

Atomic Physics

Chapter 1
 Basic Properties of Atom

What is an atom

An atom is the smallest unchangeable component of a chemical element.

1. Unchangeable means in this case by chemical means
2. Moderate temperatures: $k T<e V$

Mass range: $\quad 1.67 \times 10^{-27}$ to $4.52 \times 10^{-25} \mathrm{~kg}$
Electric charge: zero (neutral), or ion charge
Diameter range: 62 pm (He) to 520 pm (Cs)
Components:
Electrons and compact nucleus of protons and neutrons

Atomic mass unit（AMU）：
lu：1／12 of the mass of a neutral carbon atom with nuclear charge 6 and mass number 12
Mass number（A）：
The total number of protons and neutrons in nucleus Mole（mol）：
1 mol is the quantity of a substance that contains the same number of particles（atoms or molecules）as 0.012 kg of carbon ${ }^{12} \mathrm{C}$ ．

1 mol of atoms or molecules with atomic mass number A AMU has a mass of A grams．

The mass of an atom

風大
The relation between $l u$ and N_{A}

$$
1 u=\frac{1}{N_{A}}=1.660539040(20) \times 10^{-27} \mathrm{~kg}
$$

Electronvolt

$$
\begin{aligned}
1 \mathrm{eV} & =1.602176565(35) \times 10^{-19} \mathrm{C} \times 1 \mathrm{~V} \\
& =1.602176565(35) \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Mass-energy equivalence

$$
E=m c^{2}
$$

lu transfer to eV

$$
\begin{aligned}
1 \mathrm{u} & =931.478 \times 10^{6} \mathrm{eV} / c^{2} \\
& =931.478 \mathrm{MeV} / c^{2}
\end{aligned}
$$

The mass of an atom

The mass of electron:

$$
\begin{aligned}
m_{e} & =9.10938356(11) \times 10^{-31} \mathrm{~kg} \\
& =5.48579909070(16) \times 10^{-4} \mathrm{u} \\
& =0.5109989461(31) \mathrm{MeV}
\end{aligned}
$$

The mass of proton:

$$
\begin{aligned}
m_{p} & =1.672621898(21) \times 10^{-27} \mathrm{~kg} \\
& =1.007276466879(91) \mathrm{u} \\
& =938.2720813(58) \mathrm{MeV}
\end{aligned}
$$

The mass of neutron:

$$
\begin{aligned}
m_{n} & =1.674927471(21) \times 10^{-27} \mathrm{~kg} \\
& =1.00866491588(49) \mathrm{u} \\
& =939.5654133(58) \mathrm{MeV}
\end{aligned}
$$

Avogadro's Number

Avogadro's number is a Bridge from macroscopic to microscopic physics.
1 mole of any substance contains the same number (N_{A}) of atoms (molecules)

$$
\begin{aligned}
N_{\mathrm{A}} & =\frac{\text { Mass of } 1 \text { mole of the substance }}{\text { Mass of an atom }} \\
& =6.02214078(18) \times 10^{23} \mathrm{~mol}^{-1}
\end{aligned}
$$

1. The Faraday constant and elementary charge

$$
F=N_{\mathrm{A}} e
$$

2. Gas constant and Boltzmann constant

$$
R=k_{\mathrm{B}} N_{\mathrm{A}}
$$

3. Molar volume and atomic volume

$$
V_{\mathrm{m}}=V_{\text {atom }} N_{\mathrm{A}}
$$

The Faraday's constant

$$
F=N_{\mathrm{A}} \cdot e=96,485.3383(83) \mathrm{C} / \mathrm{mol}
$$

is the electric charge transported to the electrode in an electrolytic cell, when 1 mol of singly charged ions with mass m_{x} and elementary charge e has been deposited at the electrode.
Therefore, weighing the mass increase $\Delta \mathrm{m}$ of the electrode after a charge Q has been transferred, yields:

$$
\begin{aligned}
\Delta m & =\frac{Q}{e} m_{\mathrm{X}}=\frac{Q}{e} \frac{M_{\mathrm{X}}}{N_{\mathrm{A}}} \\
\Rightarrow N_{\mathrm{A}} & =\frac{Q}{e} \frac{M_{\mathrm{X}}}{\Delta m}
\end{aligned}
$$

From measurements of the absolute mass m of atoms X and the molar mass M_{x} the Avogadro constant

$$
N_{\mathrm{A}}=M_{\mathrm{X}} / m_{\mathrm{X}}
$$

can be directly determined.
The molar mass for gas is defined as the mass of a gas of atoms X within the molar volume $V=22.4 \mathrm{dm}^{3}$ under normal conditions P and T.

