Lecture notes on potential theory^{*}

Shiguang Ma

July 16, 2022

Contents

1	Line	ear Potential theory	1
	1.1	Introduction	2
	1.2	Characterization of $W_0^{1,p}(\Omega)$	3
	1.3	Superharmonic functions	7
	1.4	Potentials	11
	1.5	Polar set	14
	1.6	Fine topology	15
	1.7	Reduced functions	17
	1.8	Regular boundary points	18
	1.9	Wiener Criterion	20
	1.10	Structure of noncompact surface with nonnegative Gaussian cur-	
		vature	22
2	Non	linear Potential theory	24
	2.1	Introduction	24
	2.2	Wolff Potential and generalization of Riesz decomposition theorem	27
	2.3	Wiener Criterion	27
	2.4	Conformal geometry and N-Laplacian equation	28

Abstract

This note is based on the lectures given by the author during the summer school of Sun Yat-sen University in July 2022.

1 Linear Potential theory

For this part, we will study the potential theory related to Δ . And we will focus on the following topics.

1. Characterization of the Sobolev space $W_0^{1,p}(\Omega)$;

 $^{^*{\}rm Update}$ on July 18,2022. Feedbacks are welcome at msgdyx8741@nankai.edu.cn

- 2. Riesz decomposition theorem;
- 3. Wiener criterion for the solvability of Laplacian equation with Dirichlet boundary conditon;
- 4. An application in geometry. The structure of noncompact surfaces with nonnegative Gaussian curvature.

We refer to [4, 6, 14] for materials of this section.

1.1Introduction

For $N \ge 2$, let \mathbb{R}^N be the N-dimensional Euclidean space and $x = (x_1, \cdots, x_N)$ be The V ≥ 2 , let \mathbb{R}^{-} be the V-dimensional Euclidean space and $x = (x_1, \cdots, x_N)$ be the Cartesian coordinate. Let $\Omega \subset \mathbb{R}^N$ be a bounded open domain. Suppose u is a smooth function on Ω , we denote $\nabla u = (\frac{\partial u}{\partial x_1}, \cdots, \frac{\partial u}{\partial x_N})$ and $\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_N^2}$. $\alpha = (\alpha_1, \cdots, \alpha_N), 0 \leq \alpha_i \in \mathbb{Z}$ is called a multi-index, and $|\alpha| = \alpha_1 + \cdots + \alpha_N$. We denote $\nabla^{\alpha} u(x_1, \cdots, x_N) = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_N^{\alpha_N}} u(x_1, \cdots, x_N)$.

Let

$$L^1_{loc}(\Omega) = \{u(x) \text{ is integrable on any compact subset } K \subset \Omega\}.$$

Definition 1. For $u \in L^1_{loc}(\Omega)$ and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, where $\alpha_i \geq 0$ is an integer. Then a function $v \in L^1_{loc}(\Omega)$ is called α th weak derivative of u if it satisfies

$$\int_{\Omega} \phi v dx = (-1)^{|\alpha|} \int_{\Omega} u \nabla^{\alpha} \phi dx, \text{ for all } \phi \in C_0^{\infty}(\Omega).$$

We denote $v = \nabla^{\alpha} u$.

Now we can define Sobolev space $W^{k,p}(\Omega)$ and $W^{k,p}_0(\Omega)$.

Definition 2. For $k \ge 0$ and $p \ge 1$,

$$W^{k,p}(\Omega) = \{u; \nabla^{\alpha} u \in L^p(\Omega) \text{ for all } 0 \le |\alpha| \le k\},\$$

together with the norm

$$\|u\|_{W^{k,p}(\Omega)} = \sum_{|\alpha| \le k} \left(\int_{\Omega} |\nabla^{\alpha} u|^p dx \right)^{\frac{1}{p}}.$$
 (1)

And

$$W_0^{k,p}(\Omega) = \overline{C_0^\infty(\Omega)},$$

where the closure is taken in $W^{k,p}(\Omega)$ with respect to norm (1).

Problems

- 1. Let $f(x) = 1 |x|^2$, which belongs to $W^{1,p}(B_1(0))$ obviously. Does $f(x) \in W_0^{1,p}(B_1(0))$? Does $f(x) \in W_0^{1,p}(B_1(0) \setminus B_{\frac{1}{2}}(0))$? Does $f(x) \in W_0^{1,p}(B_1(0) \setminus \{0\})$? If for a closed subset $S \subset B_1(0), f(x) \in W_0^{1,p}(B_1(0))$, what can we say about S?
- 2. Consider Dirichlet problem

$$\begin{cases} \Delta u = 0 \quad x \in \Omega \\ u = \phi \quad x \in \partial \Omega, \end{cases}$$

 $\phi(x) \in C(\overline{\Omega})$. Does it admit a solution in the sense

$$\lim_{x \to x_0 \in \partial \Omega} u(x) = \phi(x_0),$$

when $\Omega = B_1(0), B_1(0) \setminus B_{\frac{1}{2}}(0), B_1(0) \setminus \{0\}$ or $B_1(0) \setminus S$? What is the equivalent condition for this problem to have a solution for any continuous $\phi(x)$.

1.2 Characterization of $W_0^{1,p}(\Omega)$.

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain.

Lemma 1.1. Suppose $u \in W_c^{1,p}(\Omega)$ (c means compact support). Then $u \in W_0^{1,p}(\Omega)$.

Proof. Suppose $u \in W^{1,p}_c(\Omega)$. Then we can choose $v_n \in C^{\infty}(\Omega)$ such that

 $v_n \to u$

in $W^{1,p}(\Omega)$ norm. For example we may choose

$$v_n = \int_\Omega \frac{1}{\varepsilon_n^N} \phi(\frac{x-y}{\varepsilon_n}) u(y) dy$$

where $\phi(x) \in C_0^{\infty}(\mathbb{R}^N)$ with $\int_{\Omega} \phi = 1$ and $0 < \varepsilon_n \to 0$. We know v_n has compact support actually for n large.

Roughly speaking, we may think of $W_0^{1,p}(\Omega)$ as the subset of $W^{1,p}(\Omega)$, with the property $u \to 0$ as $x \to \partial \Omega$, because of the following lemma.

Lemma 1.2. If Ω is a bounded domain and $u \in W^{1,p}(\Omega)$, if for all $y \in \partial \Omega$

$$\lim_{x \to y} u(x) = 0 \tag{2}$$

then $u \in W_0^{1,p}(\Omega)$.

Proof. Recall that $u = u^+ + u^-$ we may assume that u is nonnegative. Notice that since $\partial \Omega$ is compact, (2) holds uniformly on it. The function

$$u_{\varepsilon} = \max(u - \varepsilon, 0) \in W^{1,p}(\Omega)$$

for any $\varepsilon > 0$ and has compact support in Ω . Thus $u_{\varepsilon} \in W_0^{1,p}$ from Lemma 1.1. And it is easy to check $u_{\varepsilon} \to u$ in $W^{1,p}(\Omega)$.

The above assumption (2) is not necessary. To study further, we consider the following definition.

Definition 3. Fix p > 1. For a domain $\Omega \subset \mathbb{R}^N$, any compact subsets $F \subset \Omega$, we define the p-capacity of F with respect to Ω by

$$\begin{aligned} \operatorname{Cap}_p(F,\Omega) &= \inf\{\int_{\Omega} |\nabla u|^p dx; u \in C_0^{\infty}(\Omega), u \ge 1 \text{ on } F\},\\ &= \inf\{\int_{\Omega} |\nabla u|^p dx; u \in W_0^{1,p}(\Omega), u \ge 1 \text{ on } F\}.\end{aligned}$$

For any open subset U of Ω , we define the p-capacity of U w.r.t Ω by

$$\operatorname{Cap}_{p}(U,\Omega) = \sup\{\operatorname{Cap}_{p}(F,\Omega); F \subset E, F \operatorname{compact}\}$$

For arbitrary subset E, we define the p-capacity of E w.r.t Ω by

$$\operatorname{Cap}_{p}(E,\Omega) = \inf\{\operatorname{Cap}_{P}(U,\Omega); U \supset E, U \operatorname{open}\}.$$

Theorem 1.3. The set function $E \mapsto \operatorname{Cap}_p(E, \Omega)$, $E \subset \Omega$ enjoys the following properties.

- 1. If $E_1 \subset E_2$, then $\operatorname{Cap}_p(E_1, \Omega) \leq \operatorname{Cap}_p(E_2, \Omega)$;
- 2. If $\Omega_1 \subset \Omega_2$ are open and $E \subset \Omega_1$, then

$$\operatorname{Cap}_p(E, \Omega_2) \le \operatorname{Cap}_p(E, \Omega_1);$$

3. If K_i is a decreasing sequence of compact subsets of Ω with $K = \cap_i K_i$, then

$$\operatorname{Cap}_p(K,\Omega) = \lim_{i \to \infty} \operatorname{Cap}_p(K_i,\Omega);$$

4. If $E_1 \subset E_2 \subset \cdots \subset \cup_i E_i = E \subset \Omega$, then

$$\operatorname{Cap}_p(E,\Omega) = \lim_{i \to \infty} \operatorname{Cap}_p(E_i,\Omega)$$

5. If $E = \bigcup_i E_i \subset \Omega$, then

$$\operatorname{Cap}_{p,\mu}(E,\Omega) \le \sum_{i} \operatorname{Cap}_{p}(E_{i},\Omega),$$

in particular, if all E_i satisfies $\operatorname{Cap}_p(E_i, \Omega) = 0$, then $\operatorname{Cap}_{p,\mu}(E, \Omega) = 0$.

We refer to [6, Theorem 2.2] for the proof.

