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Abstract

This note is based on the lectures given by the author during the summer
school of Sun Yat-sen University in July 2022.

1 Linear Potential theory

For this part, we will study the potential theory related to �. And we will focus
on the following topics.

1. Characterization of the Sobolev space W
1,p
0 (⌦);

⇤Update on July 18,2022. Feedbacks are welcome at msgdyx8741@nankai.edu.cn
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2. Riesz decomposition theorem;

3. Wiener criterion for the solvablility of Laplacian equation with Dirichlet
boundary conditon;

4. An application in geometry. The structure of noncompact surfaces with
nonnegative Gaussian curvature.

We refer to [4, 6, 14] for materials of this section.

1.1 Introduction

For N � 2, let RN be the N -dimensional Euclidean space and x = (x1, · · · , xN ) be
the Cartesian coordinate. Let ⌦ ⇢ RN be a bounded open domain. Suppose u is a
smooth function on ⌦, we denote ru = ( @u

@x1
, · · · , @u

@xN
) and �u = @2u

@x2
1
+· · ·+ @2u

@x2
N
.

↵ = (↵1, · · · ,↵N ), 0  ↵i 2 Z is called a multi-index, and |↵| = ↵1 + · · · + ↵N .

We denote r↵
u(x1, · · · , xN ) = @|↵|

@x
↵1
1 ···@x↵N

N

u(x1, · · · , xN ).

Let

L
1
loc(⌦) = {u(x) is integrable on any compact subsetK ⇢ ⌦}.

Definition 1. For u 2 L
1
loc(⌦) and ↵ = (↵1, · · · ,↵n) is a multi-index, where

↵i � 0 is an integer. Then a function v 2 L
1
loc(⌦) is called ↵th weak derivative of

u if it satisfies
ˆ
⌦
�vdx = (�1)|↵|

ˆ
⌦
ur↵

�dx, for all� 2 C
1
0 (⌦).

We denote v = r↵
u.

Now we can define Sobolev space W
k,p(⌦) and W

k,p
0 (⌦).

Definition 2. For k � 0 and p � 1,

W
k,p(⌦) = {u;r↵

u 2 L
p(⌦) for all 0  |↵|  k},

together with the norm

kukWk,p(⌦) =
X

|↵|k

(

ˆ
⌦
|r↵

u|pdx)
1
p . (1)

And
W

k,p
0 (⌦) = C

1
0 (⌦),

where the closure is taken in W
k,p(⌦) with respect to norm (1).
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Problems

1. Let f(x) = 1 � |x|2, which belongs to W
1,p(B1(0)) obviously. Does f(x) 2

W
1,p
0 (B1(0))? Does f(x) 2 W

1,p
0 (B1(0)\B 1

2
(0))? Does f(x) 2 W

1,p
0 (B1(0)\{0})?

If for a closed subset S ⇢ B1(0), f(x) 2 W
1,p
0 (B1(0)), what can we say about

S?

2. Consider Dirichlet problem

(
�u = 0 x 2 ⌦

u = � x 2 @⌦,

�(x) 2 C(⌦̄). Does it admit a solution in the sense

lim
x!x02@⌦

u(x) = �(x0),

when ⌦ = B1(0), B1(0)\B 1
2
(0), B1(0)\{0} or B1(0)\S? What is the equiv-

alent condition for this problem to have a solution for any continuous �(x).

1.2 Characterization of W 1,p
0 (⌦).

Let ⌦ ⇢ RN be a bounded domain.

Lemma 1.1. Suppose u 2 W
1,p
c (⌦) (c means compact support). Then u 2

W
1,p
0 (⌦).

Proof. Suppose u 2 W
1,p
c (⌦). Then we can choose vn 2 C

1(⌦) such that

vn ! u

in W
1,p(⌦) norm. For example we may choose

vn =

ˆ
⌦

1

"Nn

�(
x� y

"n
)u(y)dy

where �(x) 2 C
1
0 (RN ) with

´
⌦ � = 1 and 0 < "n ! 0. We know vn has compact

support actually for n large.

Roughly speaking, we may think of W 1,p
0 (⌦) as the subset of W 1,p(⌦), with

the property u ! 0 as x ! @⌦, because of the following lemma.

Lemma 1.2. If ⌦ is a bounded domain and u 2 W
1,p(⌦), if for all y 2 @⌦

lim
x!y

u(x) = 0 (2)

then u 2 W
1,p
0 (⌦).
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Proof. Recall that u = u
+ + u

� we may assume that u is nonnegative. Notice
that since @⌦ is compact, (2) holds uniformly on it. The function

u" = max(u� ", 0) 2 W
1,p(⌦)

for any " > 0 and has compact support in ⌦. Thus u" 2 W
1,p
0 from Lemma 1.1.

And it is easy to check u" ! u in W
1,p(⌦).

The above assumption (2) is not necessary. To study further, we consider the
following definition.

Definition 3. Fix p > 1. For a domain ⌦ ⇢ RN , any compact subsets F ⇢ ⌦,
we define the p-capacity of F with respect to ⌦ by

Capp(F,⌦) = inf{
ˆ
⌦
|ru|pdx;u 2 C

1
0 (⌦), u � 1 onF},

= inf{
ˆ
⌦
|ru|pdx;u 2 W

1,p
0 (⌦), u � 1 onF}.

For any open subset U of ⌦, we define the p-capacity of U w.r.t ⌦ by

Capp(U,⌦) = sup{Capp(F,⌦);F ⇢ E,F compact}.

For arbitrary subset E, we define the p-capacity of E w.r.t ⌦ by

Capp(E,⌦) = inf{Capp(U,⌦);U � E,U open}.

Theorem 1.3. The set function E 7! Capp(E,⌦), E ⇢ ⌦ enjoys the following
properties.

1. If E1 ⇢ E2, then Capp(E1,⌦)  Capp(E2,⌦);

2. If ⌦1 ⇢ ⌦2 are open and E ⇢ ⌦1, then

Capp(E,⌦2)  Capp(E,⌦1);

3. If Ki is a decreasing sequence of compact subsets of ⌦ with K = \iKi, then

Capp(K,⌦) = lim
i!1

Capp(Ki,⌦);

4. If E1 ⇢ E2 ⇢ · · · ⇢ [iEi = E ⇢ ⌦, then

Capp(E,⌦) = lim
i!1

Capp(Ei,⌦);

5. If E = [iEi ⇢ ⌦, then

Capp,µ(E,⌦) 
X

i

Capp(Ei,⌦),

in particular, if all Ei satisfies Capp(Ei,⌦) = 0, then Capp,µ(E,⌦) = 0.
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We refer to [6, Theorem 2.2] for the proof.

Definition 4. Let ⌦ be a bounded domain, and ⌦ b ⌦1, for another bounded
domain ⌦1;

A property is called to hold quasieverywhere (q.e.) in ⌦, if it holds except for
a set E with Capp(E,⌦1) = 0;

A function f on ⌦ is called to be p-quasicontinuous if for any " > 0, there is
an open subset U with Capp(U,⌦1) < ", such that outside U , f is finite valued
and continuous;

A sequence of functions  j : ⌦ ! R converges p-quasiuniformly in ⌦ to a
function  if for every " > 0 there is an open set G such that Capp(G,⌦1) < "

and  j !  uniformly in ⌦\G.
The sequence  j converges locally p-quasiuniformly if it converges p-quasiuniformly

in each open D b ⌦.

