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Abstract
We investigate inverse diffraction problems for penetrable gratings in a piece-
wise constant medium. In the TE polarization case, it is proved that a rectangu-
lar grating profile together with the refractive index beneath it can be uniquely
determined by the near-field observation data incited by a single plane wave
and measured on a line segment above the grating. Our approach relies on the
expansion of solutions to the Helmholtz equation and the corner singularity
analysis of solutions to the inhomogeneous Laplace equation with a piece-
wise continuous source term in a sector. This paper also contributes to corner
scattering theory for the Helmholtz equation in a special non-convex domain.

Keywords: inverse scattering, uniqueness, Helmholtz equation,
transmission conditions, rectangular grating

1. Introduction

The time-harmonic scattering of acoustic, electromagnetic and elastic waves by periodic sur-
faces plays a role in many areas of applied physics and engineering. Optical diffraction grat-
ings date from the nineteenth century and have drawn great attention since Rayleigh’s work
[30] in 1907. We refer to the books [5, 34, 41] for its physical and mathematical background
of electromagnetic wave propagation in periodic structures and to [1, 7, 10, 12] for studies
on the well-posedenss of time-harmonic Maxwell’s equations with quasi-periodic boundary
conditions. In the TE and TM polarization cases, uniqueness and existence of the scattering
problem have been sufficiently studied for transmission problems of the Helmholtz equation
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under additional conditions imposed on the incident wavenumber, scattering interface and
material parameters; see e.g. [2, 7, 11, 18, 38]. The inverse scattering problem of recovering
an unknown grating profile from the scattered field is of great practical importance, e.g. in
quality control and design of diffractive elements with prescribed far-field patterns [4, 11, 18,
36, 40]. Since the uniqueness issue plays a significant role in such inverse problems, the pur-
pose of this article is to present a complete answer to the problem of recovering a penetrable
rectangular grating profile together with the material parameter from near-field observations
of the scattered field. It is supposed that a rectangular grating (see section 2 for the definition
which covers the kind of binary gratings) remains invariant along one surface direction and
we consider the TE polarization case. The media divided by the grating are supposed to be
piecewise homogeneous and isotropic, and the measurement data are excited by a single plane
wave only.

For perfectly reflecting periodic curves, there are many uniqueness results in the literature.
In the TE polarization case (Dirichlet boundary condition), we refer to [3, 23] for the unique-
ness results with one plane wave if the background medium is lossy and using infinitely many
quasi-periodic incident waves in non-absorbing media. Hettlich and Kirsch [19] had proved
that a finite number of incident plane waves with a fixed direction and distinct frequencies are
sufficient to uniquely identify a C2-smooth periodic curve, provided the grating height is a
priori known. This has extended Schiffer’s idea from inverse scattering by bounded obstacles
to periodic structures. In the special case of piecewise linear surfaces, one can obtain global
uniqueness results within the class of polygonal/polyhedral grating profiles by using a minimal
number of incident planes. The first result in this respect was shown in [16] within rectangular
periodic structures under the Dirichlet or Neumann boundary condition. In one of the author’s
work [15], all periodic polygonal structures that cannot be identified by one incident plane
wave were characterized and classified. Consequently, one can get a global uniqueness with
at most four incident angles for recovering polygonal periodic structures in the Rayleigh fre-
quency case. This was inspired by the reflection principle for the Helmholtz equation with
the Dirichlet or Neumann boundary condition on a straight line and the dihedral theory for
classifying unidentifiable bi-periodic structures in optics [6].

Kirsch’s uniqueness result [23] was extended to penetrable periodic layers in [37], where
the author proved that the grating profile together with the constitutive parameters can be com-
pletely determined from the scatteredwaves for all quasi-periodic incident waves. Elschner and
Yamamoto [17] proved that multi-frequency near-field measurements can uniquely determine
a penetrable grating profile in a piecewise constant medium. If the grating height is a priori
known, a finite number of frequencies are sufficient to imply uniqueness. This can be con-
sidered as another extension of Schiffer’s idea to periodic structures, in addition to the afore-
mentioned work [19]. Note that the measurements in [17, 37] must be taken both above and
below the periodic structure. Yang and Zhang [42] showed that a smooth dielectric grating
interface can be uniquely recovered by the scattered field measured only on above the grating.
Their proof is mainly based on the analogue ofmixed reciprocity relation in periodic structures.

In this paper, we restrict our discussions to penetrable periodic surfaces of rectangular type
in a piecewise constant medium in R2. Binary gratings have many applications in industry,
because they can be easily fabricated [36]. There are two features of our uniqueness result. (i)
The measurement data are taken above the grating only and are excited by a single plane wave
with an arbitrarily fixed direction and frequency.With one incoming wave, the inverse problem
becomes more ill-posed and is thus more challenging. (ii) Not only the binary grating profile
but also the material parameter can be uniquely recovered, due to a delicate singularity analysis
around a corner point. From the numerical point of view, our result ensures the existence of

2



Inverse Problems 39 (2023) 055004 J Xiang and G Hu

a unique global minimizer in the optimal design of penetrable binary gratings with a constant
refractive index (see e.g. [11, 18]) from prescribed/measured near-field data.

It should be remarked that the uniqueness proof for perfectly reflecting surfaces [6, 15,
16] cannot be applied to penetrable gratings, due to the lack of a corresponding reflection
principle for treating the transmission conditions. Our approach to the uniqueness is based
on the expansion of analytic solutions to the Helmholtz equation and the corner singularity
analysis of solutions to the inhomogeneous Laplace equation in weighted Hölder spaces. This
is motivated by the recent scattering theory for bounded (non-periodic) inhomogeneous media
with a singularity on the contrast support and for polygonal source terms (see e.g. [8, 13, 20,
28, 33]). However, the corner scattering theory applies only to convex domains so far. In this
paper, we need to consider two distinct rectangular structures with the same corners, which
bring essential difficulties as in justifying the corner scattering theory in a non-convex domain.
Thanks to the rectangular nature of the scattering surface, we can adapt the singularity analysis
performed in [13] to penetrable grating structures with right angles. Moreover, since the corner
singularity of the wave fields relies heavily on material parameters, we prove that the constant
refractive index beneath the grating can be uniquely identified once the grating profile has been
recovered.

The rest of the paper is organized as follows. In section 2, mathematical formulations and
main results are presented for grating diffraction problems in the TE polarization case. In
section 3, we give some preliminaries and prepare several important lemmas for the unique-
ness result. Sections 4 and 5 are devoted to uniqueness proofs for shape identification and
medium recovery, respectively. In the appendix, we present a proof to the well-posedness of
the forward scattering problem under more general transmission conditions. Finally, some
concluding remarks will be made in appendix.

2. Mathematical formulation and main result

Consider the TE-polarization of time-harmonic electromagnetic scattering of a plane wave
from a penetrable binary grating which remains invariant along one surface direction x3. The
media separated by the grating are supposed to be piecewise constant and non-absorbing. In
two dimensions, the cross-section Λ of the grating surface in the ox1x2-plane is of rectangular
type, i.e. neighboring line segments are always perpendicular to the x1- and x2-axis. More
precisely, define a set A of all possible grating profiles by:

A=
{
Λ | Λ is a non-self-intersecting curve in R2 which is 2π-periodic in x1
.Λ is piecewise linear and any linear part is parallel to the x1- or x2-axis

}
,

then we call a piecewise linear curve Λ ∈ A a rectangular profile (see figure 1). We note
that rectangular curves with fractal structures (for instance, a line segment intersecting the
rectangular grating profile at a single point and perpendicular to the ox1 or ox2-axis) are not
included in the admissible set A. It remains unclear to us the well-posedness of the forward
scattering for such kind of periodic surfaces. On the other hand, our uniqueness proof cannot be
extended to fractal structures straightforwardly, because additional complexitywill be involved
in analyzing the geometry of two grating profiles generating identical near-fields.

Denote by Ω+
Λ (Ω−

Λ ) the unbounded periodic domain over (below) Λ, that is the component
ofR2 separated byΛwhich is connected to x2 =+∞ (x2 =−∞). Let ν = (ν1,ν2) ∈ S := {x ∈
R2 : |x|= 1} be the normal direction at Λ pointing into Ω+

Λ . For simplicity we always suppose
that ν2 ⩾ 0, which is equivalent to the geometrical condition that

(x1,x2) ∈ Ω+
Λ ⇒ (x1,x2 + s) ∈ Ω+

Λ for all s> 0. (2.1)
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Figure 1. Rectangular periodic structures.