Definition 4. Let Ω be a bounded domain, and $\Omega \in \Omega_1$, for another bounded domain Ω_1 ;

A property is called to hold quasieverywhere (q.e.) in Ω , if it holds except for a set E with $\operatorname{Cap}_{p}(E, \Omega_{1}) = 0$;

A function f on Ω is called to be p-quasicontinuous if for any $\varepsilon > 0$, there is an open subset U with $\operatorname{Cap}_p(U, \Omega_1) < \varepsilon$, such that outside U, f is finite valued and continuous;

A sequence of functions $\psi_j : \Omega \to \mathbb{R}$ converges p-quasiuniformly in Ω to a function ψ if for every $\varepsilon > 0$ there is an open set G such that $\operatorname{Cap}_p(G, \Omega_1) < \varepsilon$ and $\psi_j \to \psi$ uniformly in $\Omega \setminus G$.

The sequence ψ_j converges locally p-quasiuniformly if it converges p-quasiuniformly in each open $D \in \Omega$.

Lemma 1.4. A sequence ψ_j converges locally p-quasiuniformly in Ω if and only if for every $\varepsilon > 0$ there is an open set $G \subset \Omega$ with $\operatorname{Cap}_p(G, \Omega_1) < \varepsilon$ such that the sequence converges uniformly on every compact subset $\Omega \setminus G$.

The proof is omitted. One may refer to [6, Lemma 4.2] for a proof.

Lemma 1.5. Let Ω be as before. Let $\phi_j \in C(\Omega) \cap W^{1,p}(\Omega)$ be a Cauchy sequence in $W^{1,p}(\Omega)$. Then there is a subsequence ϕ_k which converges locally p-quasiuniformly in Ω to a function $u \in W^{1,p}(\Omega)$. In particular, u is p-quasicontinuous and $\phi_k \to u$ pointwise p-q.e. in Ω .

Proof. Suppose that a locally quasiuniformly convergent subsequence can be selected. Then it clearly converges p-q.e. to a p-quasicontinuous function u. Moreover, $u \in H^{1,p}(\Omega)$. Then it suffices to show that a locally quasiuniformly convergent subsequence can be found.

Since ϕ_j is a Cauchy sequence in $W^{1,p}(\Omega)$, there is a subsequence, denoted again by ϕ_j , such that the series

$$\sum_{j=1}^{\infty} \int_{\Omega} 2^{jp} (|\phi_j - \phi_{j+1}|^p + |\nabla \phi_j - \nabla \phi_{j+1}|^p) dx$$

converges. For $D \subseteq \Omega$, let $\psi \in C_0^{\infty}(\Omega)$ and $\psi \equiv 1$ on D. Then

$$\sum_{j=1}^{\infty} \int_{\Omega} 2^{jp} (|\psi(\phi_j - \phi_{j+1})|^p + |\nabla \psi(\phi_j - \phi_{j+1})|^p) dx$$

converges. For any $\varepsilon > 0$, there is j_{ε} such that

$$\sum_{j=j_{\varepsilon}}^{\infty} \int_{\Omega} 2^{jp} (|\psi(\phi_j - \phi_{j+1})|^p + |\nabla \psi(\phi_j - \phi_{j+1})|^p) dx < \varepsilon.$$

Let

$$E_j = \{x \in D; |\phi_j(x) - \phi_{j+1}| > 2^{-j}\}$$

we then have

$$\operatorname{Cap}_p(E_j, \Omega_1) \le \int_{\Omega_1} 2^{jp} |\nabla(\psi(\phi_j - \phi_{j+1}))|^p dx.$$

Put

$$E_{\varepsilon} = \cup_{j_{\varepsilon}}^{\infty} E_j.$$

Then we know

$$\operatorname{Cap}_p(E_{\varepsilon}, \Omega_1) \leq \sum_{j=j_{\varepsilon}}^{\infty} \operatorname{Cap}_p(E_j, \Omega_1) < \varepsilon.$$

Moreover, for $j_{\varepsilon} \leq j \leq k$

$$|\phi_j - \phi_k| \le \sum_{l=j}^{k-1} 2^{-l} \le 2^{1-j}$$

in $D \setminus E_{\varepsilon}$, and this means that ϕ_j converges uniformly in $D \setminus E_{\varepsilon}$. Hence it is not hard to prove this theorem.

Theorem 1.6. Suppose that $u \in W^{1,p}(\Omega)$. Then there exists a p-quasicontinuous function $v \in W^{1,p}(\Omega)$ such that u = v a.e.

Theorem 1.7. Suppose $u \in W^{1,p}(\Omega)$. Then $u \in W_0^{1,p}(\Omega)$ if and only if there is a p-quasicontinuous function v in \mathbb{R}^N such that v = u a.e. in Ω and v = 0 q.e. in Ω^c .

Proof. Fix $u \in W_0^{1,p}(\Omega)$ and let $\phi_j \in C_0^{\infty}$ be a sequence converging to u in $W^{1,p}(\Omega)$. By Theorem 1.5, there is a subsequence of ϕ_j which converges p-q.e. in \mathbb{R}^n to a p-quasicontinuous function v such that v = u a.e. in Ω and v = 0 q.e. on Ω^c . Hence v is the desired function.

To prove the converse, since the truncations of v converge to v in $W^{1,p}(\Omega)$, we may assume that v is bounded. Let

$$E = \{ x \in \partial \Omega : v(x) \neq 0 \}.$$

Since $\operatorname{Cap}_p(E, \Omega_1) = 0$, we may choose open sets G_j such that $E \subset G_j$,

$$\operatorname{Cap}_n(G_i, \Omega_1) \to 0,$$

and $v|_{G_j^c}$ is continuous. Pick a sequence $\phi_j \in W^{1,p}(\mathbb{R}^n)$ such that $0 \le \phi_j \le 1$, $\phi_j = 1$ everywhere in G_j , and

$$\int_{\mathbb{R}^n} (|\phi_j|^p + |\nabla \phi_j|^p) d\mu \to 0.$$

Then

$$w_j = (1 - \phi_j)v \in W^{1,p}(\Omega).$$

Moreover, $\lim_{x\to y} w_j(x) = 0$ for $y \in \partial\Omega$. Thus $w_j \in W_0^{1,p}(\Omega)$ by Lemma 1.2. Clearly $w_j \to v$ in $L^p(\Omega)$. By the dominated convergence theorem

$$(\int_{\Omega} |\nabla w_j - \nabla v|^p d\mu)^{\frac{1}{p}} = (\int_{\Omega} |\nabla (\phi_j v)|^p d\mu)^{1/p}$$
$$\leq (\int_{\Omega} |v \nabla \phi_j|^p d\mu)^{1/p} + (\int_{\Omega} |\phi_j \nabla v|^p d\mu)^{1/p} \to 0.$$

So $w_i \to v$ in $W^{1,p}(\Omega)$, and hence $v \in W^{1,p}_0(\Omega)$. The proof is complete.

1.3 Superharmonic functions

Definition 5. Suppose $u : \Omega \to (-\infty, +\infty]$ is a lower semi-continuous (l.s.c.) function. u is called superharmonic function, if $u \not\equiv +\infty$ and for any bounded domain $D \in \Omega$, and harmonic function v with $v \leq u$ on ∂D , there holds $v \leq u$ in D.

If -u is superharmonic, u is called a subharmonic function.

We use $\mathcal{U}(\Omega)$ to denote all superharmonic functions on Ω .

Example. By maxmum principle, we know a function $u \in C^2(\Omega)$ with

 $-\Delta u \geq 0$

belongs to $\mathcal{U}(\Omega)$.

However, in this lesson, we will be interested in superharmonic functions which are not necessarily smooth.

The function

$$U_y(x) = \begin{cases} -\frac{1}{2\pi} \log |x - y|, & N = 2\\ \frac{1}{(N-2)|\mathbb{S}_1^{N-1}||x - y|^{N-2}}, & N \ge 3 \end{cases}$$

is superharmonic on \mathbb{R}^n .

Lemma 1.8. A superharmonic function $v \in \mathcal{U}(\Omega)$ is locally integrable.

Proof. We will give a sketch of the proof. The details are left to the reader.

Step 1 From v is lower semi-continuous, we know that it is locally bounded from below.

Step 2 From Baire's theorem, we know, there is a sequence $w_1 \leq w_2 \leq \cdots$ of continuous functions, which satisfies

$$\lim_{n \to \infty} w_n(x) = v(x)$$

for any $x \in \Omega$. For any $\overline{B_r(x_0)} \subset \Omega$, we can solve

$$\begin{cases} \Delta v_n = 0 & x \in B_r(x_0) \\ v_n(x) = w_n(x) & x \in \partial B_r(x_0) \end{cases}$$

using Possion's integral formula. Then

$$\int_{\partial B_r(x_0)} v_n(x) d\mu_{\partial B_r} = v_n(x_0) \le v(x_0).$$

Using Fatou's lemma, we see

$$\int_{\partial B_r(x_0)} v(x) d\mu_{\partial B_r} \le v(x_0).$$

Integrating with respect to r, we know

$$\oint_{B_r(x_0)} v(x) dx \le v(x_0). \tag{3}$$

Step 3 Suppose v(x) is not locally integrable, then we may assume there is some $x_0 \in \Omega$ such that v(x) is not integrable in any neighborhood $B_r(x)$ of x_0 , where $x \in B_{\frac{\delta}{2}}(x_0)$ and $0 < r < \delta$. Then from (3), we know

$$v(x) \equiv +\infty, \forall x \in B_{\frac{\delta}{2}}(x_0).$$

Step 4 As long as $v(x) \equiv +\infty$ in $B_{\frac{\delta}{2}}(x_0)$, then $v(x) = +\infty$ in any $B_R(x_0) \Subset \Omega$ for $R > \frac{\delta}{2}$. Once this is proved, it is not hard to verify that $v \equiv +\infty$ in Ω , which is a contradiction. To prove this, we let

$$h(x) = \frac{\int_{|x-x_0|}^R t^{-(n-1)} dt}{\int_{\frac{\delta}{2}}^R t^{-(n-1)} dt}.$$

Then h is harmonic when $x \neq x_0$, hence in $\frac{\delta}{2} \leq |x - x_0| \leq R$. It takes the boundary value 0 on ∂B_R and 1 on $\partial B_{\frac{\delta}{2}}$.

