic behavior of Bessel functions (see [10])

Jn(z) =
zn

2nn!

(
1 +O(

1

n
)

)
, n→ +∞,

J ′n(z) =
zn−1

2n(n− 1)!

(
1 +O(

1

n
)

)
, n→ +∞,

(78)

and those of Neumann functions:

Yn(z) = −2n(n− 1)!

πzn

(
1 +O(

1

n
)

)
, n→ +∞,

Y ′n(z) =
2nn!

πzn+1

(
1 +O(

1

n
)

)
, n→ +∞.

(79)

Then we get from the definition of βn stated in Lemma 5.4 that

βn = i

(
tns
tnp
−
tnp
tns

)(
1 +O

(
1

n

))
,
√
β2
n − 4 = i

(
tns
tnp

+
tnp
tns

)(
1 +O

(
1

n

))
,

whence it follows as n→∞ that ,

σ
(n)
1 = i

tnp
tns

(
1 +O

(
1

n

))
, σ

(n)
2 = −i t

n
s

tnp

(
1 +O

(
1

n

))
.

Now we can get the asymptotic behavior of the eigenvalues of FBR as n → ∞.
Using (77), Remark 3 and the following recurrence relations

tJ ′n(t) = nJn(t)− tJn+1(t), tH(1)′
n (t) = tH

(1)
n−1(t)− nH(1)

n (t),

we find

λ
(n)
BR,1

=

√
8π

ω

inJn(tp)− itpJn+1(tp)− nJn(ts)σ
(n)
1

tpH
(1)′
n (tp) + inH

(1)
n (ts)σ

(n)
1

= −
√

2π

ω

πt2n+2
p t2ns

22n(n+ 1)!n!(t2np + t2ns )

(
1 +O(

1

n
)

)
,

λ
(n)
BR,2

=

√
8π

ω

itpJ
′
n(tp)− nJn(ts)σ

(n)
2

tpH
(1)
n−1(tp)− nH(1)

n (tp) + inH
(1)
n (ts)σ

(n)
2

= −
√

2π

ω

π(t2np + t2ns )

22n−2(n− 1)!(n− 2)!t2p

(
1 +O

(
1

n

))
.

(80)
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Further, from (74) we get the asymptotics of the eigenvectors of Σn as follows

Xn,1 = (X
(1)
n,1, X

(2)
n,1)T =

 tns√
t2np + t2ns

,
itnp√

t2np + t2ns

T (
1 +O

(
1

n

))
,

Xn,2 = (X
(1)
n,2, X

(2)
n,2)T =

 tnp√
t2np + t2ns

,
−itns√
t2np + t2ns

T (
1 +O

(
1

n

))
.

(81)

5.3. Proofs of Corollaries 1 and 2 for testing disks. In this subsection, we
will use the eigensystem (λ

(n)
BR,j

, X
(n)
BR,j

) for n ∈ N, j = 1, 2 (see (77)) of the far-
field operator FBR to verify Corollaries 1 and 2 with Ω = BR. Corollary 1 can be
rephrased as

Corollary 3. Let v∞ ∈
(
L2(S)

)2 and assume that ω2 is not a Dirichlet eigenvalue
of −∆∗ over BR. Then

I(BR) =
∑
n∈Z

2∑
j=1

∣∣∣〈v∞, X(n)
BR,j

〉
S

∣∣∣2∣∣∣λ(n)
BR,j

∣∣∣ < +∞ (82)

if and only if v∞ is the far-field pattern of some Kupradze radiating solution vs,
where vs satisfies the Navier equation

∆∗vs + ω2vs = 0 in R2\BR, (83)

with the boundary data vs|∂BR ∈
(
H1/2(∂BR)

)2
.

Proof. Let vs be a Kupradze radiating solution to (83). By the Hodge decompo-
sition (3), we may decompose vs into its compressional and shear parts by vs =

gradϕ+curlψ, where ϕ =
∑
n∈Z anH

(1)
n (kpr)einθx and ψ =

∑
n∈Z bnH

(1)
n (ksr)einθx .