The condition (2.1) has been used in [9] for proving well-posedness of rough surface scattering
problems with the Dirichlet boundary condition. If the condition ν2 ⩾ 0 cannot be fulfilled
on Λ, our uniqueness result to the inverse problem (see theorem 2.1) still holds true, but the
uniqueness of the forward scattering may fail (see [7]).

Suppose that a plane wave in the (x1,x2)-plane given by

ui(x1,x2) = eiαx1−iβx2 , α= k1 sinθ, β = k1 cosθ

with some incident angle θ ∈ (−π/2,π/2) and wave number k1 > 0, is incident upon the grat-
ing Λ from the top. Then the direct transmission scattering problem is to find the total field
u= u(x1,x2) such that

∆u+ k21u= 0, in Ω+
Λ ,

∆u+ k22u= 0, in Ω−
Λ ,[

u
]
=
[
∂u
∂ν

]
= 0, on Λ,

u= ui+ us, in Ω+
Λ ,

(2.2)

with the following radiation conditions as x2 →±∞:

us =
∑
n∈Z

A+
n eiαnx1+iβ

+
n x2 , for x2 > Λ+ := max

(x1,x2)∈Λ
x2, (2.3)

u=
∑
n∈Z

A−
n eiαnx1−iβ−

n x2 , for x2 < Λ− := min
(x1,x2)∈Λ

x2, (2.4)

where αn := n+α and

β+
n :=

{ √
k21 −α2

n if |αn|⩽ k1,

i
√
α2
n− k21 if |αn|> k1;

β−
n :=

{ √
k22 −α2

n if |αn|⩽ k2,

i
√

α2
n− k22 if |αn|> k2.

In (2.2), the notation [·] stands for the jumps of u and ∂νu on the grating interface Λ. The
expansions in (2.3) and (2.4) are the well-known Rayleigh expansions (see e.g. [1, 12, 22, 30]);
A±
n ∈ C are called the Rayleigh coefficients. Throughout this paper we suppose that k2 > 0 and
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k2 ̸= k1. The series (2.3) and (2.4) together with their derivatives are uniformly convergent in
any compact set in x2 > Λ+ and x2 < Λ−, respectively, because u ∈ H1

α(SH) (see below for
the definition) and the scattered and transmitted fields consist of infinitely many surface waves
which exponentially decay as x2 →±∞.

Well-posedness of the above scattering problem (2.2)–(2.4) can be justified via standard
variational arguments for weak solutions in the α-quasiperiodic Sobolev space

H1
α(SH) :=

{
u ∈ H1

loc(SH), e
−iαx1u is 2π-periodic in x1

}
,

with SH := {x ∈ R2 : |x2|< H} for any H>max{|Λ+|, |Λ−|}; see the appendix for the proof.
In particular, uniqueness follows from Rellich’s identifies with the factor (x2 − c)∂2u for some
c ∈ R applied to SH , under the conditions that k2 ̸= k1 and the second component of the normal
direction on Λ is non-negative. In the literature (see [2, theorem 2.40] and [38]), uniqueness
was proved for interfaces given by a Hölder continuous graph, which can be weakened to the
class of rectangular penetrable gratings considered in this paper.

Now we formulate the inverse problem with a single measurement data above the grating
as follows. Let b> Λ+ be a fixed constant and suppose u= u(x1,x2) is a solution to the direct
problem (2.2)–(2.4). Determine the periodic interface Λ ∈ A from knowledge of the near-field
data u(x1,b) for all 0< x1 < 2π.

The aim of this paper is to prove uniqueness in recovering a penetrable rectangular grating
profileΛ ∈ A and the constant material parameter k2 beneathΛwith the arbitrarily fixed incid-
ent direction θ ∈ (−π/2,π/2) and wave number k1 > 0. For brevity we denote by (Λ,k2) the
shape and refractive index to be recovered. We are ready to state the main uniqueness result.

Theorem 2.1. Let (Λ1,k1,2),(Λ2,k2,2) be two penetrable rectangular gratings such that

(i) Λ1,Λ2 ∈ A;
(ii) either k1,2 > k1 > 0, k2,2 > k1 > 0, or 0< k1,2 < k1, 0< k2,2 < k1.

Let u1, u2 be the unique solutions to the direct diffraction problem (2.2)–(2.4) for (Λ1,k1,2),
(Λ2,k2,2), respectively. If

u1(x1,b) = u2(x1,b) for all x1 ∈ (0,2π), (2.5)

where b>max{Λ+
1 ,Λ

+
2 } is a fixed constant, then Λ1 = Λ2 and k1,2 = k2,2.

3. Preliminary lemmas

In this section, wewill present some lemmas and corollaries to prepare for the proof of theorem
2.1, which are also interesting on their own right.

We begin with some notations to be used throughout the whole paper. Let (r,θ) with θ ∈
(−π,π], r⩾ 0 be the polar coordinates of x= (x1,x2) in R2 and define

Π+
R := {(r,π) : 0⩽ r⩽ R}= {(x1,x2) : x2 = 0, −R⩽ x1 ⩽ 0},

ΠR := {(r,π/2) : 0⩽ r⩽ R}= {(x1,x2) : x1 = 0, 0⩽ x2 ⩽ R},
Π−
R := {(r,0) : 0⩽ r⩽ R}= {(x1,x2) : x2 = 0, 0⩽ x1 ⩽ R},

Σ+
R := {(r,θ) : 0< r< R, π/2< θ < π},

Σ−
R := {(r,θ) : 0< r< R, 0< θ < π/2}.

Obviously, Σ+
R ∪Σ−

R ∪Π+
R ∪ΠR ∪Π−

R is a semicircle centered at origin with radius R. Let BR
denote the disk centered at the origin with radius R and let θ0 ∈ (0,π) be a fixed angle. Define
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B+
R,θ0

:=
{
(r,θ) :−θ0 < θ < θ0, 0< r< R

}
, B−

R,θ0
:= BR\B+

R,θ0
,

ΠR,θ0 :=
{
(r,θ0)∪ (r,−θ0) : 0⩽ r⩽ R

}
.

Lemma 3.1. Let κ1 and κ2 be two (complex) constants in BR. Assume that v1 and v2 satisfy
the Helmholtz equations

∆v1 +κ1v1 = 0, ∆v2 +κ2v2 = 0, in BR,

subject to the transmission conditions

v1 = v2,
∂v1
∂ν

=
∂v2
∂ν

, on Π−
R ∪ΠR.

If κ1 ̸= κ2, then v1 = v2 ≡ 0 in BR.

It should be noted that lemma 3.1 is a special case of proposition 2.1 in [14], we omit the
detailed proof in this paper. Slightly modifying lemma 3.1, we can obtain the following result.

Lemma 3.2. Suppose that f1 ≡ 0 in BR\Σ−
R , f1 is a constant different from zero inΣ−

R and that
κ> 0 is a constant. Let v1, v2 ∈ H2(BR) be solutions to

∆v1 +κ2(1+ f1)v1 = 0 in BR, ∆v2 +κ2v2 = 0 in BR,

subject to the transmission conditions

v1 = v2,
∂v1
∂ν

=
∂v2
∂ν

, on Π−
R ∪ΠR.

Then v1 = v2 ≡ 0 in BR.

Proof. Set κ1 := κ2(1+ f1) in Σ
−
R . Then κ1 is a constant different from κ2 and∆v1 +κ2

1v1 =
0 in Σ−

R . Since v2 is analytic in BR, the Cauchy data of v1 on Π−
R and ΠR are analytic by

the transmission boundary conditions. By the Cauchy–Kowalewski theorem and Holmgren’s
theorem, we can find a solution ṽ1 to the following Cauchy problem in a piecewise analytic
domain (see e.g. [29, theorem 2.1]){

∆ṽ1 +κ1ṽ1 = 0, in Bε\Σ−
ε ,

ṽ1 = v1,
∂ṽ1
∂ν = ∂v1

∂ν , on Π−
ε ∪Πε,

for some 0< ε < R. Set w1 := ṽ1 in Bε\Σ−
ε , w1 := v1 in Σ−

ε and κ2 := κ2. It then follows that
∆w1 +κ1w1 = 0, in Bε,
∆v2 +κ2v2 = 0, in Bε,

w1 = v2,
∂w1
∂ν = ∂v2

∂ν , on Π−
ε ∪Πε.