Since v is locally bounded from below, we know

$$v - \inf_{B_R(x_0)} v \ge kh(x)$$

for any k > 0 in $B_R \setminus B_{\frac{\delta}{2}}$. Let $k \to \infty$, we know $v \equiv +\infty$ in $B_R(x_0)$.

Definition 6. Suppose Σ is the σ -algebra of a set X. A set function

 $\mu: \Sigma \to [-\infty, +\infty]$

is called a signed measure on X if it satisfies

- 1. μ takes on at most one of values $\pm \infty$;
- 2. $\mu(\emptyset) = 0;$
- 3. For countable collections $\{E_k\}_{k=1}^{\infty}$ of pairwise disjoint sets in Σ ,

$$\mu(\cup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu(E_k).$$

If $\mu(U) \geq 0$ for any $U \in \Sigma$, then μ is called a nonnegative Radon measure.

Definition 7. Let μ be a measure on the σ algebra Σ of Borel sets of a Hausdorff topological space X.

• μ is called inner regular, if for any open $U \in \Sigma$,

 $\mu(U) = \sup\{\mu(K); K \subset U \text{ is compact}\};\$

• μ is called locally finite if every point $y \in \mathbb{R}^n$ has a neighborhood U such that $|\mu(U)| < +\infty$.

The measure μ is called a signed Radon measure if it is inner regular and locally finite. If $\mu(U) \ge 0$ for any $U \in \Sigma$, μ is called a Radon measure.

We use $\mathcal{M}(X)$ to deonte all signed Radon measures on X, and use $\mathcal{M}^+(X)$ to denote all (nonnegative) Radon measures on X.

Definition 8. If μ is a Radon measure on X, and U is an open subset. If

 $\mu(D) = 0$

holds for any open $D \subset U$, we say μ vanishes on D. We denote $\mu|_D = 0$.

The support of μ is defined as the complement of the union of all open D such that $\mu|_D = 0$.

Let F be a compact subset of \mathbb{R}^n , we use $\mathcal{M}^+(F)$ to denote the set of all nonnegative Radon measures on \mathbb{R}^n supported in F. For a domain Ω , we use $\mathcal{M}^+(\Omega)$ to denote the set of all nonnegative Radon measures in Ω .

If $u: \Omega \to [-\infty, +\infty]$ is locally integrable in Ω , we define a linear functional on $C_0^{\infty}(\Omega)$ by

$$L_u(\psi) = -\int_{\Omega} u\Delta\psi dx.$$

We call L_u the minus distributional Laplacian of u. If v is another locally integrable function on Ω , then clearly

$$L_{k \cdot u + l \cdot v} = kL_u + lL_v$$

We need the following Riesz representation theorem. One may refer to [15, Theorem 2.14] for the proof.

Theorem 1.9. Let X be a locally compact Hausdorff space, and let Λ be a positive linear functional on $C_c(X)$, which is the real linear space of continuous functions with compact support. Then there exists a σ -algebra Σ which contains all Borel sets in X, and a unique positive measure μ on Σ (), which represents Λ in the sense that

- 1. $\Lambda f = \int_X f d\mu, \forall f \in C_c(X)$, and which has the following additional properties:
- 2. μ is locally finite;
- 3. $\forall E \in \Sigma$, we have

$$\mu(E) = \inf\{\mu(V) : E \subset V, V \text{ open}\};\$$

4. The relation

$$\mu(E) = \sup\{\mu(K) : K \subset E, K \text{ compact}\}$$

holds for \forall open set E and $\forall F \subset \Sigma$ with $\mu(F) < \infty$.

5. If $E \subset \Sigma$, $A \subset E$ and $\mu(E) = 0$, then $A \in \Sigma$.

In particular, from Item 2 and 4, μ is a Radon measure.

Theorem 1.10. If $u \in \mathcal{U}(\Omega)$, then L_u is a nonnegative Radon measure.

Proof. First if $u \in \mathcal{U}(\Omega)$, u is locally integrable. Then L_u is well defined. We only need to prove

$$|L_u(\psi)| \le C(K) \|\psi\|_{L^{\infty}} \tag{4}$$

for any $\psi \in C_0^{\infty}(\Omega)$ and $supp \psi \subset K$. Then from theorem 3.3.3 of [4], we know there is an increasing sequence $u_n \in \mathcal{U}(\Omega) \cap C^{\infty}(\Omega)$ such that $u_n \to u$ pointwise on u. In particular, $\Delta u_n \geq 0$ for each n. Thus

$$\int_{\Omega} u_n \Delta \psi \ge 0$$

for any $\psi \in C_0^{\infty}$ and $\psi \ge 0$. So by writting $\Delta \psi = (\Delta \psi)^+ - (\Delta \psi)^-$, we have

$$\int_{\Omega} u \Delta \psi \ge 0$$

for $\psi \in C_0^{\infty}$ and $\psi \ge 0$.

Then the conclusion follows from Theorem 1.9.

From the above theorem, we know L_u defines a Radon measure $\mu_u \in \mathcal{M}^+(\Omega)$. We call it "Riesz measure" defined by the superharmonic function u.

1.4 Potentials

Now we study potentials.

Definition 9. For functions f, g defined on Ω , if $f \leq g$, we call f is a minorant of g and g is a majorant of f.

If f is a minorant (or majorant) of g, satisfying property A, we call f is A-minorant (or A-majorant), e.g. harmonic minorant, superharmonic majorant, etc.

Definition 10. An open set Ω in \mathbb{R}^N is said to be Greenian if, for each $y \in \Omega$, U_y has a subharmonic minorant on Ω . (\mathbb{R}^2 is not Greenian)

If this subsection, we will always assume that Ω is Greenian.

Suppose $G_{\Omega}(x, y) = U_y - h_y$, where h_y is the greatest harmonic minorant of U_y on Ω (which can be found using Perron method). $G_{\Omega}(x, y)$ is called the Green function of Ω .

Definition 11. Let μ be a Radon measure in Ω , we define

$$G_{\Omega}\mu(x) = \int_{\Omega} G_{\Omega}(x, y) d\mu(y), x \in \Omega.$$

If $G_{\Omega}\mu(x) \not\equiv +\infty$, we call it the potential generated by $\mu(x)$.

Example. Let $\Omega = B_1(0) \subset \mathbb{R}^2$ and let $G_{\Omega}(x, y)$ be the corresponding Green function. Let $f(x) = -\sec |x|$ and $g(x) = \sqrt{1-|x|^2}$. It is easy to prove that $f, g \in \mathcal{U}(\Omega)$. However, one readily checks that

$$G_{\Omega}\mu_f \equiv +\infty$$

while $G_{\Omega}\mu_g$ defines a potential. The reason for this lies in that f(x) does not have a subharmonic minorant while g(x) does.

We state a theorem and we refer to [4, Theorem 4.2.4] for the proof.

Theorem 1.11. Let μ be a Radon measure on a connected Greenian open set Ω and let $\overline{B(z,r)} \subset \Omega$. Then $G_{\Omega}\mu$ is a potential if and only if

$$\int_{\Omega \setminus B(z,r)} G_{\Omega}(z,y) d\mu(y) < \infty.$$

In particular, if $\mu(\Omega) < +\infty$ or μ has compact support, then $G_{\Omega}\mu$ is a potential.

Lemma 1.12. (Weyl's lemma)

Let Ω be an open subsut of \mathbb{R}^N , and $u \in L^1_{loc}(\Omega)$. If

$$\int_{\Omega} u(x)\Delta\phi(x)dx = 0$$

for any $\phi \in C_c^{\infty}(\Omega)$ then u is a harmonic function.

Lemma 1.13. Let Ω be a Greenian domain and let μ be a Radon measure on Ω . If $G_{\Omega}\mu$ is a potential, then $G_{\Omega}\mu$ is locally integrable. Moreover, the Riesz measure of $G_{\Omega}\mu$ is μ .

Proof. First we prove that $G_{\Omega}\mu$ is locally integrable. For simplicity, we assume $N \geq 3$, N = 2 case are left to the readers.

For this case $G_{\Omega}(x, y) \leq U_y(x)$. For a compact subset $K \subset \Omega$, we choose open set D such that $K \subset D \Subset \Omega$. For $z \in k$

$$G_{\Omega}\mu(z) = \int_{D} + \int_{\Omega\setminus D} G_{\Omega}(z,x)d\mu(x).$$

It is easy to see that the harmonic function $\int_{\Omega \setminus D} G_{\Omega}(z, x) d\mu(x)$ is bounded on K. For the first term

$$\int_{K} \int_{D} G_{\Omega}(z, x) d\mu(x) dz = \int_{D} d\mu(x) \int_{K} G_{\Omega}(z, x) dz.$$

So

$$\int_{K} G_{\Omega}(z, x) dz \leq \int_{K} U_{x}(z) dz$$
$$\leq \int_{B} U_{x}(z) dz \leq C(vol(K), N),$$

here B is a ball centered at x with the same volume as K. So

$$\int_{K} \int_{D} G_{\Omega}(z, x) d\mu(x) dz \leq \mu(D) C(vol(K), N).$$

Then we have proved that $G_{\Omega}\mu$ is locally integrable.

Then we know $L_{G_{\Omega}\mu}$ is well defined and

$$\begin{split} \int_{\Omega} (-\Delta \phi) G_{\Omega} \mu dx &= \int_{\Omega} (-\Delta \phi) (\int_{\Omega} G_{\Omega}(x, y) d\mu(y)) dx \\ &= \int_{\Omega} (\int_{\Omega} G_{\Omega}(x, y) (-\Delta \phi(x)) dx) d\mu(y) \\ &= \int_{\Omega} \phi(y) d\mu(y), \end{split}$$

So we know that the distribution Laplacian $L_{G_{\Omega\mu}}$ equals to μ .

Theorem 1.14. (*Riesz decomposition theorem*) Let u be superharmonic in Ω , let μ_u denote its associated Riesz measure and suppose that u has a subharmonic minorant on Ω . Then $G_{\Omega}\mu_u$ is a potential on Ω and $u = G_{\Omega}\mu_u + h$, where h is the greatest harmonic minorant of u on Ω .