Lemma 1.4. A sequence  j converges locally p-quasiuniformly in ⌦ if and only
if for every " > 0 there is an open set G ⇢ ⌦ with Capp(G,⌦1) < " such that the
sequence converges uniformly on every compact subset ⌦\G.

The proof is omitted. One may refer to [6, Lemma 4.2] for a proof.

Lemma 1.5. Let ⌦ be as before. Let �j 2 C(⌦)\W 1,p(⌦) be a Cauchy sequence in
W

1,p(⌦). Then there is a subsequence �k which converges locally p-quasiuniformly
in ⌦ to a function u 2 W

1,p(⌦). In particular, u is p-quasicontinuous and �k ! u

pointwise p-q.e. in ⌦.

Proof. Suppose that a locally quasiuniformly convergent subsequence can be se-
lected. Then it clearly converges p-q.e. to a p-quasicontinuous function u. More-
over, u 2 H

1,p(⌦). Then it su�ces to show that a locally quasiuniformly conver-
gent subsequence can be found.

Since �j is a Cauchy sequence in W
1,p(⌦), there is a subsequence, denoted

again by �j , such that the series

1X

j=1

ˆ
⌦
2jp(|�j � �j+1|p + |r�j �r�j+1|p)dx

converges. For D b ⌦, let  2 C
1
0 (⌦) and  ⌘ 1 on D. Then

1X

j=1

ˆ
⌦
2jp(| (�j � �j+1)|p + |r (�j � �j+1)|p)dx

converges. For any " > 0, there is j" such that

1X

j=j"

ˆ
⌦
2jp(| (�j � �j+1)|p + |r (�j � �j+1)|p)dx < ".

Let
Ej = {x 2 D; |�j(x)� �j+1| > 2�j}
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we then have

Capp(Ej ,⌦1) 
ˆ
⌦1

2jp|r( (�j � �j+1))|pdx.

Put
E" = [1

j"Ej .

Then we know

Capp(E",⌦1) 
1X

j=j"

Capp(Ej ,⌦1) < ".

Moreover, for j"  j  k

|�j � �k| 
k�1X

l=j

2�l  21�j

in D\E", and this means that �j converges uniformly in D\E". Hence it is not
hard to prove this theorem.

Theorem 1.6. Suppose that u 2 W
1,p(⌦). Then there exists a p-quasicontinuous

function v 2 W
1,p(⌦) such that u = v a.e.

Theorem 1.7. Suppose u 2 W
1,p(⌦). Then u 2 W

1,p
0 (⌦) if and only if there is

a p-quasicontiuous function v in RN such that v = u a.e. in ⌦ and v = 0 q.e. in
⌦c.

Proof. Fix u 2 W
1,p
0 (⌦) and let �j 2 C

1
0 be a sequence converging to u in

W
1,p(⌦). By Theorem 1.5, there is a subsequence of �j which converges p-q.e. in

Rn to a p-quasicontinuous function v such that v = u a.e. in ⌦ and v = 0 q.e. on
⌦c. Hence v is the desired function.

To prove the converse, since the truncations of v converge to v in W
1,p(⌦), we

may assume that v is bounded. Let

E = {x 2 @⌦ : v(x) 6= 0}.

Since Capp(E,⌦1) = 0, we may choose open sets Gj such that E ⇢ Gj ,

Capp(Gj ,⌦1) ! 0,

and v|Gc
j
is continuous. Pick a sequence �j 2 W

1,p(Rn) such that 0  �j  1,
�j = 1 everywhere in Gj , and

ˆ
Rn

(|�j |p + |r�j |p)dµ ! 0.

Then
wj = (1� �j)v 2 W

1,p(⌦).
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Moreover, limx!y wj(x) = 0 for y 2 @⌦. Thus wj 2 W
1,p
0 (⌦) by Lemma 1.2.

Clearly wj ! v in L
p(⌦). By the dominated convergence theorem

(

ˆ
⌦
|rwj �rv|pdµ)

1
p = (

ˆ
⌦
|r(�jv)|pdµ)1/p

(

ˆ
⌦
|vr�j |pdµ)1/p + (

ˆ
⌦
|�jrv|pdµ)1/p ! 0.

So wj ! v in W
1,p(⌦), and hence v 2 W

1,p
0 (⌦). The proof is complete.

1.3 Superharmonic functions

Definition 5. Suppose u : ⌦ ! (�1,+1] is a lower semi-continuous (l.s.c.)
function. u is called superharmonic function, if u 6⌘ +1 and for any bounded
domain D b ⌦, and harmonic function v with v  u on @D, there holds v  u in
D.

If �u is superharmonic, u is called a subharmonic function.

We use U(⌦) to denote all superharmonic functions on ⌦.

Example. By maxmum principle, we know a function u 2 C
2(⌦) with

��u � 0

belongs to U(⌦).
However, in this lesson, we will be interested in superharmonic functions which

are not necessarily smooth.
The function

Uy(x) =

(
� 1

2⇡ log |x� y|, N = 2
1

(N�2)|SN�1
1 ||x�y|N�2

, N � 3

is superharmonic on Rn.

Lemma 1.8. A superharmonic function v 2 U(⌦) is locally integrable.

Proof. We will give a sketch of the proof. The details are left to the reader.

Step 1 From v is lower semi-continuous, we know that it is locally bounded
from below.

Step 2 From Baire’s theorem, we know, there is a sequence w1  w2  · · · of
continuous functions, which satisfies

lim
n!1

wn(x) = v(x)
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for any x 2 ⌦. For any Br(x0) ⇢ ⌦, we can solve
(
�vn = 0 x 2 Br(x0)

vn(x) = wn(x) x 2 @Br(x0)

using Possion’s integral formula. Then
 
@Br(x0)

vn(x)dµ@Br = vn(x0)  v(x0).

Using Fatou’s lemma, we see
 
@Br(x0)

v(x)dµ@Br  v(x0).

Integrating with respect to r, we know
 
Br(x0)

v(x)dx  v(x0). (3)

Step 3 Suppose v(x) is not locally integrable, then we may assume there is some
x0 2 ⌦ such that v(x) is not integrable in any neighborhood Br(x) of x0, where
x 2 B �

2
(x0) and 0 < r < �. Then from (3), we know

v(x) ⌘ +1, 8x 2 B �
2
(x0).

Step 4 As long as v(x) ⌘ +1 in B �
2
(x0), then v(x) = +1 in any BR(x0) b ⌦

for R >
�
2 . Once this is proved, it is not hard to verify taht v ⌘ +1 in ⌦, which

is a contradiction. To prove this, we let

h(x) =

´ R
|x�x0| t

�(n�1)
dt´ R

�
2
t�(n�1)dt

.

Then h is harmonic when x 6= x0, hence in �
2  |x � x0|  R. It takes the

boundary value 0 on @BR and 1 on @B �
2
.

Since v is locally bounded from below, we know

v � inf
BR(x0)

v � kh(x)

for any k > 0 in BR\B �
2
. Let k ! 1, we know v ⌘ +1 in BR(x0).

Definition 6. Suppose ⌃ is the �-algebra of a set X. A set function

µ : ⌃ ! [�1,+1]

is called a signed measure on X if it satisfies
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1. µ takes on at most one of values ±1;

2. µ(;) = 0;

3. For countable collections {Ek}1k=1 of pairwise disjoint sets in ⌃,

µ([1
k=1Ek) =

1X

k=1

µ(Ek).