Applying lemma 3.1, we obtain w1 = v2 ≡ 0 in Bε. This together with the unique continuation
leads to v1 ≡ 0 in BR. The proof is complete.

Next, we investigate the asymptotic behavior of solutions to an inhomogeneous Laplace
equation in the disk BR.

Lemma 3.3. Consider the inhomogeneous Laplace equation{
∆u= f, in B±

R,θ0
,[

u
]
=
[
∂u
∂ν

]
= 0, on ΠR,θ0 ,

where f ∈ C0,δ(B±
R,θ0

) (0< δ < 1) and f(r,θ)∼ C±rm in B±
R,θ0

as r→ 0+, with m⩾ 0 andC± ∈
C. Then
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u(r,θ) =
∑
n⩾0

rn
[
an sin(nθ)+ bn cos(nθ)

]
+O(rm+2), r→ 0+, (3.1)

where an,bn ∈ C are such that the series in (3.1) is uniformly convergent near the origin.

Proof. Write u0(r,θ) =
∑
n⩾0

rn
[
an sin(nθ)+ bn cos(nθ)

]
. Then u0 is a general solution to the

homogeneous equation ∆u0 = 0 in BR. Since u ∈ H2(BR), we make the ansatz that

u(r,θ)− u0(r,θ) =
∑
n⩾0

fn(r)e
inθ, fn(r) :=

1
2π

ˆ 2π

0
(u− u0)e

−inθ dθ. (3.2)

Inserting (3.2) into the equation ∆u= f, we find that

f(r,θ) = ∆u0(r,θ)+∆
(∑
n⩾0

fn(r)e
inθ
)
=
∑
n⩾0

[
1
r
(rf ′n)

′ − n2

r2
fn

]
einθ.

Multiplying a term e−inθ and integrating with respect to θ on both sides yield

1
r
(rf ′n)

′ − n2

r2
fn = f̃n :=

1
2π

ˆ π

−π

f(r,θ)e−inθdθ.

Since

2π̃fn =
ˆ θ0

−θ0

f(r,θ)e−inθdθ+

(ˆ −θ0

−π

+

ˆ π

θ0

)
f(r,θ)e−inθdθ,

we conclude from our assumption on f that f̃n(r,θ)∼ Crm as r→ 0+. Hence, fn(r)∼ Crm+2

as r→ 0+ for all n⩾ 0, which completes the proof.

Based on the above lemma 3.3, we obtain the following corollary.

Corollary 3.4. Consider the transmission problem:{
∆u± + k2±u

± = 0, in B±
R,θ0

,

u+ = u−, ∂u+

∂ν = ∂u−

∂ν , on ΠR,θ0 ,

and define u := u+ in B+
R,θ0

, u := u− in B−
R,θ0

. Then the function u ∈ H2(BR) takes the asymp-
totic form

u=
∑
n⩾0

rn
[
an sin(nθ)+ bn cos(nθ)

]
+O(r2) as r→ 0+, an,bn ∈ C. (3.3)

Furthermore, if u ̸≡ 0 in BR, we can write (3.3) as

u=
∑
n⩾m

rn
[
an sin(nθ)+ bn cos(nθ)

]
+O(rm+2) as r→ 0+, an,bn ∈ C, (3.4)

for some m⩾ 0 such that |am|+ |bm| ̸= 0.

Remark 3.5. The relation (3.4) means that the lowest order expansion of u is harmonic.

Proof. We rewrite the equation for u as ∆u= f in BR, where f :=−k2+u+ in B+
R,θ0

and

f :=−k2−u− in B−
R,θ0

. Since f ∈ L2(BR), we have u ∈ H2(BR), which is compactly imbedded

into both C0,δ(B+
R,θ0

) and C0,δ(B−
R,θ0

) for some 0< δ < 1. Applying lemma 3.3, we get the

relation (3.3). This also proves (3.4) for m= 0. If u∼ C±rm as r→ 0 in B±
R,θ0

for some m⩾ 1
andC± ∈ C, then f∼−k2±C±rm near the origin and applying lemma 3.3 again yields (3.4).

7
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To carry out the proof of theorem 2.1, we need to analyze the singularity of the inhomo-
geneous Laplacian equation in the semicircle BR ∩{x2 > 0}with a piecewise continuous right
term defined on Σ±

R and with the Dirichlet or Neumann boundary condition on Π±
R . For this

purpose, we construct a special solution to the Dirichlet problem (3.5) or the Neumann prob-
lem (3.6) when the right hand side is given by a homogeneous polynomial. Here and below,
the notation qk denotes a homogeneous polynomial of order k⩾ 0 and the generic constants
are denoted by c or c± which may vary from line to line. The proof of the following result is
motivated by [32, lemma 3.6, chapter 2.3.4].

Lemma 3.6. Consider the Dirichlet problem:
∆u= c±qk, in Σ±

R ,[
u
]
=
[
∂u
∂ν

]
= 0, on ΠR,

u= 0, on Π+
R ∪Π−

R ,

(3.5)

and the Neumann problem:
∆u= c±qk, in Σ±

R ,[
u
]
=
[
∂u
∂ν

]
= 0, on ΠR,

∂u
∂ν = 0, on Π+

R ∪Π−
R .

(3.6)

There exist a special solution to (3.5) of the form

u(r,θ) = q±k+2(r,θ)+Ck,D r
k+2
{
lnrsin[(k+ 2)θ] + θ cos[(k+ 2)θ]

}
in Σ±

R (3.7)

for some Ck,D ∈ C. In the Neumann case, a special solution to (3.6) takes the form

u(r,θ) = q±k+2(r,θ)+Ck,N r
k+2
{
lnrcos[(k+ 2)θ]− θ sin[(k+ 2)θ]

}
in Σ±

R (3.8)

for some Ck,N ∈ C. Moreover, we have Ck,D = Ck,N = 0 if c+ = c− = 0, and q±k+2 solve the
same Dirichlet or Neumann problem in Σ±

R .

Proof. We only consider the Dirichlet boundary value problem. The Neumann case can be
treated analogously. Write c= Ck,D, qk(r,θ) = rkpk(θ) and q±k+2(r,θ) = rk+2f±k (θ). To make
u(r,θ) of the form (3.7) a solution to (3.5), we only need to require

[∂2
θ +(k+ 2)2] f±k (θ) = c±pk(θ), in Σ±

R ,

f+k (π2 ) = f−k (π2 ), ∂θf
+
k (π2 ) = ∂θf

−
k (π2 ),

f−k (0) = 0, f+k (π) = (−1)k+1cπ,

(3.9)

because rk+2
{
lnrsin[(k+ 2)θ] + θ cos[(k+ 2)θ]

}
is a harmonic function for any r> 0. The

general solution f±k (θ) to the above differential equation can be written as

f±k (θ) = a± cos[(k+ 2)θ] + b± sin[(k+ 2)θ] + h±k (θ),

where h±k (θ) are special solutions to

(h±k (θ))
′′ +(k+ 2)2h±k (θ) = c±pk(θ), θ ∈ (0,π/2)∪ (π/2,π).

Through simple calculations, we may suppose that

h±k (θ) =
c±

k+ 2

ˆ θ

0
sin[(k+ 2)(θ− τ)]pk(τ)dτ, θ ∈ (0,π/2)∪ (π/2,π).

8
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To determine the coefficients a± and b±, we use the transmission and the boundary conditions
in (3.9) to get

a+ cos
(k+ 2)π

2
− a− cos

(k+ 2)π
2

+ b+ sin
(k+ 2)π

2
− b− sin

(k+ 2)π
2

= p1, (3.10)

− a+ sin
(k+ 2)π

2
+ a− sin

(k+ 2)π
2

+ b+ cos
(k+ 2)π

2
− b− cos

(k+ 2)π
2

= p2, (3.11)

a− = 0 and (−1)ka+ = (−1)k+1cπ− h+k (π),

where

p1 := (h−k − h+k )
∣∣
π
2
, p2 :=

(h−k − h+k )
′
∣∣
π
2

k+ 2
.

Since a− = 0, by equations (3.10) and (3.11) we obtain that

a+ = p1 cos
(k+ 2)π

2
− p2 sin

(k+ 2)π
2

, b+ − b− = p1 sin
(k+ 2)π

2
+ p2 cos

(k+ 2)π
2

.

Then we can choose a proper constant c such that −cπ− h+k (π) = p1 cos
(k+2)π

2 −
p2 sin

(k+2)π
2 . Hence, the coefficients a± are uniquely determined and there exist infinitely

many solutions (b+,b−) satisfying the system (3.10) and (3.11). On the other hand, it is obvi-
ous that c= 0 if c± = 0. The proof is complete.