Proof. Let $\{K_n\}$ be a sequence of compact subsets of Ω such that $K_n \subset int(K_{n+1}^0)$ for each n, and such that $\bigcup_n K_n = \Omega$. Further, let $\mu_u^{(n)}$ denote the restriction of μ_u to K_n . Then from Lemma 1.13, we know $L_{G_\Omega \mu_u^{(n)}} = L_u$ on $C_0^{\infty}(intK_n^0)$. We define $v_n = u - G_\Omega \mu_u^{(n)}$. Then by Weyl's lemma, v_n is harmonic in K_n^0 . So we see that $G_\Omega \mu_u^{(n)}$ is a superharmonic function in Ω .

Since u has a subharmonic minorant, we may assume that h is the greatest harmonic minorant of u. Now if we prove

$$G_{\Omega}\mu_u^{(n)} \le u - h,\tag{5}$$

then from

$$\lim_{n \to \infty} G_{\Omega} \mu_u^{(n)} = G_{\Omega} \mu_u,$$

we know $G_{\Omega}\mu_u \leq u-h$ is a potential. Now we will prove (5). It suffices to prove the greatest harmonic minorant of $u-h-G_{\Omega}\mu_u^{(n)}$, $w_n \geq 0$. Since

$$u - h - G_{\Omega}\mu_u^{(n)} \ge -G_{\Omega}\mu_u^{(n)}$$

and $-G_{\Omega}\mu_u^{(n)}$ is subharmonic, we know $w_n \ge -G_{\Omega}\mu_u^{(n)}$. Then it suffice to prove that the greatest harmonic minorant of $G_{\Omega}\mu_u^{(n)}$ is 0. It is obvious that 0 is a harmonic minorant of $G_{\Omega}\mu_u^{(n)}$. On the other hand, fix $y_0 \in K_n$, for $x \in \Omega \setminus K_{n+1}$, there holds Harnack's inequality

$$G_{\Omega}(x,y) \le CG_{\Omega}(x,y_0)$$

for any $y \in K_n$. Integration with respect to $y \in K_n$, we know

$$G_{\Omega}\mu_u^{(n)}(x) \le C\mu_u(K_n)G_{\Omega}(x,y_0).$$

Suppose ξ_n is the greatest harmonic minorant of $G_{\Omega}\mu_u^{(n)}(x)$, then in $\Omega \setminus K_{n+1}$, $\xi_n \leq C\mu_u(K_n)G_{\Omega}(x,y_0)$. By the definition of superharmonic function, we know $\xi_n \leq C\mu_u(K_n)G_{\Omega}(x,y_0)$ holds in Ω . Since the greatest harmonic minorant of $G_{\Omega}(x,y)$ of 0, we know $\xi_n \leq 0$.

Then we know $G_\Omega \mu_u \leq u-h$ is a potential. The greatest harmonic minorant of

$$u - G_{\Omega}\mu_u - h$$

is 0 since the greatest harmonic minorant of u - h is 0, and 0 is a harmonic minorant of $u - G_{\Omega}\mu_u - h$. However $u - G_{\Omega}\mu_u - h$ is harmonic. So it is 0. We have

$$u = G_{\Omega} \mu_u + h.$$

1.5 Polar set

Now we turn to the Wiener's Criterion for the solvablity of Dirichlet problem.

Definition 12. A set E in \mathbb{R}^N is called polar if there is a superharmonic function u on some open set Ω such that $E \subset \{x \in \Omega; u(x) = +\infty\}$.

It is clear from the local integrability of superharmonic functions that polars sets have zero Lebesgue measure.

Example. 1. Single point set $\{y\}$ is a polar set, since U_y is a superharmonic function in \mathbb{R}^N . In fact, any countable set $\{y_k : y \in \mathbb{N}\}$ is polar. When $N \geq 3$,

$$u(x) = \sum_{k} 2^{-k} U_{y_k}(x), x \in \mathbb{R}^N$$

is a potential. When N = 2, the function

$$u(x) = \sum_{k} 2^{-k} (1 + \log^{+} ||y_{k}||)^{-1} U_{y_{k}}(x), x \in \mathbb{R}^{2}$$

is a logarithmic potential.

2. If $N \geq 3$, the set $E = (0,0) \times \mathbb{R}^{N-2}$ is a polar set, since

$$u(x_1, \cdots, x_N) = -\log(x_1^2 + x_2^2)$$

is superharmonic on \mathbb{R}^N .

Theorem 1.15. Let E be a polar set such that $E \subset \Omega$, and let $z \in \Omega \setminus E$. If Ω is Greenian, then there is a potential $G_{\Omega}\mu$ valued $+\infty$ on E such that $G_{\Omega}\mu(z) < +\infty$ and $\mu(\Omega) < +\infty$.

Proof. Since E is polar, there exist an open set D and a superharmonic function $u \in \mathcal{U}(D)$ such that $u(E) = +\infty$. We may assume that $D \subset \Omega$ and $z = 0 \notin D$ (or we remove it from D and D is still open). Let (B_k) be a sequence of open balls such that $\overline{B}_k \subset D$ for each k and $\bigcup_k B_k = D$. For each k we define a measure ν_k by

$$\nu_k(A) = \frac{\mu_u(A \cap B_k)}{\mu_u(B_k) + 1}$$

for any Borel set A, where μ_u is the Riesz measure associated with u. Define

$$u_k = \int U_y d\nu_k(y)$$

is valued $+\infty$ on $E \cap B_k$. Also $u_k(0) < +\infty$, since $0 \notin \overline{B_k}$.

When $N \geq 3$, let

$$\mu = \sum_{k} 2^{-k} \frac{\nu_k}{1 + u_k(0)}.$$

Then $\mu(\Omega) \leq 1$ and $G_{\Omega}\mu$ is a potential on Ω , which is valued $+\infty$ on E but is finite at 0.

If N = 2, let

$$\mu = \sum_{k} 2^{-k} \{ 1 + \int_{B_k} |\log \|y\| | d\nu_k(y) \}^{-1} \nu_k.$$

We can prove similarly.

1.6 Fine topology

First we study a superharmonic function, which is not continuous.

Example. Let $\{x_n\}$ be a sequence of points in $B_1 \setminus \{0\} \subset \mathbb{R}^N$, satisfying $x_n \to 0$. Let

$$u(x) = \sum_{n=1}^{\infty} 2^{-n} U_{x_n}(x) / U_{x_n}(0), x \in \mathbb{R}^N$$

Then u is superharmonic, $u(x_n) = +\infty$ for each n and u(0) = 1. So u is discontinuous at 0. It can be modified to become a bounded one by simply considering $\min\{u, 2\}$.

This tell us that, we have to use another topology on \mathbb{R}^N , to make superharmonic functions continuous.

Definition 13. If \mathcal{T}_1 and \mathcal{T}_2 are topologies on the same set E, if $\mathcal{T}_2 \subset \mathcal{T}_1$, then we say that \mathcal{T}_1 is finer that \mathcal{T}_2 , and that \mathcal{T}_2 is coarser than \mathcal{T}_1 . The "fine topology" of classical potential theory is the coarsest topology on \mathbb{R}^N which makes every superharmonic function on \mathbb{R}^N continuous in the extended sense of functions taking values in $[-\infty, +\infty]$.

Since B(y, r) can be written in the form $\{x : U_y(x) > a\}$ for a suitable choice of a, it is clear that the fine topology is finer than the Euclidean one.

- **Lemma 1.16.** 1. A subbase for the fine topology is given by the collection of all sets of the form $\{x : u(x) < a\}$, where $u \in \mathcal{U}(\mathbb{R}^N)$ and $a \in \mathbb{R}$.
 - 2. If u is superharmonic on an open set Ω , then u is finely continuous on Ω .

We omit the proof. One can refer to Lemma 7.1.2 of [4].

Definition 14. A set E is said to be thin at a point y if y is not a fine limit point of E; that is, if there is a fine neighborhood U of y which does not intersect $E \setminus \{y\}$. Otherwise E is said to be non-thin at y.

Theorem 1.17. A polar set is thin everywhere.

Proof. Let *E* be a polar set and let $y \in \mathbb{R}^N$. Then, by Theorem 1.15, there exists u in $\mathcal{U}(D)$, where *D* is a neighborhood of y such that $u = +\infty$ on $(E \cap D) \setminus \{y\}$ and $u(y) < +\infty$. Hence the set $\{x : u(x) < u(y) + 1\}$ is a fine neighborhood of y which does not intersect $E \setminus \{y\}$; that is, *E* is thin at y.

Theorem 1.18. Let y be a limit point of a set E. The following are equivalent:

- 1. E is thin at y;
- 2. there is a superharmonic function u on a neighborhood of y such that

$$\liminf_{x \to y, x \in E} u(x) > u(y);$$

3. for every Greenian set Ω which contains y, there exists $u \in \mathcal{U}_+(\Omega)$, such that $u(y) < +\infty$ and $u(x) \to +\infty$ as $x \to y$ along E.

Proof. Clearly $(3) \Rightarrow (2)$.

 $(2) \Rightarrow (1)$. If (2) holds, then we choose positive numbers δ and ε such that $u \in \mathcal{U}(B(y, \delta))$ and $u(x) \geq u(y) + \varepsilon$ on $B(y, \delta) \cap (E \setminus \{y\})$. It follows that the set $\{x \in B(y, \delta) : u(x) < u(y) + \varepsilon\}$ is a fine neighborhood of y which does not intersect $E \setminus \{y\}$, so (1) holds.