Straightforward calculations lead to

v
s

=
∑
n∈Z

einθx

r

[(
kprH

(1)′
n (kpr)an − inH(1)

n (ksr)bn
)
x̂+

(
inH

(1)
n (kpr)an + ksrH

(1)′
n (ksr)bn

)
x̂
⊥
]

=
∑
n∈Z

einθx

r

(
x̂ x̂⊥

)(kprH(1)′
n (kpr) −inH(1)

n (ksr)

inH(1)
n (kpr) ksrH

(1)′
n (ksr)

)(
an
bn

)
.

(84)
By the asymptotic behaviour of Hankel functions (see [10])

H(1)
n (z) =

2n(n− 1)!

πizn

(
1 +O(

1

n
)

)
, n→ +∞,

H(1)′
n (z) = − 2nn!

πizn+1

(
1 +O(

1

n
)

)
, n→ +∞,

(85)

we have

vs(r, θx) =
∑
n∈Z

einθx

r

2nn!

πrn
(
x̂ x̂⊥

)(ik−np −k−ns
k−np ik−ns

)(
an
bn

)(
1 +O(

1

n
)

)
. (86)



FACTORIZATION FOR INVERSE ELASTIC SCATTERING WITH A SINGLE WAVE 19

This gives the leading term of the H1/2-norm on ∂BR as

||vs||2
(H1/2(∂BR))2

=
∑
n∈Z

(1 + n2)1/2
1

R2

22nn!n!

π2R2n
2
∣∣ik−np an − k−ns bn

∣∣2(1 +O( 1
n
)

)

∼
∑
n∈Z

1

R2

22n+1(n+ 1)!n!

π2knp knsR2n

∣∣∣∣∣i
(
ks
kp

)n/2
an −

(
kp
ks

)n/2
bn

∣∣∣∣∣
2(

1 +O( 1
n
)

)

=
∑
n∈Z

C(1)
n

22n+1(n+ 1)!n!

π2R2tnp tns

(
1 +O( 1

n
)

)
,

(87)
where

C(1)
n :=

∣∣∣∣∣
(
ts
tp

)n/2
an +

(
tp
ts

)n/2
ibn

∣∣∣∣∣
2

.

On the other hand, the far-field pattern of vs can be calculated as

v∞(x̂) =

√
2kp
π

ei
π
4

∑
n∈Z

i−naneinθx x̂+

√
2ks
π

ei
π
4

∑
n∈Z

i−nbneinθx x̂⊥. (88)

We proceed with the proof by computing the leading term of the the indicator
I(BR). Using (77) and (81), the inner product over L2(S)2 can be calculated as∣∣∣〈v∞, X(n)

BR,j

〉
S

∣∣∣2
=

∣∣∣∣∣
∫
S

√
2

π
kpei

π
4

∑
m∈Z

i−mameimθxX(1)
n,je

−inθx +

√
2

π
ksei

π
4

∑
m∈Z

i−mbmeimθxX(2)
n,je

−inθxdθx

∣∣∣∣∣
2

=

∣∣∣∣∣
√

2

π
ei
π
4 i−n

∫
S
kpanX

(1)
n,j + ksbnX

(2)
n,jdθx

∣∣∣∣∣
2

= 8π
∣∣∣kpanX(1)

n,j + ksbnX
(2)
n,j

∣∣∣2 ,
(89)

for j = 1, 2. Using asymptotic behavior shown in (80) and (81), it is easy to check
that, as n→∞,∣∣∣λ(n)

BR,1

∣∣∣ ∼ ∣∣∣λ(n)
BR,2

∣∣∣ n−4,
∣∣∣〈v∞, X(n)

BR,1

〉
S

∣∣∣2 ∼ ∣∣∣〈v∞, X(n)
BR,2

〉
S

∣∣∣2 .
Thus,

I(BR) =
∑
n∈Z


∣∣∣〈v∞, X(n)