Lemma 3.7. Let H±
n (r,θ) be two harmonic polynomials of order n in two dimensions. If the

homogeneous polynomials q±n+2 (n⩾ 0) satisfy
∆q±n+2 = H±

n , in Σ±
R ,

q+n+2 = q−n+2,
∂q+n+2

∂ν =
∂q−n+2

∂ν , on ΠR,

q±n+2 =
∂q±n+2

∂ν = 0, on Π±
R .

(3.12)

Then q+n+2 = q−n+2 and H
+
n = H−

n .

Proof. Since q±n+2 is a homogeneous polynomial of order n+ 2, we can expand it into a con-
vergent series in Cartesian coordinates:

q±n+2 =
n+2∑
j=0

a±j x
n+2−j
1 x j2, n⩾ 0.

Below we shall prove that a+j = a−j by using the transmission and boundary conditions
in (3.12) together with the fact that ∆2q±n+2 =∆H±

n = 0.
In view of the transmission and boundary conditions,

q±n+2|x2=0 =
∂q±n+2

∂x2

∣∣∣
x2=0

= 0,

q+n+2|x1=0 = q−n+2|x1=0,
∂q+n+2

∂x1

∣∣∣
x1=0

=
∂q−n+2

∂x1

∣∣∣
x1=0

,

we get a±0 = a±1 = 0 and a+n+2 = a−n+2 := ãn+2, a
+
n+1 = a−n+1 := ãn+1. Hence,

q±n+2 =
n+2∑
j=2

a±j x
n+2−j
1 x j2.

9
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For n= 0, we have q+2 = ã2x22 = q−2 .
For n= 1, we have q+3 = ã2x1x22 + ã3x32 = q−3 .
For n⩾ 2, it is easy to see that

∆q±n+2 =
∂

∂x1

(
n+1∑
j=2

(n− j+ 2)a±j x
n+1−j
1 x j2

)
+

∂

∂x2

(
n+2∑
j=2

ja±j x
n+2−j
1 x j−1

2

)

=
n∑
j=0

[
(n− j+ 2)(n− j+ 1)a±j +( j+ 1)( j+ 2)a±j+2

]
xn−j
1 x j2

=
n∑
j=0

b±j x
n−j
1 x j2,

where

b±j := (n− j+ 2)(n− j+ 1)a±j +( j+ 1)( j+ 2)a±j+2.

Analogously,

∆2q±n+2 =
n−2∑
j=0

d±j x
n−2−j
1 x j2, d±j := (n− j)(n− j− 1)b±j +( j+ 1)( j+ 2)b±j+2.

Since ∆2q±n+2 = 0, we have d±j = 0 for 0⩽ j⩽ n− 2, which implies that

(n− j− 1)(n− j)a±j+2 +( j+ 3)( j+ 4)a±j+4

(n− j+ 1)(n− j+ 2)a±j +( j+ 1)( j+ 2)a±j+2

=
b±j+2

b±j
=− (n− j− 1)(n− j)

( j+ 1)( j+ 2)
.

Equivalently, we may rewrite the previous relation as

0= ( j+ 4)( j+ 3)( j+ 2)( j+ 1) aj+4 + 2( j+ 2)( j+ 1)(n− j− 1)(n− j) aj+2

+ (n− j− 1)(n− j)(n− j+ 1)(n− j+ 2) aj,

where aj := a+j − a−j for 0⩽ j⩽ n+ 2. Since a0 = a1 = 0 and an+1 = an+2 = 0, the homogen-
eous linear system for aj (2⩽ j⩽ n) corresponds to the (n− 1)× (n− 1) matrix Dn−1:

Dn−1 =



B0(n) 0 C0(n) 0 · · · 0 0
0 B1(n) 0 C1(n) · · · 0 0

A2(n) 0 B2(n) 0 · · · 0 0
0 A3(n) 0 B3(n) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Bn−3(n) 0
0 0 0 0 · · · 0 Bn−2(n)


where Aj(n) := (n− j− 1)(n− j)(n− j+ 1)(n− j+ 2), Bj(n) := 2( j+ 2)( j+ 1)(n− j− 1)
(n− j) and Cj(n) := ( j+ 4)( j+ 3)( j+ 2)( j+ 1).

For n= 2, we have B0(2) = 8 ̸= 0; for n= 3, we have |D2|= B0(3)B1(3) = 242 ̸= 0; for
n⩾ 4, we have

|Dn−1|= B0(n)B1(n)

(
B2(n)−

A2(n)
B0(n)

C0(n)

)
· · ·
(
Bn−2(n)−

An−2(n)
Bn−4(n)

Cn−4(n)

)
.

Note that Bj(n) ̸= 0 (0⩽ j⩽ n− 2, n⩾ 4). Since

10
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Bj(n)Bj−2(n)−Aj(n)Cj−2(n)

= 4( j+ 1)( j+ 2)(n− j− 1)(n− j)( j− 1)j(n− j+ 1)(n− j+ 2)

− (n− j− 1)(n− j)(n− j+ 1)(n− j+ 2)( j+ 2)( j+ 1)j( j− 1)

= 3( j− 1)j( j+ 1)( j+ 2)(n− j− 1)(n− j)(n− j+ 1)(n− j+ 2)

̸= 0

for any 2⩽ j⩽ n− 2, we obtain that |Dn−1| ̸= 0. Consequently, there exists only one trivial
solution to the homogeneous linear system for aj (2⩽ j⩽ n), that is aj = 0 (2⩽ j⩽ n). Recall-
ing the definition of q±n+2, we conclude that q+n+2 = q−n+2 and thus H+

n = H−
n . The proof is

complete.

Relying on the above preparations, we will prove the uniqueness result in theorem 2.1.
Firstly we prove Λ1 = Λ2 in section 4 below, and then prove k1,2 = k2,2 in section 5.

4. Proof of theorem 2.1: determination of grating profiles

Since

u1(x1,b) = u2(x1,b) for all x1 ∈ (0,2π),

we obtain that u1(x1,x2) = u2(x1,x2) in x2 > b, and the unique continuation of solutions to the
Helmholtz equation leads to

u1(x1,x2) = u2(x1,x2) for all x ∈ Ω+
Λ1

∩Ω+
Λ2
.

Assume on the contrary that Λ1 ̸= Λ2. Switching the notations for Λ1 and Λ2 if necessary, we
consider the following cases:

• Case one: there exists a corner point O of Λ1 such that O ∈ Ω+
Λ2

(see figure 2);
• Case two: all corners of Λ1 and Λ2 coincide but Λ1 ̸= Λ2 (see figure 3);
• Case three: there exists a corner point O of Λ2 lying on Λ1, but O is not a corner of Λ1 (see

figure 4).

Obviously, the first and last cases imply that the corners of Λ1 and Λ2 do not coincide
completely. Using coordinate translation, we always suppose that the corner O is located at
the origin.

4.1. Case one

Let BR denote the disk centered at the point O with radius R such that BR ⊆ Ω+
Λ2

. Since this
corner stays away fromΛ2 and belongs toΩ+

Λ2
, the function u2 satisfies the Helmholtz equation

with the wave number k1 in BR, while u1 fulfills the Helmholtz equation with the variable
potential k21(1+ f1). Here, f 1 is a piecewise constant function defined by

f1 :=

{
0, in BR ∩Ω+

Λ1
,(

k1,2
k1

)2
− 1, in BR ∩Ω−

Λ1
.

11



Inverse Problems 39 (2023) 055004 J Xiang and G Hu

Figure 2. Case one: there exists a corner point O of Λ1 such that O ∈ Ω+
Λ2

.

Figure 3. Case two: corners of Λ1 and Λ2 are identical but Λ1 ̸= Λ2.

Recalling the transmission conditions in (2.2), we find that the pair (u1,u2) is a solution to the
following system:

∆u1 + k21(1+ f1)u1 = 0, in BR,

∆u2 + k21u2 = 0, in BR,

u1 = u2, on BR ∩Λ1,

∂u1
∂ν = ∂u2

∂ν , on BR ∩Λ1.