It remains to show that $(1) \Rightarrow (3)$. Suppose that E is thin at y and that Ω is a Greenian set which contains y. From Lemma 1.16, there exist $u_1, \dots, u_m \in \mathcal{U}(\mathbb{R}^N)$ and constants a_1, a_2, \dots, a_m such that the set $U = \bigcap_1^m \{x : u_n(x) < a_n\}$ is a fine neighborhood of y which does not intersect $E \setminus \{y\}$. We define the superharmonic functions

$$u'_{n}(x) = \frac{u_{n}(x) - u_{n}(y)}{a_{n} - u_{n}(y)}, (x \in \mathbb{R}^{N}; n = 1, 2, \cdots, m)$$
$$v = \sum_{n=1}^{m} u'_{n}$$

and $w = \min\{u'_1, u'_2, \cdots, u'_m\}.$

If $x \in E \setminus \{y\}$, then $x \notin U$, so $u'_n(x) \ge 1$ for some n. Hence $v \ge 1 + (m-1)w$ on $E \setminus \{y\}$, and it follows that

$$\liminf_{x \to y, x \in E} v(x) \ge 1 + (m-1)w(y) = 1 = v(y) + 1.$$
(6)

Let μ denote the Riesz measure associated with v. Then $\mu(\{y\}) = 0$, since $v(y) < +\infty$. Let $\mu_n = \mu|_{B(y,r_n)}$ for $r_n > 0$ small to be chosen. Since $G_{\Omega}\mu_n(y) \to 0$, we may choose r_n small enough such that $G_{\Omega}\mu_n(y) < 2^{-n}$. Let $u = \sum_n G_{\Omega}\mu_n$. Then $u \in \mathcal{U}_+(\Omega)$ and u(y) < 1. However, v differs from $G_{\Omega}\mu_n$ by a function harmonic on $B(y, r_n)$, so from (6) we have

$$\liminf_{x \to y, x \in E} G_{\Omega} \mu_n(x) \ge G_{\Omega} \mu_n(y) + 1 \ge 1.$$

It follows that $u(x) \to +\infty$ as $x \to y$ along E, so (3) holds.

1.7 Reduced functions

For $u \in \mathcal{U}(\Omega), u \geq 0$, put

$$\Phi^{u}_{F,\Omega} := \{ v \in \mathcal{U}(\Omega) : v \ge 0 \text{ on } \Omega, v \ge u \text{ on } F \}.$$

and define the reduced function of u with respect to (F, Ω)

$$R^u_{F,\Omega}(x) := \inf_{v \in \Phi^u_F} v(x).$$

In general, R_F^u is not l.s.c. For example, for $n \ge 3$, let $\Omega = \mathbb{R}^n$, $F = \{0\}$, and $U(x) = |x|^{2-n}$. Then we have

$$R_{F,\Omega}^U(x) = \begin{cases} 0 & x \neq y, \\ +\infty & x = y. \end{cases}$$

So it is not l.s.c.

Definition 15. We let

$$\hat{R}^{u}_{F,\Omega}(x) = \liminf_{y \to x} R^{u}_{F,\Omega}(y), x \in \mathbb{R}^{n}.$$

We call it the regularized reduced function or balayage.

One reduced function and balayage we will usually use is

 $R^1_{F,\Omega}, \hat{R}^1_{F,\Omega}.$

Lemma 1.19. With the same notations as above:

- 1. $0 \leq \hat{R}^{1}_{F,\Omega} \leq R^{1}_{F,\Omega} \leq 1;$
- 2. $R_{F,\Omega}^1 = 1 \text{ on } F;$
- 3. $\hat{R}^1_{F,\Omega} = R^1_{F,\Omega}$ on $\operatorname{int} F \cup F^c$, they are different only on a polar set of ∂F .
- 4. Assume \overline{F} is a compact subset of Ω , then $\hat{R}^1_{F,\Omega}$ is a potential $\int_{\Omega} G_{\Omega}(x,y) d\mu_y$. Then $\hat{R}^1_{F,\Omega}$ is superharmonic in Ω and harmonic in \overline{F}^c . It is also called the capacitary potential of F with respect to Ω . Its Riesz measure is supported on \overline{F} and is called the capacitary distribution of F.
- 5. $\hat{R}^1_{F,\Omega} = \hat{R}^1_{F \cup E,\Omega}$ if E is a polar set.

One may refer to [4, Theorem 5.3.4, 5.3.5] for the proof.

Lemma 1.20. Let $E \subset \Omega$ be thin at x_0 . Then $\hat{R}^1_{E \cap B(x_0,r)} \to 0$ for $r \to 0^+$.

Proof. By Theorem 1.18, we know there exists a superharmonic function $u \ge 0$ such that

$$0 < u(x_0) < +\infty = \liminf_{E \ni x \to x_0, x \neq x_0} u(x).$$

Choose $\varepsilon > 0$, we can pick r > 0 so that $u(x) > \frac{u(x_0)}{\varepsilon}$ for all $x \in E \cap B(x_0, r) \setminus \{x_0\}$. The set $\{x_0\}$ has capacity 0, hence $\hat{R}^1_{E \cap B(x_0, r)} = \hat{R}^1_{E \cap B(x_0, r) \setminus \{x_0\}}$. Then we know

$$\hat{R}^{1}_{E \cap B(x_0, r)} \le \varepsilon \frac{u(x)}{u(x_0)}$$

on $E \cap B(x_0, r)$ and moreover $\hat{R}^1_{E \cap B(x_0, r')} \leq \hat{R}^1_{E \cap B(x_0, r)}$ for any 0 < r' < r, as F(r) is a decreasing sequence.

Lemma 1.21. If E is not thin at $x_0 \in \partial \Omega$, then $\hat{R}^1_{E \cap B(x_0,r)}(x_0) = 1$ for all r > 0.

Proof. $R^1_{E \cap B(x_0,r)}|_E = 1$, hence

$$R^1_{E\cap B(x_0,r)} = 1$$

outside a polar set F on the boundary of $E \cap B(x_0, r)$. Still $(E \setminus F) \cap B(x_0, r)$ is not thin at x_0 . Then we may assume there is a sequence $(E \setminus F) \setminus \{x_0\} \ni x_n \to x_0$ in fine topology. So $\hat{R}^1_{E \cap B(x_0, r)}(x_0) = 1$.

1.8 Regular boundary points

Now we consider the third problem. Let $\Omega \subset \mathbb{R}^N, N \geq 2$ be a bounded open set and $\phi(x) \in C(\overline{\Omega})$. One useful method to solve this problem is due to Perron. Consider

$$\bar{H}_{\phi} = \inf\{v \in \mathcal{U}(\Omega); \liminf_{\Omega \ni y \to x} v(y) \ge \phi(x) \text{ for any } x \in \partial\Omega\}.$$

From standard argument, for example, from Chapter 2 of [3], we know \bar{H}_{ϕ} is harmonic in Ω .

Definition 16. $x_0 \in \partial \Omega$ is called a regular boundary point, if for any $\phi(x) \in C(\overline{\Omega})$,

$$\lim_{\Omega \ni y \to x} \bar{H}_{\phi}(y) = \phi(x).$$

Now we characterize the regular points.

Definition 17. Let $\Omega \subset \mathbb{R}^n$ be an open set. A function $w = w_{x_0}(x)$ a called a (local) barrier function at $x_0 \in \partial \Omega$ if it is defined on $W \cap \Omega$ for some neighborhood W of x_0 and has the following properties:

1. w is superharmonic on $W \cap \Omega$;

2. w > 0 on $W \cap \Omega$; 3.

$$\lim_{W \cap \Omega \ni x \to x_0} w(x) = 0.$$

From Lemma 6.6.3 of [4], we know the following lemma holds.

Lemma 1.22. If there is a (local) barrier at $y \in \partial\Omega$, then there exists a global barrier v at y such that $v \in \mathcal{U}_+(\Omega)$ and $\inf_{\Omega \setminus \omega} v > 0$ for every open neighborhood ω of y.

Lemma 1.23. (Lemma 7.3.4 of [4])

Let $F \subset \Omega$ and $u \geq 0$, $u \in \mathcal{U}(\Omega)$. Assume u peaks at $x_0 \in \Omega$ and $u(x_0) < \infty$. Then F is thin at x_0 if and only if $\hat{R}^u_{F,\Omega}(y) < u(y)$.

Theorem 1.24. Let Ω be a bounded open set that has a Green function and $x_0 \in \partial \Omega$. Then the following statements are equivalent:

- 1. x_0 is a regular boundary point;
- 2. There exists a barrier at x_0 ;
- 3. Ω^c is not thin at x_0 .

Proof. (1) \iff (2)

Suppose first that x_0 is regular and consider the function $w(x) = |x_0 - x|, x \in \partial\Omega$; Notice that \bar{H}_w is harmonic in Ω , $H_w > 0$ in Ω by strong maximum principle, and

$$\lim_{\Omega \ni x \to x_0} \bar{H}_w(x) = 0.$$

Then we know $\overline{H}_w(x)$ is a barrier function at x_0 .

Now we assume there is a barrier function w in $B_r(x_0) \cap \Omega$. Then from Lemma 1.22, we may assume w is a barrier function defined in Ω with $\inf_{\Omega \setminus \omega} w > 0$ for every open neighborhood ω of y.

Then let $M = \sup |\phi|$. By the continuity of ϕ , there are constants δ and k such that $|\phi(x) - \phi(x_0)| < \varepsilon$ if $|x - x_0| < \delta$ and $kw(x) \ge 2M$ if $|x - x_0| \ge \delta$. The functions

$$\phi(x_0) - \varepsilon - kw(x) \le u(x) \le \phi(\xi) + \varepsilon + kw(x)$$

or

$$|u(x) - \phi(\xi)| \le \varepsilon + kw(x).$$

Since $w(x) \to 0$ as $x \to \xi$, we obtain $u(x) \to \phi(\xi)$ as $x \to \xi$.

 $(1) \iff (3)$

Assume Ω^c is not thin at x_0 and consider the ball $B = B(x_0, 1)$. Define the positive superharmonic function $u(x) = 1 - |x - x_0|^2$ on $B(-\Delta u = 2n > 0)$; now build the positive superharmonic function

$$w := u - R^u_{\Omega^c \cap \frac{B}{2}}$$

where the balayage is with respect to B. w has to be strictly positive on $B \cap \Omega$; in fact, if there is $x \in B \cap \Omega$ such that w(x) = 0, by maximum principle w = 0on all $B \cap \Omega$, hence $u = \hat{R}^u_{\Omega^c \cap B}$ there and u is harmonic on $B \cap \Omega$, but this would be a contradiction since $\Delta u < 0$ there. As u peaks in x_0 , Theorem 1.23 and the assumption imply that $w(x_0) = 0$, therefore w is a barrier at x_0 and this implies x_0 is regular.