The molar mass can be also obtained for nongaseous substances from the definition

$$
M_{\mathrm{X}}=0.012 m_{\mathrm{X}} / m\left({ }^{12} \mathrm{C}\right) \mathrm{kg}
$$

Avogadro's Number measurements

周
大

Method

General gas equation

Barometric pressure formula (Perrin)

Diffusion (Einstein)

Torsionsal oscillations (Kappler)
Electrolysis
Millikan's oil-drop experiment
X-ray diffraction and interferometry

Measurement of atom number N in a single crystal with mass M_{c} and molar mass M_{m}

Fundamental constant

Universal gas constant R
$\}$ Boltzmann's constant k

Avogadro's number

Faraday's constant F

Elementary charge e
Distance d between crystal planes in a cubic crystal
$N_{\mathrm{A}}=N \cdot \frac{M_{\mathrm{m}}}{M_{\mathrm{c}}}$
$N_{\mathrm{A}}=F / e$
$N_{\mathrm{A}}=\left(V / a^{3}\right) \frac{M_{\mathrm{m}}}{M_{\mathrm{c}}}$ for cubic primitive crystal
$N_{\mathrm{A}}=4 M_{\mathrm{m}} / \varrho a^{3}$ for cubic face centered crystal

Can One See Atoms?

Scattering of visible light by single atoms. Each image point corresponds to one atom

Can One See Atoms？

Brownian Motion：small particles suspended in liquids performed small irregular movements，which can be viewed under a microscope

Can One See Atoms?

Cloud Chamber: Incident particles with sufficient

 kinetic energy can ionize the atoms or molecules in the cloud chamber, which is filled with supersaturated water vapor.

How to Make a Cloud Chamber

Can One See Atoms?

Microscopes with Atomic Resolution:

Field Emission Microscope Transmission Electron Microscope Scanning Electron Microscope Scanning Tunneling Microscope Atomic Force Microscope

Field Emission Microscope

The size of atom

周大禁
Assume that the masses of 1 mole atoms is A ，and the atom is spherical

The radius of atom

$$
\frac{4}{3} \pi r^{3} N_{\mathrm{A}}=\frac{A}{\rho}
$$

The radius of atom

$$
r=\left(\frac{3 A}{4 \pi \rho N_{\mathrm{A}}}\right)^{\frac{1}{3}}
$$

The units for the radius of atom

$$
\begin{aligned}
& 1 \mathrm{~nm}=10^{-9} \mathrm{~m}, \quad 1 \AA=10^{-10} \mathrm{~m} \\
& 1 \mathrm{pm}=10^{-12} \mathrm{~m}, \quad 1 \mathrm{fm}=10^{-15} \mathrm{~m}
\end{aligned}
$$

The size of atom

Elements	A	Density $\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Radius $r(\mathrm{~nm})$
$\mathbf{L i}$	7	0.7	
$\mathbf{A l}$	27	2.7	
$\mathbf{C u}$	63	8.9	
\mathbf{S}	32	2.07	
$\mathbf{P b}$	207	11.34	

The size of atom

Elements	A	Density $\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Radius $r(\mathrm{~nm})$
Li	7	0.7	0.16
Al	27	2.7	0.16
Cu	63	8.9	0.14
S	32	2.07	0.18
Pb	207	11.34	0.19