If µ(U) � 0 for any U 2 ⌃, then µ is called a nonnegative Radon measure.

Definition 7. Let µ be a measure on the � algebra ⌃ of Borel sets of a Hausdor↵
topological space X.

• µ is called inner regular, if for any open U 2 ⌃,

µ(U) = sup{µ(K);K ⇢ U is compact};

• µ is called locally finite if every point y 2 Rn has a neighborhood U such
that |µ(U)| < +1.

The measure µ is called a signed Radon measure if it is inner regular and locally
finite. If µ(U) � 0 for any U 2 ⌃, µ is called a Radon measure.

We use M(X) to deonte all signed Radon measures on X, and use M+(X)
to denote all (nonnegative) Radon measures on X.

Definition 8. If µ is a Radon measure on X, and U is an open subset. If

µ(D) = 0

holds for any open D ⇢ U , we say µ vanishes on D. We denote µ|D = 0.
The support of µ is defined as the complement of the union of all open D such

that µ|D = 0.

Let F be a compact subset of Rn, we use M+(F ) to denote the set of all
nonnegative Radon measures on Rn supported in F . For a domain ⌦, we use
M+(⌦) to denote the set of all nonnegative Radon measures in ⌦.

If u : ⌦ ! [�1,+1] is locally integrable in ⌦, we define a linear functional
on C

1
0 (⌦) by

Lu( ) = �
ˆ
⌦
u� dx.

We call Lu the minus distributional Laplacian of u. If v is another locally inte-
grable function on ⌦, then clearly

Lk·u+l·v = kLu + lLv.

We need the following Riesz representation theorem. One may refer to [15,
Theorem 2.14] for the proof.
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Theorem 1.9. Let X be a locally compact Hausdor↵ space, and let ⇤ be a positive
linear functional on Cc(X), which is the real linear space of continuous functions
with compact support. Then there exists a �-algebra ⌃ which contains all Borel
sets in X, and a unique positive measure µ on ⌃ (), which represents ⇤ in the
sense that

1. ⇤f =
´
X fdµ, 8f 2 Cc(X) , and which has the following additional proper-

ties:

2. µ is locally finite;

3. 8E 2 ⌃, we have

µ(E) = inf{µ(V ) : E ⇢ V, V open};

4. The relation
µ(E) = sup{µ(K) : K ⇢ E,K compact}

holds for 8 open set E and 8F ⇢ ⌃ with µ(F ) < 1.

5. If E ⇢ ⌃, A ⇢ E and µ(E) = 0, then A 2 ⌃.

In particular, from Item 2 and 4, µ is a Radon measure.

Theorem 1.10. If u 2 U(⌦), then Lu is a nonnegative Radon measure.

Proof. First if u 2 U(⌦), u is locally integrable. Then Lu is well defined. We only
need to prove

|Lu( )|  C(K)k kL1 (4)

for any  2 C
1
0 (⌦) and supp ⇢ K. Then from theorem 3.3.3 of [4], we know

there is an increasing sequence un 2 U(⌦) \ C
1(⌦) such that un ! u pointwise

on u. In particular, �un � 0 for each n. Thus
ˆ
⌦
un� � 0

for any  2 C
1
0 and  � 0. So by writting � = (� )+ � (� )�, we have

ˆ
⌦
u� � 0

for  2 C
1
0 and  � 0.

Then the conclusion follows from Theorem 1.9.

From the above theorem, we know Lu defines a Radon measure µu 2 M+(⌦).
We call it “Riesz measure” defined by the superharmonic function u.
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1.4 Potentials

Now we study potentials.

Definition 9. For functions f, g defined on ⌦, if f  g, we call f is a minorant
of g and g is a majorant of f .

If f is a minorant (or majorant) of g, satisfying property A, we call f is
A-minorant (or A-majorant), e.g. harmonic minorant, superharmonic majorant,
etc.

Definition 10. An open set ⌦ in RN is said to be Greenian if, for each y 2 ⌦,
Uy has a subharmonic minorant on ⌦. (R2 is not Greenian)

If this subsection, we will always assume that ⌦ is Greenian.
Suppose G⌦(x, y) = Uy � hy, where hy is the greatest harmonic minorant of

Uy on ⌦ (which can be found using Perron method). G⌦(x, y) is called the Green
function of ⌦.

Definition 11. Let µ be a Radon measure in ⌦, we define

G⌦µ(x) =

ˆ
⌦
G⌦(x, y)dµ(y), x 2 ⌦.

If G⌦µ(x) 6⌘ +1, we call it the potential generated by µ(x).

Example. Let ⌦ = B1(0) ⇢ R2 and let G⌦(x, y) be the corresponding Green
function. Let f(x) = � sec |x| and g(x) =

p
1� |x|2. It is easy to prove that

f, g 2 U(⌦). However, one readily checks that

G⌦µf ⌘ +1

while G⌦µg defines a potential. The reason for this lies in that f(x) does not have
a subharmonic minorant while g(x) does.

We state a theorem and we refer to [4, Theorem 4.2.4] for the proof.

Theorem 1.11. Let µ be a Radon measure on a connected Greenian open set ⌦
and let B(z, r) ⇢ ⌦. Then G⌦µ is a potential if and only if

ˆ
⌦\B(z,r)

G⌦(z, y)dµ(y) < 1.

In particular, if µ(⌦) < +1 or µ has compact support, then G⌦µ is a potential.

Lemma 1.12. (Weyl’s lemma)
Let ⌦ be an open subsut of RN , and u 2 L

1
loc(⌦). If

ˆ
⌦
u(x)��(x)dx = 0

for any � 2 C
1
c (⌦) then u is a harmonic function.
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Lemma 1.13. Let ⌦ be a Greenian domain and let µ be a Radon measure on ⌦.
If G⌦µ is a potential, then G⌦µ is locally integrable. Moreover, the Riesz measure
of G⌦µ is µ.

Proof. First we prove that G⌦µ is locally integrable. For simplicity, we assume
N � 3, N = 2 case are left to the readers.

For this case G⌦(x, y)  Uy(x). For a compact subset K ⇢ ⌦, we choose open
set D such that K ⇢ D b ⌦. For z 2 k

G⌦µ(z) =

ˆ
D
+

ˆ
⌦\D

G⌦(z, x)dµ(x).

It is easy to see that the harmonic function
´
⌦\D G⌦(z, x)dµ(x) is bounded on K.

For the first termˆ
K

ˆ
D
G⌦(z, x)dµ(x)dz =

ˆ
D
dµ(x)

ˆ
K
G⌦(z, x)dz.

So ˆ
K
G⌦(z, x)dz 

ˆ
K
Ux(z)dz


ˆ
B
Ux(z)dz  C(vol(K), N),

here B is a ball centered at x with the same volume as K. Soˆ
K

ˆ
D
G⌦(z, x)dµ(x)dz  µ(D)C(vol(K), N).

Then we have proved that G⌦µ is locally integrable.
Then we know LG⌦µ is well defined and

ˆ
⌦
(���)G⌦µdx =

ˆ
⌦
(���)(

ˆ
⌦
G⌦(x, y)dµ(y))dx

=

ˆ
⌦
(

ˆ
⌦
G⌦(x, y)(���(x))dx)dµ(y)

=

ˆ
⌦
�(y)dµ(y),

So we know that the distribution Laplacian LG⌦µ equals to µ.