Suppose now x_0 is regular. Pick r' small enough so that $\Omega' = \Omega \cup B(x_0, r')$ still has a Green function; for each 0 < r < r' define

$$f_r(x) = \begin{cases} 1 & x \in \partial\Omega \cap B(x_0, r), \\ 0 & x \in \partial\Omega \backslash B(x_0, r). \end{cases}$$

Let $E(r) = \overline{B(x_0, r)} \setminus \Omega$. Taking the reduced functions with respect to Ω' and recalling Lemma (1.2.1):

$$\hat{R}^1_{E(r),\Omega'}(x_0) \le 1.$$

However for any superharmonic function $0 \le w \in \mathcal{U}(\Omega'), w \ge 1$ on E(r), we have

$$\liminf_{\Omega \ni x \to x_0} w(x) \ge \liminf_{\Omega \ni x \to x_0} \bar{H}_{f_r}(x) = f_r(x_0) = 1$$

as x_0 is regular. So we know

$$\liminf_{x \to x_0} R^1_{E(r),\Omega'}(x) = 1.$$

Then

$$\liminf_{x \to x_0} \hat{R}^1_{E(r),\Omega'}(x) = 1.$$

Hence $\hat{R}^1_{E(r),\Omega'}(x_0) = 1$ for all 0 < r < r'; Then from Lemma 1.21, we know Ω^c is not thin at x_0 .

1.9 Wiener Criterion

Let Ω be a Greenian domain and $E \subset \mathbb{R}^N$ and $y \in \Omega$. We fix $\alpha > 1$. Let

$$A_n = \{ x \in \mathbb{R}^N : \alpha^n \le U_y(x) \le \alpha^{n+1} \}, n \in \mathbb{N}.$$

Theorem 1.25. Suppose $N \ge 3$. Let $n' \in \mathbb{N}$ be such that $U_{n'} = \{x : U_y(x) \ge \alpha^{n'}\}$ is contained in Ω . The following are equivalent:

- 1. E is thin at y;
- 2. $\sum_{n'}^{\infty} \alpha^n \operatorname{Cap}_2(E \cap A_n, \Omega) < +\infty;$
- 3. $\sum_{n'}^{\infty} \hat{R}^1_{E \cap A_n}(y) < +\infty$, where $\hat{R}^1_{E \cap A_n}(y) = \hat{R}^1_{E \cap A_n,\Omega}(y)$.

Proof. (2) \iff (3)

For $n \geq n'$, $\hat{R}_{E\cap A_n}^{i}(y)$ is the capacitary potential of $E \cap A_n$ with respect to Ω . Let μ_n be the Riesz measure associated with the potential $\hat{R}_{E\cap A_n}^1(y)$ on Ω , which is the capacitary distribution ([4, Definition 5.4.1]) on $E \cap A_n$ and is supported on $\overline{E \cap A_n}$. Then $\mu_n(\Omega) = \operatorname{Cap}_2(E \cap A_n, \Omega)$.

Notice that from the Item 4 of Lemma 1.19

$$\hat{R}^1_{E\cap A_n}(y) = \int_{\Omega} G_{\Omega}(y, z) d\mu_n(z).$$

Notice that for $z \in E \cap A_n$,

$$G_{\Omega}(y,z) = U_z(y) - h_z(y),$$

where $h_z(y)$ is the greatest harmonic minorant of $U_z(y)$. As long as z stays in a compact subset of Ω , we see that $h_z(y)$ is bounded. Then we know $G_{\Omega}(y,z) \sim U_z(y) \sim \alpha^n$ for $z \in E \cap A_n$.

So we have

$$\hat{R}^1_{E \cap A_n}(y) \sim \alpha^n \|\mu_n\| = \alpha^n \operatorname{Cap}_2(E \cap A_n).$$

So we know (2) \iff (3). (1) \iff (3)

For $n \ge n'$, suppose that (3) holds. Then there is a sequence $b_n \to +\infty$ and $v(y) < +\infty$, where superharmonic function

$$v(x) = \sum_{n'}^{\infty} b_n \hat{R}^1_{E \cap A_n}(x), x \in \Omega$$

Since $\hat{R}^1_{E \cap A_n} = 1$ on $E \cap A_n$, except for a polar set F_n . We have $v(x) \to +\infty$ as $x \to y$ along $E \setminus \cup F_n$. Hence $E \setminus \cup F_n$ is thin at y. So E is thin at y.

Suppose (1) holds, then there is a superharmonic function $0 \le w(x) \in \mathcal{U}(\Omega)$ such that $w(y) < +\infty$ and

$$\lim_{E\ni x\to y} w(x) = +\infty.$$

We let μ be the Riesz measure of w(x) and $\mu|_{A_n} = \mu_n$.

$$G_{\Omega}\mu = G_{\Omega}\mu|_{\Omega \setminus \cup_{n'}^{\infty}A_n} + \sum_{n'}^{\infty}G_{\Omega}\mu_n.$$

We now $G_{\Omega}\mu - w(x)$ is harmonic in Ω . So

$$\lim_{E\ni x\to y}G_\Omega\mu=+\infty$$

and $G_{\Omega}\mu(y) < +\infty$. So $\sum_{n'}^{\infty} G_{\Omega}\mu_n((y)) < +\infty$. As long as we prove that for $n \ge n''$ large

$$G_{\Omega}(\mu_{n-1} + \mu_n + \mu_{n+1}) \ge 1, \ x \in A_n \cap E,$$
 (7)

we can show

$$\sum_{n''}^{\infty} \hat{R}^1_{E \cap A_n}(y) \le 3 \sum_{n''-1}^{\infty} G_{\Omega} \mu_n(y) < +\infty.$$

We know for $i = n', \dots, n-2, n+2, n+3, \dots$, the distance from the ring A_i to A_n is larger than $C \cdot d(A_i, \{0\})$.

$$\sup_{A_i} G_{\Omega}(\mu_{n'} + \dots + \mu_{n-2} + \mu_{n+2} + \dots)(x)$$

$$\leq CG_{\Omega}(\mu_{n'} + \dots + \mu_{n-2} + \mu_{n+2} + \dots)(0)$$

$$\leq CG_{\Omega}\mu(0).$$

So (7) must hold.

Theorem 1.26. Let $E \subset \mathbb{R}^2$, let $y \in \mathbb{R}^2$ and let Ω be a Greenian domain containing y. Further, let $\beta \in (0, 1)$, let

$$E_n = \{ x \in E : \beta^{n+1} \le |x-y| \le \beta^n \}$$

and let n' be such that $B(y, \beta^{n'-1}) \subset \Omega$. The following are equivalent:

- 1. E is thin at y;
- 2. $\sum_{n'}^{\infty} n \operatorname{Cap}_2(E_n, \Omega) < +\infty.$

1.10 Structure of noncompact surface with nonnegative Gaussian curvature.

Let u be a function, supermonic in $B_1(0) \subset \mathbb{R}^2$. What is the behavior, of u near x = 0.

Let $Aveu(r) = \int_{\partial B_r} u$. Then Aveu(r) is also a superharmonic function. By studying the ordinary different inequality, we can prove

$$\lim_{r \to 0} \frac{\operatorname{Ave}u(r)}{\frac{1}{2\pi} \log(1/r)} = M.$$

The question is whether there holds

$$\lim_{r \to 0} \frac{u(x)}{\frac{1}{2\pi} \log \frac{1}{|x|}} = M$$

Theorem 1.27. (Theorem 1.1-1.3 of [7], or Theorem 7.4.3. of [4]) There is a set E, which is thin at 0, such that

$$\lim_{x \to 0, x \notin E} \frac{u(x)}{\frac{1}{2\pi} \log \frac{1}{|x|}} = M.$$

Let $g_{edu} = dx^2 + dy^2$ be the standard flat metric on \mathbb{R}^2 . Let $g = e^{2u}(dx^2 + dy^2)$ be a complete comformal metric. We use K to denote the Gaussian curvature of g. The question is: if $K \ge 0$, what is the behavior of u near infinity?

Theorem 1.28. (Theorem 4.2 of [14])

There is a set E, which is 2-thin at infinity, such that

$$\lim_{x \to \infty, x \notin E} \frac{u(x)}{\log \frac{1}{|x|}} = m,$$

where $0 \le m \le 1$. Here 2-thin at infinity means that inversion

$$\tilde{E} = \{\frac{x}{|x|^2}; x \in E\}$$

is 2-thin at 0.

Proof. First we do the inversion, and we may consider the end as defined in the punctured ball $B_1(0) \setminus \{0\}, e^{2\tilde{u}}(d\tilde{x}_1^2 + d\tilde{x}_2^2)$. From the Gaussian curvature equation we have

$$\Delta \tilde{u} + K e^{2\tilde{u}} = 0$$

We use Δ_g to denote the Laplacian with respect to the metric g, we then have

$$-\Delta_g \tilde{u} = K \ge 0.$$

 So

$$\Delta_g e^{-\tilde{u}} = e^{-\tilde{u}} (-\Delta_g \tilde{u} + |\nabla_g \tilde{u}|^2) \ge 0.$$

Consider the following theorem of Peter Li and R. Schoen in [8].