Using lemma 3.2, we obtain that u1 = u2 ≡ 0 in BR and thus u1 ≡ 0 in R2. To derive a contra-
diction we recall the Rayleigh expansion for u1:

u1(x) = ei(αx1−βx2) +
∑
n∈Z

A+
n e

i(αnx1+β+
n x2), x2 ⩾ b

for some b> Λ+
1 . Taking x2 = b, we deduce from u1 ≡ 0 and α0 = α that

eiαx1(e−iβb+A+
0 e

iβ+
0 b)+

∑
n̸=0

A+
n e

i(n+α)x1eiβ
+
n b = 0, for all x1 ∈ R.

Multiplying a term e−iαx1 on both sides and integrating over (0,2π) with respect to x1, we
conclude that

e−iβb+A0e
iβb = 0, A+

n e
iβ+

n b = 0, for all n ̸= 0,

which yields A0 =−e−2iβb and An = 0 if n ̸= 0. Since A0 ∈ C is a constant, this is impossible
for any b> Λ+

1 . This contradiction implies that Λ1 = Λ2.

4.2. Case two

The corners ofΛ1 andΛ2 coincide (see figure 3), implying thatΛ1 andΛ2 have the same height
and also the same grooves but with different opening directions.

12
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Choose a corner point O ∈ Λ1 ∩Λ2 and R> 0 sufficiently small such that the disk BR :=
{x ∈ R2 : |x|< R} does not contain other corners. Introduce the notations (see figure 3)

BR ∩Λ1 = Γ+ ∪Γ0, BR ∩Λ2 = Γ− ∪Γ0, Σ+ = BR ∩Ω−
Λ1
, Σ− = BR ∩Ω−

Λ2
.

We can conclude that u1,u2 ∈ H2(BR)∩C0,δ(BR) (0< δ < 1) fulfill the system
∆u1 + k21,2u1 = 0, ∆u2 + k21u2 = 0, in Σ+,

∆u1 + k21u1 = 0, ∆u2 + k22,2u2 = 0, in Σ−,[
u1
]
=
[
∂u1
∂ν

]
= 0,

[
u2
]
=
[
∂u2
∂ν

]
= 0, on Γ0,

u1 = u2,
∂u1
∂ν = ∂u2

∂ν , on Γ+ ∪Γ−.

By corollary 3.4, we have

uj(r,θ) =
∑
n⩾0

rn
[
a( j)n sin(nθ)+ b( j)n cos(nθ)

]
+O(r2), r→ 0+, j= 1,2.(4.1)

Let w= u1 − u2 in Σ := Σ+ ∪Σ− ∪Γ0. Then we get a Cauchy problem for the Laplace
equation with an inhomogeneous source term:

∆w= k21u2 − k21,2u1 := f+, in Σ+,

∆w= k22,2u2 − k21u1 := f−, in Σ−,[
w
]
=
[
∂w
∂ν

]
= 0, on Γ0,

w= ∂w
∂ν = 0, on Γ+ ∪Γ−.

(4.2)

Below we shall prove that the previous Cauchy problem is an overdetermined boundary value
with the trivial solution only. We remark that the case f+ = f− has been considered in [13]
where corner scattering theory in a convex domain has been discussed. Inspired by [13], we
need to study a special corner scattering problem with two right angles in this paper. Our
approach relies on the singularity analysis of the inhomogeneous Laplace equation with a
piecewisely continuous right hand side in a semi-disk. We refer to the fundamental paper [26]
and the monographs [27, 31, 32] for a general regularity theory of elliptic boundary value
problems in domains with non-smooth boundaries.

For clarity, we shall divide our proof in case two into four steps.
Step 1: Prove that f±(O) = 0 and b(1)0 = b(2)0 = 0.
Since f± are Hölder continuous near O, we set c±0 := f±(O). Consider the Dirichlet and

Neumann problems separately: (4.3)
∆v0,D = c±0 , in Σ±,[
v0,D

]
=
[∂v0,D

∂ν

]
= 0, on Γ0,

v0,D = 0, on Γ+ ∪Γ−,


∆v0,N = c±0 , in Σ±,[
v0,N
]
=
[∂v0,N

∂ν

]
= 0, on Γ0,

∂v0,N
∂ν = 0, on Γ+ ∪Γ−.

(4.3)

where the right hand sides are given by the lowest order term of f±. By lemma 3.6, we know
that there exist two special solutions to (4.3) of the form

v0,D = q±2,D(r,θ)+C0,Dr
2
[
lnrsin(2θ)+ θ cos(2θ)

]
,

v0,N = q±2,N(r,θ)+C0,Nr
2
[
lnrcos(2θ)− θ sin(2θ)

]
,

13
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where q±2,D(r,θ) and q±2,N(r,θ) are homogeneous polynomials of degree two satisfying the
system 

∆q±2,D = c±0 , in Σ±,

q+2,D = q−2,D, on Γ0,

∂q+2,D
∂ν =

∂q−2,D
∂ν , on Γ0,

q±2,D = 0, on Γ±.



∆q±2,N = c±0 , in Σ±,

q+2,N = q−2,N, on Γ0,

∂q+2,N
∂ν =

∂q−2,N
∂ν , on Γ0,

∂q±2,N
∂ν = 0, on Γ±.

For 0< δ < 1, l ∈ N and η ∈ N, the weighted Hölder spacesΛl,δ
η (Σ)will be used to charac-

terize the singularity of solutions to the transmission problem (4.2) near O. The space Λl,δ
η (Σ)

is endowed with the norm

∥g∥Λl,δ
η (Σ) := sup

x∈Σ

{ l∑
j=0

|x|η−δ−l+j|∇jg(x)|
}
+ sup

x,y∈Σ

{
||x|η∇lg(x)− |y|η∇lg(y)|

|x− y|δ

}
.

Obviously, the weight η ∈ N characterizes the singularity at O. For more properties of the
weighted Hölder spaces Λl,δ

η (Σ), we refer to [20, section 2] and [32].

Set w0,D = w− v0,D ∈ C0,δ(Σ)⊂ Λ0,δ
0 (Σ), where w fulfills the system (4.2). Then w0,D

solves 
∆w0,D = f̃0, in Σ,[
w0,D

]
=
[∂w0,D

∂ν

]
= 0, on Γ0,

w0,D = 0, on Γ+ ∪Γ−,

(4.4)

where f̃0 := f± − c±0 in Σ±. Since f̃0(O) = 0, we have f̃0 ∈ Λ0,δ
0 (Σ)∩Λ0,δ

1 (Σ) for some δ ∈
(0,1). Making use of an appropriate cut-off function, the above problem can be formulated
in an infinite sector, in which the Dirichlet boundary value problem is uniquely solvable in a
corresponding weighted Hölder space Λ2,δ

1 ; see [32]. This gives the solution w0,D ∈ Λ2,δ
1 (Σ)

with the asymptotics (see also [13, proposition 4])

w0,D = dD,2r
2 sin(2θ)+O

(
r2+δ

)
, r→ 0+.

Note that here we have used the fact that the opening angle ofΣ is π. Hence, as r→ 0+ inΣ±,

w= w0,D+ v0,D = dD,2r
2 sin(2θ)+O

(
r2+δ

)
+ q±2,D+C0,Dr

2
[
lnrsin(2θ)+ θ cos(2θ)

]
.

Below we shall prove that a solution with the above asymptotic behavior near O cannot
fulfill the homogeneous Neumann boundary condition. In fact, one can prove analogously
that, as a solution to the Neumann boundary value problem, w admits the asymptotics

w= w0,N+ v0,N = dN,2r
2 cos(2θ)+O

(
r2+δ

)
+ q±2,N+C0,Nr

2
[
lnrcos(2θ)− θ sin(2θ)

]
.

Comparing the coefficients of the previous two identities, we find that

C0,D = C0,N = 0 and Q±
2,D = Q±

2,N := Q±
2 in Σ,

where Q±
2,D := dD,2r2 sin(2θ)+ q±2,D, Q

±
2,N := dN,2r2 cos(2θ)+ q±2,N. Furthermore, Q±

2 satisfies
the following problem (cf (3.12)):

∆Q±
2 = c±0 , in Σ,

Q+
2 = Q−

2 ,
∂Q+

2
∂ν =

∂Q−
2

∂ν , on Γ0,

Q±
2 =

∂Q±
2

∂ν = 0, on Γ±.
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By lemma 3.7, we can see that c+0 = c−0 . In the following, we will prove that c+0 = c−0 = 0.
Since u1(O) = u2(O) := u(O), we have{

c+0 = f+(O) = k21u2(O)− k21,2u1(O) = (k21 − k21,2)u(O),

c−0 = f−(O) = k22,2u2(O)− k21u1(O) = (k22,2 − k21)u(O).