The size of atom

The unit is pm

1	$\begin{array}{r} \mathrm{H} \\ 25 \\ \hline \end{array}$																	He	
$\underline{2}$	$\begin{array}{r} \mathrm{Li} \\ 145 \end{array}$	$\begin{aligned} & \frac{\mathrm{Be}}{105} \\ & \hline \end{aligned}$											$\frac{B}{85}$	$\frac{\mathrm{C}}{70}$	$\frac{\mathrm{N}}{65}$	$\frac{0}{60}$	$\begin{gathered} F \\ 50 \end{gathered}$		Ve
$\underline{3}$	$\frac{\mathrm{Na}}{180}$	$\begin{aligned} & \mathrm{Mg} \\ & 150 \end{aligned}$											$\frac{\mathrm{AI}}{125}$	$\frac{\mathrm{Si}}{110}$	$\begin{gathered} \mathrm{P} \\ 100 \end{gathered}$	$\begin{array}{\|c} \hline \frac{S}{100} \\ \hline \end{array}$	$\frac{\mathrm{Cl}}{100}$		Ar
4	$\begin{gathered} \underline{K} \\ 220 \end{gathered}$	$\frac{\mathrm{Ca}}{180}$	$\frac{\mathrm{Sc}}{160}$	$\frac{\mathrm{Ti}}{140}$	$\frac{\mathrm{V}}{135}$	$\frac{\mathrm{Cr}}{140}$	$\frac{\mathrm{Mn}}{140}$	$\frac{\mathrm{Fe}}{140}$	$\frac{\mathrm{Co}}{135}$	$\frac{\mathrm{Ni}}{135}$	$\frac{\mathrm{Cu}}{135}$	$\frac{\mathrm{Zn}}{135}$	$\frac{\mathrm{Ga}}{130}$	$\frac{\mathrm{Ge}}{125}$	$\frac{\mathrm{As}}{115}$	$\frac{\mathrm{Se}}{115}$	$\frac{\mathrm{Br}}{115}$		Kr
5	$\frac{\mathrm{Rb}}{235}$	$\begin{gathered} \frac{S r}{S r} \\ 200 \end{gathered}$	$\frac{Y}{180}$	$\frac{\mathrm{Zr}}{155}$	$\frac{\mathrm{Nb}}{145}$	$\frac{\mathrm{Mo}}{145}$	$\begin{aligned} & \mathrm{Tc} \\ & 135 \\ & \hline \end{aligned}$	$\frac{\mathrm{Ru}}{130}$	$\frac{\mathrm{Rh}}{135}$	$\frac{\mathrm{Pd}}{140}$	$\frac{\mathrm{Ag}}{160}$	$\frac{\mathrm{Cd}}{155}$	$\frac{\ln }{155}$	$\frac{S n}{145}$	$\frac{\mathrm{Sb}}{145}$	$\frac{\mathrm{Te}}{140}$	$\frac{1}{140}$		Xe
$\underline{6}$	$\frac{\mathrm{Cs}}{260}$	$\begin{aligned} & \frac{\mathrm{Ba}}{215} \end{aligned}$		$\frac{\mathrm{Hf}}{155}$	$\begin{gathered} \mathrm{Ta} \\ 145 \end{gathered}$	$\frac{\mathrm{W}}{135}$	$; \frac{\mathrm{Re}}{135}$	$\frac{\mathrm{Os}}{130}$	$\underset{135}{\underline{I r}}$	$\frac{\mathrm{Pt}}{135}$	$\frac{\mathrm{Au}}{135}$	$\frac{\mathrm{Hg}}{150}$	$\frac{\mathrm{TI}}{190}$	$\frac{\mathrm{Pb}}{180}$	$\frac{\mathrm{Bi}}{160}$	$\frac{\mathrm{Po}}{190}$	At		R
$\underline{7}$	Fr	$\frac{\mathrm{Ra}}{215}$	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og	O

Lanthanides	$*$	$\underline{L a}$	$\frac{\mathrm{Ce}}{195}$	$\frac{\mathrm{Pr}}{185}$	$\frac{\mathrm{Nd}}{185}$	$\frac{\mathrm{Pm}}{185}$	$\frac{\mathrm{Sm}}{185}$	$\underline{\mathrm{Eu}}$	$\underline{\mathrm{Gd}}$	$\underline{\mathrm{Tb}}$	$\underline{\mathrm{Dy}}$	$\underline{\mathrm{Ho}}$	$\underline{\mathrm{Er}}$	$\frac{\mathrm{Tm}}{185}$	$\underline{\mathrm{Yb}}$	$\underline{\mathrm{Lu}}$
$\underline{180}$	175	175	175	175	175	175	175									
$\underline{\text { Actinides }}$	$* *$	$\frac{\mathrm{Ac}}{195}$	$\frac{\mathrm{Th}}{180}$	$\frac{\mathrm{~Pa}}{180}$	$\underline{\mathrm{U}}$	$\frac{\mathrm{Np}}{175}$	$\frac{\mathrm{Pu}}{175}$	$\frac{\mathrm{Am}}{175}$	$\underline{\mathrm{Cm}}$	$\underline{\mathrm{Bk}}$	$\underline{\mathrm{Cf}}$	$\underline{\mathrm{Es}}$	$\underline{\mathrm{Fm}}$	$\underline{\mathrm{Md}}$	$\underline{\mathrm{No}}$	$\underline{\mathrm{Lr}}$