BR,1

〉
S

∣∣∣2∣∣∣λ(n)
BR,1

∣∣∣ +

∣∣∣〈v∞, X(n)
BR,2

〉
S

∣∣∣2∣∣∣λ(n)
BR,2

∣∣∣


=
∑
n∈Z

8π
∣∣∣kpanX(1)

n,1 + ksbnX
(2)
n,1

∣∣∣2∣∣∣λ(n)
BR,1

∣∣∣
(

1 +O(
1

n
)

)

=
∑
n∈Z

C(2)
n

√
ω

2π

22n+3(n+ 1)!n!

tnp t
n
sR

2k2
p

(
1 +O(

1

n
)

)
,

(90)

where

C(2)
n :=

∣∣∣∣∣kp
(
ts
tp

)n/2
an + ks

(
tp
ts

)n/2
ibn

∣∣∣∣∣
2

.
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Noting that min{k2
p, k

2
s}C

(1)
n 6 C

(2)
n 6 max{k2

p, k
2
s}C

(1)
n , we conclude that the series

(87) and (90) have the same convergence.
Since the boundedness of ||vs||H1/2(∂BR)2 implies that vs of the form (84) is

indeed a radiating solution in R2\BR with the far-field pattern v∞. This proves
that I(BR) < ∞ if and only if vs is a Kupradze radiating solution in R2\BR with
the far-field pattern v∞ and with the H1/2-boundary data on ∂BR. The proof of
Corollaries 3 is thus complete.

To prove Corollary 2 for testing disks, we need to consider spectral systems of
the far-field operators F (p)

BR
and F (s)

BR
. By Definition 3.3, it follows that

(F
(p)
BR
gp)(x̂) := e−

iπ
4

√
kp
ω

∫
S
u∞BR,pp(x̂; d) gp(d) ds(d), gp ∈ L2

p(S),

(F
(s)
BR
gs)(x̂) := e−

iπ
4

√
ks
ω

∫
S
u∞BR,ss(x̂; d) gs(d) ds(d), gs ∈ L2

s(S).

Using (13) and (68), we see

u∞BR,pp(x̂) =

√
2

πkp
ei
π
4 i
∑
n∈Z

Σn(1, 1)einθ, u∞BR,ss(x̂) =

√
2

πks
ei
π
4 i
∑
n∈Z

Σn(2, 2)einθ,

where Σn(i, j) dentoes the (i, j)-th entry of the matrix Σn. Now we can get the
spectral systems of the operators F (p)

BR
and F (s)

BR
:

η
(n)
BR,p

=

√
2

πkp
ei
π
4 iΣn(1, 1), ϕ

(n)
BR,p

(x̂) = einθx ,

η
(n)
BR,s

=

√
2

πks
ei
π
4 iΣn(2, 2), ϕ

(n)
BR,s

(x̂) = einθx .

(91)

Taking Ω = BR, we can rewrite Corollary 2 as

Corollary 4. Let w∞αα ∈ L2
α(S) (α = p, s) and assume that ω2 is not a Dirichlet

eigenvalue of −∆∗ over BR. Denote by (λ
(n)
BR,α

, ϕ
(n)
BR,α

) a spectral system of the

positive operator F (α)
BR,#

. Then

I(α)(BR) =
∑
n∈Z

∣∣∣〈w∞αα, ϕ(n)
BR,α

〉
S

∣∣∣2∣∣∣λ(n)
BR,α

∣∣∣ < +∞ (92)

if and only if w∞αα is the far-field pattern of some Sommerfeld radiating solution wsαα
which is defined in R2\BR and wsαα|∂BR(z) ∈ H−1/2(∂BR). That is, wsαα satisfies
the following boundary value problem of the Helmholtz equation

∆wsαα + k2
αw

s
αα = 0 in R2\BR, wsαα|∂BR ∈ H−1/2(∂BR). (93)

Proof. Without loss of generality, we only consider the case α = p. The case of
α = s can be proceeded in a similar manner. Since