By our assumptions on the refractive indices k1,2 and k2,2 (see condition (ii) of theorem 2.1),
we conclude that c+0 and c−0 have different signs if u(O) ̸= 0. Combining with the identity
c+0 = c−0 , we obtain that c+0 = c−0 = 0 and then u(O) = 0.

Recalling the representation of the functions u1 and u2 in (4.1), we achieve that b(1)0 =

b(2)0 = 0 and thus as r→ 0,

f+(r,θ) = k21u2 − k21,2u1 = r(c+1,a sinθ+ c+1,b cosθ)+O(r2),

f−(r,θ) = k22,2u2 − k21u1 = r(c−1,a sinθ+ c−1,b cosθ)+O(r2),

where

c+1,a := k21 a
(2)
1 − k21,2 a

(1)
1 , c+1,b := k21 b

(2)
1 − k21,2 b

(1)
1 ,

c−1,a := k22,2 a
(2)
1 − k21 a

(1)
1 , c−1,b := k22,2 b

(2)
1 − k21 b

(1)
1 .

(4.5)

Step 2: Prove that c±1,a = c±1,b = 0 and a( j)1 = b( j)1 = 0 for j = 1,2. This step is not neces-
sary for carrying out our induction arguments in the next Step 3. However, for the readers’
convenience we still keep it here.

As done in Step 1, we consider the Dirichlet andNeumann problems separately by replacing
the right hand side by its lowest order term. Consider the problems

∆v1,D = r(c±1,a sinθ+ c±1,b cosθ), in Σ±,[
v1,D

]
=
[∂v1,D

∂ν

]
= 0, on Γ0,

v1,D = 0, on Γ+ ∪Γ−,

(4.6)


∆v1,N = r(c±1,a sinθ+ c±1,b cosθ), in Σ±,[
v1,N
]
=
[∂v1,N

∂ν

]
= 0, on Γ0,

∂v1,N
∂ν = 0, on Γ+ ∪Γ−.

(4.7)

By lemma 3.6, there exist two special solutions to (4.6) and (4.7) of the form

v1,D = q±3,D(r,θ)+C1,Dr
3
[
lnrsin(3θ)+ θ cos(3θ)

]
,

v1,N = q±3,N(r,θ)+C1,Nr
3
[
lnrcos(3θ)− θ sin(3θ)

]
,

where q±3,D(r,θ) and q±3,N(r,θ) are homogeneous polynomials of degree three satisfying the
systems (4.6) and (4.7), respectively. Then w1,D := w− v1,D solves the problem (4.4) with the
right term f̃1 := f± − r(c±1,a sinθ+ c±1,b cosθ) in Σ±. Since f̃1(O) = |∇̃f1(O)|= 0, we can see

that f̃1 ∈ Λ0,δ
−1(Σ)∩Λ0,δ

0 (Σ), which implies that w1,D ∈ Λ2,δ
0 (Σ). Hence, w1,D takes the form

w1,D = dD,3r
3 sin(3θ)+O

(
r3+δ

)
, r→ 0+,

and then

w= w1,D+ v1,D = dD,3r
3 sin(3θ)+O

(
r3+δ

)
+ q±3,D+C1,Dr

3
[
lnrsin(3θ)+ θ cos(3θ)

]
.

Similarly,

w= w1,N+ v1,N = dN,3r
3 cos(3θ)+O

(
r3+δ

)
+ q±3,N+C1,Nr

3
[
lnrcos(3θ)− θ sin(3θ)

]
.
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Comparing the coefficients of the above two identities, we find

C1,D = C1,N = 0 and Q±
3,D = Q±

3,N =: Q±
3

where Q±
3,D := dD,3r3 sin(3θ)+ q±3,D, Q

±
3,N := dN,3r3 cos(3θ)+ q±3,N and Q±

3 satisfies:
∆Q±

3 = r(c±1,a sinθ+ c±1,b cosθ), in Σ±,

Q+
3 = Q−

3 ,
∂Q+

3
∂ν =

∂Q−
3

∂ν , on Γ0,

Q±
3 =

∂Q±
3

∂ν = 0, on Γ±.

Using again lemma 3.7, we obtain that Q+
3 = Q−

3 . Hence, c+1,a sinθ+ c+1,b cosθ = c−1,a sinθ+
c−1,b cosθ for all θ ∈ (0,2π), implying that c+1,a = c−1,a and c

+
1,b = c−1,b.

Next, we will prove c±1,a = c±1,b = 0. In view of the transmission conditions at θ =−π/2
for all r ∈ [0,R), we may set ∂ru1(O) = ∂ru2(O) =: ∂ru(O), ∂θ∂ru1(O) = ∂θ∂ru2(O) =:
∂θ∂ru(O). In view of the definition of c±1,b and c

±
1,a we obtain

c+1,b = ∂rf+(O) = k21∂ru2(O)− k21,2∂ru1(O) = (k21 − k21,2)∂ru(O),

c−1,b = ∂rf−(O) = k22,2∂ru2(O)− k21∂ru1(O) = (k22,2 − k21)∂ru(O),

c+1,a = ∂θ∂rf+(O) = k21∂θ∂ru2(O)− k21,2∂θ∂ru1(O) = (k21 − k21,2)∂θ∂ru(O),

c−1,a = ∂θ∂rf−(O) = k22,2∂θ∂ru2(O)− k21∂θ∂ru1(O) = (k22,2 − k21)∂θ∂ru(O).

Recalling the assumptions of k1,2 and k2,2 (see condition (ii) of theorem 2.1), we find that
k21 − k21,2 and k

2
2,2 − k21 have different signs. Combining with the identity c+1,b = c−1,b, c

+
1,a = c−1,a,

we obtain that

c±1,a = c±1,b = 0, ∂ru(O) = ∂θ∂ru(O) = 0,

which together with (4.5) yield a( j)1 = b( j)1 = 0 for j = 1,2.
Step 3: Induction arguments. Making the induction hypothesis that

a(1)j = a(2)j = b(1)j = b(2)j = 0 for all 0⩽ j⩽ n− 1, n⩾ 2,

we will prove that a(1)n = a(2)n = b(1)n = b(2)n = 0.
The induction hypothesis implies that as r→ 0,

f+(r,θ) = k21u2 − k21,2u1 = rn
[
c+n,a sin(nθ)+ c+n,b cos(nθ)

]
+O(r2+n), in Σ+,

f−(r,θ) = k22,2u2 − k21u1 = rn
[
c−n,a sin(nθ)+ c−n,b cos(nθ)

]
+O(r2+n), in Σ−,

where

c+n,a := k21a
(2)
n − k21,2a

(1)
n , c+n,b := k21b

(2)
n − k21,2b

(1)
n ,

c−n,a := k22,2a
(2)
n − k21a

(1)
n , c−n,b := k22,2b

(2)
n − k21b

(1)
n .

Consider the problems
∆vn,D = rn

[
c±n,a sin(nθ)+ c±n,b cos(nθ)

]
, in Σ±,[

vn,D
]
=
[∂vn,D

∂ν

]
= 0, on Γ0,

vn,D = 0, on Γ+ ∪Γ−,

(4.8)
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
∆vn,N = rn

[
c±n,a sin(nθ)+ c±n,b cos(nθ)

]
, in Σ±,[

vn,N
]
=
[∂vn,N

∂ν

]
= 0, on Γ0,

∂vn,N
∂ν = 0, on Γ+ ∪Γ−.

(4.9)

Recalling lemma 3.6, there exist two special solutions to problems (4.8) and (4.9) of the form

vn,D(r,θ) = q±n+2,D(r,θ)+Cn,Dr
n+2
{
lnrsin[(n+ 2)θ] + θ cos[(n+ 2)θ]

}
in Σ±,

vn,N(r,θ) = q±n+2,N(r,θ)+Cn,Nr
n+2
{
lnrcos[(n+ 2)θ]− θ sin[(n+ 2)θ]

}
in Σ±,

where q±n+2,D and q±n+2,N are homogeneous polynomials of degree n+ 2 satisfying the sys-
tem (4.8) and (4.9), respectively. The function wn,D := w− vn,D then solves the problem (4.4)
with the right term

f̃n := f± − rn
[
c±n,a sin(nθ)+ c±n,b cos(nθ)

]
, in Σ±.