Determination of the size of atom

周大挐
1．From the Covolume（协体积）in Van der Waals equation

$$
\left(P+a / V^{2}\right)(V-b)=R T
$$

where，the quantity b ，is equal to the fourfold volume of the particles

$$
b=4 \frac{4 \pi}{3} r^{3} N_{\mathrm{A}}
$$

2．From X－ray diffraction measurements on crystals

Determination of the size of atom

用大然

3．From the interaction cross section

Collision probability

（a）Simple cubic

（b）Body－centered cubic

（c）Face－centered cubic

Element symbol

Neon
Noble gas

Symbol
Ne
Atomic number 10

Atomic weight (amu) 20.18

Atomic radius (pm)
38

Noutrons
10
Energy levels

Shell structure
\qquad
 ค\%

10

Atomic orbitals

The discovery of electron

Air at very low pressure

Production of cathode rays

Cathode ray in external field

The discovery of electron

1897, J. J. Thomson found electron (corpuscles)

1. They travel in straight lines.
2. They are independent of the material composition of the cathode.
3. Applying electric field in the path of cathode ray deflects the ray towards positively charged plate. Hence cathode ray consists of negatively charged particles.

The discovery of electron

Charge-to-Mass Ratio for the Electron

Lorentz Force
$\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})$
Acceleration voltage V

$$
(m / 2) v^{2}=e V
$$

Charge-to-Mass ration

$$
\frac{e}{m}=\frac{2 V}{R^{2} B^{2}}
$$

Gas.	Value of W/	I.	m / e	v.
Air	4.6×10^{11}	230	$.57 \times 10^{-7}$	4×10^{9}
Air	1.8×10^{12}	350	$.34 \times 10^{-7}$	1×10^{10}
Air	6.1×10^{11}	230	$.43 \times 10^{-7}$	5.4×10^{9}
Air	2.5×10^{12}	400	$.32 \times 10^{-7}$	1.2×10^{10}
Air	5.5×10^{11}	230	$.48 \times 10^{-7}$	4.8×10^{9}
Air	1×10^{12}	285	$.4 \times 10^{-7}$	7×10^{9}
Air	1×10^{12}	285	$.4 \times 10^{-7}$	7×10^{9}
Hydrogen	6×10^{12}	205	$.35 \times 10^{-7}$	6×10^{9}
Hydrogen	2.1×10^{12}	460	$.5 \times 10^{-7}$	9.2×10^{9}
Carbonic	8.4×10^{11}	260	$.4 \times 10^{-7}$	7.5×10^{9}
Carbonic	1.47×10^{12}	340	$.4 \times 10^{-7}$	8.5×10^{9}
Carbonic	3.0×10^{12}	480	$.39 \times 10-7$	1.3×10^{10}

Contemporary theories of atom

1．Plum pudding model（Lord Kelvin and J．J．Thomson）

2．Saturnian model of the atom（H．Nagaoka）

Geiger－Marsden experiment

（b）

Implications of plum pudding model

Using classical physics, the alpha particle's lateral change in momentum $\Delta \mathrm{p}$ can be approximated using the impulse of force relationship and the Coulomb force expression:

$$
\Delta p=F \Delta t=k \frac{Q_{\alpha} Q_{n}}{r^{2}} \frac{2 r}{v_{\alpha}}
$$