λ
(n)
BR,p

= |Re(η(n)
BR,p

)|+ |Im(η
(n)
BR,p

)|,

we deduce from (91) and the definition Σn := H−1
n Jn that

λ
(n)
BR,p

=

√
π

kp

t2np
22n−1(n− 1)!(n− 2)!(t2p + t2s)

(
1 +O(

1

n
)

)
, ϕ

(n)
BR,p

= einθx . (94)
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By the Jacobi-Anger expansion (see e.g.,[10]), a Sommerfeld radiating solution wspp
to the Helmholtz equation in |x| > R can be expanded into the series

wspp(x) =
∑
n∈Z

DnH
(1)
n (kp|x|)einθx , |x| > R, x = (|x|, θx), (95)

with the far-field pattern given by (see [10, (3.82)])

w∞pp(x̂) =
∑
n∈Z

DnCn,peinθx , Cn,p :=

√
2

kpπ
e−i(

nπ
2 +π

4 ). (96)

Hence,

I(p)(BR) =
∑
n∈Z

∣∣∣〈∑m∈ZDmCm,peimθx , ϕ
(n)
BR,p

〉
S

∣∣∣2∣∣∣λ(n)
BR,p

∣∣∣
=
∑
n∈Z

|2πDnCn,p|2∣∣∣λ(n)
BR,p

∣∣∣
=
∑
n∈Z

√
π

kp

22n+2(n− 1)!(n− 2)!(t2p + t2s)

t2np
|Dn|2

(
1 +O(

1

n
)

)
.

(97)

By the definition of H−1/2-norm on ∂BR, we get

||wspp(x)||2H−1/2(∂BR) =
∑
n∈Z

(1 + n2)−1/2|DnH
(1)
n (tp)|2

=
∑
n∈Z
|Dn|2

22n(n− 1)!(n− 2)!

π2t2np

(
1 +O(

1

n
)

)
.

(98)

Obviously, the series (97) and (98) have the same convergence. On the other hand,
following the proof of [10, Theorem 2.15], it is not difficult to prove that the bound-
edness of ||wspp||H−1/2(∂BR) implies that wspp is a radiating solution in |x| > R with
the far-field pattern w∞pp(x̂). This proves I(p)(BR) < ∞ if and only if wspp is a
radiating solution to the boundary value problem of the Helmholtz equation (93),
with the far-field pattern w∞pp(x̂).

6. Imaging schemes with testing disks. Let BR(z) = z + BR := {y ∈ R2 :
y = z + x, x ∈ BR} be a rigid disk centered at z ∈ R with radius R > 0. By the
translation relations (see e.g., (2.13)-(2.16),[18]), we know

u∞BR(z),αβ(x̂) = e−ikαz·x̂eikβz·du∞BR,αβ(x̂), (99)

where α = p, s and β = p, s. Define the matrices

U∞BR(z)(x̂) :=

(
u∞BR(z),pp(x̂) u∞BR(z),ps(x̂)

u∞BR(z),sp(x̂) u∞BR(z),ss(x̂)

)
,

Md,z :=

(
e−ikpz·d 0

0 e−iksz·d

)
, Mx̂,z :=

(
e−ikpz·x̂ 0

0 e−iksz·x̂

)
.

Then, it holds that
U∞BR(z) = M−1

d,z U
∞
BR Mx̂,z. (100)

Using the previous relation, we obtain spectral systems for the operators FΩ, F
(p)
Ω

and F (s)
Ω with Ω = BR(z) as follows.
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Corollary 5. The eigenvalues λ(n)
BR(z),j and the associated eigenfunctions X(n)

BR(z),j

of the far-field operator FBR(z) are given by (e.g. (77))

λ
(n)
BR(z),j = λ

(n)
BR,j

,

X
(n)
BR(z),j(x̂) =

(√
kpe−ikpz·x̂x̂+

√
ksσ

(n)
j e−iksz·x̂x̂⊥

)
√

1 + |σ(n)
j |2

einθx

for n ∈ Z, j = 1, 2. Moreover, the spectral systems of the operators F (p)
BR(z) and

F
(s)
BR(z) take the form (e.g. (91))

η
(n)
BR(z),p =

√
2

πkp
ei
π
4 iΣn(1, 1), ϕ

(n)
BR(z),p(x̂) = einθxe−ikpz·x̂,

η
(n)
BR(z),s =

√
2

πks
ei
π
4 iΣn(2, 2), ϕ

(n)
BR(z),s(x̂) = einθxe−iksz·x̂.