Theorem 1.14. (Riesz decomposition theorem) Let u be superharmonic in ⌦,
let µu denote its associated Riesz measure and suppose that u has a subharmonic
minorant on ⌦. Then G⌦µu is a potential on ⌦ and u = G⌦µu + h, where h is
the greatest harmonic minorant of u on ⌦.
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Proof. Let {Kn} be a sequence of compact subsets of ⌦ such thatKn ⇢ int(K0
n+1)

for each n, and such that [nKn = ⌦. Further, let µ
(n)
u denote the restriction of

µu to Kn. Then from Lemma 1.13, we know L
G⌦µ(n)

u
= Lu on C

1
0 (intK0

n). We

define vn = u�G⌦µ
(n)
u . Then by Weyl’s lemma, vn is harmonic in K

0
n. So we see

that G⌦µ
(n)
u is a superharmonic function in ⌦.

Since u has a subharmonic minorant, we may assume that h is the greatest
harmonic minorant of u. Now if we prove

G⌦µ
(n)
u  u� h, (5)

then from
lim
n!1

G⌦µ
(n)
u = G⌦µu,

we know G⌦µu  u� h is a potential. Now we will prove (5). It su�ces to prove

the greatest harmonic minorant of u� h�G⌦µ
(n)
u , wn � 0. Since

u� h�G⌦µ
(n)
u � �G⌦µ

(n)
u

and �G⌦µ
(n)
u is subharmonic, we know wn � �G⌦µ

(n)
u . Then it su�ce to prove

that the greatest harmonic minorant of G⌦µ
(n)
u is 0. It is obvious that 0 is a

harmonic minorant of G⌦µ
(n)
u . On the other hand, fix y0 2 Kn, for x 2 ⌦\Kn+1,

there holds Harnack’s inequality

G⌦(x, y)  CG⌦(x, y0)

for any y 2 Kn. Integration with respect to y 2 Kn, we know

G⌦µ
(n)
u (x)  Cµu(Kn)G⌦(x, y0).

Suppose ⇠n is the greatest harmonic minorant of G⌦µ
(n)
u (x), then in ⌦\Kn+1,

⇠n  Cµu(Kn)G⌦(x, y0). By the definition of superharmonic function, we know
⇠n  Cµu(Kn)G⌦(x, y0) holds in ⌦. Since the greatest harmonic minorant of
G⌦(x, y) of 0, we know ⇠n  0.

Then we know G⌦µu  u� h is a potential. The greatest harmonic minorant
of

u�G⌦µu � h

is 0 since the greatest harmonic minorant of u � h is 0, and 0 is a harmonic
minorant of u � G⌦µu � h. However u � G⌦µu � h is harmonic. So it is 0. We
have

u = G⌦µu + h.

13



1.5 Polar set

Now we turn to the Wiener’s Criterion for the solvablity of Dirichlet problem.

Definition 12. A set E in RN is called polar if there is a superharmonic function
u on some open set ⌦ such that E ⇢ {x 2 ⌦;u(x) = +1}.

It is clear from the local integrability of superharmonic functions that polars
sets have zero Lebesgue measure.

Example. 1. Single point set {y} is a polar set, since Uy is a superharmonic
function in RN . In fact, any countable set {yk : y 2 N} is polar. When
N � 3,

u(x) =
X

k

2�k
Uyk(x), x 2 RN

is a potential. When N = 2, the function

u(x) =
X

k

2�k(1 + log+ kykk)�1
Uyk(x), x 2 R2

is a logarithmic potential.

2. If N � 3, the set E = (0, 0)⇥ RN�2 is a polar set, since

u(x1, · · · , xN ) = � log(x2
1 + x

2
2)

is superharmonic on RN .

Theorem 1.15. Let E be a polar set such that E ⇢ ⌦, and let z 2 ⌦\E. If ⌦ is
Greenian, then there is a potential G⌦µ valued +1 on E such that G⌦µ(z) < +1
and µ(⌦) < +1.

Proof. Since E is polar, there exist an open set D and a superharmonic function
u 2 U(D) such that u(E) = +1. We may assume that D ⇢ ⌦ and z = 0 /2 D (or
we remove it from D and D is still open). Let (Bk) be a sequence of open balls
such that B̄k ⇢ D for each k and [kBk = D. For each k we define a measure ⌫k
by

⌫k(A) =
µu(A \Bk)

µu(Bk) + 1

for any Borel set A, where µu is the Riesz measure associated with u. Define

uk =

ˆ
Uyd⌫k(y)

is valued +1 on E \Bk. Also uk(0) < +1, since 0 /2 Bk.

When N � 3, let

µ =
X

k

2�k ⌫k

1 + uk(0)
.

14



Then µ(⌦)  1 and G⌦µ is a potential on ⌦, which is valued +1 on E but is
finite at 0.

If N = 2, let

µ =
X

k

2�k{1 +
ˆ
Bk

| log kyk|d⌫k(y)}�1
⌫k.

We can prove similarly.

1.6 Fine topology

First we study a superharmonic function, which is not continuous.

Example. Let {xn} be a sequence of points in B1\{0} ⇢ RN , satisfying xn ! 0.
Let

u(x) =
1X

n=1

2�n
Uxn(x)/Uxn(0), x 2 RN

.

Then u is superharmonic, u(xn) = +1 for each n and u(0) = 1. So u is discon-
tinuous at 0. It can be modified to become a bounded one by simply considering
min{u, 2}.

This tell us that, we have to use another topology on RN , to make superhar-
monic functions continuous.

Definition 13. If T1 and T2 are topologies on the same set E, if T2 ⇢ T1, then
we say that T1 is finer that T2, and that T2 is coarser than T1. The “fine topology”
of classical potential theory is the coarsest topology on RN which makes every su-
perharmonic function on RN continuous in the extended sense of functions taking
values in [�1,+1].

Since B(y, r) can be written in the form {x : Uy(x) > a} for a suitable choice
of a, it is clear that the fine topology is finer than the Euclidean one.

Lemma 1.16. 1. A subbase for the fine topology is given by the collection of
all sets of the form {x : u(x) < a}, where u 2 U(RN ) and a 2 R.

2. If u is superharmonic on an open set ⌦, then u is finely continuous on ⌦.

We omit the proof. One can refer to Lemma 7.1.2 of [4].

Definition 14. A set E is said to be thin at a point y if y is not a fine limit
point of E; that is, if there is a fine neighborhood U of y which does not intersect
E\{y}. Otherwise E is said to be non-thin at y.

Theorem 1.17. A polar set is thin everywhere.

Proof. Let E be a polar set and let y 2 RN . Then, by Theorem 1.15, there exists
u in U(D), where D is a neighborhood of y such that u = +1 on (E \D)\{y}
and u(y) < +1. Hence the set {x : u(x) < u(y) + 1} is a fine neighborhood of y
which does not intersect E\{y}; that is, E is thin at y.

15



Theorem 1.18. Let y be a limit point of a set E. The following are equivalent:

1. E is thin at y;

2. there is a superharmonic function u on a neighborhood of y such that

lim inf
x!y,x2E

u(x) > u(y);

3. for every Greenian set ⌦ which contains y, there exists u 2 U+(⌦), such
that u(y) < +1 and u(x) ! +1 as x ! y along E.