The maximum deflection angle:

$$
\theta \approx \frac{\Delta p}{p}<k \frac{2 Q_{\alpha} Q_{n}}{m_{\alpha} r v_{\alpha}^{2}}=0.000326 \mathrm{rad}
$$

where, r : radius of a gold atom
k : Coulomb's constant
Q_{n} : positive charge of gold atom m_{α} : mass of alpha particle
Q_{α} : charge of alpha particle. $\quad v_{\alpha}$: velocity of alpha particle

Implications of plum pudding model

Using classical physics, the alpha particle's lateral change in momentum $\Delta \mathrm{p}$ can be approximated using the impulse of force relationship and the Coulomb force expression:

$$
\Delta p=F \Delta t=k \frac{Q_{\alpha} Q_{n}}{r^{2}} \frac{2 r}{v_{\alpha}}
$$

The maximum deflection angle:

$$
\theta \approx \frac{\Delta p}{p}<k \frac{2 Q_{\alpha} Q_{n}}{m_{\alpha} r v_{\alpha}^{2}}=0.000326 \mathrm{rad}
$$

 k : Coulomb's constant
Q_{n} : positive charge of gold atom m_{α} : mass of alpha particle
Q_{α} : charge of alpha particle.
v_{α} : velocity of alpha particle

Classical scattering

The reduced mass

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

Energy conservation demands

$$
\frac{1}{2} \mu v^{2}+E_{\mathrm{pot}}(r)=\frac{1}{2} \mu v_{0}^{2}=\mathrm{const},
$$

v_{0} is the initial velocity

The angular momentum L

$$
\begin{aligned}
\boldsymbol{L} & =\mu(\boldsymbol{r} \times \boldsymbol{v})=\mu\left(\boldsymbol{r} \times\left[\frac{\mathrm{d} r}{\mathrm{~d} t} \hat{e}_{r}+r \frac{\mathrm{~d} \varphi}{\mathrm{~d} t} \hat{e}_{t}\right]\right) \\
& =\mu r \dot{\varphi}\left(\boldsymbol{r} \times \hat{e}_{t}\right)
\end{aligned}
$$

Classical scattering

The reduced mass

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

Energy conservation demands

$$
\frac{1}{2} \mu v^{2}+E_{\mathrm{pot}}(r)=\frac{1}{2} \mu v_{0}^{2}=\mathrm{const},
$$

v_{0} is the initial velocity

The angular momentum L

$$
\begin{aligned}
\boldsymbol{L} & =\mu(\boldsymbol{r} \times \boldsymbol{v})=\mu\left(\boldsymbol{r} \times\left[\frac{\mathrm{d} r}{\mathrm{~d} t} \hat{e}_{r}+r \frac{\mathrm{~d} \varphi}{\mathrm{~d} t} \hat{e}_{t}\right]\right) \\
& =\mu r \dot{\varphi}\left(\boldsymbol{r} \times \hat{e}_{t}\right) \\
& =\mu r^{2} \dot{\varphi}=\mu v_{0} b
\end{aligned}
$$

Classical scattering

到大
The kinetic energy in center of mass frame

$$
\begin{aligned}
E_{\text {kin }} & =\frac{1}{2} \mu v^{2}=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right) \\
& =\frac{1}{2} \mu \dot{r}^{2}+\frac{L^{2}}{2 \mu r^{2}} .
\end{aligned}
$$

The total energy

$$
E_{\mathrm{total}}=E_{0}=\frac{1}{2} \mu \dot{r}^{2}+\frac{L^{2}}{2 \mu r^{2}}+E_{\mathrm{pot}}(r)=\text { const. }
$$

The derivatives of radii and angle are

$$
\begin{aligned}
& \dot{r}=\left[\frac{2}{\mu}\left(E_{0}-E_{\mathrm{pot}}(r)-\frac{L^{2}}{2 \mu r^{2}}\right)\right]^{1 / 2} \\
& \dot{\varphi}=\frac{L}{\mu r^{2}} .
\end{aligned}
$$

Since for a spherically symmetric potential this path must be mirror-symmetric to the line OS