(101)

Furthermore, taking Ω = BR(z), we can rewrite the results of Theorems 4.3 and
4.4 as

Theorem 6.1. Define

W (BR(z)) :=
∑
n∈Z

2∑
j=1

∣∣∣〈u∞D , X(n)
BR(z),j

〉
S

∣∣∣2∣∣∣λ(n)
BR(z),j

∣∣∣ ,

W (α)(BR(z)) :=
∑
n∈Z

∣∣∣〈u∞D,αα, ϕ(n)
BR(z),α

〉
S

∣∣∣2∣∣∣λ(n)
BR(z),α

∣∣∣ , α = p, s

(102)

where
λ

(n)
BR(z),α =

∣∣∣Re(η(n)
BR(z),α

)∣∣∣+
∣∣∣Im(η(n)

BR(z),α

)∣∣∣ .
Then W (BR(z)) <∞ if and only if D ⊆ BR(z) and the same conclusion applies to
W (α)(BR(z)).

Finally, we describe our imaging scheme for solving the inverse problems IP-F,
IP-P and IP-S stated at the end of Section 2. Let D be a convex rigid polygon to
be recovered from far-field data. The procedure consists of the following steps:
• Suppose that BR ⊃ D for some R > 0 and collect the measurement data
u∞D (x̂), u∞D,pp(x̂) or u∞D,ss(x̂) for all x̂ ∈ S. Let Q ⊃ D be our search/computational
region for imaging D;

• Choose sampling centers zn ∈ ΓR := {x : |x| = R} for n = 1, 2, · · · , N and
choose sampling radii hm ∈ (0, 2R) (m = 1, 2, · · · ,M) to get the spectral sys-
tems for the operators FΩ, F

(p)
Ω and F (s)

Ω with Ω = Bhm(zn), n = 1, 2, · · · , N ,
m = 1, 2, · · · ,M (see (77) and Corollary 5);

• For each zn ∈ ΓR, define the function over the grid points x ∈ Q satisfying
hm+1 > |x− zn| > hm for some m = 1, 2, · · · ,M by (see (102)):

In(x) =


[W (Bhm(zn))]−1 for the inverse problem IP-F;
[W (p)(Bhm(zn))]−1 for the inverse problem IP-P;
[W (s)(Bhm(zn))]−1 for the inverse problem IP-S;
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• The imaging function for recoveringD is defined as I(x) =
∑Nz
n=1 In(x), where

x ∈ Q are the grid points. This can be considered as the imaging function
over Q if the grids are sufficiently fine.

We expect the values of the indicator function I for grid points x ∈ D should be
larger than those for x ∈ Q\D, because

[W (Bhm(zn))]−1 = 0 if hm ≤ max
y∈∂D

|zn − y|;

[W (Bhm(zn))]−1 <∞ if hm > max
y∈∂D

|zn − y|;

and the same indicating behavior applies to [W (α)(Bhm(zn))]−1, α = p, s.

Remark 4. In implementing the above scheme, the spectral data appeared in
Theorem 6.1 are all given explicitly by Corollary 5. For each sampling disk Bhm(zn)
with n = 1, 2, · · ·N,m = 1, 2, · · · ,M , they can be easily calculated and stored off-
line before the inversion process. These are the advantageous of using testing disks
instead of other testing scatterers.

Remark 5. For (multiple) obstacles with several disconnected components, the
proposed scheme can be used to recover the convex hull only, but can not distinguish
each component from the others. This is due to the fact that the indicator functional
is defined on testing (sampling) domains rather than on sampling points. We do
not know how to recover multiple scatterers with a single incoming wave.
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