Proof. Clearly (3) ) (2).
(2))(1). If (2) holds, then we choose positive numbbers � and " such that

u 2 U(B(y, �)) and u(x) � u(y) + " on B(y, �) \ (E\{y}). It follows that the
set {x 2 B(y, �) : u(x) < u(y) + "} is a fine neighborhood of y which does not
intersect E\{y}, so (1) holds.

It remains to show that (1))(3). Suppose that E is thin at y and that ⌦
is a Greenian set which contains y. From Lemma 1.16, there exist u1, · · · , um 2
U(RN ) and constants a1, a2, · · · , am such that the set U = \m

1 {x : un(x) <

an} is a fine neighborhood of y which does not intersect E\{y}. We define the
superharmonic functions

u
0
n(x) =

un(x)� un(y)

an � un(y)
, (x 2 RN ;n = 1, 2, · · · ,m)

v =
mX

n=1

u
0
n

and w = min{u0
1, u

0
2, · · · , u0

m}.
If x 2 E\{y}, then x /2 U, so u

0
n(x) � 1 for some n. Hence v � 1 + (m� 1)w

on E\{y}, and it follows that

lim inf
x!y,x2E

v(x) � 1 + (m� 1)w(y) = 1 = v(y) + 1. (6)

Let µ denote the Riesz measure associated with v. Then µ({y}) = 0, since v(y) <
+1. Let µn = µ|B(y,rn) for rn > 0 small to be chosen. Since G⌦µn(y) ! 0, we
may choose rn small enough such that G⌦µn(y) < 2�n. Let u =

P
n G⌦µn. Then

u 2 U+(⌦) and u(y) < 1. However, v di↵ers from G⌦µn by a function harmonic
on B(y, rn), so from (6) we have

lim inf
x!y,x2E

G⌦µn(x) � G⌦µn(y) + 1 � 1.

It follows that u(x) ! +1 as x ! y along E, so (3) holds.
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1.7 Reduced functions

For u 2 U(⌦), u � 0, put

�u
F,⌦ := {v 2 U(⌦) : v � 0 on⌦, v � u on F}.

and define the reduced function of u with respect to (F,⌦)

R
u
F,⌦(x) := inf

v2�u
F

v(x).

In general, Ru
F is not l.s.c. For example, for n � 3, let ⌦ = Rn, F = {0}, and

U(x) = |x|2�n
. Then we have

R
U
F,⌦(x) =

(
0 x 6= y,

+1 x = y.

So it is not l.s.c.

Definition 15. We let

R̂
u
F,⌦(x) = lim inf

y!x
R

u
F,⌦(y), x 2 Rn

.

We call it the regularized reduced function or balayage.

One reduced function and balayage we will usually use is

R
1
F,⌦, R̂

1
F,⌦.

Lemma 1.19. With the same notations as above:

1. 0  R̂
1
F,⌦  R

1
F,⌦  1;

2. R
1
F,⌦ = 1 on F ;

3. R̂
1
F,⌦ = R

1
F,⌦ on intF [ F

c, they are di↵erent only on a polar set of @F .

4. Assume F̄ is a compact subset of ⌦, then R̂
1
F,⌦ is a potential

´
⌦ G⌦(x, y)dµy.

Then R̂
1
F,⌦ is superharmonic in ⌦ and harmonic in F̄

c. It is also called the
capacitary potential of F with respect to ⌦. Its Riesz measure is supported
on F̄ and is called the capacitary distribution of F .

5. R̂
1
F,⌦ = R̂

1
F[E,⌦ if E is a polar set.

One may refer to [4, Theorem 5.3.4, 5.3.5] for the proof.

Lemma 1.20. Let E ⇢ ⌦ be thin at x0. Then R̂
1
E\B(x0,r)

! 0 for r ! 0+.
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Proof. By Theorem 1.18, we know there exists a superharmonic function u � 0
such that

0 < u(x0) < +1 = lim inf
E3x!x0,x 6=x0

u(x).

Choose " > 0, we can pick r > 0 so that u(x) > u(x0)
" for all x 2 E\B(x0, r)\{x0}.

The set {x0} has capacity 0, hence R̂
1
E\B(x0,r)

= R̂
1
E\B(x0,r)\{x0}. Then we know

R̂
1
E\B(x0,r)

 "
u(x)

u(x0)

on E \ B(x0, r) and moreover R̂
1
E\B(x0,r0)

 R̂
1
E\B(x0,r)

for any 0 < r
0
< r, as

F (r) is a decreasing sequence.

Lemma 1.21. If E is not thin at x0 2 @⌦, then R̂
1
E\B(x0,r)

(x0) = 1 for all r > 0.

Proof. R
1
E\B(x0,r)

|E = 1, hence

R̂
1
E\B(x0,r)

= 1

outside a polar set F on the boundary of E \ B(x0, r). Still (E\F ) \ B(x0, r) is
not thin at x0. Then we may assume there is a sequence (E\F )\{x0} 3 xn ! x0

in fine topology. So R̂
1
E\B(x0,r)

(x0) = 1.

1.8 Regular boundary points

Now we consider the third problem. Let ⌦ ⇢ RN
, N � 2 be a bounded open

set and �(x) 2 C(⌦̄). One useful method to solve this problem is due to Perron.
Consider

H̄� = inf{v 2 U(⌦); lim inf
⌦3y!x

v(y) � �(x) for any x 2 @⌦}.

From standard argument, for example, from Chapter 2 of [3], we know H̄� is
harmonic in ⌦.

Definition 16. x0 2 @⌦ is called a regular boundary point, if for any �(x) 2
C(⌦̄),

lim
⌦3y!x

H̄�(y) = �(x).

Now we characterize the regular points.

Definition 17. Let ⌦ ⇢ Rn be an open set. A function w = wx0(x) a called a
(local) barrier function at x0 2 @⌦ if it is defined on W \⌦ for some neighborhood
W of x0 and has the following properties:

1. w is superharmonic on W \ ⌦;
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2. w > 0 on W \ ⌦;

3.
lim

W\⌦3x!x0

w(x) = 0.

From Lemma 6.6.3 of [4], we know the following lemma holds.

Lemma 1.22. If there is a (local) barrier at y 2 @⌦, then there exists a global
barrier v at y such that v 2 U+(⌦) and inf⌦\! v > 0 for every open neighborhood
! of y.

Lemma 1.23. (Lemma 7.3.4 of [4])
Let F ⇢ ⌦ and u � 0, u 2 U(⌦). Assume u peaks at x0 2 ⌦ and u(x0) < 1.

Then F is thin at x0 if and only if R̂u
F,⌦(y) < u(y).

Theorem 1.24. Let ⌦ be a bounded open set that has a Green function and
x0 2 @⌦. Then the following statements are equivalent:

1. x0 is a regular boundary point;

2. There exists a barrier at x0;

3. ⌦c is not thin at x0.

Proof. (1) () (2)
Suppose first that x0 is regular and consider the function w(x) = |x0 � x|, x 2

@⌦; Notice that H̄w is harmonic in ⌦, Hw > 0 in ⌦ by strong maximum principle,
and

lim
⌦3x!x0

H̄w(x) = 0.

Then we know H̄w(x) is a barrier function at x0.
Now we assume there is a barrier function w in Br(x0)\⌦. Then from Lemma

1.22, we may assume w is a barrier function defined in ⌦ with inf⌦\! w > 0 for
every open neighborhood ! of y.