Since ∂lr f̃n(O) = 0 for all 0⩽ l⩽ n, it holds that f̃n ∈ Λ0,δ
−n(Σ)∩Λ0,δ

−n+1(Σ), which implies that

wn,D,wn,N ∈ Λ2,δ
−n+1(Σ) take the forms

wn,D = dD,n+2r
n+2 sin[(n+ 2)θ] +O

(
rn+2+δ

)
,

wn,N = dN,n+2r
n+2 cos[(n+ 2)θ] +O

(
rn+2+δ

)
,

as r→ 0. Consequently,

w= dD,n+2r
n+2 sin[(n+ 2)θ] +O

(
rn+2+δ

)
+ q±n+2,D

+Cn,Dr
n+2
{
lnrsin[(n+ 2)θ] + θ cos[(n+ 2)θ]

}
= dN,n+2r

n+2 cos[(n+ 2)θ] +O
(
rn+2+δ

)
+ q±n+2,N

+Cn,Nr
n+2
{
lnrcos[(n+ 2)θ]− θ sin[(n+ 2)θ]

}
.

This implies the relations

Cn,D = Cn,N = 0 and Q±
n+2,D = Q±

n+2,N =: Q±
n+2

where Q±
n+2,D := dD,n+2rn+2 sin[(n+ 2)θ] + q±n+2,D, Q±

n+2,N := dN,n+2rn+2 cos[(n+ 2)θ] +
q±n+2,N and Q±

n+2 satisfies
∆Q±

n+2 = rn
[
c±n,a sin(nθ)+ c±n,b cos(nθ)

]
, in Σ,

Q+
n+2 = Q−

n+2,
∂Q+

n+2

∂ν =
∂Q−

n+2

∂ν , on Γ0,

Q±
n+2 =

∂Q±
n+2

∂ν = 0, on Γ±.

By lemma 3.7, we conclude that Q+
n+2 = Q−

n+2 and then c+n,a = c−n,a, c
+
n,b = c−n,b.

Since ∂nr u1(O) = ∂nr u2(O) := ∂nr u(O) and ∂θ∂
n
r u1(O) = ∂θ∂

n
r u2(O) := ∂θ∂

n
r u(O), we have

c+n,bn! = ∂nr f
+
n (O) = k21∂

n
r u2(O)− k21,2∂

n
r u1(O) = (k21 − k21,2)∂

n
r u(O),

c−n,bn! = ∂nr f
−
n (O) = k22,2∂

n
r u2(O)− k21∂

n
r u1(O) = (k22,2 − k21)∂

n
r u(O),

c+n,an! = ∂θ∂
n
r f

+
n (O) = k21∂θ∂

n
r u2(O)− k21,2∂θ∂

n
r u1(O) = (k21 − k21,2)∂θ∂

n
r u(O),

c−n,an! = ∂θ∂
n
r f

−
n (O) = k22,2∂θ∂

n
r u2(O)− k21∂θ∂

n
r u1(O) = (k22,2 − k21)∂θ∂

n
r u(O).

Again by the condition (ii) of theorem 2.1, we get

c±n,a = c±n,b = 0, ∂nr u(O) = ∂θ∂
n
r u(O) = 0,

which imply a( j)n = b( j)n = 0 for j = 1,2.
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Figure 4. Case three: O ∈ Λ1 ∩Λ2 is a corner of Λ2 but not a corner of Λ1.

Step 4: The final contradiction. The induction argument in the last step gives a( j)n = b( j)n = 0
for j = 1,2 and all n⩾ 0. Using the second assertion of corollary 3.4, we deduce that u1 = u2 ≡
0 in Σ and thus by unique continuation u1 = u2 ≡ 0 in R2. Again using the arguments at the
end of Case one, one can get a contradiction. This proves the coincidence of the grating files
Λ1 = Λ2 in Case two.

4.3. Case three

Assume there exists a corner O of Λ2 such that O ∈ Λ1, but O is not a corner point of Λ1.
Without loss of generality, we suppose that O is located on a vertical line segment of Λ1; see
figure 4.

Choose R> 0 sufficiently small such that the disk BR := {x ∈ R2 : |x|< R} does not contain
other corners. Set

BR ∩Λ1 = Γ+ ∪Γ0, BR ∩Λ2 = Γ+ ∪Γ−, Σ+ = BR ∩Ω−
Λ1
, Σ− = BR ∩Ω−

Λ2
∩Ω+

Λ1
.

We can see that u1,u2 ∈ H2(BR)∩C0,δ(BR) (0< δ < 1) are solutions to the system
∆u1 + k21,2u1 = 0, ∆u2 + k22,2u2 = 0, in Σ+,

∆u1 + k21u1 = 0, ∆u2 + k22,2u2 = 0, in Σ−,[
u1
]
=
[
∂u1
∂ν

]
= 0,

[
u2
]
=
[
∂u2
∂ν

]
= 0, on Γ0,

u1 = u2,
∂u1
∂ν = ∂u2

∂ν , on Γ+ ∪Γ−.

In contrast to Case two, the opening angle formed by Σ+ ∪Σ− ∪Γ0 is 3π/2 rather than
π. However, the arguments for treating Case two can be adapted to Case three. With slight
modifications we can also deduce a contradiction. We omit the details for brevity. The proof
of Λ1 = Λ2 is thus complete.

Remark 4.1. If the near-field data are measured on two line segments above and below the
grating, then we do not need to consider Case three.

5. Proof of theorem 2.1: determination of refractive indices

Having uniquely determined the grating profiles Λ1 = Λ2 := Λ, we shall prove in this section
that k1,2 = k2,2. From u1(x1,b) = u2(x1,b) for x1 ∈ (0,2π), we get u1 = u2 in Ω+

Λ . Choose a
corner pointO ∈ Λ and R> 0 sufficiently small, and setΠ = BR ∩Λ,Σ± = BR ∩Ω±

Λ . It is easy
to see

∆u1 + k21,2u1 = 0, ∆u2 + k22,2u2 = 0, in Σ−,
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u1 = u2, ∂νu1 = ∂νu2, on Π.

Note that the opening angle of Σ− is π/2 or 3π/2. Setting w= u1 − u2 ∈ H2(BR), we get

∆w= f in Σ−, f :=−k21,2u1 + k22,2u2,

w= ∂νw= 0 on Π.

Using the second assertion of corollary 3.4, we may assume that

uj =
∑
n⩾m

rn
[
a( j)n sin(nθ)+ b( j)n cos(nθ)

]
+O(rm+2) as r→ 0+, a( j)n ,b( j)n ∈ C, (5.1)

for somem⩾ 0 such that |a( j)m |+ |b( j)m | ̸= 0. Otherwise, it holds that u1 = u2 ≡ 0 and a contra-
diction can be derived following the arguments at the end of section 4.1. We remark that, since
u1 = u2 in Σ+, it holds in (5.1) that a(1)m = a(2)m := am, b

(1)
m = b(2)m := bm and that the index m

is uniform for u1 and u2. Hence, the right hand side admits the asymptotics

f(r,θ) = rm
[
c+m sin(mθ)+ c−m cos(mθ)

]
+O(rm+2), r→ 0, θ ∈ (0,2π]

with

c+m =−(k21,2 − k22,2)am, c−m =−(k21,2 − k22,2)bm.

Since the lowest order term in the Taylor expansion of f around O is harmonic, applying [20,
lemma 2.3] gives the relation c±m = 0. Since |am|+ |bm| ̸= 0, we obtain k1,2 = k2,2. The proof
is complete.
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Appendix. Well-posedness of forward scattering problem

In this section we prove well-posedness of our forward scattering problem under a more gen-
eral transmission condition, which include both TE and TM polarizations. The uniqueness
proof seems new and of independent interests, since it applies to all frequencies, including
Rayleigh frequencies (which are also known as Wood anomalies), that is, β±

n = 0 for some
n ∈ Z.

For notational convenience we set k+ = k1, k− = k2, k(x) = k± in Ω±
Λ . Consider the scat-

tering problem
∆u+ k2±u= 0, in Ω±

Λ ,

u+ = u−, ∂u+

∂ν = λ ∂u−

∂ν , on Λ,
u= ui+ us, in Ω+

Λ ,

(A.1)
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where λ> 0 is a constant, the notation [·]± denotes the limit obtained from Ω±
Λ and ν is the

normal direction at Λ pointing into Ω+
Λ . The scattered field us and the transmitted field u are

required to fulfill the upward and downward Rayleigh expansions (2.3) and (2.4), respectively.
We suppose that Λ ∈ A is a rectangular grating that satisfies the condition (2.1). If Λ is given
by the graph of some function or Imk2 > 0 (that is, the medium below Λ is lossy), uniqueness
and existence of the above transmission problem have been investigated in details; see e.g. [2,
7, 11, 18, 38] in periodic structures and [21, 39] for rough interfaces.