Theorem 1.29. Suppose M^N is a complete Riemannian manifold with $Ric \geq -(N-1)k, k > 0$. Let $x_0 \in M$ for a nonnegative subharmonic function defined in $B_{2r}(x_0)$, there holds for any $\tau \in (0, \frac{1}{2})$

$$\sup_{B_{(1-\tau)r}^M(x_0)} v^2 \le \tau^{-C(1+\sqrt{k}r)} \frac{1}{vol(B_r^M(0))} \int_{B_r^M(x_0)} v^2 dvol_M.$$

Then let $v = e^{-\tilde{u}}$, we have

$$\sup_{B_{(1-\tau)r}(x_0)} e^{-2\tilde{u}} \leq \tau^{-C} \frac{1}{vol(B_r^M(0))} \int_{B_r^M(x_0)} e^{-2\tilde{u}} dvol_M$$
$$\leq \tau^{-C} \frac{vol_{|d\tilde{z}|^2}(B_r(x_0))}{vol_g(B_r(x_0))}.$$

Now consider

Theorem 1.30. (Theorem A of [2])

If (M^2, g) is a complete and $K_g \geq 0$, then there is a constant C(M) such that, for $r \leq 1$,

$$vol_g(B_r(x)) \ge C(M)r^2.$$

Now we have $\tilde{u} \to +\infty$ as $\tilde{x} \to 0$ in $B_1(0) \setminus \{0\}$. So $\tilde{u} \in \mathcal{U}(B_1(0))$ and $-\Delta \tilde{u}$ is a Radon measure on $B_1(0)$.

Then from Theorem 1.27, we know for a set \tilde{E} , 2-thin at 0

$$\lim_{\tilde{E} \not\ni (\tilde{x}, \tilde{y}) \to 0, } \frac{\tilde{u}}{\log \frac{1}{|\tilde{x}|}} = \tilde{m}.$$

After do the inversion again, we can prove theorem, and $0 \leq m \leq 1$ follows from the fact that the metric is complete.

One result of Huber in [1] is the following.

Theorem 1.31. Suppose (M, g) is a complete noncompact Riemann surface with

$$\int_M K^- d\mu_g < +\infty.$$

Then there is a compact Riemann surface Σ such that M is comformally equivalent to $\Sigma \setminus \{p_1, \dots, p_k\}.$

Here we use potential theory to prove a weak version.

Theorem 1.32. Suppose $\Omega \subset (\mathbb{S}^2, g_{\mathbb{S}^2})$ is a domain, with a complete conformal metric $g = g_{\mathbb{S}^2}$. If $K_g \ge 0$, then $\partial \Omega = \{p\}$ or $\{p,q\}$. If $\partial \Omega = \{p,q\}$, then (Ω,g) is a cylinder.

Proof. Choose $N \in \Omega$ as the north pole and use stereographic projection π_N to map $\mathbb{S}^2 \setminus N$ to \mathbb{R}^2 . Let S be $\pi_N(\partial \Omega) \subset D$, where D is a bounded domain of \mathbb{R}^2 . Assume $g = e^{2v}g_{edu}$. We know

$$\lim_{x \to S} v(x) = +\infty.$$

Then we know that v is superharmonic in D and S is a polar set since $v|_S = +\infty$. The Hausdorff dimension of S is 0. Then it is totally disconnected. Each point of S corresponds to an end of Ω . From splitting theorem, there are at most two points in S, and two point case corresponds to a cylinder.

2 Nonlinear Potential theory

We reter to [9, 6, 5, 11, 12] for materials of this section.

2.1 Introduction

For 1 , first we consider

$$I_p(u) = \int_{\Omega} |\nabla u|^p dx.$$

Given a function $\phi \in W^{1,p}(\Omega)$, we consider

$$\inf\{\int_{\Omega} |\nabla u|^p dx; u - \phi \in W_0^{1,p}(\Omega)\}\$$

Then the minimizer u_0 must satisfy

$$\frac{d}{dt} \int_{\Omega} |\nabla(u_0 + t\phi)|^p dx|_{t=0} = 0 \text{ for any } \phi \in \mathcal{C}_0^{\infty}.$$

Then we have

$$\int_{\Omega} < |\nabla u|^{p-2} \nabla u, \nabla \phi > dx = 0.$$
(8)

Then it satisfies the *p*-harmonic equation

$$\Delta_p u = 0, x \in \Omega. \tag{9}$$

Definition 18. Let Ω be a domain in \mathbb{R}^N . We say $u \in W^{1,p}_{loc}(\Omega)$ is a weak solution of the p-harmonic equation (9) if for $\forall \phi \in C_0^{\infty}(\Omega)$, (8) holds.

If in addition, u is continuous (actually it always has a continuous representative), then we say that u is p-harmonic function.

Definition 19. A function $v: \Omega \to (-\infty, \infty]$ is called p-superharmonic in Ω , if

- 1. v is l.s.c. in Ω ;
- 2. $v \not\equiv +\infty$ in Ω ;
- 3. for each domain $D \Subset \Omega$ the comparison principle holds: if $h \in C(\overline{D})$ is p-harmonic in D and $h|_{\partial D} \leq v|_{\partial D}$, then $h \leq v$ in D.

The set of all p-superharmonic functions on Ω are denoted by $\mathcal{U}_p(\Omega)$.

A function $u: \Omega \to [-\infty, \infty)$ is called p-subharmonic, if -u is called super-harmonic.

- **Example.** 1. $|x|^{\frac{p-N}{p-1}}, p \neq N$ and $-\log |x|, p = N$ are p-superharmonic functions;
 - 2. Although p-Laplace equation is not linear,

$$v(x) = \int_{\Omega} \frac{d\mu(y)}{|x-y|^{(N-p)/(p-1)}}$$

is still superharmonic for $1 and <math>\mu$ is a nonnegative Radon measure (with compact support for instance);

3. For $u, v \in \mathcal{U}(\Omega)$, $\min\{u, v\} \in \mathcal{U}(\Omega)$.

Theorem 2.1. ([9, Theorem 5.11, 5.15]) For $u \in \mathcal{U}(\Omega)$, we have for any $D \subseteq \Omega$,

$$\int_D |v|^q < \infty$$

for $0 \le q < \frac{N(p-1)}{N-p}$ in the case 1 . And

$$\int_D |\nabla v|^r < \infty$$

for 0 < q < N(p-1)/(N-1) in the case 1 and <math>q = p in the case p > N.

From now on we assume $1 \le p \le n$. We use $u \land k$ to represent $\min\{u, k\}$.

Theorem 2.2. For a superharmonic function $u \in \mathcal{U}(\Omega)$. $-\Delta_p u$ is a well defined Radon measure.

Proof. Since $|\nabla u|^{p-2} \nabla u \in L^1$ from Theorem 2.1. We know

$$L^p_u(\phi) = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \phi d\mu$$

is well defined for $\phi \in C_0^\infty$. Then from dominated convergence theorem

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \phi d\mu = \lim_{k \to \infty} \int_{\Omega} |\nabla u \wedge k|^{p-2} (u \wedge k) \cdot \nabla \phi dx.$$

Notice that $u \wedge k \in W^{1,p}_{loc}(\Omega)$ and still superharmonic. Then we know

$$\int_{\Omega} |\nabla u \wedge k|^{p-2} (u \wedge k) \cdot \nabla \phi dx \ge 0$$

for $0 \leq \phi \in C_0^{\infty}(\Omega)$. Let $k \to \infty$, we know $L_u^p(\phi) \geq 0$ for $0 \leq \phi \in C_0^{\infty}(\Omega)$. Then from Riesz representation theorem, we can prove the conclusion.

On the other hand, we have the following theorem.

Theorem 2.3. Suppose that Ω is bounded and $\mu \in \mathcal{M}^+(\Omega)$ is finite. Then there is an p-superharmonic function u in Ω such that

$$-\Delta_p u = \mu$$

and $u \wedge k = W_0^{1,p}(\Omega)$ for all k > 0.

2.2 Wolff Potential and generalization of Riesz decomposition theorem

Definition 20. Let $1 . Let <math>\Omega$ be a domain, and μ is a Radon measure in Ω , we define the p-Wolff Potential by

$$W_{1,p}^{\mu}(x_0,r) = \int_0^r \left(\frac{\mu(B(x_0,r))}{t^{n-p}}\right)^{1/(p-1)} \frac{dt}{t}.$$

One easily infers that $W_{1,2}^{\mu}(x_0,\infty)$ is the Newtonian potential of μ .

As the generalization of Riesz decomposition theorem for Δ , we have the following very important theorem.

Theorem 2.4. (*[5, Theorem 1.6]*)

Suppose u is a nonnegative p-superharmonic function in $B(x_0, 3r)$. If $\mu = -\Delta_p u$, then

$$c_1 W^{\mu}_{1,p}(x_0,r) \le u(x_0) \le c_2 \inf_{B(x_0,r)} u + c_3 W^{\mu}_{1,p}(x_0,2r).$$

2.3 Wiener Criterion

Now we study the Wiener Criterion for *p*-harmonic equation. Consider

$$\begin{cases} \Delta_p u = 0 & x \in \Omega\\ u - f \in W_0^{1,p}(\Omega) \end{cases}$$
(10)

We assume $f \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$. Then there is a unique solution u_f .

Definition 21. $x_0 \in \partial \Omega$ is called *p*-regular, if the solution u_f to (10) has the limit value $f(x_0)$ whenever $f \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$.

Definition 22. The *p*-fine topology is the coarsest topology that makes every *p*-superharmonic function continuous.

Suppose $E \subset \Omega$ and $x_0 \in \Omega$. E is called p-thin at x_0 , if x_0 is not the fine limit of $E \setminus \{x_0\}$.

Theorem 2.5. Suppose $E \subset \Omega$ and $x_0 \in \Omega$, then the following statements are equivalent:

- 1. E is p-thin at x_0 ;
- 2. There is a p-superharmonic function in Ω such that

$$\liminf_{x \to x_0, x \in E \setminus \{x_0\}} u(x) > u(x_0);$$

3. There is a p-superharmonic function in Ω such that

$$\liminf_{x \to x_0, x \in E \setminus \{x_0\}} u(x) = \infty$$

and $u(x_0) < +\infty$;

Theorem 2.6. A boundary point x_0 is p-regular if and only if Ω^c is not p-thin at x_0 .