Then let M = sup |�|. By the continuity of �, there are constants � and k

such that |�(x)� �(x0)| < " if |x� x0| < � and kw(x) � 2M if |x� x0| � �. The
functions

�(x0)� "� kw(x)  u(x)  �(⇠) + "+ kw(x)

or
|u(x)� �(⇠)|  "+ kw(x).

Since w(x) ! 0 as x ! ⇠, we obtain u(x) ! �(⇠) as x ! ⇠.
(1) () (3)
Assume ⌦c is not thin at x0 and consider the ball B = B(x0, 1). Define the

positive superharmonic function u(x) = 1� |x� x0|2 on B (��u = 2n > 0); now
build the positive superharmonic function

w := u� R̂
u
⌦c\B

2
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where the balayage is with respect to B. w has to be strictly positive on B \ ⌦;
in fact, if there is x 2 B \ ⌦ such that w(x) = 0, by maximum principle w = 0
on all B \⌦, hence u = R̂

u
⌦c\B there and u is harmonic on B \⌦, but this would

be a contradiction since �u < 0 there. As u peaks in x0, Theorem 1.23 and the
assumption imply that w(x0) = 0, therefore w is a barrier at x0 and this implies
x0 is regular.

Suppose now x0 is regular. Pick r
0 small enough so that ⌦0 = ⌦ [ B(x0, r

0)
still has a Green function; for each 0 < r < r

0 define

fr(x) =

(
1 x 2 @⌦ \B(x0, r),

0 x 2 @⌦\B(x0, r).

Let E(r) = B(x0, r)\⌦. Taking the reduced functions with respect to ⌦0 and
recalling Lemma (1.2.1):

R̂
1
E(r),⌦0(x0)  1.

However for any superharmonic function 0  w 2 U(⌦0), w � 1 on E(r), we have

lim inf
⌦3x!x0

w(x) � lim inf
⌦3x!x0

H̄fr (x) = fr(x0) = 1

as x0 is regular.
So we know

lim inf
x!x0

R
1
E(r),⌦0(x) = 1.

Then
lim inf
x!x0

R̂
1
E(r),⌦0(x) = 1.

Hence R̂
1
E(r),⌦0(x0) = 1 for all 0 < r < r

0; Then from Lemma 1.21, we know
⌦c is not thin at x0.

1.9 Wiener Criterion

Let ⌦ be a Greenian domain and E ⇢ RN and y 2 ⌦. We fix ↵ > 1. Let

An = {x 2 RN : ↵n  Uy(x)  ↵
n+1}, n 2 N.

Theorem 1.25. Suppose N � 3. Let n0 2 N be such that Un0 = {x : Uy(x) � ↵
n0}

is contained in ⌦. The following are equivalent:

1. E is thin at y;

2.
P1

n0 ↵
nCap2(E \An,⌦) < +1;

3.
P1

n0 R̂
1
E\An

(y) < +1, where R̂
1
E\An

(y) = R̂
1
E\An,⌦

(y).

Proof. (2) () (3)
For n � n

0, R̂1
E\An

(y) is the capacitary potential of E \An with respect to ⌦.

Let µn be the Riesz measure associated with the potential R̂1
E\An

(y) on ⌦, which
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is the capacitary distribution ([4, Definition 5.4.1]) on E \ An and is supported
on E \An. Then µn(⌦) = Cap2(E \An,⌦).

Notice that from the Item 4 of Lemma 1.19

R̂
1
E\An

(y) =

ˆ
⌦
G⌦(y, z)dµn(z).

Notice that for z 2 E \An,

G⌦(y, z) = Uz(y)� hz(y),

where hz(y) is the greatest harmonic minorant of Uz(y). As long as z stays in a
compact subset of ⌦, we see that hz(y) is bounded. Then we know G⌦(y, z) ⇠
Uz(y) ⇠ ↵

n for z 2 E \An.
So we have

R̂
1
E\An

(y) ⇠ ↵
nkµnk = ↵

nCap2(E \An).

So we know (2) () (3).
(1) () (3)
For n � n

0, suppose that (3) holds. Then there is a sequence bn ! +1 and
v(y) < +1, where superharmonic function

v(x) =
1X

n0

bnR̂
1
E\An

(x), x 2 ⌦.

Since R̂
1
E\An

= 1 on E \ An, except for a polar set Fn. We have v(x) ! +1 as
x ! y along E\ [ Fn. Hence E\ [ Fn is thin at y. So E is thin at y.

Suppose (1) holds, then there is a superharmonic function 0  w(x) 2 U(⌦)
such that w(y) < +1 and

lim
E3x!y

w(x) = +1.

We let µ be the Riesz measure of w(x) and µ|An = µn.

G⌦µ = G⌦µ|⌦\[1
n0An

+
1X

n0

G⌦µn.

We now G⌦µ� w(x) is harmonic in ⌦. So

lim
E3x!y

G⌦µ = +1

and G⌦µ(y) < +1. So
P1

n0 G⌦µn((y)) < +1. As long as we prove that for
n � n

00 large
G⌦(µn�1 + µn + µn+1) � 1, x 2 An \ E, (7)

we can show
1X

n00

R̂
1
E\An

(y)  3
1X

n00�1

G⌦µn(y) < +1.
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We know for i = n
0
, · · · , n� 2, n+ 2, n+ 3, · · · , the distance from the ring Ai

to An is larger than C · d(Ai, {0}).

sup
Ai

G⌦(µn0 + · · ·+ µn�2 + µn+2 + · · · )(x)

CG⌦(µn0 + · · ·+ µn�2 + µn+2 + · · · )(0)
CG⌦µ(0).

So (7) must hold.

Theorem 1.26. Let E ⇢ R2, let y 2 R2 and let ⌦ be a Greenian domain con-
taining y. Further, let � 2 (0, 1), let

En = {x 2 E : �n+1  |x� y|  �
n}

and let n0 be such that B(y,�n0�1) ⇢ ⌦. The following are equivalent:

1. E is thin at y;

2.
P1

n0 nCap2(En,⌦) < +1.

1.10 Structure of noncompact surface with nonnegative Gaus-
sian curvature.

Let u be a function, supermonic in B1(0) ⇢ R2. What is the behavior, of u near
x = 0.

Let Aveu(r) =
�
@Br

u. Then Aveu(r) is also a superharmonic function. By
studying the ordinary di↵erent inequality, we can prove

lim
r!0

Aveu(r)
1
2⇡ log(1/r)

= M.

The question is whether there holds

lim
r!0

u(x)
1
2⇡ log 1

|x|
= M.

Theorem 1.27. (Theorem 1.1-1.3 of [7], or Theorem 7.4.3. of [4])
There is a set E, which is thin at 0, such that

lim
x!0,x/2E

u(x)
1
2⇡ log 1

|x|
= M.

Let gedu = dx
2+dy

2 be the standard flat metric on R2. Let g = e
2u(dx2+dy

2)
be a complete comformal metric. We use K to denote the Gaussian curvature of
g. The question is: if K � 0, what is the behavior of u near infinity?
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Theorem 1.28. (Theorem 4.2 of [14])
There is a set E, which is 2-thin at infinity, such that

lim
x!1,x 62E

u(x)

log 1
|x|

= m,

where 0  m  1. Here 2-thin at infinity means that inversion

Ẽ = { x

|x|2 ;x 2 E}

is 2-thin at 0.