Theorem A.1. Let H>max{|Λ+|, |Λ−|} and suppose that one of the following conditions
holds:

(i) λ⩾ 1, k2+ > λk2−; (ii) λ⩽ 1, k2+ < λk2−.

Then the scattering problem (A.1) has a unique solution u ∈ H1
α(SH).

Proof. Introduce the notations

S±H = {x ∈ Ω±
Λ :−H< x2 < H}, Γ±

H = {(x1,±H) : 0< x1 < 2π}.

Define the DtN mappings T± : H1/2
α (Γ±

H )→ H−1/2
α (Γ±

H ) by

(T±f)(x1) :=±
∑
n∈Z

iβ±
n fn e

iαnx1 , f(x1) =
∑
n∈Z

fn e
iαnx1 ∈ H1/2

α (Γ±
H ).

One may deduce from the above definitions that

Re⟨±T± f, f⟩=−
∑

|αn|>k±

|β±
n | | fn|2 ⩽ 0, (A.2)

Im⟨±T± f, f⟩=
∑

|αn|⩽k±

|β±
n | | fn|2 ⩾ 0, (A.3)

where the pair ⟨·, ·⟩ denotes the duality between H−1/2
α and H1/2

α on Γ±
H . Define a piecewise

constant function a(x) := 1 in S+H and a(x) := λ in S−H . The variational formulation for the
scattering problem can be written as: find u ∈ H1

α(SH) such that for all v ∈ H1
α(SH),ˆ

SH

[a(x)∇u ·∇v− a(x)k(x)uv] dx−
ˆ
Γ+
H

T+uvds+λ

ˆ
Γ−
H

T−uvds

=

ˆ
Γ+
H

(
T+ui− ∂ui

∂x2

)
vds. (A.4)

Using (A.2), one can easily prove that the above sesquilinear form is strongly elliptic (see
e.g. [2, 11, 18, 38]), giving rise to a Fredholm operator with index zero over H1/2

α (SH). By
Fredholm alternative, it suffices to prove uniqueness. Suppose that ui ≡ 0. Then u satisfies the
upward and downward Rayleigh expansion radiation conditions. Taking the imaginary part on
both sides of (A.4) with v= u and using (A.3), we get

0=−
∑

|αn|⩽k+

|β+
n | |A+

n |2 −λ
∑

|αn|⩽k−

|β−
n | |A−

n |2,

which implies the vanishing of the Rayleigh coefficients A±
n = 0 for |αn|< k±. Taking the real

part on both sides of (A.4) with v= u and ui = 0 and using (A.2), we obtain

20



Inverse Problems 39 (2023) 055004 J Xiang and G Hu

I1 :=
ˆ
SH

[
a(x)|∇u|2 − a(x)k2(x)|u|2

]
dx

= Re

{ˆ
Γ+
H

T+uuds−λ

ˆ
Γ−
H

T−uuds

}
=−

∑
|αn|>k+

|β+
n | |A+

n |2 e−2|β+
n |H−λ

∑
|αn|>k−

|β−
n | |A−

n |2 e−2|β−
n |H

⩽ 0.

Multiplying the Helmholtz equation by (x2 − c)∂2u and integrating by part yield the Rellich’s
identities [2, 9, 21, 39]:

0=

(ˆ
Γ±
H

∓
ˆ
Λ

)
(x2 − c)

[
−ν2|∇u±|2 + ν2k

2
±|u|2 + 2Re(∂2u

± ∂νu
±)
]
ds

+

ˆ
S±H

|∇u|2 − k2± |u|2 − 2|∂2u|2 dx

:= I±,

where the normal directions at Γ±
H are supposed to point into the exterior of SH . We remark that

the integrals on the vertical boundaries of ∂SH have been canceled due the quasi-periodicity
of u. The integrand over Λ is well-defined because, for rectangular gratings it holds that u ∈
H3/2+ϵ

α (S±H ) for some ϵ> 0 depending on λ (see e.g. [35, chapter 2.4.3] and [18, section 3.3]).
Straightforward calculations show that

ˆ
Γ±
H

(x2 − c)
[
−ν2|∇u±|2 + ν2k

2
±|u|2 + 2Re(∂2u

± ∂νu
±)
]
ds

= (±H− c)
∑

|αn|⩽k±

|β±
n | |A±

n |2 = 0,

and (see e.g. [21, section 4] and [2, chapter 2.4] for details)

0= I+ +λ I−

=−
ˆ
Λ

[
λ(λ− 1)|∂νu−|2 +(λ− 1)|∂τu−|2 +(k2+ −λk2−)|u|2

]
ν2(x2 − c)ds

− 2
ˆ
SH

a(x)|∂2u|2 dx+ I1, (A.5)

where ∂τ denotes the tangential derivative onΛwith τ := (−ν2,ν1). By the assumptions on k±,
λ and recalling the fact that ν2 ⩾ 0 onΛ, we can always choose c ∈ R to ensure that the integral
over Λ is non-positive, so that each term in the above expression vanishes. Consequently, we
get ∂2u≡ 0 in SH and I1 = 0, implying that A±

n = 0 for all |αn|> k±. Therefore,

u= A±
n e

ik±x1 +B±
m e

−ik±x1 in Ω±
Λ , A±

n ,B
±
m ∈ C,

if αn = k± or αm =−k± for some n,m ∈ Z (that is, Rayleigh frequencies occurs). Note that
the above expression of u is well-defined in R2. Since ν2 = 1 on the line segment of Λ parallel
to the x1-axis and |k2+ −λk2−|> 0, one can also deduce from (A.5) that u≡ 0 on this segment,
which gives A±

n = B±
m = 0 and thus u≡ 0.

21



Inverse Problems 39 (2023) 055004 J Xiang and G Hu

We remark that a more general monotonicity condition on the refractive index was used
in [7, theorem 3.6] for proving uniqueness at an arbitrary frequency k> 0. The above proof
shows a simple idea for proving uniqueness for grating profiles of class A. In the special case
that λ= 1 (i.e. TE polarization), we get well-posedness of our scattering problem (2.2)–(2.4);
see also [7, theorem 3.5].

Corollary A.2. Let Λ ∈ A be a rectangular penetrable grating and assume k2 ∈ R+, k2 ̸= k1.
The direct scattering problem (2.2)–(2.4) has a unique solution u ∈ H2

α(SH) for any fixed H>
max{|Λ+|, |Λ−|}.

Concluding remarks

In this paper, we have verified the uniqueness in identifying a penetrable rectangular grating
profile and the material parameter from a single measurement taken above the grating. We
remark that, since only local regularity properties of the Helmholtz equation are involved, the
uniqueness results carry over to any incoming wave, provided the forward problem is well-
posed in appropriate Sobolev spaces. Further, the uniqueness remains valid if k2 ∈ C and
Imk2 ⩾ 0, and the shape reconstruction result carries over to penetrable binary gratings sit-
ting on a substrate with some periodic Hölder continuous refractive index function (see e.g.
[24, 25] for a description of the model). In the latter case, the existence of forward quasi-
periodic solutions incited by a plane wave follows from the Fredholm alternative. In fact, one
can prove that the right hand side of the resulting variational formulation is always orthogonal
to the null space of the adjoint problem (see e.g. [18, 38]). To prove uniqueness in determining
the binary grating profile, one can apply the arguments of [13, 14] to treat case (i) and replace
the constants k1,2, k2,2 in steps 1–3 of case (ii) by the values k1,2(O),k2,2(O) at the corner
point of variable refractive functions. On the other hand, we observe that the 2π-periodicity
assumption on the scattering surface can be removed. For non-periodic rectangular interfaces
satisfying (2.1), well-posedness of the forward scattering can be established following the vari-
ational arguments in [9, 21, 39] for treating rough surfaces. In addition, our arguments provide
insights into the corner scattering theory in a non-convex domain. The TE transmission con-
ditions lead to u ∈ H2(SH), which however cannot hold true in the TM polarization case. In
the future, we will discuss the inverse problem under the more general transmission boundary
condition such as ∂u+/∂ν = λ∂u−/∂ν (λ ̸= 1) (which covers the TE polarization case when
λ= (k−/k+)2) and also consider a complex-valued refractive index function. Further efforts
will be made to extend the uniqueness results to these scattering problems.
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