Classical scattering

到大
The relation the asymptotic scattering angle θ to the polar angle by

$$
\vartheta=\pi-2 \varphi_{\min } .
$$

This yields the relation

$$
\begin{aligned}
\varphi_{\min } & =\int_{\varphi=0}^{\varphi_{\min }} \mathrm{d} \varphi=\int_{r=-\infty}^{r_{\min }} \frac{\mathrm{d} \varphi}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} r} \mathrm{~d} r \\
& =\int_{r=-\infty}^{r_{\min }}(\dot{\varphi} / \dot{r}) \mathrm{d} r=\int_{r_{\text {min }}}^{+\infty} \frac{\dot{\varphi}}{\dot{r}} \mathrm{~d} r .
\end{aligned}
$$

The scattering angle in the CM-frame becomes

$$
\vartheta\left(E_{0}, L\right)=\pi-2 \int_{r_{\min }}^{+\infty} \frac{\left(L /\left(\mu r^{2}\right)\right) \mathrm{d} r}{\left[\frac{2}{\mu}\left(E_{0}-E_{\mathrm{pot}}(r)-\frac{L^{2}}{2 \mu r^{2}}\right)\right]^{1 / 2}} .
$$

Classical scattering

風大
The amount of the angular momentum

$$
L=\mu r v \sin \varphi=\mu b v_{0} \Rightarrow L^{2}=\mu^{2} b^{2} v_{0}^{2}=2 \mu b^{2} E_{0}
$$

Therefore

$$
\vartheta\left(E_{0}, b\right)=\pi-2 b \int_{r_{\text {min }}}^{+\infty} \frac{\mathrm{d} r}{r^{2}\left[1-\frac{b^{2}}{r^{2}}-\frac{E_{\text {pot }}(r)}{E_{0}}\right]^{1 / 2}}
$$

The lower integration limit $r_{\text {min }}$ is fixed by the condition

$$
\dot{r}\left(r_{\text {min }}\right)=0 .
$$

which gives

$$
r_{\min }=\frac{b}{\left[1-\frac{E_{\mathrm{pot}}\left(r_{\min }\right)}{E_{0}}\right]^{1 / 2}}
$$

The angular for Coulomb potential is

$$
\vartheta=2 \cot ^{-1}\left(\frac{4 \pi \varepsilon_{0}}{q Q} \mu \nu_{0}^{2} b\right) \quad E_{\mathrm{pot}}=\frac{q Q}{4 \pi \varepsilon_{0} r}
$$

Classical scattering

周大然
（a）

（b）

Trajectories are strongly dependent on the impact parameter

Rutherford Scattering Formula

周大
The key concept in Rutherford scattering is the relationship between the impact parameter b and the scattering angle θ ．

Rutherford Scattering Formula

周大挐
1．Basic knowledge
The Coulomb force；
The Newton＇s laws；
The conservation of linear momentum；
The conservation of angular momentum．
2．Assumptions
Single scattering
Only consideration Coulomb force
The effect of electrons in nuclei is neglected
The target is static

Rutherford Scattering Formula

间大
Momentum change in Rutherford scattering

Elastic scattering
$\left|\vec{p}_{i}\right|=\left|\vec{p}_{f}\right|=p$
Momentum change
$\Delta p=2 p \sin (\theta / 2)$

Rutherford Scattering Formula

周大
From the Newton's second law

$$
\vec{F}=\frac{d \vec{p}}{d t} \Longrightarrow \Delta \vec{p}=\int \vec{F} d t
$$

The force is the Coulomb force

$$
\vec{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Z_{1} Z_{2} e^{2}}{r^{2}} \frac{\vec{r}}{r}
$$

Before we start integrating let us note that the trajectories are symmetric with respect to the line defined by the distance of the closest approach

Rutherford Scattering Formula

梀大峦
Trajectories are symmetric with respect to angle ϕ

Rutherford Scattering Formula

The symmetry with respect to the line at $\phi=0$ implies

So,

$$
\Delta \vec{p}=\int \vec{F} d t \Longrightarrow \Delta p=\int F \cos \phi d t
$$

$$
\Delta p=\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \int \frac{1}{r^{2}} \cos \phi d t
$$

This integral can be carried over with a help of conservation of angular momentum.