Proof. First we do the inversion, and we may consider the end as defined in the
punctured ball B1(0)\{0}, e2ũ(dx̃2

1+dx̃
2
2). From the Gaussian curvature equation

we have
�ũ+Ke

2ũ = 0.

We use �g to denote the Laplacian with respect to the metric g, we then have

��gũ = K � 0.

So
�ge

�ũ = e
�ũ(��gũ+ |rgũ|2) � 0.

Consider the following theorem of Peter Li and R. Schoen in [8].

Theorem 1.29. Suppose M
N is a complete Riemannian manifold with Ric �

�(N � 1)k, k > 0. Let x0 2 M for a nonnegative subharmonic function defined
in B2r(x0), there holds for any ⌧ 2 (0, 1

2 )

sup
BM

(1�⌧)r
(x0)

v
2  ⌧

�C(1+
p
kr) 1

vol(BM
r (0))

ˆ
BM

r (x0)
v
2
dvolM .

Then let v = e
�ũ, we have

sup
B(1�⌧)r(x0)

e
�2ũ  ⌧

�C 1

vol(BM
r (0))

ˆ
BM

r (x0)
e
�2ũ

dvolM

 ⌧
�C vol|dz̃|2(Br(x0))

volg(Br(x0))
.

Now consider

Theorem 1.30. (Theorem A of [2])
If (M2

, g) is a complete and Kg � 0, then there is a constant C(M) such that,
for r  1,

volg(Br(x)) � C(M)r2.
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Now we have ũ ! +1 as x̃ ! 0 in B1(0)\{0}. So ũ 2 U(B1(0)) and ��ũ is
a Radon measure on B1(0).

Then from Theorem 1.27, we know for a set Ẽ, 2-thin at 0

lim
Ẽ 63(x̃,ỹ)!0,

ũ

log 1
|x̃|

= m̃.

After do the inversion again, we can prove theorem, and 0  m  1 follows from
the fact that the metric is complete.

One result of Huber in [1] is the following.

Theorem 1.31. Suppose (M, g) is a complete noncompact Riemann surface with
ˆ
M

K
�
dµg < +1.

Then there is a compact Riemann surface ⌃ such that M is comformally equivalent
to ⌃\{p1, · · · , pk}.

Here we use potential theory to prove a weak version.

Theorem 1.32. Suppose ⌦ ⇢ (S2, gS2) is a domain, with a complete conformal
metric g = gS2 . If Kg � 0, then @⌦ = {p} or {p, q}. If @⌦ = {p, q}, then (⌦, g)
is a cylinder.

Proof. Choose N 2 ⌦ as the north pole and use stereographic projection ⇡N to
map S2\N to R2. Let S be ⇡N (@⌦) ⇢ D, where D is a bounded domain of R2.
Assume g = e

2v
gedu. We know

lim
x!S

v(x) = +1.

Then we know that v is superharmonic in D and S is a polar set since v|S = +1.
The Hausdor↵ dimension of S is 0. Then it is totally disconnected. Each point
of S corresponds to an end of ⌦. From splitting theorem, there are at most two
points in S, and two point case corresponds to a cylinder.

2 Nonlinear Potential theory

We reter to [9, 6, 5, 11, 12] for materials of this section.

2.1 Introduction

For 1 < p < 1, first we consider

Ip(u) =

ˆ
⌦
|ru|pdx.
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Given a function � 2 W
1,p(⌦), we consider

inf{
ˆ
⌦
|ru|pdx;u� � 2 W

1,p
0 (⌦)}.

Then the minimizer u0 must satisfy

d

dt

ˆ
⌦
|r(u0 + t�)|pdx|t=0 = 0 for any � 2 C1

0 .

Then we have ˆ
⌦
< |ru|p�2ru,r� > dx = 0. (8)

Then it satisfies the p-harmonic equation

�pu = 0, x 2 ⌦. (9)

Definition 18. Let ⌦ be a domain in RN . We say u 2 W
1,p
loc (⌦) is a weak solution

of the p-harmonic equation (9) if for 8� 2 C
1
0 (⌦), (8) holds.

If in addition, u is continuous (actually it always has a continuous represen-
tative), then we say that u is p-harmonic function.

Definition 19. A function v : ⌦ ! (�1,1] is called p-superharmonic in ⌦, if

1. v is l.s.c. in ⌦;

2. v 6⌘ +1 in ⌦;

3. for each domain D b ⌦ the comparison principle holds: if h 2 C(D̄) is
p-harmonic in D and h|@D  v|@D, then h  v in D.

The set of all p�superharmonic functions on ⌦ are denoted by Up(⌦).
A function u : ⌦ ! [�1,1) is called p-subharmonic, if �u is called super-

harmonic.

Example. 1. |x|
p�N
p�1 , p 6= N and � log |x|, p = N are p-superharmonic func-

tions;

2. Although p-Laplace equation is not linear,

v(x) =

ˆ
⌦

dµ(y)

|x� y|(N�p)/(p�1)

is still superharmonic for 1 < p < N and µ is a nonnegative Radon measure
(with compact support for instance);

3. For u, v 2 U(⌦), min{u, v} 2 U(⌦).
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Theorem 2.1. ([9, Theorem 5.11, 5.15])
For u 2 U(⌦), we have for any D b ⌦,

ˆ
D
|v|q < 1

for 0  q <
N(p�1)
N�p in the case 1 < p  N . And

ˆ
D
|rv|r < 1

for 0 < q < N(p�1)/(N �1) in the case 1 < p  N and q = p in the case p > N .

From now on we assume 1  p  n. We use u ^ k to represent min{u, k}.

Theorem 2.2. For a superharmonic function u 2 U(⌦). ��pu is a well defined
Radon measure.

Proof. Since |ru|p�2ru 2 L
1 from Theorem 2.1. We know

L
p
u(�) =

ˆ
⌦
|ru|p�2rur�dµ

is well defined for � 2 C
1
0 . Then from dominated convergence theorem

ˆ
⌦
|ru|p�2rur�dµ = lim

k!1

ˆ
⌦
|ru ^ k|p�2(u ^ k) ·r�dx.

Notice that u ^ k 2 W
1,p
loc (⌦) and still superharmonic. Then we know

ˆ
⌦
|ru ^ k|p�2(u ^ k) ·r�dx � 0

for 0  � 2 C
1
0 (⌦). Let k ! 1, we know L

p
u(�) � 0 for 0  � 2 C

1
0 (⌦). Then

from Riesz representation theorem, we can prove the conclusion.

On the other hand, we have the following theorem.

Theorem 2.3. Suppose that ⌦ is bounded and µ 2 M+(⌦) is finite. Then there
is an p-superharmonic function u in ⌦ such that

��pu = µ

and u ^ k = W
1,p
0 (⌦) for all k > 0.

26



2.2 Wol↵ Potential and generalization of Riesz decomposi-
tion theorem

Definition 20. Let 1 < p  n. Let ⌦ be a domain, and µ is a Radon measure in
⌦, we define the p-Wol↵ Potential by

W
µ
1,p(x0, r) =

ˆ r

0
(
µ(B(x0, r))

tn�p
)1/(p�1) dt

t
.

One easily infers that Wµ
1,2(x0,1) is the Newtonian potential of µ.