Theorem 2.7. Wiener Criterion for p-Laplacian operator, 1 $Let <math>E \subset \Omega$ and $x_0 \in \Omega$, E is p-thin at x_0 if and only if

$$\int_0^1 (\frac{\operatorname{Cap}_p(B(x_0,t)\cap E, B(x_0,2t))}{\operatorname{Cap}_p(B(x_0,t), B(x_0,2t))})^{1/(p-1)} \frac{dt}{t} < +\infty$$

The necessary part is proved by Maz'ya in 1970 and the sufficient part is proved by Kilpelainen and Maly in 1994, in [5].

When p = 2 and $N \ge 3$, the above Wiener Criterion coincide with Theorem 1.25. For this, we note that

$$\operatorname{Cap}_p(B(x_0, t), B(x_0, 2t)) \sim t^{n-2}.$$

 So

$$\int_{0}^{1} \left(\frac{\operatorname{Cap}_{p}(B(x_{0},t)\cap E,B(x_{0},2t))}{\operatorname{Cap}_{p}(B(x_{0},t),B(x_{0},2t))}\right)^{1/(p-1)} \frac{dt}{t}$$
$$\sim \int_{\alpha^{-\frac{n+1}{n-2}}}^{\alpha^{-\frac{n}{n-2}}} t^{2-n} \operatorname{Cap}_{2}(B(x_{0},t)\cap E,B(x_{0},2t)) \frac{dt}{t}$$
$$\sim \sum_{n} \alpha^{n} \operatorname{Cap}_{2}(A_{n}\cap E,\Omega).$$

For $N \geq 3$ and p = N, the Wiener Criterion is equivalent to for some $\alpha > 1$

$$\sum_{n} \operatorname{Cap}_{p}(B(x_{0}, 2^{-n}) \cap E, B(x_{0}, 2^{-n+1}))^{\frac{1}{n-1}} < +\infty.$$

In our study, we will propose a different N-thin notion.

2.4 Conformal geometry and *N*-Laplacian equation.

First we have a new observation. Suppose (M, g_M) is an N-manifold and Ω is a domain, with a conformal metric $g = e^{2u}g_M$.

Then due to direct calculations we have

$$\tilde{R}_{ij} = R_{ij} - g_{ij}\Delta_M u + (2-N)u_{ij} + (N-2)u_i u_j + (2-N)|\nabla u|^2 (g_M)_{ij}.$$

Usually we take trace on both sides, we get Yamabe equation. Here we take values in ∇u direction. We get

$$\Delta_n u - |\nabla u|^{N-2} Ric(\frac{\nabla u}{|\nabla u|}) + |\nabla u|^{N-2} Ric(\frac{\nabla_g u}{|\nabla_g u|_g}) e^{2u} = 0.$$

This is another generalization of

 $\Delta u - K + K_g e^{2u} = 0$

for N = 2.

Theorem 2.8. ([13, Theorem 1])

Suppose (Ω, g) is a domain of $(\mathbb{S}^N, g_{\mathbb{S}})$ for $N \geq 3$, and $g_{\mathbb{S}}$ is the standard round metric. If $g = e^{2u}g_{\mathbb{S}}$ is complete and $Ric_g \geq 0$, $\partial\Omega$ consists of at most two points. The two point case corresponds to $\mathbb{S}^{N-1} \times R$.

Proof. We use *N*-Laplacian equation to prove this theorem.

Choose $q \in \Omega$ and use stereographic projection π to map $\partial \Omega$ to $S = \pi(\partial \Omega) \subset \mathbb{R}^N$. In a neighborhood D with metric g_{edu} , we have

$$g = e^{2u}g_{edu}.$$

And

$$\Delta_n u + Ric_g(\frac{\nabla_g u}{|\nabla_g u|_g})|\nabla_g u|^{n-2}e^{2u} = 0.$$

From [10, Proposition 8.1], we know

$$\lim_{x \to S} u(x) = +\infty$$

Then we know u is N-superharmonic in D, even across S and S is N-polar set, which has 0 N-capacity.

So $\partial \Omega$ is totally disconnected. From splitting theorem, we know the conclusion holds.

Now it is interesting to understand the case when $\partial \Omega = \{p\}$, that is Ω is conformally equivalent to \mathbb{R}^N .

Consider a complete conformal metric $g = e^{2u}g_{edu}$, if $Ric_g \ge 0$, does

$$\lim_{x \to \infty} \frac{u(x)}{\log \frac{1}{|x|}} = m$$

hold?

Theorem 2.9. ([11, Theorem 1.1])

Let w be an N-superharmonic function in $B(0,2) \subset \mathbb{R}^N$ and

$$-\Delta_N w = \mu \ge 0$$

for a Radon measure $\mu \in \mathcal{M}^+(B(0,2))$. Then there is a set $E \subset \mathbb{R}^N$ which is N^* -thin at 0, such that

$$\lim_{x \notin E, x \to 0} \frac{w(x)}{\log \frac{1}{|x|}} = \liminf_{x \to 0} \frac{w(x)}{\log \frac{1}{|x|}} = m \ge 0$$

and

$$w(x) \ge m \log \frac{1}{|x|} - C$$

for $x \in B(0,1)\setminus\{0\}$ and some C. Moreover if $w \in C^2(B(0,2)\setminus\{0\})$ and $(B(0,2)\setminus\{0\}, e^{2w}|dx|^2)$ is complete at 0, then $m \ge 1$.

Let

$$\begin{split} \omega(y,i) &= \{ x \in \mathbb{R}^N : 2^{-i-1} \le |x-y| \le 2^{-i} \} \\ \Omega(y,i) &= \{ x \in \mathbb{R}^N : 2^{-i-2} \le |x-y| \le 2^{-i+1} \} \\ \omega(\infty,i) &= \{ x \in \mathbb{R}^N : 2^i \le |x-y| \le 2^{i+1} \} \\ \Omega(\infty,i) &= \{ x \in \mathbb{R}^N : 2^{i-1} \le |x-y| \le 2^{i+2} \}. \end{split}$$

A set E is called N^\ast -thin at y if

$$\sum_{n=n'}^{\infty} n^{N-1} \mathrm{Cap}_N(E \cap \omega(y,i), \Omega(y,i)) < +\infty$$

A set E is called N^* -thin at ∞ if

$$\sum_{n=n'}^{\infty} n^{N-1} \operatorname{Cap}_N(E \cap \omega(\infty, i), \Omega(\infty, i)) < +\infty.$$

With this we proved

Theorem 2.10. ([11, Theorem 1.3])

Suppose that $(\mathbb{R}^N, e^{2u}|dx|^2)$ is complete with nonnegative Ricci. Then there is a set E, N^* -thin at infinity, such that

$$\lim_{x \notin E, x \to \infty} \frac{\phi(x)}{\log \frac{1}{|x|}} = \liminf_{x \to \infty} \frac{\phi(x)}{\log \frac{1}{|x|}} = m$$

and

$$\phi(x) \ge m \log \frac{1}{|x|} - L$$

for some constant L, where $m \in [0, 1]$. Moreover,

- m = 0 if and only if g is flat;
- if Ric_g is bounded, then

$$\lim_{x \to \infty} \frac{\phi(x)}{\log \frac{1}{|x|}} = m$$

From Theorem 2.9, we can generalize the Huber's theorem to the following one.

Theorem 2.11. ([12, Corollary 1.1])

For $N \geq 3$, let Ω be a domain in the standard unit round sphere $(\mathbb{S}^N, g_{\mathbb{S}})$. Suppose on Ω , there is a complete conformal metric $g = e^{2u}g_{\mathbb{S}}$ satisfying

- 1. $Ric_g^- \in L^1(\Omega, g) \cap L^\infty(\Omega, g);$
- 2. $R_g \in L^{\infty}(\Omega, g)$ and $|\nabla^g R_g| \in L^{\infty}(\Omega, g)$;

Then $\partial \Omega = \mathbb{S}^N \backslash \Omega$ is a finite point set.

References

- A.Huber. On subharmonic functions and differential geometry in the large. Comm.Math.Helv., 32:13–72, 1957.
- [2] C.Croke and H. Karcher. Volume of small balls on open manifolds: lower bounds and examples. *Trans. Am. Math. Soc.*, 309(2):753–762, 1988.
- [3] D.Gilbarg and N.S.Trudinger. Elliptic partial differential equations of second order. Springer, Berlin, 1977.
- [4] D.H.Armitage and S.J.Gardiner. *Classical potential theory*. Springer, 2001.
- [5] T. Kilpeläinen and J. Malý. The wiener test and potential estimates for quasilinear elliptice quations. Acta. Math., pages 137–161, 1994.
- [6] T. Kilpeläinen, J. Malý, and O.Martio. Nonlinear potential theory of degenerate elliptic equations. Oxford University Press, Oxford, 1993.
- [7] M.Arsove and A.Huber. Local behavior of subharmonic functions. Indiana University Mathematics Journal, 22(12), 1973.
- [8] P.Li and R.Schoen. l^p and mean value properties of subharmonic functions on riemannian manifolds. Acta. Math., 153(3-4):279–301, 1984.
- [9] P.Lindqvist. Notes on the p-laplace equation. https://folk.ntnu.no/lqvist/plaplace.pdf.
- [10] S-Y.A.Chang, F.Hang, and P.Yang. On a class of locally conformally flat manifolds. *Int. Math. Res. Not.*, 4:185–209, 2004.
- [11] S.Ma and J.Qing. On n-superharmonic functions and some geometric applications. Calc. Var. Par.Diff.Equ., 60:234, 2021.
- [12] S.Ma and J.Qing. On huber-type theorems in general dimensions. Adv. Math., 395, 2022.
- [13] S.Zhu. The classification of complete locally conformally flat manifolds of nonnegative ricci curvature. *Pac.J.Math.*, 163(1):189–199, 1994.
- [14] V.Bonini, S.Ma, and J.Qing. On nonnegatively curved hypersurfaces in H^{n+1} . Math.Ann., (372):1103–1120, 2018.
- [15] W.Rudin. Real and complex analysis. McGraw-Hill, New York., second edition, 1974.