The angular momentum is
$\vec{L}=\vec{r} \times \vec{p}=m \vec{r} \times \vec{v}=m \vec{r} \times\left(\frac{d \vec{r}}{d t}+r \frac{d \vec{\phi}}{d t}\right)=m r \vec{r} \times \frac{d \vec{\phi}}{d t}$

Rutherford Scattering Formula

周大票
The magnitude of angular momentum

$$
L=|\vec{L}|=m r^{2} \frac{d \vec{\phi}}{d t}
$$

From the initial condition

$$
L=m v_{0} b
$$

Since the angular momentum is conserved

$$
\begin{aligned}
m r^{2} \frac{d \phi}{d t} & =m v_{0} b \\
\frac{d t}{r^{2}} & =\frac{d \phi}{v_{0} b}
\end{aligned}
$$

Rutherford Scattering Formula

Thus the change of momentum

$$
\begin{aligned}
\Delta p & =\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \int \frac{d t}{r^{2}} \cos \phi=\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \int \frac{d \phi}{v_{0} b} \cos \phi \\
& =\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{v_{0} b} \int_{\phi_{<}}^{\phi_{>}} d \phi \cos \phi
\end{aligned}
$$

The limits for integration are

$$
\begin{aligned}
\phi_{>} & =\frac{1}{2}(\pi-\theta) \\
\phi_{<} & =-\frac{1}{2}(\pi-\theta)
\end{aligned}
$$

Rutherford Scattering Formula

The integral is

$$
\begin{aligned}
\Delta p & =\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{v_{0} b} \int_{\phi_{<}}^{\phi_{>}} d \phi \cos \phi=\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{v_{0} b}\left(\sin \phi_{>}-\sin \phi_{<}\right) \\
& =\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{2}{v_{0} b} \cos \frac{\theta}{2}
\end{aligned}
$$

Since

$$
\Delta p=2 p \sin (\theta / 2)
$$

The impact parameter is expressed as

$$
\begin{aligned}
b & =\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{p v_{0}} \frac{1}{\tan (\theta / 2)} \\
& =\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{2 E} \frac{1}{\tan (\theta / 2)}
\end{aligned}
$$

with E being the initial kinetic energy for the projectile

The cross section

The cross section

Let us assume a parallel beam of incident particles A with particle flux density $\dot{N}_{\mathrm{A}}=n_{\mathrm{A}} v_{\mathrm{A}}$ that passes through a layer of particles B in rest with density n_{B}.

All particles A passing through an annular ring with radius b and width db around an atom B are deflected by the angle θ and $\theta \pm d \theta / 2$, assuming a spherically symmetric interaction potential.

The angular ring

$$
\mathrm{d} \dot{N}_{\mathrm{A}}=\dot{N}_{\mathrm{A}} \mathrm{~d} A=n_{\mathrm{A}} v_{\mathrm{A}} 2 \pi b \mathrm{~d} b
$$

particles A pass per second

The cross section

One particle B therefore scatters the fraction

$$
\frac{\mathrm{d} \dot{N}_{\mathrm{A}}\left(\vartheta \pm \frac{1}{2} \mathrm{~d} \vartheta\right)}{\dot{N}_{\mathrm{A}}}=2 \pi b \mathrm{~d} b=2 \pi b \frac{\mathrm{~d} b}{\mathrm{~d} \vartheta} \mathrm{~d} \vartheta
$$

of all particles A, incident per second and unit area onto the target, into the range of deflection angles $\theta \pm d \theta / 2$.
The detector with area

$$
A_{\mathrm{D}}=R^{2} \mathrm{~d} \Omega=R^{2} \sin \vartheta \mathrm{~d} \vartheta \mathrm{~d} \phi
$$

receives the fraction

$$
\frac{\mathrm{d} \dot{N}_{\mathrm{A}}(\vartheta, \phi)}{\dot{N}_{\mathrm{A}}} \frac{\mathrm{~d} \phi}{2 \pi}=b \frac{\mathrm{~d} b}{\mathrm{~d} \vartheta} \mathrm{~d} \vartheta \mathrm{~d} \phi .
$$

The cross section

The fraction of all incident particles A, scattered by all atoms B with density n_{B} in the volume $V=A \Delta x$ is then:

$$
\frac{\mathrm{d} \dot{N}_{\mathrm{A}}(\vartheta, \mathrm{~d} \Omega)}{\dot{N}_{\mathrm{A}}}=n_{\mathrm{B}} A \Delta x b \frac{\mathrm{~d} b}{\mathrm{~d} \vartheta} \mathrm{~d} \vartheta \mathrm{~d} \phi .
$$