As the generalization of Riesz decomposition theorem for �, we have the
following very important theorem.

Theorem 2.4. ([5, Theorem 1.6])
Suppose u is a nonnegative p-superharmonic function in B(x0, 3r). If µ =

��pu, then

c1W
µ
1,p(x0, r)  u(x0)  c2 inf

B(x0,r)
u+ c3W

µ
1,p(x0, 2r).

2.3 Wiener Criterion

Now we study the Wiener Criterion for p-harmonic equation. Consider
(
�pu = 0 x 2 ⌦

u� f 2 W
1,p
0 (⌦)

(10)

We assume f 2 W
1,p(⌦) \ C(⌦̄). Then there is a unique solution uf .

Definition 21. x0 2 @⌦ is called p-regular, if the solution uf to (10) has the
limit value f(x0) whenever f 2 W

1,p(⌦) \ C(⌦̄).

Definition 22. The p-fine topology is the coarsest topology that makes every p-
superharmonic function continuous.

Suppose E ⇢ ⌦ and x0 2 ⌦. E is called p-thin at x0, if x0 is not the fine limit
of E\{x0}.

Theorem 2.5. Suppose E ⇢ ⌦ and x0 2 ⌦, then the following statements are
equivalent:

1. E is p-thin at x0;

2. There is a p-superharmonic function in ⌦ such that

lim inf
x!x0,x2E\{x0}

u(x) > u(x0);

3. There is a p-superharmonic function in ⌦ such that

lim inf
x!x0,x2E\{x0}

u(x) = 1

and u(x0) < +1;
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Theorem 2.6. A boundary point x0 is p-regular if and only if ⌦c is not p-thin
at x0.

Theorem 2.7. Wiener Criterion for p-Laplacian operator, 1 < p  n

Let E ⇢ ⌦ and x0 2 ⌦, E is p-thin at x0 if and only if
ˆ 1

0
(
Capp(B(x0, t) \ E,B(x0, 2t))

Capp(B(x0, t), B(x0, 2t))
)1/(p�1) dt

t
< +1

The necessary part is proved by Maz’ya in 1970 and the su�cient part is
proved by Kilpelainen and Maly in 1994, in [5].

When p = 2 and N � 3, the above Wiener Criterion coincide with Theorem
1.25. For this, we note that

Capp(B(x0, t), B(x0, 2t)) ⇠ t
n�2

.

So ˆ 1

0
(
Capp(B(x0, t) \ E,B(x0, 2t))

Capp(B(x0, t), B(x0, 2t))
)1/(p�1) dt

t

⇠
ˆ ↵

� n
n�2

↵
� n+1

n�2

t
2�nCap2(B(x0, t) \ E,B(x0, 2t))

dt

t

⇠
X

n

↵
nCap2(An \ E,⌦).

For N � 3 and p = N , the Wiener Criterion is equivalent to for some ↵ > 1
X

n

Capp(B(x0, 2
�n) \ E,B(x0, 2

�n+1))
1

n�1 < +1.

In our study, we will propose a di↵erent N -thin notion.

2.4 Conformal geometry and N-Laplacian equation.

First we have a new observation. Suppose (M, gM ) is an N -manifold and ⌦ is a
domain, with a conformal metric g = e

2u
gM .

Then due to direct calculations we have

R̃ij = Rij � gij�Mu+ (2�N)uij + (N � 2)uiuj + (2�N)|ru|2(gM )ij .

Usually we take trace on both sides, we get Yamabe equation. Here we take values
in ru direction. We get

�nu� |ru|N�2
Ric(

ru

|ru| ) + |ru|N�2
Ric(

rgu

|rgu|g
)e2u = 0.

This is another generaliztion of

�u�K +Kge
2u = 0

for N = 2.
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Theorem 2.8. ([13, Theorem 1])
Suppose (⌦, g) is a domain of (SN , gS) for N � 3, and gS is the standard round

metric. If g = e
2u
gS is complete and Ricg � 0, @⌦ consists of at most two points.

The two point case corresponds to SN�1 ⇥R.

Proof. We use N -Laplacian equation to prove this theorem.
Choose q 2 ⌦ and use stereographic projection ⇡ to map @⌦ to S = ⇡(@⌦) ⇢

RN . In a neighborhood D with metric gedu, we have

g = e
2u
gedu.

And

�nu+Ricg(
rgu

|rgu|g
)|rgu|n�2

e
2u = 0.

From [10, Proposition 8.1], we know

lim
x!S

u(x) = +1.

Then we know u is N -superharmonic in D, even across S and S is N -polar set,
which has 0 N -capacity.

So @⌦ is totally disconnected. From splitting theorem, we know the conclusion
holds.

Now it is interesting to understand the case when @⌦ = {p}, that is ⌦ is
conformally equivalent to RN .

Consider a complete conformal metric g = e
2u
gedu, if Ricg � 0, does

lim
x!1

u(x)

log 1
|x|

= m

hold?

Theorem 2.9. ([11, Theorem 1.1])
Let w be an N -superharmonic function in B(0, 2) ⇢ RN and

��Nw = µ � 0

for a Radon measure µ 2 M+(B(0, 2)). Then there is a set E ⇢ RN which is
N

⇤-thin at 0, such that

lim
x/2E,x!0

w(x)

log 1
|x|

= lim inf
x!0

w(x)

log 1
|x|

= m � 0

and

w(x) � m log
1

|x| � C

for x 2 B(0, 1)\{0} and some C. Moreover if w 2 C
2(B(0, 2)\{0}) and (B(0, 2)\{0}, e2w|dx|2)

is complete at 0, then m � 1.
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Let

!(y, i) = {x 2 RN : 2�i�1  |x� y|  2�i}
⌦(y, i) = {x 2 RN : 2�i�2  |x� y|  2�i+1}
!(1, i) = {x 2 RN : 2i  |x� y|  2i+1}
⌦(1, i) = {x 2 RN : 2i�1  |x� y|  2i+2}.

A set E is called N
⇤ -thin at y if

1X

n=n0

n
N�1CapN (E \ !(y, i),⌦(y, i)) < +1.

A set E is called N
⇤ -thin at 1 if

1X

n=n0

n
N�1CapN (E \ !(1, i),⌦(1, i)) < +1.

With this we proved

Theorem 2.10. ([11, Theorem 1.3])
Suppose that (RN

, e
2u|dx|2) is complete with nonnegative Ricci. Then there is

a set E, N⇤-thin at infinity, such that

lim
x/2E,x!1

�(x)

log 1
|x|

= lim inf
x!1

�(x)

log 1
|x|

= m

and

�(x) � m log
1

|x| � L

for some constant L, where m 2 [0, 1]. Moreover,

• m = 0 if and only if g is flat;

• if Ricg is bounded, then

lim
x!1

�(x)

log 1
|x|

= m.

From Theorem 2.9, we can generalize the Huber’s theorem to the following
one.

Theorem 2.11. ([12, Corollary 1.1])
For N � 3, let ⌦ be a domain in the standard unit round sphere (SN , gS).

Suppose on ⌦, there is a complete conformal metric g = e
2u
gS satisfying

1. Ric
�
g 2 L

1(⌦, g) \ L
1(⌦, g);

2. Rg 2 L
1(⌦, g) and |rg

Rg| 2 L
1(⌦, g);

Then @⌦ = SN\⌦ is a finite point set.
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