We define a differential cross section to be the ratio of scattered particles with per target and per unit solid angle to the number of incoming particles per unit area,

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\text { scattered particles }}{\text { incident particles per unit area } \times \text { target particles }} \frac{1}{\mathrm{~d} \Omega}
$$

Therefore,

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\mathrm{d} \dot{N}_{\mathrm{A}}(\vartheta, \mathrm{~d} \Omega)}{\dot{N}_{\mathrm{A}} n_{\mathrm{B}} A \Delta x \mathrm{~d} \Omega}
$$

The cross section

Therefore

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=b \frac{\mathrm{~d} b}{\mathrm{~d} \vartheta} \frac{1}{\sin \vartheta}
$$

(a)

Fig. 20.7 Scattering cross-sections.
(a) $\sigma_{\text {sheep }}>\sigma_{\text {field mouse }}$.
$\sigma_{\text {cow, side }}>\sigma_{\text {cow, front }}$.

$$
\mathrm{d} \Omega=\sin \vartheta \mathrm{d} \vartheta \mathrm{~d} \phi,
$$

The relationship between b and θ for the Rutherford scattering yields

$$
\frac{d \sigma}{d \Omega}=\left(\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{4 E}\right)^{2} \frac{1}{\sin ^{4}(\theta / 2)}
$$

The cross section

If N incident particles strike a foil of thickness t containing n scattering centers per unit volume, the average number $\mathrm{d} N$ of particles Ω scattered into the solid angle $d \Omega$ around Ω is given by

Therefore,

$$
d N=N n t \frac{d \sigma}{d \Omega} d \Omega
$$

$$
\frac{d N}{N}=n t\left(\frac{Z_{1} Z_{2} e^{2}}{16 \pi \varepsilon_{0} E}\right)^{2} \frac{1}{\sin ^{4}(\theta / 2)} d \Omega
$$

This is the Rutherford result explaining the GeigerMarsden experiment

The Geiger－Marsden experiment

南
解
太
Number of particles scattered at a given angle in Rutherford scattering is calculable and well understood， since it is defined by the well understood electromagnetic force．

The key points

Impact parameter: b

Scattering angle: θ

$$
\frac{d \sigma}{d \Omega}=\left(\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{4 E}\right)^{2} \frac{1}{\sin ^{4}(\theta / 2)}
$$

Differential cross-section: the ratio of the number of particles scattered into an element of solid angle $d \Omega$ in the direction θ per unit area (unit 1 barn $=10^{-28} \mathrm{~m}^{2}$)

The important quantities in Rutherford formula:

1. impact parameter
3.charges
2. Scattering angle. 4. Initial kinetic energy

What is Meaning by Nuclear Radius?

The nuclear radius is defined as the distance at which the effect of the nuclear potential is comparable to that of the Coulomb potential

$$
\begin{aligned}
E & =\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r} \\
r_{\min } & =\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{E}
\end{aligned}
$$

Empirical nuclear radius

$$
R=1.2 A^{1 / 3} \mathrm{fm}
$$

The Physics of Atoms and Quanta

$2.2,2.4,4.3,4.4,4.5,4.6,4.8$

Exercise 1

The main constituents of air are: $78 \% \mathrm{~N}_{2}, 21 \% \mathrm{O}_{2}$ and 1% Ar. Using these numbers calculate the mass density ρ of air under normal conditions.

Exercise 2

The density of gold (${ }^{197} \mathrm{Au}$) is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. How many gold atoms are present in a piece of gold whose volume is 3.50 cm^{3} ?

Exercise 3

Calculate the impact parameter for scattering a $7.7 \mathrm{MeV} \alpha$ particle from gold at an angle of (a) 1° and (b) 90°.

Exercise 4

Rutherford found deviations from his scattering formula at backward angles when he scattered 7.7 MeV α particles $\left(Z_{1}=2\right)$ on aluminum ($Z_{2}=13$). He suspected this was because the α particle might be affected by approaching the nucleus so closely. Estimate the size of the nucleus based on these data.

